
Applications and Challenges in Securing Time

Fatima M. Anwar
UCLA

Mani Srivastava
UCLA

Abstract

In this paper, we establish the importance of trusted time
for the safe and correct operation of various applications.
There are, however, challenges in securing time against
hardware timer manipulation, software attacks, and ma-
licious network delays on current systems. To provide
security of time, we explore the timing capabilities of
trusted execution technologies that put their root of trust
in hardware. A key concern is that these technologies do
not protect time integrity and are susceptible to various
timing attacks by a malicious operating system and an un-
trusted network. We argue that it is essential to safeguard
time-based primitives across all layers of a time stack
– the hardware timers, platform software, and network
time packets. This paper provides a detailed examination
of vulnerabilities in current time services, followed by a
set of requirements to build a secure time architecture.

1 Introduction

Applications such as telecommunications, satellite navi-
gation, banking systems, Internet of things, and many oth-
ers are underpinned by accurate timing. An attacker may
incentivize by compromising time on these systems. The
incentive can be monetary [15], location based [20], cryp-
tographic keys [18], or copyright theft: an attacker can 1)
cause trade time discontinuities for illegal trading activ-
ities especially in high frequency trading [15], 2) move
time backward for digital rights management and movie
rentals, 3) disrupt temporal forensic analysis by violating
causality [5], and 4) prove to be physically present at a
place where it is not [20]. An adversary can also cause
complete system shutdown by manipulating the time of
Phasor Measurement Units (PMUs) in smart grids [19],
and distributed servers in self-programming networks [8].

A malicious host may degrade system performance and
user experience by increasing user perceived delays [17].

A time stack provides timekeeping and timestamp-
ing capabilities to all systems, and consists of three ma-
jor components: hardware timers that count oscillations,
software that maintains time, and network packets that
carry time information. A compromised operating system
(OS) can manipulate timer registers, a host can lie about
time [2], and a network attacker can delay time pack-
ets [7]. We argue that it is imperative to protect all layers
of time stack – the hardware timers, system software, and
the network packets.

Critical functionalities for securing unmodified bina-
ries in Haven [2], Panoply and Graphene-SGX rely on
untrusted system time. A malicious OS may lie about the
time or signal early timeouts. Traditional cryptographic
techniques, trusted execution technologies, and network
security mechanisms may guarantee data security but
do not provide timing integrity. Some techniques such
as fTPM [16] propose secure clock implementations on
trusted execution environments, but it relies on OS ac-
knowledgements for clock writes, and are susceptible to
attacks in the presence of untrusted OS and network.

In this work, we examine in detail the timing capabil-
ities of various Trusted Execution Environments (TEE)
such as Intel SGX, ARM TrustZone, and Trusted Plat-
form Module (TPM), and establish that the mechanisms
provided by these TEE are insufficient to establish tim-
ing integrity. For example, Intel SGX provides access to
a trusted timer in the Converged Security and Manage-
ability Engine through secure platform services [4]. A
privileged adversary like OS is not able to manipulate this
trusted timer. We establish that SGX trusted time can still
be attacked, and the SGX community verifies our claim.
SGX platform service transfers trusted time packets over
a secure session through OS inter-process communica-



tion [4]. As these packets are encrypted and integrity
protected, OS cannot change the packet’s content. It can
however delay these packets. We mount a delay attack in
the OS, and its consequence is a time value that cannot
be trusted as it is not received in a timely manner. The
violation of timeliness of trusted time packets gives a
wrong perception of elapsed time durations to applica-
tions. The failure to measure fixed durations affect many
applications and result in unstable system operation.

We also put forward other categories of timing attacks
in TEE such as scheduling attacks launched by a com-
promised OS and time transfer attacks from a malicious
network element. In the presence of these attacks, we
provide a set of requirements that guide the design and
implementation of a secure time architecture.

2 Applications of Trusted Time

Clocks are considered synchronized if their time is
aligned with each other. It has long been established
that synchronized clocks in distributed systems improve
performance by reducing complexity. With the Internet
of Things (IoT), health care, connected vehicles, digital
assistants, and augmented/virtual reality bringing a mas-
sive amount of data, there is an ever increasing need of
cloud-based services that guarantee a rapid response on
recent data and scale to distributed servers. The realiza-
tion of these services is not possible without understand-
ing temporal characteristics of the data. The emerging
temporal use cases of “delayed use” or “schedulable de-
mand” in cloud services push towards the trend in data
warehouse products to support real-time applications and
time-indexed queries [14]. It is imperative that services
performing temporal forensic analysis on data should be
temporally trusted.

