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Abstract
Since its creation, SSL/TLS has been the go-to solu-
tion for securing unencrypted web protocols - most com-
monly HTTP. The design of SSL/TLS, however, merely
provides data stream encryption and authentication prop-
erties which often leads to the incorrect conclusion that
by simply wrapping an unencrypted HTTP connection to
a server with SSL/TLS, user privacy and web application
behaviour integrity are guaranteed. Such type of infor-
mation leak is unique in the sense that while certain web
security vulnerabilities such as SQL injections have been
well researched and thus there are known design patterns
to avoid and penetration testing tools based on detect-
ing known-to-be insecure design patterns, the state of re-
search for the types of information leaks described in this
paper still lags behind. In this paper, we discuss three de-
sign patterns that often result in side-channel information
leaks along with three real-world websites which posses
these vulnerabilities. Based on these three vulnerable de-
sign patterns we present a set of tools for detecting these
types of side-channel information leaks given a training
set of captured encrypted network traffic sessions.

1 Introduction
Secure Sockets Layer (SSL) and its successor Transport
Layer Security (TLS) are cryptographic protocols which
are concerned with encrypting a connection or session.
The protocol begins with verifying the identity of one
or more communicating parties, and if the identity can
be successfully verified a symmetric encryption key is
exchanged which remains private to both the client and
server. This symmetric key is used to encrypt all traf-
fic in the session between client and server as well as to
generate message authentication codes (MACs) for en-
suring the integrity of messages as they move through an
insecure network.

Despite the use of encryption, observing an encrypted

SSL/TLS session still reveals the following information:
(1) approximate amount of data transferred in each ses-
sion; (2) start and end times of each session; (3) IP
address of client and server(s) as well as their domain
name(s); and (4) order of sessions.

As will be demonstrated later on in the paper, this in-
formation can be, in many situations, sufficient for re-
vealing the following private information about a user’s
interaction with an SSL/TLS protected website: (1) the
web pages which the user has loaded; (2) private inputs
which caused a web page to be loaded; (3) the relative
and absolute time(s) which real-time event(s) occurred;
and (4) contents of the web page based on how the page
responds to window resizing.

A challenge when detecting side-channel information
leaks in web applications is the difficulty to generalize
the detection solution. As there exists a very wide va-
riety of types of web applications, it is difficult to build
a general model that could be applicable to all web ap-
plications. In many cases, human user behaviour would
need to be accurately modelled. For example, estimat-
ing how long a user would spend on a web page before
clicking a link, in order to build a probabilistic model of
which page was loaded, is still a problem with no trivial
solution. Furthermore, the requirements for privacy are
not equal across all web applications as the threat model
and information value often differs greatly across users
and applications.

In order to cope with this challenge, instead of at-
tempting to provide a general model of a web appli-
cation, we instead focus on three common design pat-
terns in web applications - specifically - feedback based
on a user submitted form, real-time suggestion feedback
based on Asynchronous JavaScript And XML (AJAX),
and lazy-loading of images. The novelty of our solution
lies in the fact that, although we have not yet achieved
fully automated and sufficiently accurate side-channel
detection for web applications, we have created, evalu-
ated, and released three models each covering a common



type of web application side-channel information leak,
which we believe, will be of great help for security re-
searchers to develop side-channel test cases for their web
applications.

1.1 Threat Model

In order to keep the scope of this paper limited, we make
the assumption that the adversary only has access to the
network communications of a victim. Extracting infor-
mation from the target application through more direct
means such as SQL injection or compromised login cre-
dentials is not included in our threat model and is a topic
for other research papers. Thus remaining within the
threat model of our paper, we define passive attacks as
attacks which require nothing beyond normal web ap-
plication use by the victim and active attacks as passive
attacks plus the ability to direct the victim to an attack
site.

The threat of a passive attack is sensible to include
in our threat model as this is the type of Man-In-The-
Middle (MITM) attack which SSL/TLS strives to pre-
vent. Practically speaking, MITM capturing of encrypted
network traffic is an often attainable goal for many adver-
saries and may be conducted through means such as; Wi-
Fi snooping at a public hotspot, compromising vulnera-
ble internal network equipment to perform DNS/IP/ARP
spoofing attacks, or obtaining data from malicious or
compromised ISPs/VPNs.

Active attacks are also sensible to include in our threat
model as getting a victim to load an attack site is often a
feasible goal. This is especially true when the adversary
is able to modify network traffic in an MITM scenario as
many websites still use unencrypted HTTP connections.
Thus is left open the scenario where an MITM attacked
HTTP connection is exploited to cause information from
encrypted HTTPS connections to be indirectly leaked to
an adversary.

