Universal Radio Hacker:
A Suite for Analyzing and Attacking Stateful Wireless Protocols

Johannes Pohl
University of Applied Sciences Stralsund, Germany

Andreas Noack
University of Applied Sciences Stralsund, Germany

Abstract

Proprietary wireless protocols used by IoT devices are de-
signed under size and energy constraints, often neglecting
the security. Therefore, attacks like opening wireless door
locks or stealing cars are realistic threats. Software De-
fined Radios (SDR) propose a generic way to investigate
such protocols as they can send and receive on nearly arbi-
trary frequencies. Most tools for SDR, however, focus on
the HF side and offer little support for analyzing the actual
protocol logic so custom tools or excel spreadsheets must
be used. In this paper, we present the Universal Radio
Hacker (URH), an open source tool which is designed
for protocol analysis from the ground up and implements
a full workflow including interfaces for SDRs, intuitive
demodulation, customizable decodings, fuzzing support
and a simulation component. URH splits the process
down into the phases Interpretation, Analysis, Generation
and Simulation, whereby results from one phase can be
transferred to the other. The software offers all features
needed for protocol investigation without overwhelming
users with complexity. URH is developed with theoretic
oriented researchers in mind who want to focus on pro-
tocol logic and try to avoid diving into the depths of HF
and Digital Signal Processing.

1 Introduction

Internet of Things (IoT) brings comfort such as opening
doors wirelessly without having to mess with mechanical
keys or automatically closing roller blinds when the sun
sets. Such IoT devices often communicate over propri-
etary wireless protocols which are designed under size
and energy constraints whereby security is only a sec-
ondary factor. Weaknesses in such protocols pose critical
privacy and security threats: Adversaries may, for exam-
ple, track when victims leave their house and break their
wireless door lock by radio without leaving traces.
Attacking a wireless protocol includes several steps

that require knowledge in radio frequency (RF), coding
theory, protocol design and sometimes even cryptography.
Few research groups, however, include specialists from
all these fields, especially a combination of applied (RF)
and theoretic (cryptography) researchers is rare.

Given an unknown wireless protocol, we are interested
in the transmitted bits and bytes. Thus, we record sev-
eral signals with a Software Defined Radio (SDR) like
HackRF [10] or USRP-N210 [6]. For further analysis,
we need bit representations of the raw signals. Figure 1

L

A

Figure 1: Sniffed signal, on 868MHz with USRP-N210

In order to extract the bit sequence 10100101101110
from this raw signal there are several steps needed:

1. Recognize modulation type (ASK, FSK, PSK, ...)
2. Demodulation to rectangular signal LI _T1 ...
3. Mapping of rectangular signal to bitstream

4. Optional: Remove encoding

After these steps, we concentrate on the logical struc-
ture of the protocol. The most promising approach is a
target-oriented differential analysis of the bit representa-
tions from several signals. For example, comparing bit
sequences from signals that activate and deactivate a light
bulb may reveal the responsible on-off bit.

Present tools for wireless protocol investigation are
specialized to certain parts of the process. Therefore, re-
searchers need to combine applications such as GNU Ra-
dio [4] for demodulation and a wave editor like Audacity
[2] to infer bits from recorded sine waves. Furthermore,
manual effort or custom scripts are required to perform
logic analysis, apply fuzzing or simulate participants.

Our main contribution is an open source software
named Universal Radio Hacker (URH) which covers all
aforementioned steps and is, to the best of our knowledge,
the first complete suite for investigating stateful wire-
less protocols. The software provides abstracted and er-
gonomic user interfaces to comfort theoretical researchers
and speed up protocol investigations. As a secondary con-
tribution, we show attacks on three different IoT devices
and how URH was used to find and perform them. The
most complex attack (section 4.3) opens a wireless door
lock which is protected by a challenge response procedure.
The attack includes modeling the protocol state machine
and extracting the encryption key from pairing messages.

2 Overview

In this section, we give an overview of the core ideas of
our software and how it can be used in combination with
external software for greater flexibility.

2.1 Approach

We break the investigation of partially or fully unknown
wireless protocols down to three major steps:

o Interpretation phase covers demodulation of raw sig-
nals. The goal of this phase is to map received waves
to digital information (bits).

e In Analysis phase bits are decoded and put into con-
text. This phase targets to reveal the protocol logic,
for example, by performing a differential analysis.

e The last phase depends on whether a stateful attack
shall be performed.

— For stateless attacks, Generation phase is the
process of altering existing and/or generating
new messages based on the revealed protocol
logic. This includes fuzzing.

— Simulation phase replaces the Generation
phase for more complex protocols with multi-
ple states. This phase allows to perform sophis-
ticated attacks by simulating selected partici-
pants and, for example, apply a stateful fuzzing
for certain protocol fields.

More details on each phase are given in section 3. Why
is it advantageous to separate the protocol investigation
into successive steps? First, the phases form a guideline
that helps beginners to keep an overview. Second, experts
benefit from clear phase definitions when organizing team-
work. Third, the separation gives users more flexibility
when it comes to interaction with external programs.

2.2 Design principles

The development of URH is mainly driven by three de-
sign goals. First, ergonomy to provide an intuitive user
interface which does not require deep RF knowledge,
see appendix A to get an impression of this UL Second,
functional completeness to cover all steps necessary to
investigate and attack a stateful wireless protocol - we
describe this in section 3. Third, extensibility with exter-
nal software to consider existing workflows. We achieve
extensibility by offering interfaces for external programs
in each phase of our design.

2.2.1 Interfaces For External Programs

We respect that experts already have software or even self-
made scripts that are better suited for special cases; refer
to section 5 for an overview of present tools. Our architec-
ture, shown in fig. 2, considers this by offering interfaces
to external programs in each phase so that certain tasks
can be accomplished outside of our tool. For example,
you can demodulate a signal with GNU Radio and pass
the bits to our software in order to perform the Analysis
phase afterwards. In our approach, we distinguish two
ways of interacting with other software. First, for static
investigations we use standard file formats for raw signals
and binary data. Second, a socket based network interface
enables dynamic exchange with other tools.

External application
""" (e.g. GNU radio or custom program)
.complex
SDR .complex 1011... and/or SDR
1011...
------ >~ | Interpretation ‘ Analysis ‘ Generation |

Universal Radio Hacker

.complex = complex file (IQ data) 1011... = demodulated bits

Figure 2: Architecture: Applications can work with URH
using open file formats for raw samples and bits. For
dynamic investigations, a socket based interface supports
both receiving from and sending to external tools.

2.2.2 Device Backends

As shown in fig. 2 our software communicates with SDRs
during Interpretation and Generation. We provide three
distinct device back-ends to interface SDRs: native, exter-
nal and network.

The native device back-end is a Cython [3] wrapper
of the respective SDR driver. The advantage is that we
have full control and can optimize it for our software.
Furthermore, no additional dependencies are required for
this back-end. Diving into the SDR drivers also gives us
more insight and helps to optimize device configurations.
Native support is available for a wide range of commonly
used SDRs including HackRF, USRP and RTL-SDR. For
users with unsupported SDRs it is, however, a laborious
task to create a native wrapper on their own.

