
Percentages, Probabilities and Professions of Performance

Jim Alves-Foss
Center for Secure and Dependable Systems

University of Idaho

Abstract

Experimental cybersecurity publication should provide read-
ers with a reliable report of the experimental methods,
dataset(s) used and full analysis of the results to allow the
readers to fully understand the capabilities and limitations of
the experiment, and to compare the results to other similar
tools or processes. This paper provides an example of looking
at experimental results a few different ways, in an attempt to
get a better understanding of the underlying processes. We
encourage other authors to do the same. We conclude with
some basic recommendations.

1 Introduction

How often have you read a cybersecurity paper that makes a
claim such as “We achieve a 95% True Positive rate” or “We
ran our code on 1,000 test cases and our tool’s outperforms
our competitors 98% (p < 0.05) of the time”? What do these
values mean? Are they even useful to the reader? This paper
highlights some recent examples of research that leaves unan-
swered questions. Although we do not propose a precise set
of guidelines, we request that conference committees develop
and publish guidelines for authors requiring more detailed
analysis of results and that reviewers reject papers that do not
meet these standards.

Note that this paper does not address cybersecurity publica-
tions that introduce a single instance of an attack or vulnerabil-
ity. These vulnerability reports are useful learning exercises,
and can help demonstrate the vulnerabilities in commercial
systems. Instead, this paper is focused on structured exper-
iments where a tool or process is applied to a dataset, with
the implicit assumption that the experiment is repeatable or
comparable to other results. For this to hold, the experimental
method, metrics applied, and results, must be presented in a
clear and complete manner.

2 What does the mean mean?

Many experimental cybersecurity publications will present
an average of some metric related to the author’s work. In
most cases, a good number is needed for a positive review
and subsequent publication. However, too often, there is not
enough information for the reader to understand the analysis;
they only get enough information to understand that the author
is claiming success.

A mean is an average of a metric applied to the dataset. Al-
though there are different types of means, including geometric
mean and harmonic mean; most authors use the arithmetic
mean. And in many publications, we see it as the only statis-
tic presented. However, a mean does not describe how well
the dataset samples the population. It does not describe the
statistical power of the result, in other words, it does not tell
the reader if there are enough samples for the statistics to
be meaningful. Is 30 test cases enough, or do we need 300,
or 3000? If the 30 test cases cover a wide range of features
related to what is being studied compared to 3000 very similar
test cases, the 30 may be more useful.

2.1 Example from past work
This recently came to light with an experiment we were run-
ning. The precise details and our results are not relevant to this
paper; it is sufficient to summarize the experiment. We were
looking at the ability to detect function start addresses from
fully stripped binaries, a non trivial problem. We read a couple
of papers published in top conferences. In the first work we
read, from Bao et al. [3], results for their tool Byteweight were
presented as in Table 1. In a subsequent paper by Andriesse
et al. [1], results for their tool Nucleus were presented in as
in Table 2, as well as using graphs.

Bao et al. used a Unix utility dataset consisting of binutils,
coreutils and findutils packages, compiled with four different
optimization options, for x86 and x64 architectures and with
two different compilers, gcc and icc1. The goal was to evalu-

1Both Bao et al. and Andiresse et al. also looked at Windows applications



Table 1: Precision Recall of function start identification (reproduction of Table 2 from Bao et al. [3])
GCC ICC

Precision Recall Time(sec) Precision Recall Time(sec)
Rosenblum et al. [7] 0.4909 0.4312 1172.41 0.6080 0.6749 2178.14
BYTEWEIGHT (3) 0.9103 0.8711 1417.51 0.8948 0.8592 1905.34

BYTEWEIGHT (no-norm) 0.9877 0.9302 19994.18 0.9727 0.9132 20894.45
BYTEWEIGHT 0.9726 0.9599 1468.75 0.9725 0.9800 1927.90

Table 2: Precision Recall of function start identification (reproduction of Table1(a) from Andriesse et al. [1])
gcc x86 gcc x64 clang x86 clang x64 VS x86 VS x64

IDA Pro 6.7 0.98/0.78 0.97/0.74 0.98/0.78 0.98/0.77 0.84/0.93 1.00/0.94
BAP/ByteWeight 0.9.9 0.68/0.83 0.70/0.66 0.52/0.71 0.73/0.49 0.63/0.74 0.69/0.56

Dyninst 9.1.0 0.93/0.91 0.96/0.74 0.98/0.95 0.88/0.72 − −
Nucleus 0.98/0.96 0.98/0.96 0.96/0.97 0.96/0.95 0.86/0.96 0.95/0.94
4Nucleus +0.00/+0.05 +0.01/+0.22 −0.02/ +0.02 −0.02/+0.18 +0.02/+0.03 −0.05/+0.00

ate if machine learning could be used to recognize and detect
function boundaries. Andriesse et al. used the same Unix
utility dataset, along with SPEC CPU2006 and a dataset con-
sisting of 5 server applications. Andriesse et al. also compiled
with 2 compilers (gcc and clang) and four optimization levels.
In both cases, the assumption is that difference introduced
by optimization level and compilers will generate different
binary patterns for function starts2.