1.2 Our Contributions

We have implemented our solution using a Docker con-
tainer of Ubuntu 16.04 LTS as the test environment,
Mozilla Firefox as the testing web browser, and the
Python module scapy for extracting features from net-
work traffic captures. For evaluation, we have gathered
three statistics from each classifier - true positive rate,
false positive rate, and non-detection rate (when more
than one outcome shares the highest probability). The
merit of each classifier can be judged based on the max-
imization of its true positive rate and the minimization
of both its false positive rate as well as its non-detection
rate.

To summarize the research conducted in this paper, we
present the following contributions;

• Show how iSideWith.com, despite being protected
by SSL/TLS still allows an eavesdropper to learn
which political candidate a user is most likely to
vote for. To the best of our knowledge this web-
site has never been tested before, academically, for
side-channel information leaks. The vulnerability
found with iSideWith.com is indicative of a much
larger problem as it describes the side-channel as-
sociated with the implicit information flow which
occurs when server response sizes are dependant
upon user submitted data. The iSideWith.com exam-
ple highlights the fact that an online recommender
system designed without careful attention to side-
channel prevention is likely to be vulnerable to side-
channel leaks.

• Demonstrate that the auto-complete functionality
within Google is still vulnerable to network traf-
fic side-channel information leaks. The example of
exploiting this side-channel against Google Search,
while easily relatable due to the popularity of this
search engine, is also indicative of a much larger
problem - specifically the problem of side-channels
in real-time user-interactive web services. As these
types of services generate network traffic almost
immediately in response to user events, informa-
tion can be learned about the traffic causing user
event. We believe that many types of real-time user-
interactive web services such as online games or re-
mote desktop connections (eg. noVNC) would also
be vulnerable to this type of side-channel informa-
tion leak.

• Extend the research on the auto-suggest side-
channel to demonstrate how search term censorship
could be implemented.

• Extend the current state of network traffic based
side-channels by considering the effect of lazy-
loading combined with pop-up window resizing.

• Demonstrate how exploiting lazy-loading could be
used to estimate the number of items in a victim
user’s eBay shopping cart. The side-channel vul-
nerability found within the eBay shopping cart is
indicative of a much larger problem - not only can
an attacker learn whether or not a victim is stor-
ing cookies for a given domain, as the page loaded
when cookies are present is often of larger size than
the login page, they can also obtain information spe-
cific to a user. By loading a page in different sizes
and observing the resultant changes to the generated



network traffic a unique pattern may emerge which
can identify and track a user.

• Source code for side-channel detection and ex-
ploitation as well as relevant network traffic capture
files have been released.

The rest of the paper is as follows; Section 2 will
discuss the related work to our research, Section 3 will
discuss the theory of the underlying design of our tools
while Section 4 will discuss how the theory was applied
in the creation of our tools. Section 5 will provide an
overview of the supporting software packages that were
used for the implementation of our tools. Section 6 will
discuss results obtained by using our tools, Section 7
will discuss defences and countermeasures for improv-
ing user privacy on SSL/TLS protected websites, and fi-
nally Section 8 will conclude the paper and discuss future
work.

2 Related Work
In this section of the paper we provide a review of the
current state-of-the-art in research of network based side-
channels in web applications. These papers have served
as guides for developing our own side-channel detection
methods and models.

In [6], the authors explain that due to the large variance
in size of web resources, attackers are capable of learn-
ing a mapping between web resources and their associ-
ated patterns of generated encrypted network traffic. The
authors then claim that, with the exception of anonymity
networks, being able to identify web pages by analysis of
encrypted traffic has not been a serious concern for most
web developers. The rest of their paper serves to counter
the claim that web page identifiability is not a serious
concern for most web users. The authors discuss that as
the web has moved from a collection of static pages (Web
1.0) to many dynamic web applications (Web 2.0), a sub-
set of the web application’s internal information flows
are exposed on the network. The authors conducted their
research on a real online health website, a real online tax
service, and a real online investment service.

In [15], a methodology (Sidebuster) based on static
taint analysis is developed for detecting side-channel in-
formation leaks in web applications. Sidebuster works
by a web application developer marking certain input in-
formation sources as sensitive for which Sidebuster then
performs information-flow analysis to determine when
the sensitive information is transmitted over an encrypted
connection. When this occurs, the Sidebuster tool ob-
serves the encrypted network communication and deter-
mines whether or not the observable characteristics of
the encrypted communication are sufficient to identify

the sensitive data. Sidebuster is also capable of perform-
ing taint analysis for implicit information flows, that is,
a branch condition satisfied by the value of sensitive in-
formation.