Fine-grained network measurements using packet
timestamps enable networks to monitor themselves and
requires the distributed servers in the network to be se-
curely synchronized in time. ShieldBox and Slick [22]
provide secure middlebox framework for deploying net-
work functions over untrusted commodity servers using
SGX enclaves. For line rate processing in middleboxes,
fine-grained cycle level measurements are made inside
enclave via Network Interface Card’s clock as it can be
read reasonably fast. However, as noted by the authors,
this clock source is not secure against OS attacks, and
providing precise trusted time remains an open prob-
lem [22]. Other systems such as SCONE, Haven [2], and
Panoply also rely on untrusted OS time.

There is a need of trusted timestamping for certificate
revocation, Digital Rights Management (DRM), and to

preserve the creation time of patents, digital documents,
electronic commerce or even virtual patents [3]. Unfortu-
nately, clocks are subject to rollback attacks [12] where
time goes backward, replay attacks where time doesn’t
move forward, and delay attacks where time durations are
dilated or compressed. Mere encryption cannot prevent
these attacks.

Interactive mobile applications that rely on cloud ser-
vices also benefit from the trusted notion of time. These
mobile applications expect a timely response to their re-
quests. The application developers have to ensure that the
end-to-end delays do not exceed a particular value. Time-
card [17] calculates ‘elapsed time’ since the initiation
of a request and predicts ‘remaining time’ that servers
tune its ‘work time’ to meet the required deadline. An
untrusted time can impact application performance.

There are specific applications such as grid monitor-
ing, precision docking, and high frequency trading, where
time attacks result in catastrophic consequences. Astro-
nomical applications such as Quantum key distribution
from satellite to ground [10], and distributed telescopes’
black hole imaging [1] require high precision time syn-
chronization – in the order of picoseconds – hence the use
of exclusive and secure atomic clocks is recommended.
In short, the correctness and safety of numerous applica-
tions rely on a trusted notion of time.

3 Challenges in Providing Secure Time

Timekeeping and timestamping capabilities are essential
for all systems. Therefore, every system maintains a time
stack with three discrete components: hardware timers,
timekeeping software, and time transfer network packets.
We start by defining our threat model followed by the
attacks on time.

3.1 Threat Model

We do not trust the OS and hypervisors as they can be
easily corrupted. Hence we do not trust the correctness
of the received timing information from the underlying
system. Note that the OS is a privileged adversary and can
manipulate all timers on a device. Network entities are
also not trustworthy. GPS time packets can be spoofed
and NTP packets can be attacked. A local or a remote
attacker is capable of delaying, dropping, replaying and
forging time packets, thus it can hold time, or move it
backward or forward. We do trust the hardware execution
environments from ARM and Intel.



3.2 Attacks on Time Stack

A compromised OS or a network element manipulates
time by attacking components at all layers of the stack.

Hardware timers are not considered secure if a mali-
cious software is able to write to their registers. In Intel
architecture, RDTSC/RDTSCP are instructions that are
used to read the TimeStamp Counter (TSC), but these
instructions are not immune to influences by privileged
software , e.g. TSC can be written to by the OS. Similarly,
High Precision Event Timer (HPET), Programmable In-
terval Timer (PIT), and Advanced Programmable Inter-
rupt Controller (APIC) timer can be controlled by the
OS. The timers on ARM and other architectures face
the same issue. Hence a privileged software is capable
of adding discontinuities in time. To protect hardware
timers against a malicious software, it is essential to re-
strict timer writes only to trusted entities.

Software maintained by the OS is responsible for time-
keeping i.e. convert hardware timer ticks to a human
understandable time. A malicious OS may lie about time,
signal timeouts early or late, or gradually change the no-
tion of time for applications to deceive them. It can also
schedule out the timekeeping threads for an indefinite
period of time. As a result, we no longer trust the time-
keeping, scheduling, and timeout services provided by
an OS.