One benefit of this prior work is that Bao et al. made their
tool and dataset available [2] and Andiressee et al. made
their code available [9]. Byteweight uses a machine learning
approach which takes over 500 hours and over 500 GB of
disk space for the training phase. Nucleus processes the whole
dataset in under 20 minutes.

2.2 Percentages in the past work

As part of our research we ran Nucleus on the Unix utility
dataset, using gcc and icc versions from the Bao et al. website
[2], and compiling our own versions with Clang. We also built
SPEC CPU 2017 benchmarks (including Fortran, C and C++
code) for x86 and x64 using gcc, icc and clang3.

If we present our results using averages, as the source pa-
pers did, we get Table 3. A detailed breakdown like this is
usually the best we get in a paper. The breakdown allows the
reader to determine that there were issues with the SPEC CPU
2017 dataset, and with optimization O1 for Unix utilities and
the authors feel that their work is done.

and Visual Studio compiler, but those are not addressed in this summary.
2Andriesse et al. did address concerns with the Unix utility dataset, stating

that “we found that it contains many binaries with large amounts of common
functions.” Therefore they also used SPEC CPU 2006 C and C++ benchmarks
along with 5 popular server applications to provide diversity to their dataset.

3Some of the SPEC CPU 2017 benchmarks work only for x64.

Table 3: Average F1 values of different subsets of combined
datasets, clang compiler, x64.

Data Set F1 Func. Start
Identification

Combined Data Sets, all optimizations 95.15%
SPEC CPU 2017, all optimizations 85.98%
Unix Utilities, all optimizations 97.24%
Unix Utilities, optimization O0 99.63%
Unix Utilities, optimization O1 94.27%
Unix Utilities, optimization O2 97.53%
Unix Utilities, optimization O3 97.51%

2.3 Looking at the data

One way of examining data is to look at it graphically. We
took the results from our experiments with Nucleus and did
just that. First we plotted a histogram of the F1 values for
the combined datasets (Fig. 1). This tells us there is a heavy
bias towards good performance. It also shows us that the
distribution is not normal, so we will have to be careful if we
wish to compare these results with other tools. Just comparing
averages will probably not be enough, and we can not use t-
test or other statistical tools that require a normal distribution
in the population. Most cybersecurity experiments will not
have a normal distribution, or may use insufficient sample size
for the type of statistical analysis they present. Those that still
present a comparison using satistical test, may try to bolster
their claims with a p-value (such as p < 0.05). However, this
is misreported, since the test is not valid on the data.

Next we plotted the data using a scatter plot (Fig. 2).
We plotted the SPEC CPU 2017 data first and then
the Unix tools, grouped by name. This grouping is
a byproduct of the way Bao et al. named the exe-



cutable and sorting them alphabetically. A sample name
was clang_binutils_64_01_strings, specifying com-
piler, toolset, architecture, optimization level and individual
tool name. This scatterplot reveals the difficultly with SPEC
CPU 2017 dataset. It also shows a low clustering artifact.
Fortunately with Excel we can hover over a datapoint and see
which item is plotted. This allowed us to see that there was a
clustering for optimization O1 among the coreutils.

Given this information, we modified the scatterplot to just
show the Unix utilities, now grouped by optimization level
and then by name (Fig. 3), and zoomed in. We can see the
drop in F1 values with increased optimization, and the artifact
from coreutils. This tells the reader there is something special
here, and these values dragged down the overall average.

Since the results are based on percentage of function starts
found, and some of these utilities are small, we wondered if
a binary with a small number of functions would necessarily
have a lower F1 value. The binaries ranged from 16 to almost
50,000 functions. We regrouped the data, still grouping by
optimization levels, and then sorting within the level by the
number of functions (Fig. 4). The results here are very inter-
esting. First in all cases we see a swoop up as the number of
functions increases, validating our opinion that a few missed
functions could drive the average down, and as the number of
functions increased, the overall performance improved. Fig. 4
also clearly highlights the strange artifact in the O1 optimiza-
tion level. A further look at the raw data shows that these
binaries have 20-25 functions that are missed by Nucleus.
This is probably a set of common shared functions, compiled
in a way that violates the assumptions in Nucleus’s analysis.

This way of presenting and looking at the data, gives the
readers a clue to the limitations of the presented work, and a
hint to future work and exploration.