The same goal of research in [15] was followed in [5]
but the approach is different. Instead of using a white-
box static analysis methodology for determining when
sensitive data will be sent over an encrypted connection,
Chapman and Evans instead used a black-box approach
thus avoiding the need for web application source code.
Their method of side-channel detection consists of the
web application developer defining the crawl through the
web application and at each step in the web crawl, an
AJAX supporting web crawler would record the associ-
ated Document Object Model (DOM) of the web page
and use it as a state identifier. This state identifier is
then used for building a finite state machine where each
state corresponds to a web document DOM state and
each transition corresponds to the trace of network traf-
fic which caused the state transition. The authors then
built classifiers trained on the network traffic data asso-
ciated with each state machine transition. Based on their
recorded network data, the authors used the Fisher crite-
rion to determine the classifiability of the data. The au-
thors tested their methodology on Bing Search, Google
Search, Google Health and the United Kingdom’s Na-
tional Health Service Symptom Checker and obtained ac-
curacies ranging from 46.1% on Google Search to 96.3%
for Bing Search.

While following the same direction of study of the
above discussed related work, our work distinguishes it-
self by providing the appropriate matching between a
class of side-channel vulnerability and the best suited
machine learning classifier. For example in [6], the au-
thors list low entropy input, stateful communications, and
significant traffic distinctions as causes of side-channels
but they do not, however, delve into the machine learn-
ing theory for detecting these different types of vulner-
abilities. Our paper discusses response dependant page
loads, real-time feedback systems, and lazy-loading as
three web development patterns that can lead to side-
channels. For each of these patterns we provide both the
theory of why information is leaked in addition to a ma-
chine learning approach to detect this type of design flaw.
Finally, unlike any of the related work, we have publicly
released all source code and data samples.

3 Underlying Concepts

In this section of the paper, we provide an explanation
for the underlying concepts that our research is based
on. The concepts discussed in this section are primarily
about computer networks and modern web development.



3.1 Network Traffic Features
As stated in the introduction section of this paper, in
a standard TCP/IP network, when an HTTP request is
made over SSL/TLS, an adversary is capable of observ-
ing, in plaintext, all layers of the network stack except
for the application (HTTP) layer which is protected by
SSL/TLS. Given that the vast majority of Internet con-
nected Local Area Networks (LANs) operate either us-
ing wired Ethernet or Wi-Fi using Ethernet encapsula-
tion, this paper will make the assumption that all net-
work activity is bound by RFC 894 which specifies that
the maximum size of an IP datagram that can be sent
over an Ethernet frame is 1500 bytes [8]. As the minimal
size of an IP header is 20 bytes [1] and the minimal size
of a TCP header is 20 bytes [2] the absolute maximum
size of a data payload that may pass through one Ether-
net frame is therefore 1460 bytes. This implies that if a
web resource is requested that is of size 1460 bytes or
greater, at least one full length packet will be generated.
Through our own experimental results we measured the
largest data payload size to be sent in a TCP datagram to
be 1370 bytes. This is a significant feature that provides
insightful information when searching for requested web
resources within encrypted samples of traffic. In order
to find the approximate sizes of web objects transferred
over a stream of encrypted traffic we employ the algo-
rithm found in Figure 1.

• Iterate through each TCP carrying network packet and measure
its size

• If the size is not 1370 bytes

– If the previous size was 1370 bytes

∗ Add this size to the sequence byte counter
∗ Yield the value of the sequence byte counter as an

HTTP object size estimate

– Set the sequence byte counter to this size

• Otherwise

– Add 1370 bytes to the sequence byte counter

Figure 1: This algorithm estimates the sizes of HTTP objects
downloaded in a session based on continuous sequences of

1370 byte TCP payloads.

By following this algorithm we obtain a set of features
correlated with the approximate sizes of web resources
transferred in each session of captured network traffic.

Although the above described algorithm is effective
for identifying pages as can be seen in the subsection
Testing iSideWith.com of this paper, there is another im-
portant characteristic of network traffic that should not
be overlooked when performing side-channel detection -
that is the relative timings between packets or sequences
of packets within a stream of network traffic. A burst of
network activity can reveal an abundance of information

about the type of information which is being exchanged
over an encrypted connection. Often times, a burst of
network activity corresponds to user events being trig-
gered in a real-time system. Measuring the time between
bursts of network activity can provide insight into the se-
quence of user-triggered events. Measuring the amount
of data exchanged in a burst of network traffic may also
provide insight into what each real-time event is. As can
be seen later on in this paper, in the subsection Analyz-
ing Google Auto-Suggest Traffic, by using the amount of
data sent from server to client in a burst of network traf-
fic, as well as the total number of packets exchanged, as
features, we were able to, with 74% accuracy, identify
which of the top ten Google searches of 2017 a victim
user had searched for.