Therefore, our approach also covers external back-ends
which work by interfacing external applications like GNU
Radio or RfCat [1]. The most important external back-end
is for GNU Radio that is implemented with simple Python
files using GNU Radio device blocks and a ZeroMQ sink
and source for sending and receiving, respectively. In
case our software lacks support for a certain SDR, users
may implement a GNU Radio back-end on their own as
this is straightforward. A general drawback is that the
respective external application needs to be installed for
the back-end to work.

The network back-end is built on TCP sockets to com-
municate with applications in a generic way. It is not
dedicated to a certain device and can be used in various
cases. For example, you can receive samples from a re-
mote system, or send the binary protocol to an external
program that implements a state machine.

3 Universal Radio Hacker

The Universal Radio Hacker (URH) is the realization of
our approach. URH is a cross platform application (Linux,
Windows, OSX) implemented in Python and Cython/C++
for performance critical parts. In this section, we explain
the phases Interpretation, Analysis, Generation and Sim-
ulation in a detailed but rather abstract way. Refer to
appendix A for a visual breakdown of the user interface.

3.1 Interpretation

The Interpretation phase aims to extract binary informa-
tion (bits) from the received waveform signals. In order
to do this, data needs to be demodulated in the right way.
In this section, we sketch how URH performs this demod-
ulation behind the scenes.

3.1.1 Demodulation

If you record a wireless transmission and view its wave-
form in a wave editor like Audacity, it strongly depends
on the used modulation type how the signal appears. We
want to keep the demodulation process as uniform as
possible, but since each modulation transports informa-
tion with a different signal parameter, namely amplitude,

frequency and phase, we have to use some kind of pre-
processing for the selected modulation. Our demodulation
pre-processing, no matter what modulation is used, results
in a rectangular signal like the one in fig. 3. Next, we
explain the pre-processing algorithms for Amplitude Shift
Keying (ASK), Phase Shift Keying (PSK) and Frequency
Shift Keying (FSK).

ASK pre-processing The pre-processing of ASK is
simple, because we only need to evaluate the absolute
values of the complex samples x.(n) [9, chap. 9.2]

R(n) = |xe(n)| = \/x(n)? + xi(n)?, (1)

whereby x,(n) is the real and x;(n) the imaginary part.
Performing this for all samples in the signal yields the
rectangular curve R(n).

PSK pre-processing We use a Costas Loop for PSK
pre-processing. The idea behind Costas Loop is to use a
numerical controlled oscillator to approximate the carrier
signal and get the current phase shift by evaluating the
phase difference between the current sample and the cur-
rent carrier value. For further readings refer to Feigin [7]
who gives a deep insight into Costas Loop.

FSK pre-processing FSK uses different frequencies
for transporting information. Following [9, chap. 9.2] the
instantaneous frequency F (¢) can be derived using

d
= E‘P(f), 2

with @ (1) = 2nft + O being the instantaneous phase of
the signal. As we sample at discrete timestamps n we can
approximate F(n):

F(t)

F(n) = ®d(n) — d(n—1) 3)
F(n) = arctan (;C’((Z))) — arctan (%) @)

where x,(n) are the real and x;(n) the imaginary parts of
the complex samples x,.(n). In case of FSK, instantaneous
frequencies F (n) form the rectangular signal R(n).

The rectangular signal in fig. 3 is created from the
FSK modulated signal in fig. 1 with FSK pre-processing.
Pulses in the upper area will be interpreted as binary one,
in the lower area as binary zero. The border between both
areas is automatically detected by URH, but can also be
adjusted manually to correct noisy data, if necessary. The
automatic detection works by first performing a k-means
clustering on the rectangular signal and, subsequently,
calculate the average of the two most common center
points. Given the rectangular pulse sequence and the bor-
der between areas, URH extracts the correct bit sequence
10100101101110.

Figure 3: Signal from fig. 1 after FSK pre-processing

3.1.2 Control parameters

One benefit of URH is that you instantly see the resulting

bits, when changing any of the modulation parameters.

The Interpretation phase has four control parameters:

1. Noise level for suppressing noise. This is useful for
recordings under non-ideal conditions.

2. Center means the border between ones and zeros,
indicated by different background colors in fig. 3.

3. Bit length is the number of samples for one raw bit.

4. Modulation type whereby currently binary ASK,
FSK/GFSK and PSK are supported.

Note, that default values for these parameters are chosen
by URH automatically based on heuristics, for example,
the noise level is initially set to the average magnitude
of the last 10% samples of the signal, as most recordings
end with a pause. Therefore, this phase can usually be
completed quickly for most signals.

3.1.3 Advanced features

Some signals may be harder to demodulate e.g. due to
quantization errors induced by the SDR. Other devices
may use multiple channels for communication which need
to be separated before demodulation. URH offers some
advanced features to deal with this and debug errors in
the demodulation process.

Synchronization between data and signal Whenever
a more closer look to a signal is required, URH allows
zooming and even editing the captured signal. Further-
more, whenever a selection is made in signal or demod-
ulated data the corresponding other part is also selected
automatically as shown in fig. 4. This is helpful when it
comes to debugging demodulation errors or get a better
understanding of the signal.

Digital filters to improve signal quality Some SDRs
may produce low quality captures due to quantization er-
rors. URH allows filtering a signal to improve demodula-
tion results. Filter parameters and types can be configured
in a custom dialog.

1: Complex Signal

=

-Scale

“wM

Noise: 0,0023 H\ il “‘ L) ‘H H‘
Center: 03817 H‘ ‘\H \‘w | ‘ \‘\ i ‘ ‘H H‘ ‘
Bit Length: 100 i MHHM ‘ “ \ n‘ H u\

Error Tolerance: 5
Modulation: FSK 5
-Autod + 417 sel

d 417,00 ps RSSI: 0,872

10fH0110
1110101@0@00111101@0100@11001010@0@10110100@1601
AM1AAAIT g

~ Filter (moving average)
Signal View: Analog
~Show Signal as Bits

Figure 4: Synchronized signal and data selection

Spectrogram view and bandpass filters Advanced
protocols may use different channels for transmitting data.
Demodulation of a signal carrying multiple channels is
hard at first sight as shown in fig. 5a. For this reason,
URH supports a spectrogram view to identify and, further-
more, a customizable bandpass filter to extract channels
as shown in fig. 5b.

Freq 1

Freq 2

T

Freq 3

(a) Signal with multiple data channels

« Zoom in

« Zoom out

Zoom selection
+ Apply bandpass filter (filter bw=0,08)
+ Configure filter bandwidth...