3 How accurate is accuracy?

In an experimental cybersecurity paper, we sometimes see the
word “accuracy”. If a paper is evaluating an intrusion detec-
tion technique, it has evaluations of events, resulting in the
typical confusion matrix (Table 4). Authors can calculate a lot
of different statics by combining the values from this matrix
in different ways. Some of the most common are presented in
Fig. 5. Here true positive/negative indicates that the tool cor-
rectly identified a condition and condition positive/negative
reflects reality.

It is important to note that accuracy counts all the true pos-
itives and true negatives. If most of our events are benign,
the true negatives will outweigh anything else, and you will
have very high accuracy. For example, assume there are two
intrusion attempts out of a dataset of 1,000 connections. If
your tool reports two intrusions, one accurately and one inac-
curately (for one true positive, one false positive and one false
negative) you have 998/1000 = 99.8% accuracy. However,
your precision and recall are 50%, and therefore so is your F1

Figure 1: Histogram F1 values for Nucleus on combined
datasets, clang compiler, x64.

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0 200 400 600 800 1000 1200

Unix Utils

SPEC CPU 2017

Figure 2: Scatterplot of F1 values for Nucleus on combined
datasets, alphabetical within datasets, clang compiler, x64.

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

0 200 400 600 800 1000

Figure 3: Scatterplot of F1 values for Nucleus on Unix utility
dataset, group by optimization levels, clang compiler, x64.



80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

0 200 400 600 800 1000

Figure 4: Scatterplot of F1 values for Nucleus on Unix utility
dataset, group by optimization levels, then sorted by number
of functions, clang compiler, x64.

Table 4: 2×2 confusion matrix

Ground Truth
Condition Condition
Positive Negative

Predicted False Positive
Positive True Positive Type 1 error

Predicted False Negative
Negative Type 2 error True Negative

value. If you reported just one intrusion correctly (one true
positive and one false negative), you have 99.9% accuracy,
100% precision and 50% recall for a 75% F1 value. Lastly, if
you only have one false negative and no true positives, you
would have a 99.7% accuracy but 0% precision, recall and F1
values; not useful, but highly accurate.

4 Recommendations

There are several ways to address the issues raised in this pa-
per. The most important is to look at the data and understand
its structure. The second is to understand the type of anal-
ysis you are trying to perform and then use the appropriate
statistics – this may involve speaking with a statistician.

4.1 Comparing Approaches

In computer science it is easy to reuse the same dataset for
multiple tests. Unlike experiments in the real world, we will
not have to address learning, boredom or other order effects
(the impact of applying test A first on the results of a subse-
quent test B). When you are comparing two different tools
or techniques to the same dataset, you can use a dependent
(paired) statistical test. However, simply search the Internet

Prevalence =
Σ Condition positive
Σ Total Population

Accuracy =
Σ True positive+Σ True negative

Σ Total Population

Precision =
Σ True positive

Σ Predicted positive

Recall =
Σ True positive

Σ Condition positive

F1 = 2× Precision×Recall
Precision+Recall

Figure 5: Some definitions from the confusion matrix.

or drop-down menu of your statistical software for the appro-
priate test is not enough.

• Distribution Assumptions. Statistical tests are de-
signed with specific assumptions regarding distributions
of data. The common t-test and the dependent t-test as-
sume the data has a normal distribution which is often vi-
olated in experiments (see Fig. 1). The Wilcoxon-signed-
rank test, also used for comparing paired results, assumes
that the set of differences is symmetrical in shape [6],
whereas the Sign test does not [5]. The Kruska-Wallis
test always works with pairs, but assumes one results
stochastically dominates the other [10]. We recommend
the Sign test for the type of analysis we discuss in this
paper.

• Power. Statistical tests will often be used to test the
null-hypothesis (that there is no difference between two
groups), and results are often reported with a probability
(95% or 99%). However, the results should be presented
with a confidence interval. For example: Tool A outper-
forms Tool B by 3± 1% (p=0.05) tells the reader that
there is a 95% confidence that the difference between
the tools is between 2% and 4%. There are tools to cal-
culate the confidence interval, which is dependent upon
the size of the dataset and the overall population. Or, you
can use a tool to determine the sample size you need for
the confidence interval you want [4]. These tools give
a conservative estimate, but give you idea of the prob-
lem researchers face. For the preceding example, to get
95% confidence with a 1% confidence interval, assuming
a population of 1 million software programs, requires
9,513 test cases. Even a 3% interval (in the above case,
the difference would be from 0 to 5%) requires 1,066
test cases.

• Randomness. Samples need to be drawn randomly, or
tests need to be performed to show that the sample is an



accurate representation of the whole population. Many
statistical tests assume randomness to allow for general-
izing results to the full population.