3.2 Modern Web Development

Modern web development greatly differs from the clas-
sical Web 1.0 development as modern websites now ex-
ecute complicated programs of client-side code, in order
to interact dynamically with both the user and the server.
Unfortunately as these new features are added to mod-
ern Web standards, new security vulnerabilities are often
introduced [14].

In this paper, we will focus solely on how modern
web development standards can be abused for leaking
information through network based side-channels. It is
through the discussion, implementation, and evaluation
of side-channel attacks against modern web applications
that a large segment of our research contribution is made.
Furthermore, we extend the current state of research by
considering not only passive but also active side-channel
attacks where an adversary is capable of directing a
victim browser to URL endpoints of a targeted private
website and observing encrypted communications thus
obtaining side-channel information. This active attack
is described in the subsection Counting Shopping Cart
Items.

Modern websites have been designed to be responsive
to the wide variety of network connections which they
may be loaded over, as well as the wide variety of screen
sizes which they may be displayed on. For example,
consider the Dynamic Adaptive Streaming over HTTP
(DASH) protocol [13]. If client-side JavaScripts execut-
ing in a browser tab controlled by an attacker are capable
of slowing down the victim’s CPU and thus causing a
lower quality of video to be loaded in the active tab, the
attacker will thus be able to create a covert communica-
tion channel by indirectly controlling the incoming video
bitrate, and thus network traffic, to the victim’s computer.
The DASH protocol is an example of the overall empha-
sis which Web 2.0 has placed on making web content
available to the user as soon as possible. Another exam-



ple of this phenomenon is lazy-loading, where JavaScript
is employed so that only resources that are displayed in
the user’s viewport will be downloaded. A consequence
of this is that by altering the geometry of a user’s view-
port, an attacker, by observing the encrypted web traffic
from the victim’s computer, can obtain additional infor-
mation about the content which the victim has loaded
based on how it responds to changes in viewport geom-
etry. In the Evaluation and Results section of this pa-
per, we will demonstrate how lazy-loading employed by
eBay’s shopping cart can be exploited to gain informa-
tion on the number of items which a victim user currently
has in their cart.

The example provided by lazy-loading is just one ex-
ample of a side-channel that is a result of the use of the
popular Asynchronous JavaScript And XML program-
ming paradigm. Due to the asynchronous nature of AJAX
the occurrence of network traffic is generally well cor-
related in time with the occurrence of user events (eg.
mouse click, window resize). In addition, if an AJAX
HTTP request is used to update an element on a page and
an adversary is capable of detecting and blocking this re-
quest, then the adversary may also be capable of blocking
certain web application functionality, thus implementing
a type of censorship.

4 Tools Design
This section of the paper discusses the functionality pro-
vided by our tools and how it applies the above discussed
theory for the purpose of side-channel detection and ex-
ploitation. Examples of these design concepts in action
can be found in the Evaluation and Results section of this
paper.

4.1 Exploiting Response Dependant Page
Loads

Consider the following two criteria; 1) the next web page
to be loaded is dependant upon private information which
a user has submitted to a webserver and 2) the set of web
pages which are potential candidates for the next page to
be loaded has a large variance in size. If both of these
criteria are true then an adversary can, by simply count-
ing the amount of encrypted traffic sent from server to
client, learn which page was loaded. As this loaded page
is dependant upon the private information submitted to
the webserver, the adversary can also learn the private in-
formation which resulted in the loading of this page, thus
violating the confidentiality which should be provided by
the SSL/TLS layer.

Our tool is capable of exploiting this type of side-
channel. To do so, we employ the web object size es-

timation algorithm described in the subsection Network
Traffic Features and for each network traffic capture, we
obtain a list of approximate web object sizes transferred
from server to client in the encrypted session. Our tool
then can use a machine learning classifier from scikit-
learn [10] which provides the fit() and predict() methods
for determining a model for learning and exploiting, re-
spectively, the network traffic side-channel. A descrip-
tion of an application of this tool, including the evalua-
tion of various classifier algorithms can be found in the
subsection Testing iSideWith.com.