» 88 selected 85,938kHz

~Filter (moving average) -

(b) Identify and extract channels in spectrogram view

// il]

only freq 2

Y-Scale

+ 0 selected 0,00 ns ~Filter (moving average) -

10101001 [Pause: O samples]

(c) Resulting signal can easily be demodulated

Figure 5: Example of signal with multiple channels and
corresponding spectrogram

3.2 Analysis

Once we have obtained raw bits from the investigated
wireless protocol, the next phase is analysis of the actual
protocol logic. Reverse engineering a protocol is mainly
a thinking process that strongly depends on the experi-
ence and methods of the individual research group. Our
contribution to this process is a set of helpful tools and
recommendations based on heuristics. In the following
we introduce some of these features. For a first overview,
fig. 6 shows the steps of Interpretation and Analysis.

Universal Radio Hacker

\\ sending device |
Software Defined Radio
Decoding
Anal
. nalog- Complex ’ Baseband 1. Line Binary
0- dlglldl X
downsamplmg demodulatlon 2. Channel data

convertin,
a 3. Source

Interpretation Analysis

Figure 6: Overview of Interpretation and Analysis

3.2.1 Encodings

Wireless protocols can have various encodings which
need to be removed before obtaining the actual bits. Our
software offers predefined encodings and, additionally,
enables users to build encodings using an object based
approach: From a set of encoding primitives, such as
inverting or edge triggering, any number of instances can
be created and connected in arbitrary order. Furthermore,
URH offers an API for external decoding programs for an
even greater flexibility. Having selected or built an encod-
ing, there are several ways to check whether this is the
right encoding for your signal. First, some encodings do
not allow special bit sequences, e.g., Manchester - 000
or 111, hence some encodings can be ruled out. Second,
different encodings lead to different output lengths. If
the protocol includes a length field, you can easily prove
the decoded message length. Third, in case the protocol
entails a checksum the correct encoding can be verified by
recalculating the checksum value. For convenience rea-
sons, URH displays the decoding errors for each message
separately and offers capabilities for verifying checksums.

3.2.2 View, search and highlight data (VSH)

After decoding, the next step is to assign context to the
bits and, finally, reveal the protocol logic. Different rep-
resentations like bit, hex or ASCII view help to identify
certain protocol fields, for example, a preamble on the
physical layer, MAC addresses or a cyclic redundancy
checksum (CRC). Moreover, some protocol elements sim-
ply become better visible with the right view type, e.g.,
01010101 vs. OxBEEF.

An important approach is to bring different protocol
messages in relation to each other. When comparing
wireless protocol messages, a differential view will in-
stantly disclose bit ranges that stay constant and bit ranges
that differ. Together with context information such as:
the same devices/addresses were used or messages were
recorded in sequence, further information about the mean-
ing of certain bit ranges can often be derived. These
ranges may eventually turn out as addresses, sequence
numbers, length fields or serial numbers.

If you have prior knowledge about the investigated pro-
tocol messages, e.g., a wireless thermometer showing 21
degree Celsius, it is a promising approach to search for
specific values in the data. This search should be available
for different views on the raw bits like decimal, hexadeci-
mal or ASCII. Furthermore, it is sometimes even valuable
to highlight every appearance of a specific value, for ex-
ample, to verify an assumption about a binary delimiter.
As well, hiding already revealed or unimportant parts of
the protocol makes it easier to focus on relevant parts.

The Universal Radio Hacker incorporates all view,
search and highlight features in its Analysis component.
URH aligns recorded messages under each other so that
differences can easily be seen. For structuring purposes,
you can even organize your messages in groups and toggle
their visibility.

3.2.3 Bringing messages into context

By reviewing the protocol or deploying URHs automatic
logic analyzer you gain knowledge about the position of
fields like serial numbers or addresses. When you attach
text labels to particular positions, our software assigns
a specific color and adds the fields to a Wireshark-like
preview. Each value in this preview can have a different
view type, for example, a hexadecimal view is suited
for addresses while length values and counters are most
obvious in a decimal view.

Knowing which participant sends a protocol message
is essential for investigating complex wireless protocols.
Our software allows assigning participants in Interpreta-
tion and Analysis phase by hand or automatically based
on the Received Signal Strength Indicator (RSSI) of a
message.

Larger protocols tend to have different message types
such as data or ACK messages that have their own fields
and semantics. URH allows creating, deleting and assign-
ing message types to messages. This can either be done
manually or automatically based on configurable rules,
for instance, if byte on position 7 is 0z42 and message
length equals 21 then assign message type ACK. In sum-
mary, Interpretation and Analysis are tied closely together
and ideally result in an estimation of the protocol logic.

3.3 Generation

After finishing Interpretation and Analysis you have hy-
potheses for the position of protocol fields maybe even for
the complete protocol. To test these hypotheses you can
generate according data and watch how the target device
reacts on it. You may also modify certain parts of the
protocol like addresses or type codes to induce errors or
unusual behavior. All these steps form the Generation
phase. The Universal Radio Hacker offers two ways for
changing messages: First, you can manually edit single
bits or nibbles. This is a good starting point for verifying
the examined logic. For example, if you captured a mes-
sage from a light bulb remote that turns this light bulb on,
you could test for the on-off bit in the message. Second,
URH comes with a fuzzing component.

The fuzzing component is designed to perform more so-
phisticated protocol editing. Assume, you want to fuzz an
eight bit counter. Thanks to the fuzzing component, you
do not need to edit 256 messages by hand, you just specify
the counter position in the protocol, enter an ascending
range from 0-255 and hit the button. Besides iterative
fuzzing, URH also supports to pick random values from
a finite set and to test the numerical limits of a field, i.e.
0 and 2'® — 1 for 16 bit. When you have created some
fuzzing messages, URH applies the chosen encoding and
performs the selected modulation like ASK or FSK as
shown in fig. 7. Aside from saving the fuzzing messages
in a complex standard format, they can be transmitted via
common SDRs directly.

Universal Radio Hacker

Encoding
(FUZZEd) 1. Source Baseband Passband
binary data 2. Channel modulation modulation
3. Line

433.92 MHz

ereles%
i channel

Generation phase (all three steps)

i
} IoT receiving device |

Figure 7: In Generation, manipulated bits are encoded
and modulated to communicate with the target.

3.4 Simulation

A major limitation of the Generation phase is that state-
ful protocols cannot be attacked since some values like
sequence numbers or cryptographic challenges need to
be determined and manipulated live during interacting
with the devices. In order to address this issue, URH
offers a Simulation tab. The simulator of URH is mainly
configured through a flow graph which also shows a vi-
sual representation of the protocol flow. See fig. 8 for an
example with two participants A and B. At a glance, the
flow of the protocol becomes apparent. Here we simulate
A and keep sending messages to B until B responds with a

message that transports the data 0x42. The number and
names of participants are fully customizable to match the
specific scenario.

1.|preamb1eHsynchronization”length|

2.|preamb1e||synchronization||Length||data|)

3.1. IF
item2.data == @x42

3.1.1.|preamb1e||synchronization||counter|

3.1.2.|preamb1eHsynchronization| !

3.2. ELSE

3.2.1. [Goto: iteml]

Figure 8: Example flow graph of a simulation

The flow graph is a high level view on the protocol as it
only shows the fields of messages and not the underlying
bits. These bits can be inspected or changed in another
sub tab, if necessary. At this stage, however, you mainly
want to operate on the logical level so this representation
helps to keep an overview. The flow graph is interactive,
i.e., users can add or delete messages or, for example,
change source or destination of a message. Messages can
be bootstrapped based on the labels that were assigned in
Analysis (section 3.2) or created from scratch.