4.2 Reporting Accuracy
It is important to understand the data. If you are analyzing a
detection tool, you need to understand the population.

• Percentage of True Positives. Most cybersecurity tools
are looking for relatively rare events out of a population.
For example, vulnerabilities in code, attempted DDOS
attacks, or malicious network packets. Therefore it is
important to report the correctness in detecting the true
positives and not the true negatives. The exception may
be in detecting email spam, which accounted for over
55% of email traffic in January through March 2019 [8].

• Sample size. Again sample size is very important when
the prevalence of a true positive is low. With a small
dataset, you may have only a few samples with condition
positive, and your highly correct tool may miss a few
making the results look bad, or a poor tool may get lucky
making the results look better than they are. Here again,
confidence intervals are useful.

5 Conclusion

We have performed a cursory review of some of the recent
top cybersecurity conferences. We have seen accepted papers
that do not fully describe or justify their datasets, ones that
present just averages, and those that report useless accuracy
or misuse the word accuracy.

In this paper we have shown how data from some real
experiments can hide information that would be valuable to
the readers, helping them better understand the strengths and
limitations of the work. We request that review committees
and reviewers push authors to provide a better description of
their analysis. To summarize:

• Use a dependent (or paired) statistical test such as the
Sign test if you are comparing results of different tools
on the same dataset.

• Use a large dataset of randomly selected test cases.

• Report the confidence interval of your results – and as-
sume a very large population if you are testing software.

• Consult a statistician to make sure your experiments is
designed correctly.

• When reporting how well a detection tool performs, pay
attention to the ratio of true positives to true negatives.
If the population has a small percentage of true posi-
tives, use F1 values or some other report of the tools
correctness of reporting the true positives.

Lastly, we want to state that our use of the Bao et al. [3] and
Andriesse et al. [1] works was meant to be illustrative and not
critical of the quality or value of their work. We are especially
grateful for these authors making their tools publicly available,
a practice that helps the community and should be strongly
encouraged by conference committees.

References

[1] ANDRIESSE, D., SLOWINSKA, A., AND BOS, H.
Compiler-agnostic function detection in binaries. In
2017 IEEE European Symposium on Security and Pri-
vacy (EuroS&P) (2017).

[2] BAO, T., AND BRUMLEY, D. Byteweight: Recognizing
functions in binary code. http://security.ece.cmu.
edu/byteweight/.

[3] BAO, T., BURKET, J., WOA, M., TURNER, R., AND
BRUMLEY, D. Byteweight: Learning to recognize func-
tions in binary code. In Proc. USENIX Security Sympo-
sium (2014), pp. 845–860.

[4] CREATIVE RESEARCH SYSTEMS. Sample size calcula-
tor. https://www.surveysystem.com/sscalc.htm.

[5] LAERD STATISTICS. Sign test us-
ing SPSS statistics. https://
statistics.laerd.com/spss-tutorials/
sign-test-using-spss-statistics.php.

[6] LAERD STATISTICS. Wilcoxon signed-
rank test using SPSS statistics. https:
//statistics.laerd.com/spss-tutorials/
wilcoxon-signed-rank-test-using-spss-statistics.
php.

[7] ROSENBLUM, N. E., ZHU, X., MILLER, B. P., AND
HUNT, K. Learning to analyze binary computer code.
In National Conference on Artificial Intelligence (2008),
pp. 798—-804.

[8] STATISTA. Global spam volume as percentage of to-
tal e-mail traffic from january 2014 to march 2019, by
month. https://www.statista.com/statistics/
420391/spam-email-traffic-share/.

[9] VUSEC. Nucleus source code, 2018. https://www.
vusec.net/projects/function-detection.

[10] WIKIPEDIA. Kruskal–wallis one-way analysis
of variance. https://en.wikipedia.org/wiki/
Kruskal%E2%80%93Wallis_one-way_analysis_of_
variance.

http://security.ece.cmu.edu/byteweight/
http://security.ece.cmu.edu/byteweight/
https://www.surveysystem.com/sscalc.htm
https://statistics.laerd.com/spss-tutorials/sign-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/sign-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/sign-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php
https://www.statista.com/statistics/420391/spam-email-traffic-share/
https://www.statista.com/statistics/420391/spam-email-traffic-share/
https://www.vusec.net/projects/function-detection
https://www.vusec.net/projects/function-detection
https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance
https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance
https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance

	Introduction
	What does the mean mean?
	Example from past work
	Percentages in the past work
	Looking at the data

	How accurate is accuracy?
	Recommendations
	Comparing Approaches
	Reporting Accuracy

	Conclusion