4.2 Exploiting Real-time Feedback Sys-
tems

This exploit tool is most effective for exploiting network
side-channels where the timing of packets carries impor-
tant private information. This most often refers to real-
time responsive systems. For example, when using the
auto-suggest functionality on a search engine such as
Google every keystroke entry generates a burst of net-
work activity which flows from client to server followed
by a burst of network activity which flows from server to
client and contains the suggested search items. Since ev-
ery keystroke event generates a burst of traffic, by count-
ing these bursts, an adversary can estimate the number of
characters present in the search string as well as obtain a
probabilistic estimate of what the character was based on
the size of the returned suggestions list.

In order to achieve this exploit goal, our tool works
by clustering sequences of packets into network activity
chunks. A user may simply decide to count network ac-
tivity chunks as a data feature and for certain applications
this may be sufficient information for breaching user pri-
vacy. If this chunk count feature does not provide suffi-
cient information, our tool can also extract the amount of
data transferred in a network activity chunk. Many times,
the information contained within the chunk size feature
is sufficient to lead to a privacy breach. For an example
of exploiting a real-time feedback system, please see the
subsection Analyzing Google Auto-Suggest Traffic.

4.3 Exploiting Lazy Loading
This exploit tool takes advantage of information leaked
through observing DNS queries for content delivery net-
works (CDNs) as well as the effect of window resiz-
ing. As different web pages have different amounts of
data transferred from various CDNs, by measuring the
amount of accesses and the amount of data transferred
from each CDN an adversary can gain insight into which
page was loaded. Our tool is capable of inspecting DNS
replies to determine the IP addresses of CDN servers
used in a session. The amount of data exchanged with



each CDN server in a session is also measured. By re-
peating this CDN data measuring test with differently
sized windows we are able to obtain a profile which in
certain cases is capable of providing insight into the con-
tent of the window. Our results discussed in the subsec-
tion Counting Shopping Cart Items show that by using
our tool, an adversary can learn information about the
content layout of a page.

5 Implementation
In this section of the paper, we discuss the underlying
software components that were used for building our
tools. The goal of this section is to familiarize the reader
with the high-level design of our tools which are avail-
able on GitHub [11] as well as to provide guidance to
researchers developing their own network security test-
ing tools.

5.1 Docker Container
Docker was chosen as the lightweight container for keep-
ing an instance of the Firefox web browser separate from
the host system. This allows for automated tests to be ex-
ecuted on web applications as a background process and
thus does not interfere with a users normal web browsing
activity. In addition, we are able to observe and manip-
ulate network traffic directly as it moves into and out of
the container and therefore, once again, we are not inter-
fering with normal network usage. Finally, using Docker
greatly simplifies the process of container building and
therefore we are able to distribute the files required for
reproducing our tests [11].

5.2 Linux Kernel’s Netfilter
Netfilter is a flexible network packet manipulation frame-
work built into the Linux kernel [9]. It is implemented
as a set of hooks that are part of the Linux kernel’s net-
working code. Kernel modules may register with these
hooks and can therefore be used to manipulate network
traffic. One feature of the Netfilter system that is partic-
ularly useful for building network traffic analysis tools,
such as the ones described in this paper, is the Net-
filter queue module (NFQUEUE). This module allows
packets to be redirected by iptables rules where they
can be manipulated by userspace programs and then re-
turned back to the kernel’s networking subsystem. To
simplify development of userspace packet manipulation
utilities, there exists a Python module for interacting
with NFQUEUE. This Python module is what is used
in our tool for performing active side-channel attacks.
As through NFQUEUE one may observe and manipu-
late network traffic, we were able to feed traffic from

NFQUEUE into analyzers and then filter it accordingly.
This is demonstrated in the subsection Censoring Google
Auto-Suggest where traffic was observed for key search
terms and the search was blocked based on the presence
of these search terms.

5.3 Scapy

As our tool performs an extensive amount of work with
analyzing and manipulating TCP/IP network packets, a
robust library is required. This functionality is provided
by the Scapy Python module which is instrumental in
extracting information from network packets [3]. Using
Scapy we are able to extract the length of the TCP pay-
loads from a set of packets.

6 Evaluation and Results
To validate the design and implementation of our tools,
we demonstrate how we were able to exploit side-
channels to determine which political candidate a user is
most likely to vote for; determine what a user is search-
ing for on Google and optionally censor it; and estimate
the number of items that are in a user’s eBay shopping
cart.