The simulator also offers an API for external programs,
which will get the message bits that were sent and re-
ceived until calling the external program, i.e, the partial
transcript. Results of external programs can be accessed
in the simulator and, e.g., be inserted as value for a proto-
col label to deal with encrypted data.

As also shown in fig. 8, our simulator supports con-
ditions. This way, URH can react to certain events at
simulation time such as the return codes of external com-
mands or values of labels. Furthermore, you can add Goto
items which allow jumping back and forth to arbitrary
places in the flow graph. This way, loops become possible
and you can, for example, wait for a certain message to
be sent and, ultimately, model state machines.

Values for labels may either be static or learned live
during simulation. One may also refer to the value of pre-
vious labels with formulas, e.g., set the sequence number
of message 4 to item3.sequence_number + 1. Com-
bined with the feature to learn the values of labels live
during simulation, this enables modeling protocol state
machines and develop more sophisticated attacks than in
Generation phase.

4 Practical Examples

As a secondary contribution, we show three examples
how URH assisted us finding weaknesses in IoT proto-
cols whereby the first two examples are rather simple.
The third example is a more complicated attack and uses
our simulator to generate a response for a cryptographic
challenge. We informed manufacturers and assured time
for fixing, so we will not mention product names.

4.1 Example 1: Destroy a device wireless

We acquired $150 wireless sockets (WS) and a compati-
ble remote control implementing the EnOcean protocol.
While analyzing their wireless protocol, we found out that
we can physically destroy the wireless sockets with noth-
ing more than a SDR in receiving range. Details about
the hacking history are presented in the following: We
start by investigating whether the WS is prone to replay
attacks. Therefore, we sniff the process of switching it
on and off using the remote control. Figure 9 shows the
corresponding messages in hex format. Note the differing
hex values in column 5 and 20. The on-off information
is located here and is protected by some kind of redun-
dancy, that is, a cyclic redundancy checksum (CRC), for
detecting and eliminating transmission errors.

1(2|3|4(5|6(7/8|9|10(11|12/13|14|15(16|17|18|19|20| 21
1la a d 3 b 5 ddddocc5d454dd5b 5 a

2la ad 3 a5ddddcoc5d45ddb 4 a

Figure 9: Messages for on (row 1) and off (row 2)

The protocol does not seem to include any real protec-
tion like counters or encryption. Therefore, we feed the
data from fig. 9 into our Generator (section 3.3) and can
watch the WS socket switching — replay attack works!
Even when rapidly pressing the remotes on-off buttons
manually, we could measure a pause of at least 150 ms
between the on and off message. We use our program
to shorten this pause to 5ms. We enqueue this manip-
ulated sequence for sending in an infinite loop using a
HackRF (SDR) and can watch the WS switching certain
times. However, after a while the WS stops switching.
For further investigations we turned the HackRF off, but
we could not switch the WS with the remote control any-
more. It could not even be reset or switched with the
physical button on the WS itself or by disconnecting it
from the power supply. The socket was broken, a classi-
cal warranty case. Our hope that we just had a defective
socket was wiped out by the replacement devices. It is
critical when $150 IoT devices are not designed to with-
stand wireless attacks, but the risk is even greater when it
is possible to physically destroy devices from distance.

4.2 Example 2: Device desynchronization

Our second example is a smart home system involving
a central unit (CU) that registers, manages and switches
authenticated devices. The CU and its paired devices
communicate via a proprietary modification of the Bid-
Cos protocol. We can not perform a simple replay attack
because messages include a sequence number and the
communication is AES encrypted. Furthermore, the pro-
tocol uses data whitening [5] which consists of a PN9
generator that produces a pseudo random bit stream that
is XOR’d with the cleartext data. Consequently, we need
to apply a de-whitening beforehand.

We found out that we can desynchronize certain devices
from the central unit (CU). To illustrate this, a captured
message from the CU to a wireless socket (WS) is par-
tially shown in fig. 10. The message part starts with three
byte destination address 0x81835f of the WS, followed
by three byte source address 0x78e289 of the CU and
ends with a 4 byte sequence number 0x00108196.

23|24|25|26|27|28(/29|30|31|32 33|34 | 35|36 Bl 4142

8 1 8 3 5 f 7 8 e 2 8 9f0 0 0 8 1 9 6

Sequence number: 1,081,750,
Figure 10: Relevant protocol part for desync attack

Among other link layer information, such as type,
length and device addresses, the sequence number is trans-
mitted in plain text. We supposed that all link layer infor-
mation are (integrity) protected by a MAC-like primitive
in the AES encrypted part. Nevertheless, we incremented
nibble 37 by one, that is, we increased the sequence num-
ber by about a million, and injected the message again.
Subsequently, the WS could not be switched from the CU
anymore and was indicated as unreachable due to “wire-
less problems”. We assume, that certain devices (WS in
this case) increase their internal sequence number before
checking the integrity of the unencrypted protocol part.
To validate our assumption, we put the WS back to fac-
tory settings and performed the attack again. This time,
we increased the sequence number only by 8 and eaves-
dropped the regular communication attempts between the
CU and WS. The devices were synchronized again after
eight messages were sent. The same attacking message
can be taken for desynchronizing other device connec-
tions by changing the source address present in nibbles
29-34 from the message part in fig. 10.

This protocol behavior is a serious vulnerability for a
smart home system. Attacked devices become practically
unusable by inserting sufficiently high values as sequence
number. Only with a factory reset and re-attaching them,
devices can be switched again. Non-professional users
will probably make a warranty case of it when they ob-
serve ongoing “wireless problems”. Hence, manufactur-

ers reputation may suffer from the demonstrated device
desynchronization attack when customers consider their
devices as broken.

4.3 Example 3: Break a door lock wireless

For demonstration of the simulator, we sketch an attack
on a wireless door lock which is paired with a smart
home central. The communication between door lock
(D) and smart home central (C) uses a challenge response
authentication with AES. The AES encryption key can be
configured through a Web Ul in the smart home central.
Note, the following attack allows hackers to break into
houses with SDRs and, since it is based on a protocol
flaw, there is no easy way to fix this for the manufacturer.
Therefore, we will not mention the product name and
focus on the role of the simulator in this attack.

All messages in the protocol are pseudo-encrypted by
XORing each byte with its predecessor while the first byte
is XOR’d with a well-known constant. Although this does
not strengthen the protocol security, it increases the hur-
dle for attacking it with a SDR. Moreover, all messages
are encoded with a data whitening [5] to optimize them
for radio transmission. So when receiving a message
during simulation, URH performs the following steps
in the background Demodulation = De-Whitening =
Pseudo-Decryption. Obviously, when sending a mes-
sage during simulation these steps are performed in re-
verse order and replaced by their counterparts.