Network based time synchronization mechanisms are
responsible to align clocks at different devices connected
over the network. These time synchronization mecha-
nisms are also not safe from attacks. Network services
such as GPS and Network Time Synchronization Proto-
col (NTP) are used to synchronize local client time to
global time. GPS provides accurate Position Navigation
and Time (PNT) information to almost all the civilian in-
frastructure. However GPS spoofers can manipulate GPS
derived UTC time and cause damage to various applica-
tions in smart grids, financial market, and autonomous
agents. Martyn Thomas urges for a backup timing system
for GPS because of heavy reliance of critical infrastruc-
ture on GPS, from precision docking of oil containers to
high tech farming [21]. eLoran is considered as a PNT
replacement for GPS but it still suffers from low accu-
racy [9].

As time is a critical service needed at all devices at
all time, most digital devices use NTP [13] to synchro-
nize their local clocks with the global time. NTP clients
exchange messages with Time servers in the network
achieving 100’s of milliseconds time synchronization
accuracy. As discussed in [6] and [11], an attacker can
establish Man in the Middle (MitM) capabilities for the
NTP packets in the network. It can delay, drop, replay,

0 2 4 6 8

SGX calculated period (sec)

0

2

4

6

8

A
c
tu

a
l 
ti
m

e
 p

e
ri
o
d
 (

s
e
c
)

Figure 1: Delay attacks by an OS distorts SGX time
periods as compared to actual time periods

and forge the NTP packets. Recent cryptographic tech-
niques incorporated to NTP have eliminated most of these
attacks, however delay attacks on NTP packets are con-
sidered too strong to protect against [11]. There exist
solutions that offer to mitigate delay attacks on NTP
packets under the assumption that half of the time servers
and network links should not be compromised, but an ad-
versary sitting on a gateway router can easily manipulate
and delay all NTP packets for a particular client.

3.3 Timing capabilities of Trusted Execu-
tion Environments

The security features of ARM TrustZone and Intel SGX
are limited to the boundary of a CPU with limited sup-
port of secure peripherals such as clocks. There exists
Trusted Platform Module (TPM); a trusted microcon-
troller / crypto coprocessor that provides secure peripher-
als such as secure storage, clock, and entropy.

ARM TrustZone has its own implementation chal-
lenges when it comes to secure peripherals. Memory
and interrupts of different I/O peripherals in ARM Trust-
Zone can be mapped to the ‘secure world’. Unfortunately,
the controller of the peripheral can be programmed by
the ‘normal world’ OS making the peripherals open to
different kinds of attacks [16].

Intel SGX trusted time service provides time value in
seconds with reference to a random epoch. It is good
for calculating time periods to enforce certain policies.
However, it has coarse resolution, random epochs, and
no sense of absolute time [4]. Hence, at any point in time,
all enclaves have a different sense of time, which is not
desirable for time-triggered applications. For example,
data sampled from multiple trusted sensors placed on
distributed enclaves yield timestamps that cannot be cor-
related. SGX trusted time is accessed via encrypted inter-
process communication [4] managed by a compromised
OS. We know that the OS cannot attack the encrypted and



integrity protected packet, we show however that the OS
can delay this packet. Delaying violates the timeliness
of SGX time value hence distorting the sense of time
for application enclaves. We delay all SGX time packets
with a random value sampled from a uniform distribution
of 0 to 1 seconds, and are able to accumulate an error in
the order of multiple seconds as shown in Figure 1. We
provide the source code to reproduce this attack at SGX
Delay Attack. The use cases of sampling multiple trusted
sensors at the same time, or sampling sensors in their
allotted time slots are also affected by these attacks, thus
compromising all applications in need of secure time.

Trusted Platform Module (TPM) mandates a millisec-
ond resolution clock since the TPM boot, and provides
a reliable indication when it has been reset. The TPM
time is written to a non volatile memory every 222 mil-
liseconds that could possibly help in protecting against
rollback attacks [12], where an adversary moves the clock
back in time. The effective resolution of the TPM clock
is reduced when it is accessed from an application with
an access latency of almost 32 milliseconds that is three
times more than SGX time latency of few milliseconds.
Because of the limited TPM resources, multiple applica-
tions cannot access it frequently, further decreasing its
effective resolution. The TPM clock is mostly used to
timestamp internally stored keys and data, and not de-
signed for timestamping network packets or sensors data
etc. Thus the TPM clock does not satisfy the needs of
broader applications.