6.1 Testing iSideWith.com

iSideWith.com is an SSL/TLS protected website which
recommends a political candidate to vote for based on
how closely they are aligned with the user’s views. The
user’s views are obtained by answering a set of questions
on divisive political issues. After the user submits their
responses, iSideWith.com displays a page displaying the
number one candidate followed by a ranking of how
closely other candidates align with the user’s views. A
consequence of the fact that a large image of the number
one candidate is loaded upon completion of the survey
is that, due to the fact that the images of candidates vary
significantly in size, the observed network traffic pattern,
despite being encrypted, will be distinguishable for the
various candidates. Thus, this web service leaks through
a network side-channel, information about which politi-
cal candidate a user is likely to vote for.

To demonstrate the exploitation of this side-channel
we will consider the two most popular candidates for the
2016 US Election; Donald Trump, and Hillary Clinton.
We have generated four sets of responses for each can-
didate which result in their recommendation from iSide-
With.com. The result of running our test is 80 PCAP files
with half corresponding to a recommendation of Don-
ald Trump and half corresponding to a recommendation
of Hillary Clinton. All PCAP files used for testing and



Figure 2: Testing the accuracy of various trained classifiers
with network traces from isidewith.com.

training the classifier, as well as the source code for our
classifier can be found on our GitHub page [11].

Evaluating the trained classifier against the set of
test data demonstrates the fact that iSideWith.com is in-
deed vulnerable to a network based side-channel attack.
The two best performing classifiers, Decision Tree and
AdaBoost both gave perfect accuracies while Bernoulli
Naive Bayes gave a true positive rate of 80% for detect-
ing Clinton recommendations and a 85% true positive
rate for detecting Trump recommendations. The KNeigh-
bors classifier gave a 80% true positive rate for detecting
Clinton recommendations and a 75% true positive rate
for detecting Trump recommendations (Figure 2). When
reading the figure it is implied that the false positive rate
is equal to 100% minus the true positive rate and the non-
detection rate is 0%.

In order to gain an understanding of how much traf-
fic needs to be captured for training an accurate classi-
fier we have examined the statistics of the existence of
object size features within the captured training samples.
Specifically, we build a set of all unique object sizes seen
across all training samples. Then we check how many of
these features are present in 100% of training samples, in
at least 90% of training samples, in at least 80%, and so
forth. Our results are as follows.

For network traffic samples corresponding to a recom-
mendation of Hillary Clinton there were 378 unique fea-
tures of which 7 are in 100% of samples, 11 in at least
90%, 16 in at least 80%, 18 in at least 70%, 20 in at least
60%, 25 in at least 50%, 30 in at least 40%, 40 in at least
30%, 71 in at least 20%, and 154 in at least 10%. For
network traffic samples corresponding to a recommen-
dation of Donald Trump there were 483 unique features
of which 2 are in 100% of samples, 5 in at least 90%, 8
in at least 80%, 10 in at least 70%, 14 in at least 60%, 19

Term Mean Std. Dev. Min. Max.
1 262.2 10.4 251 278
2 175.8 2.5 171 178
3 161.2 11.5 153 184
4 138.6 19.5 125 177
5 115.2 17.9 102 150
6 141.4 12.6 127 164
7 149.6 5.9 141 159
8 81.2 3.7 78 88
9 137.0 4.5 131 144

10 109.4 10.0 99 128

Table 1: Statistical parameters for the packet count feature
from the Google Autosuggest training traffic samples. See

Table 2 for the list of search terms.

in at least 50%, 26 in at least 40%, 38 in at least 30%, 61
in at least 20%, and 175 in at least 10%.

6.2 Analyzing Google Auto-Suggest Traffic
In this evaluation, we demonstrate how the auto-suggest
feature built into Google’s main search page, is vulner-
able to a network based side-channel information leak.
To demonstrate this vulnerability, we have chosen the
top ten trending Google searches of 2017 [7] and have
trained various machine learning classifiers to evalu-
ate their ability for correctly identifying a user’s search
based on the observed pattern of encrypted traffic.

Unlike the example where iSideWith.com was tested
for side-channel information leaks, there is another im-
portant parameter that must be considered in this ex-
ample, that is time. In our classifier, we have defined
the maximum spacing between packets belonging to the
same auto-suggest sequence to be 250 ms. If this time
limit is exceeded, then it is assumed that the victim has
typed another key. For each burst of network activity, our
classifier determines how many bytes have travelled from
the server to the client and uses this as a feature. This
feature provides insight into which character was typed.
Due to the real-time nature of the auto-suggest function-
ality, network packets are seldom, if ever, carrying a full-
sized payload. As each keypress event generates network
packets, counting the number of packets exchanged be-
tween client and server is also a data feature that provides
insight into what the victim user is searching.