In fig. 11 you can see the flow graph that was used for
this attack. We will simulate participant A for attacker.
The first action is to trigger an external program which
looks if the AES key was already found by our tool. If
not, it will wait for messages matching the structure of
message 3. These messages transport parts of the AES
key to new devices and are always sent when a new device
is paired with C, even when this new device is configured
to not (!) use encryption. So at this stage, we simply wait
for a new device to pair and then extract the AES key from
the key transport messages. Once the key was extracted,
the simulation goes on to send message 6 which includes
the open command. This message will trigger the door
lock to send message 7 which includes a cryptographic
challenge. Message 8 is then generated by the simulator
using this challenge and the previously extracted AES
key to calculate the correct response. After this, the door
will open and send message 9 for confirmation which we
just included for completeness in the flow graph. It is not
required for the attack. Breaking such a critical device
demonstrates the power of the simulator and the need for
more secure [oT protocols: With just two SDRs a hacker
can open a door lock and enter a victims house, given the
hacker waits long enough until victim pairs a new device.

5 Discussion and Related Work

Security of IoT systems is a hot topic of international
research groups. There are strong security analyses, for
instance, Garcia et al. [8] dealt with the security of smart
cards for wireless payment or Strobel et al. [15] broke a
digital locking and access control system that is widely
used in larger companies and universities. Both studies
involve opening the device hardware to reverse engineer
the wireless protocol by connecting the wireless chip to
a logic analyzer. We would like to enable less hardware
oriented researchers access to these analyses. Software
Defined Radios are the answer to this problem, because
they can send and receive on nearly arbitrary frequencies.
But SDRs have to be operated as well: software is needed
to process received data or to prepare it for sending.

GNU Radio [4] is the de facto standard for this task.
Flow graphs based on hardware-related building blocks,
that allow processing of analog and digital signals and
interacting with SDRs, can be created within a GUI. As
GNU Radio works on a quite low level, knowledge about
Digital Signal Processing (DSP) is necessary to get the
right information out of wireless signals. You might save
arecorded signal as a wave file (. wav) for further process-
ing, since raw complex files cannot be handled by most
analyzing applications. Audacity [2] is a wave editor that
can be used to manually extract the raw bits from the
sine waves, laborious but easy. A direct approach within
GNU Radio is using a binary slicer which can output bits
directly. Flow graphs become complex, are not trivial to
create and specific for the investigated protocol, in short,
not suited for DSP beginners.

Zillner [16] found serious security leaks in ZigBee
using SecBee. SecBee [16], based on scapy-radio, is a
specialized solution for testing the ZigBee protocol with
SDRs. Zillner’s great contribution is limited to the ZigBee
protocol and cannot be used for other protocols. Another
specific solution is Ubertooth [11], based on GNU Radio,
that implements a partial Bluetooth stack and enables
interacting with Bluetooth devices using a SDR. Further
research has been done on this project by Ryan [14], but
as well as SecBee, it is limited to a particular application.

Generic wireless protocol analyzers like URH are rare.
To the best of our knowledge, there are only two generic
analyzers available that are comparable to our solution:
GNU Radio and scapy-radio. Picod et al. [12] developed
scapy-radio that combines GNU Radio and the Python
scapy library for monitoring wireless protocols. Their ap-
plication is supposed to be used for security assessments.
Since their solution is script based, you can also condi-
tionally inject packets and thereby simulate participants.
However, scapy-radio requires a complete GNU Radio
flow graph for demodulating and decoding the examined
protocol.

1. [Trigger command]

2.1. IF

iteml.rc > @

2.1.1. [Goto: item&]

o st vt v BERERSER [t] R) e s - - [

4. [Trigger command]

5.1. IF
ditemd.rc == @

5.,1.1. [Goto: item3]

<o fnhvenszoton g [EARER AR S v EBURTRBBFRE eSO ARG - v e
7. ‘preamble ‘ ‘ synchronization ‘ ‘ Iength|_- _ _ -Echallenge c

‘ checksum ‘

o e otz evo oA | o] v (GRS e s - | e

9. |preamb‘Le | ‘ synchronization | ‘ length ‘ _ - _— ‘ command ‘ ‘ authentication ‘ ‘ che:ksum‘

Figure 11: Flow graph of an attack to open a wireless door lock.

We believe, that this is a significant hurdle for theoretic
researchers. For this reason, our tool abstracts most of the
DSP components and requires very little knowledge about
DSP in general. In contrast to scapy-radio, our contribu-
tion does not require any preliminary information, such
as demodulation or encoding, about the protocol. Due to
the generalist approach of our contribution, it is consider-
ably better suited for unknown and proprietary protocols.
URH also contains a simulation environment that can be
used to simulate protocol participants. This feature may
be helpful for the wireless security community, as it al-
lows observing and interfering with complete protocol
runs using own parameters. With very little effort, chosen
plaintext and ciphertext attacks are possible.

All in all, the Universal Radio Hacker has some simi-
larities with GNU Radio, especially in Interpretation, but
differs in many other ways and targets a different audi-
ence and focuses on the logical protocol level. The most
notable differences are that URH offers assistance for
protocol analysis, can generate and check CRCs, includes
customizable decodings, entails a fuzzing component and
comes with a simulation environment.

6 Conclusion

In this paper, we have introduced wireless hacking using
Software Defined Radios. Our main contribution is an
open source software named Universal Radio Hacker ded-
icated to wireless protocol investigation. URH is, to our
knowledge, the first software to provide a complete suite
for investigating stateless and stateful wireless protocols.

e It breaks down DSP including demodulation and
filtering of raw signals to accessible GUI dialogs.
We refer to this as Interpretation phase.

e [t supports logic analysis of protocols and provides
enhanced features like checksum generation besides
full customizable decodings. We call this step the
Analysis phase.

e It includes a fuzzing component for efficiently find-
ing vulnerabilities and applies modulation and en-
coding to crafted messages. We call this Generation.

e For more complex protocols that use, e.g., crypto-
graphic handshakes it allows simulating participants
and, therefore, dynamically react to messages.

The new software has a modular architecture including
a plugin system for easy extensions to address even more
sophisticated problems in the future. Interfaces for com-
mon SDRs and a standard file format allow an exchange
with existing hard- and software. Hence, researchers fa-
miliar with GNU Radio or DSP experts can benefit from
URH without fundamentally changing their existing work-
flows. While abstracting complex mathematics, URH is
intended to be easy accessible, so we focused on making
it ergonomic and intuitive. The Universal Radio Hacker
including source code and documentation can be found at
GitHub [13]. Refer to appendix A to get an impression of
URHs graphical user interface.

Besides our main contribution, we gave three practical
examples of wireless protocol hacking. First, we showed
a wireless signal that physically destroys hardware of an
international manufacturer. Second, we desynchronized a
device from its control unit. Third, we broke the protec-
tion of a wireless door lock.

Future work is the enhancement of the automatic logic
analyzer of URH so protocol labels like preamble and
length can be bootstrapped with the click of a button.
Likewise, further disclosures of 10T security vulnerabili-
ties using the Universal Radio Hacker are planned.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Atlas. RfCat. https : / / bitbucket .
atlas0fdOOm/rfcat. 2017.