4 Secure Time Architecture

After putting forward the timing capabilities of various
TEE, we are now in a position to formalize three broad
categories of timing attacks. In our threat model, we trust
the TEE by different vendors such as ARM Trustzone,
and Intel SGX. We do not trust the OS and hypervisors
as they can be corrupted. Though a TEE provides access
to a secure hardware timer, there are still three possi-
ble attacks on this trusted timer: As shown in Figure 2,
(1) Scheduling attack is launched by a compromised
OS, where it maliciously schedules out the timekeeping
threads for indefinite period of time, thus manipulating
the rate at which time advances. (2) Delay attack in-
tercepts all transmitted and received time packets and
maliciously add delays in packet delivery thus violating
timeliness of packet arrival. The attacker has the choice
to delay a packet by any arbitrary value thus distorting
the sense of time for an application.

The final category of attack in Figure 2 is the (3) net-
work attack. We successfully launch attacks on time syn-

Timer

Delay Attack

Network Attack

Operating System
Scheduling 

Attack

2
Timekeeping 

Service

Network

1

3

Figure 2: A secure clock should mitigate three categories
of attacks: (1) OS scheduling attack on timekeeping ser-
vice, (2) OS delay attack on time access, and (3) Network
attack on global time synchronization packets.
Note: We assume that the ‘Timer’ and ‘Timekeeping Ser-
vice’ are within hardware protection

chronization packets that contain global time information
from the time servers in the network. These packets are
either delayed by a compromised router, or the global
time information inside the packets is corrupted due to
a compromised time server. We consider a network at-
tacker that can compromise all time servers and the links
to those servers.

A secure time architecture detects and mitigates these
three categories of attacks. Key requirements that guide
the design of this architecture are, 1) a high resolution
trusted timer that no privileged adversary can manipulate,
2) a scheduling policy that retains the rate at which time-
keeping service advances time, 3) a domain specific so-
lution to detect and compensate for malicious OS delays,
and 3) a network attack-tolerant time synchronization
mechanism for maintaining secure global time.

5 Conclusion

A time value is not considered secure unless all elements
in a time stack are secured against attacks. In an un-
trusted OS and network, securing time is a challenge.
Though trusted execution environments provide timer
protection, they pose timing limitations and vulnerabili-
ties in reading, maintaining and synchronizing time. This
paper provides the first detailed examination of timing
limitation in TEE along with requirements to design a
secure time architecture.

Acknowledgment

This research is funded in part by the National Sci-
ence Foundation under awards CNS-1329755 and CNS-
1705135. The U.S. Government is authorized to repro-

https://bitbucket.org/rose-line/linux-sgx-secure-clock/src/sgx_secure_clock_dev/TPMSGXOSSocketAttackExperiment/
https://bitbucket.org/rose-line/linux-sgx-secure-clock/src/sgx_secure_clock_dev/TPMSGXOSSocketAttackExperiment/


duce and distribute reprints for Governmental purposes
notwithstanding any copy- right notation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of NSF, or the U.S. Government.

References
[1] Taking the first picture of a black hole. European Southern

Observatory (2017).

[2] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding appli-
cations from an untrusted cloud with haven. ACM Transactions
on Computer Systems (TOCS) 33, 3 (2015), 8.

[3] BREITINGER, C., AND GIPP, B. Virtualpatent-enabling the trace-
ability of ideas shared online using decentralized trusted times-
tamping. In Proceedings of the 15th Int. Symposium of Informa-
tion Science (2017) (2017).

[4] CEN, S., AND ZHANG, B. Trusted time and monotonic counters
with intel sgx platform services. Intel Resource Library (2017).

[5] CHEN, G. J., WIENER, J. L., IYER, S., JAISWAL, A., LEI, R.,
SIMHA, N., WANG, W., WILFONG, K., WILLIAMSON, T., AND
YILMAZ, S. Realtime data processing at facebook. In Proceed-
ings of the 2016 International Conference on Management of
Data (2016), ACM, pp. 1087–1098.

[6] DEUTSCH, O., SCHIFF, N. R., DOLEV, D., AND SCHAPIRA, M.
Preventing (network) time travel with chronos.

[7] GANERIWAL, S., PÖPPER, C., ČAPKUN, S., AND SRIVASTAVA,
M. B. Secure time synchronization in sensor networks. ACM
Transactions on Information and System Security (TISSEC) 11, 4
(2008), 23.