As packet counting is a powerful feature for perform-
ing side-channel exploits on real-time feedback systems
we have gathered statistical data from packet count fea-
tures describing their minimum value, maximum value,
mean value, and standard deviation from our captured
network traffic used to train the Google Autosuggest
classifiers (Table 1).



As can be seen from this data, certain search terms,
especially those of similar length may have overlapping
packet counts. Therefore simply training with one exam-
ple of each query is insufficient and in addition, simply
using the packet count feature will not give a certain pre-
dicted result. Using the packet count feature is a good es-
timator when the lengths of possible search queries has a
large variance but additional features are required when
lengths are of a more uniform distribution.

Considering exclusively the features associated with
each burst of network activity, we performed Bayesian
classification which provided a true positive rate of 38%,
thus a small improvement over the 10% true positive rate
of random guessing (Figure 3).

Considering exclusively the count of network packets
as a feature and using a Nearest Neighbour classifier to
determine the victim user’s search provided a true pos-
itive rate of 62%, thus an improvement over Bayesian
classification (Figure 4).

Our best accuracy was realized with using a hybrid
approach of both Bayesian classification and Nearest
Neighbour classification. By calculating the score for
each element in the set of possible Google searches as
its Bayesian classifier score divided by one plus the dis-
tance from the nearest neighbour classifier (adding one
to eliminate a divide-by-zero error) a true positive rate of
74% was achieved (Figure 5).

Although the test performed in this section of the pa-
per is limited to only ten Google search queries, it is im-
portant to also consider other information sources likely
to be available to the adversary. Under our threat model
where the adversary is capable of monitoring all network
traffic, it is possible that the adversary builds a list of pos-
sible search terms based on either vocabulary collected
from unencrypted HTTP connections or topics learned
from side-channel cues such as those described in sec-
tion 6.1. It is also important to note that the network
traffic which follows the Google search is also likely to
vary strongly based on what the search term was thus
providing additional insight into the side-channel.

All PCAP files used for testing and training the clas-
sifier, as well as the source code for our classifier can be
found on our GitHub page [11].

6.3 Censoring Google Auto-Suggest

As previously discussed in this paper, we make the re-
search contribution of extending network side-channels
from the exclusively passive domain where network traf-
fic is only passively observed, to a hybrid domain where
network traffic can be actively manipulated in addition to
being passively observed. To demonstrate this, we will
show how the integrity property of a web application can
be violated through side-channel means.

Figure 3: Testing the accuracy of the trained Bayesian
classifier with Google auto-suggest network traces.

Figure 4: Testing the accuracy of the trained Nearest
Neighbour classifier with Google auto-suggest network traces.

The main page for the Google search engine uses
AJAX to provide automatic search suggestions for the
text that is currently entered into the search bar. As has
been previously demonstrated [5], an adversary is capa-
ble of observing the sequence of packet exchanges be-
tween a victim and Google and can use this information
to determine what the victim is searching for despite the
fact that Google uses SSL/TLS. In this evaluation, we ex-
pand this exploit to not only observe the behaviour of the
victim but also to hide information from the victim based
on an adversary’s observations thus implementing cen-
sorship and modification of web application behaviour
in spite of SSL/TLS.

To demonstrate the exploitation of this vulnerability
we will describe how we have successfully accomplished
the following task; when a victim visits the Google main
page and searches for hurricane irma their connec-



Figure 5: Testing the accuracy of the trained Hybrid classifier
with Google auto-suggest network traces.

Number Search Term
1 Mayweather vs McGregor Fight
2 Las Vegas shooting
3 Hurricane Harvey
4 Solar Eclipse
5 Matt Lauer
6 Fidget spinner
7 Aaron Hernandez
8 Tom Petty
9 Hurricane Irma

10 Super Bowl

Table 2: Search terms for Figures 3, 4, 5.

tion to Google is dropped while, using Google for other
search queries does not result in this behaviour.

In order to implement this, we used the same detection
algorithm described in the subsection Analyzing Google
Auto-Suggest Traffic but instead of feeding it captured
network packets from a PCAP file, packets were fed di-
rectly from the Netfilter queue (NFQUEUE). Once the
condition of the hybrid classifier giving the censorable
result after a range of packets have been exchanged, our
censorship script would then call nfqueue.NF DROP to
block the victim’s Internet connection.

The source code for our censorship script as well as
the trained classifiers used in this example can be found
on our GitHub page [11].