Audacity Team. Audacity®).
http://www.audacityteam.org. 2016.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S.
Seljebotn, and K. Smith. “Cython: The best of both
worlds”. In: Computing in Science and Engineer-
ing 13.2 (2011).

E. Blossom. “GNU radio: tools for exploring the
radio frequency spectrum”. In: Linux journal 2004
(2004).

B. G. Christiansen. Design Note DN509 Data
Whitening and Random TX Mode.

Ettus. USRP N210. https://www.ettus.com/
product/details/UN210-KIT. 2016.

J. Feigin. “Practical Costas loop design”. In: RF
signal processing January (2002).

F. D. Garcia, G. De Koning Gans, R. Muijrers, P.
Van Rossum, R. Verdult, R. W. Schreur, and B. Ja-
cobs. “Dismantling MIFARE classic”. In: Lecture
Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 5283 LNCS (2008).

R. G. Lyons. Understanding Digital Signal Pro-
cessing. Third. 2011.

M. Ossmann. HackRF One — an open source SDR
platform. https://greatscottgadgets.com/
hackrf/. 2016.

M. Ossmann, D. Spill, M. Ryan, W. Code, and J.
Boone. Ubertooth — open source wireless develop-
ment platform suitable for Bluetooth experimenta-
tion.
https://github.com/greatscottgadgets/
ubertooth. 2015.

J.-m. Picod, A. Lebrun, and J.-c. Demay. “Bringing
Software Defined Radio to the Penetration Testing
Community”. In: Black Hat USA 2014 (2014).

J. Pohl and A. Noack. Universal Radio Hacker.
https://github.com/jopohl/urh. 2018.

M. Ryan. “Bluetooth: With Low Energy Comes
Low Security.” In: WOOT. 2013.

D. Strobel, B. Driessen, T. Kasper, G. Leander, D.
Oswald, F. Schellenberg, and C. Paar. “Fuming
acid and cryptanalysis: Handy tools for overcom-
ing a digital locking and access control system”.
In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 8042
LNCS.PART 1 (2013).

org /

[16] T. Zillner. “ZigBee Exploited - The Good, the Bad

and the Ugly”. In: Black Hat USA 2015 (2015).

A Appendix — UI breakdown

In this section, we show important UI elements of the Uni-
versal Radio Hacker to support section 3 and demonstrate
how the abstract concepts look in reality.

A.1 Device Interaction

The following dialogs enable interaction with SDRs. With
the spectrum analyzer from fig. 12 you can find the center
frequency of the investigated device. The dialog is inter-
active, that is, clicking on a certain point will let URH
tune the SDR to the corresponding frequency.

Device: HackRF - Y-Scale

Frequency (Hz): [433,920M

Sample rate (Sps): | 2.000M
Bandwidth (Hz): [2.000M

Gain: —_— 1

IF Gain — 16 |2

Baseband gain: = 20 |2

OJO)

HackRF-SETUP: Success
HackRF-SET_FREQUENCY to 433920000.0:
Success

ssssss
HackRF-SET_BANDWIDTH to 2000000.0:
Success

HackRF-SET_RF_GAIN to 14: Success
HackRF-SET_IF_GAIN to 16: Success
HackRF-SET_BB_GAIN to 20: Success

Figure 12: Spectrum analyzer with maximum in red

Having found the target frequency, the next step is to
receive sample signals. This can be done right from URH
with the receive dialog from fig. 13. A preview of the
received signal is drawn live so you instantly see the order
and strength of received signals at first sight.

Device: HackRF - Y-Scale
Frequency (H2): |868,300M
sample rate (Sps): [2,000M
Bandwidth (Hz): [2,000M
Gain: —_— e
IF Gain: — 16 %

Baseband gain: =——— 20 |3

@@®HCE

samples captured:
3.145.728
Receive buffer full:

0%
signal size (in MiB)

24,00
Time (in seconds):

SET |
cKRF-SET_RF_GAIN to 14: Success
ckRF-SET_IF_GAIN to 16: Success
ckRF-SET_BB_GAIN to 20: Success

TrTzrzTI
FEEEEEE

Figure 13: Receive dialog with live signal preview

At certain stages during protocol investigation, signals
need to be sent back to the target. This might be in In-
terpretation to perform a replay attack or at the end of
Generation to send manipulated messages. Sending is
done with the dialog shown in fig. 14. The signal in this
dialog is editable so users can delete or mute parts or
add configurable sine waves before sending. The blue
progress bar indicates the current sent signal part so users
can watch the sending progress. This is useful to identify
messages that trigger desired actions on the target device.

Device: Y-Scale

Frequency (H2):
sample rate (5ps):
Bandwidth (Hz):

Gain:

IF Gain —

Repeat

0ec

Current iteration:
7
Samples sent:

[4587520/7340/%%3

HackRF-SETUP: Success
HackRF-SET_FREQUENCY to 433920000.0: Success
HackRF-SET_SAMPLE_RATE to 2000000.0: Success
HackRF-SET_BANDWIDTH to 2000000.0: Success
HackRF-SET_RF_GAIN to 14: Success
HackRF-SET_IF_GAIN to 16: Success,

< D
Hint: You can edit the raw signal before sending.

Figure 14: Send dialog with current send indicator

A.2 Interpretation Tab

After recording signals, they are automatically added in
the Interpretation tab as shown in fig. 15. Parameters like
noise, center, bit length and error tolerance are detected
automatically but can also be adjusted by the user. Addi-
tionally, users can choose from a set of modulations. For
a better understanding of the signal the user can switch
between the analog view and the preprocessed rectangular
curve of the signal (section 3.1.1) that in most cases gives
a better impression of the signal and helps to confirm the
modulation type.

In fig. 15 you can see that messages of the lower signal
are colored differently. The colors indicate participants of
the protocol. The participants are automatically detected
based on the Received Signal Strength Indicator (RSSI)
but can be changed or set by hand if necessary.

Every adjustment influences the generated preview of
demodulated binary data visible at the bottom of fig. 16.
Furthermore, selection of demodulated data is synchro-
nized with the raw signal as shown in fig. 16. This way,
users can conveniently explore the signal.

Each signal is also editable, that is, you can delete
or mute selections or zoom into interesting parts of the
signal. Moreover, users can copy and paste signal areas
or even insert custom sine waves using the dialog from
fig. 17 to operate on the raw signal level.