[8] GENG, Y., LIU, S., YIN, Z., NAIK, A., PRABHAKAR, B.,
ROSENBLUM, M., AND VAHDAT, A. Exploiting a natural net-
work effect for scalable, fine-grained clock synchronization. In
15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18) (Renton, WA, 2018), USENIX Asso-
ciation.

[9] JOHNSON, G. W., SWASZEK, P. F., HARTNETT, R. J., SHA-
LAEV, R., AND WIGGINS, M. An evaluation of eloran as a
backup to gps. In Technologies for Homeland Security, 2007
IEEE Conference on (2007), IEEE, pp. 95–100.

[10] LIAO, S.-K., CAI, W.-Q., LIU, W.-Y., ZHANG, L., LI, Y., REN,
J.-G., YIN, J., SHEN, Q., CAO, Y., LI, Z.-P., ET AL. Satellite-
to-ground quantum key distribution. Nature 549, 7670 (2017),
43.

[11] MALHOTRA, A., VAN GUNDY, M., VARIA, M., KENNEDY, H.,
GARDNER, J., AND GOLDBERG, S. The security of ntp’s data-
gram protocol. In International Conference on Financial Cryp-
tography and Data Security (2017), Springer, pp. 405–423.

[12] MATETIC, S., AHMED, M., KOSTIAINEN, K., DHAR, A., SOM-
MER, D., GERVAIS, A., JUELS, A., AND CAPKUN, S. {ROTE}:
Rollback protection for trusted execution. In 26th {USENIX}
Security Symposium ({USENIX} Security 17) (2017), pp. 1289–
1306.

[13] MILLS, D. L. Internet time synchronization: the network time
protocol. Communications, IEEE Transactions on 39, 10 (1991).

[14] NORTON, D. Instrumenting a data center with influxdb. USENIX
Association.

[15] PSIAKI, M. L., AND HUMPHREYS, T. E. Gnss spoofing and
detection. Proceedings of the IEEE 104, 6 (2016), 1258–1270.

[16] RAJ, H., SAROIU, S., WOLMAN, A., AIGNER, R., COX, J.,
ENGLAND, P., FENNER, C., KINSHUMANN, K., LOESER, J.,
MATTOON, D., ET AL. ftpm: A software-only implementation of
a tpm chip. In USENIX Security Symposium (2016), pp. 841–856.

[17] RAVINDRANATH, L., PADHYE, J., MAHAJAN, R., AND BAL-
AKRISHNAN, H. Timecard: Controlling user-perceived delays in
server-based mobile applications. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (2013),
ACM, pp. 85–100.

[18] SARMENTA, L. F., VAN DIJK, M., O’DONNELL, C. W.,
RHODES, J., AND DEVADAS, S. Virtual monotonic counters
and count-limited objects using a tpm without a trusted os (ex-
tended version).

[19] SHEPARD, D. P., BHATTI, J. A., HUMPHREYS, T. E., AND
FANSLER, A. A. Evaluation of smart grid and civilian uav vul-
nerability to gps spoofing attacks. In Proceedings of the ION
GNSS Meeting (2012), vol. 3, pp. 3591–3605.

[20] SINGELEE, D., AND PRENEEL, B. Location verification using
secure distance bounding protocols. In Mobile Adhoc and Sensor
Systems Conference, 2005. IEEE International Conference on
(2005), IEEE, pp. 7–pp.

[21] THOMAS, M., NORTON, J., JONES, A., HOPPER, A., WARD,
N., CANNON, P., ACKROYD, N., CRUDDACE, P., AND UNWIN,
M. Global navigation space systems: reliance and vulnerabilities.
The Royal Academy of Engineering, London (2011).

[22] TRACH, B., KROHMER, A., GREGOR, F., ARNAUTOV, S., BHA-
TOTIA, P., AND FETZER, C. Shieldbox: Secure middleboxes
using shielded execution. In Proceedings of the Symposium on

SDN Research (2018), ACM, p. 2.


	Introduction
	Applications of Trusted Time
	Challenges in Providing Secure Time
	Threat Model
	Attacks on Time Stack
	Timing capabilities of Trusted Execution Environments

	Secure Time Architecture
	Conclusion