6.4 Counting Shopping Cart Items

This example demonstrates how lazy-loading can be ex-
ploited to reveal private information through network
traffic side-channels. In this example, an attack web-
site opens a pop-up window pointing to the URL of a

Figure 6: The exploit page opens by JavaScript a pop-up
window of a given fixed size displaying the user’s eBay

shopping cart.

user’s eBay shopping cart (Figure 6). Given that the
attack website is able to control the window size of
the opened cross-domain pop-up window, the attacker is
therefore able to control how much of the pop-up win-
dow’s contents is loaded via lazy-loading. eBay’s shop-
ping cart uses lazy-loading for loading product images
only once they are within the page’s viewport. Further-
more, these product images are loaded from the domain
i.ebayimg.com and therefore by filtering traffic for that
domain, we are able to obtain clearer information on
which product images are being loaded. In addition, the
browser cache must also be considered. If an image has
been recently downloaded from i.ebayimg.com it will not
need to be downloaded again. Combining the browser
caching behaviour with the effect of pop-up window size
on lazy-loading reveals the following rule - as the num-
ber of unique lazy-loaded images increases on a pop-up
window, the number of requests to i.ebayimg.com also
increases as the pop-up window is vertically enlarged.

In our demonstration, we conduct eight rounds of the
test, the first round with one item in the eBay shopping
cart, the second round with two, and so forth. During
each test we open a pop-up window to the eBay shopping
cart with the first pop-up window size being 280x280 and
the last pop-up window size being 280x2840 with each
test linearly increasing the height by 40 pixels. Dur-
ing analysis, for each of the eight rounds, the number
of times i.ebayimg.com is accessed is counted. Our ob-
servations support our rule for browser caches and lazy-
loading, in general as more items are added to the shop-
ping cart, i.ebayimg.com is accessed more often as the
pop-up window is vertically enlarged (Figure 7).



Figure 7: The number of accesses to the CDN generally
increases as items are added to the shopping cart.

7 Defences and Countermeasures
In order to prevent both active and passive side-channel
attacks on web applications and their users, two condi-
tions must be satisfied; 1) network traffic patterns must
be indistinguishable from one another and 2) the web ap-
plication must either not change its behaviour as a result
of network faults or the web application user should im-
mediately be made aware of the traffic tampering.

Following the rule of making all network traffic pat-
terns indistinguishable from one another could result in
problematic performance overheads to the web applica-
tion (eg. padding of smaller sized messages, generation
of obfuscation traffic in real-time systems) and thus can-
not be used as a general purpose fix to guarantee against
the types of side-channel information leaks discussed in
this paper. Instead, a cost/benefit approach needs to be
taken. In [12], the authors propose a model for control-
ling which web resources should be enabled based on
a cost/benefit analysis where cost is calculated as num-
ber of CVE reports, lines of code, and academic attacks
related to this functionality and benefit is calculated as
the number of websites which require the given feature
for some user-visible benefit. For applying a similar
cost/benefit model to the problem of side-channel miti-
gation, cost could be calculated as the value or sensitiv-
ity of the information leaked and benefit could be calcu-
lated as the gain in overall web application efficiency by
choosing the side-channel possessing design pattern.

Another approach to side-channel mitigations in Web
applications is to minimize the amount of client-server
network trips necessary for proper web application per-
formance. Although this could be done by carefully
modifying the hand-written code of a Web application,
a more elegant approach is to use model-driven devel-
opment. This is compatible with the popular Model-
View-Controller (MVC) Web application development
paradigm which promotes component reuse. In [4],

the authors discuss building web applications through
a model-driven development process where their set
of transformations generates Angular.js web application
code from a model built from their UML profile. Al-
though the paper makes no reference to side-channels,
it is conceivable that elements could be added to their
UML profile which provide side-channel resistant prop-
erties. For example, a web page object could be given
a property such as same-size which would enforce that
all pages of this property generate the same pattern of
network traffic when loaded.

8 Conclusion and Future Work
In this paper we have introduced the theory and imple-
mentation for tools designed to detect side-channels in
web applications. We have conducted evaluations which
demonstrate how our tools are capable of exploiting web
application side-channels similar to those discussed in
older research papers and have confirmed that this re-
search is still relevant to modern web applications. We
have extended the current state of network traffic based
side-channels by considering the effect of lazy-loading
combined with pop-up window resizing and demon-
strated how this could be used to estimate the number
of items in a victim user’s eBay shopping cart. Finally,
we have released all our utility programs forming our set
of tools and well as the relevant network traffic capture
files on our GitHub page [11].

For future work, we would like to develop a model-
driven web application framework similar to the one de-
scribed in the section Defences and Countermeasures
thus enforcing the rule that web resources served that are
dependant upon private information must not provide any
insight into the private information that resulted in their
request.
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