Interpretation | Analysis | Generator

alldon.wav 1 1[[2: complex signat 00 Y-scale

dose3_onoft
dose3wav 1| [test_1onoft
dose3ugl.wav | =
furser by Noise: 0,0100 g
fuzzerwav - || center: 03802 5
onoft.wav
sample o | Bit Length: 100 g
Successful_off.bin N =
successful on.bin | . .
Successful_triggerbin . | Modulation: FSK =
+/0 samples selected 0,00 ns | RSS: 0,434, XZoom: | 100%
test_Lonoff_cropped.wav . “Autodetect parameters =
o onay Signal View: e o - 800000001000 1ecal3930 [Pause: 5066 samples]
oot s ¥/ Show Signal as | Hex - |800000001000143¢33990 (Pause: 5050 samples]
testbin |
2: Complex Signal ©lo(0 Y-Scale
sample
Noise: 0,0037 g
Center: 03927 B
Bit Length: 100 g
Participants | Description Error Tolerance: |3 . .
Modulation: FSK -
roLe +/0 samples selected 0,00 ns XZoom: [878%
ance A *Autodetect parameters =

Signal View: | Analo =
o g aaaaaaaaaadbeant4Bcal690a20000404000754 17243 O LLTELTELLY)

v Show Signal as |Hex - samples

Figure 15: Overview of Interpretation tab

1: Complex Signal ®/lee Y-Scale
esaver
Noise: 0,0023 B
Center: 0,3817 o
Bit Length: 84 E
Error Tolerance: |5 E
Modulation: FSK Br .
+313 samples selected | 313,00 ps | RSSI: 0,872 X-Zoom: |40688% B
“~Autodetect parameters -
10101010101016fF0101010101016101016101016016110111101010000001
Signal View: Analog - || 1110100180061 1601010060010110100601601001060010000000600610000

v Show Signal as |Bits - 5

Figure 16: Synchronize bit and signal view

Amplitude: e
s | RSY Freguency (Hz): | 10,000 <
Phase: 0,000° B
Sample Rate: | 1,000M g
Samples: 587,166K B
Time (seconds): 587,166m
< :

Figure 17: Insert sine waves into signal

The protocol sniff dialog from fig. 18 is an advanced
feature that can be used if modulation parameters of a
protocol are known. In this dialog, demodulation is per-
formed live by URH and you will only see the messages
in binary form in the Analysis tab. Therefore, large sig-
nals do not have to be saved in a complex format which
saves a lot of space in RAM or on disk.

A.3 Analysis Tab

All demodulated bits from Interpretation tab are automat-
ically inserted into the table on Analysis tab shown in
fig. 19. The view type is set to hex in this example. Every
row header shows the regarding participant by including
its configurable short name and color to keep an overview

Device: HackRF

Frequency (Ha): 433,920M
Sample rate (Sps): 2,000M B
Bandwidth (Hz): 2,000M B
Gain: —_— i |y
IF Gain. 2 |2
Baseband gain; — 22 [:
Noise: 01072
Center: 0,0209
Bit Length: 500
Error Tolerance: 5 <
Modulation: Ask
View: — . 2 < 1e1f8787830f0f0f0f
Encoding: Non Return To Zero (NRZ) - <
Write bitstream to file: [No
olele e = Lexta7eTasietetelc

HackRF-SETUP: Success.
HackRF-SET_FREQUENCY to 433920000.0: Success

HackRF-SET_SAMPLE RATE to 2000000.0: Success ‘Accept data (Open in Analysis)

Figure 18: Protocol Sniff dialog

for larger protocols with many participants. Note the
tree view on the upper left, where all signal names from
Interpretation are listed and get highlighted if the user
selects corresponding data in the table. Interpretation and
Analysis are strongly tied together in URH. For example,
you can select an area in the table and choose Show in
Interpretation in context menu. The software will jump
back to Interpretation and show the respective raw signal
part. Furthermore, signals can be arranged in any order
and assigned to configurable groups for better overview.

protocols | participants RSSI: 026 Timestamp: 4,04 5 (+59,07 ms)

= New Gror 12 34 5 617 8 5 201112131415 16 17 18 19 20 21 22 23 20 25 26 27 28 29
¢ socket learn1 a2 a2 aaa als a7 a9 a7 afaiajefoRvEoNeroRonoNoNs] o
3 a2 23222 2[67686 76806084 Eaerse2s
2 a2 2222235 a7doa7d32007 00 sjaNENNE~
2 aa s 2aaas af Mo a7 do3meea6900 00
s aa s aaa s 6766676513207 07 8leNaNENso
s aa s aasal67686 7680 308260000
i Save curent protocol. 52 a0 2 a0 6768676812070 0 s@NNE”’
e 2 a a2 aaaa[67686 7680 3meleaanoooo
T 2 a2 2222267686768 13200707 seNENENSo
e 2 aa s 2aa 676867680 3064 Eaeoo 00
e s aa s aaa s 6766867651 a2070 0 8aNNE"
e s aa s aasal67 6867680 378628090000
ooy e el 5322232267686 7 68133209707 s eNENENSEo
2 a a2 32aaa[67686 7680 30BN Eaeoo oo
S o R 2 a aa aaaa6 7 68 6 76 8142070 0 8 @ANNTNE "7
Analyze, a2 a aa aaaahb 71686 7680 378 e 2880000
s aa s aaa s 6766 67681320707 8leNaNENso
Jla 2 a2 2 a2 /68768676850 308a07e0000
oo INENENINENENININI - e s R
801111101 Hex: 74 Decimal: 125 2 Columns) selected
Message type Label values for message #4
ack + |- ame Dispiay formatValue
T preamblenit 10101010101010101010101010101010
o
e on address L enath Decimal 3
destinationa... Hex Tae289

Figure 19: Analysis tab overview

To start a protocol investigation we need to decode
the raw bits first. URH offers a large set of predefined
encodings that can be configured in the dialog from fig. 20.
You can arrange the decoding primitives from the left in
an arbitrary order to craft more sophisticated encodings.
If a primitive is missing, users can also trigger external
programs that implement these special encodings.

Once the data is decoded, we enable the differential
view that produces a result shown in fig. 21. At a glance,
we see that nibbles at position 5 and 15 change, that is,
carry certain information. In this case, these are the on-off
bit of a wireless socket and corresponding checksum.

More sophisticated protocols like the one from fig. 19
have several message types. With URH custom message
types can be added and named whereby each message
type has its own protocol fields. The assigning of a mes-

TestEncoding - | Delete | save as.
Base Functions Decoder Information and Options

Si)|
Edge Trigger ignal ## DECODING PROCESS ##
Morse Code Invert
Substitution Remove Data Whitening gyternal program:
External Program [Eceinat Program = | The decoding (and encoding) process is delegated to external programs

or scripts via parameter.
Example: Given the signal 10010110, your program is called as '/
decoder 10010110". Your program computes and prints a corresponding
set of 0s and 1s which is fed back into the decoding process.

Additional Functions Decoder

Encoder
Differential Encoding

Change Bitorder

Remove Redundancy

Remove Carrier

Remove Data Whitening

Wireless Short Packet (W

Cut before/after «

5 Decoded Bits

Signal {0,1}:

Test ~ 10010110

—

Decoded Bits:

| [E—
I \A

[Decoding Errors = 1]

Figure 20: Configure custom decodings in this dialog

10 11 12 13 14 15 16

w
w
w
o
o
=
o
o
=}
™
2l
-
2l
o
8]
IS
o T o T o o

Figure 21: Differential view to identify interesting areas

sage type to a message can either be done manually or by
using the dialog from fig. 22. Users can define custom
rules for a message type which is then assigned to every
message matching these rules.

Assign manually ® Assign automatically
All rules must apply (AND) -

Start End Viewtype
117 18 Hex ~ | equal 03

Operator Value +

‘ Sawve and apply ‘ Close

Figure 22: Assign message types automatically based on
custom rules

A very helpful feature is the possibility to attach col-
ored text labels to protocol parts. Thereby, already reverse-
engineered parts of a protocol can be tagged. This is
useful to get a better understanding of the complete pro-
tocol. For each label you can configure a display format,
that is, bit, hex, decimal or ASCII view. When vertically
traversing through different messages, you can see the

interpreted values from each label in a Wireshark-like
view in the bottom of the application (see fig. 19). URH
is also able to find particular labels automatically.

A.4 Generation Tab

In Generation tab messages can be crafted and send back
via a SDR to observe reactions of investigated devices. In
order to do this, you can create an arbitrary set of bit se-
quences by choosing from the previously analyzed signals
and modify them as desired. It is, however, a laborious
task to change messages manually. To address this prob-
lem, URH has a powerful fuzzing component. Each label
can be individually configured using the fuzzing dialog
shown in fig. 23.

destination address ©
... 9a7d2d8070 00003 084f7e0001 ...
Message to fuzz: 1

Fuzzing Label Start Index: |23

Fuzzing Label:
Source Message:

Ol O

Fuzzing Label End Index: 28

(D)

Fuzzed Values

Remove Duplicates

1 2/3 45 6
le O [1)
2e
3e
4e
5e

o o o o
o o o oo
o o o o
o o o o
~N o u s ow

Add Range Add Boundaries Add random values from range

O 1 o
v/Upper Bound 16777215 || Range Minimum: |0 &

Start (Decimal): 0 & v/ Lower Bound 0

End (Decimal): |16777215 .

Number:

Border Values: |1

Add to Fuzzed Values

Step (Decimal): ' 1

Add to Fuzzed Values

% Range Maximum: 16777215 <
Add to Fuzzed Values

Figure 23: Editing fuzzing settings in this dialog

Having configured the desired values for fuzzing, URH
creates the corresponding messages. The configuration
from fig. 23 produces the result from fig. 24. Note, that
only values for the fuzzing label (nibble 23-28) change,
while the rest of the message is repeated. Depending
on how many protocol fields should be fuzzed, you can
configure message generation to fuzz one field at a time
(subsequent), all fields in parallel by selecting the next
value for each field in each subsequent message (concur-
rent), or all fields in parallel by testing all combinations
of values for each field (exhaustive). The encoding that
was previously selected for decoding the input data will
automatically be applied in reverse order.

The final step in the Generation tab is to set the mod-
ulation that transforms bit sequences to actual signals.
Modulations can be edited using dialog shown in fig. 25.
Here, users can configure modulation parameters while
comparing the respective output with recorded signals.

The process of configuring a modulation gets sped up
by an auto detect button. Furthermore, values for bit
length, sample rate and modulation default to the current

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

CHEU N 0 8 4 f 7 e
0 8 4 f 7 e
0 8 4 f 7 e
0 8 4 f 7 e
0 8 4 f 7 e

Figure 24: Each label can be fuzzed

project configuration. The correct modulation parameters
are often found without further manual adjustments.

Modulation vl [=
Carrier

Frequency: 15,267K =
Phase: 0,000° =

Auto detect from original signal a7 5

Data 4=
101
Restore Bits
Bit Length: 260 3
Sample Rate (Sps): [1,000M Bl >
Modulation =

Amplitude Shift Keying (ASK) -

Amplitude for 0: 0% B
Amplitude for 1: [100% B
Samples in View: 775

Samples selected: 0

v Lock SIV to original signal a7 5
Original Signal (drag&drop)

- &5 New Group
ask

, Show Only Data Sequence
(101)

* i / 9
Samples in View: 775
Samples selected: 260

Save and Close

Figure 25: Manage modulations with this dialog

A.5 Simulator Tab

With the Simulator tab protocol state machines can be
modeled which allows attacks on stateful wireless proto-
cols. The simulator is mainly configured through a flow
graph, as already described in section 3.4. In this section,
we will show other important parts of the simulator.

Users can define the behavior for protocol labels during
simulation time in a table as shown in fig. 26. Each label
can have one of five value types which control how the
resulting value will be created. The resulting value will
be matched against when receiving a message and for a
mismatch the simulation will retry to receive the message
or end when the (configurable) number of maximum re-
tries was reached. When sending a message the value
will be inserted for this field. The possible value types
are Constant, Live input, Formula, Random value and
External program. Checksum fields are a special case, the
software will automatically calculate the corresponding
checksum during simulation.

Name Display format Value type Value

preamble Bit Constant value 10101010

length Decimal Constant value 7
Hex Formula item1.destination_address
Hex Formula item1.source_address

sequence number Decimal Formula item1.sequence_number+1
_ Bit Random value Range (Decimal): 0 - 255
data2 Bit Live input

Bit External program /tmp/external.py

Hex Checksum e9

Figure 26: Configure labels in this table

These value types allow to reach the desired protocol
state and create stateful answers to messages. For ex-
ample, a sequence number can be learned live during
simulation (Live Input) for message 1 and then be in-
creased by one with a Formula in message 2 as shown
for the sequence number in fig. 26. Such formulas can
be arbitrary Python expressions to cover a variety of use
cases. For even more complex tasks such as AES en-
cryption a simple API for External programs allows to
perform these tasks outside of URH and use the result
during simulation.

Having configured a SDR for sending and receiving
the simulation can be started. The status will be shown in
the dialog from fig. 27 which helps to keep an overview
and trace problems with the simulation in two ways. First,
it shows the expected and actual value for each field in
a message. Second, it shows a preview of the current
RX status at the bottom to quickly track down problems
resulting, e.g., from poor signal strength.

Log settings RX settings. simulation

2 v Simulation Status

- Expected: 800828
N-1 Got 1
Mai 612:53:48.876766: Attempt for message 2 [2/10]
Mismatch for label: data
Expected: 800828
ot 828285

v RXStatus

Capture complete RX 5]

®ston

Figure 27: Simulator dialog

The transcript of the simulation can be found in the
Messages tab of the Simulator dialog for further analysis.
With Universal Radio Hacker researchers can investigate

arbitrary stateful wireless protocols in separate phases:
Interpretation, Analysis, Generation and Simulation. The
knowledge acquired from the first two phases is brought
to practice in Generation and/or Simulation phase which
allow to test your hypotheses about the investigated pro-
tocol against the physical system. Using this concept and
the particular support of our software, we have reverse
engineered more than ten protocols.

Due to the modular concept and plugin system of URH,
new features can be added easily. In this way, CC1101
data whitening and CRC-16/32 checking have been in-
cluded in URH, both because of a specific demand. More
features and plugins will follow, by us or by other re-
searchers that like to provide new features to the open
source solution Universal Radio Hacker.

