
NEMESYS: Network Message Syntax Reverse Engineering
by Analysis of the Intrinsic Structure of Individual Messages

Stephan Kleber
stephan.kleber@uni-ulm.de

Henning Kopp
henning.kopp@uni-ulm.de

Frank Kargl
frank.kargl@uni-ulm.de

Institute of Distributed Systems, Ulm University

Abstract

Protocol reverse engineering based on traffic traces al-
lows to analyze observable network messages. Thereby,
message formats of unknown protocols can be inferred.
We present a novel method to infer structure from net-
work messages of binary protocols. The method derives
field boundaries from the distribution of value changes
throughout individual messages. None of many previous
approaches exploits features of structure which are con-
tained within each single message. Our method exploits
this intrinsic structure instead of comparing multiple
messages with each other. We implement our approach
in the tool NEMESYS: NEtwork Message SYntax analy-
siS. Additionally, we introduce the Format Match Score:
the first quantitative measure of the quality of a message
format inference. We apply the Format Match Score to
NEMESYS and a previous approach and compare the
results to mutually validate our new format inference
method and the measure of its quality.

1 Introduction

A network protocol has the purpose to enable communi-
cation between nodes. Communicating nodes are entities
implementing a specific shared protocol specification. In
this context, a specification allows for the interpretation
of transmitted data as information of defined meaning by
the receiver. An analyst being confronted with communi-
cation which uses an unknown specification will need to
reverse engineer its specification by monitoring network
traffic or the communicating entities.

Traffic analysis is one method of protocol reverse en-
gineering to infer the meaning of the communication [5].
It resorts solely to the analysis of traffic traces, which
are observable on the link between the communicating
entities. Although traffic analysis can only gain informa-
tion from what can be observed on the communication
link, it is non-invasive and does not require control over

any entity; therefore, static traffic analysis is regularly
applied. This method of network analysis has been used
to gain comprehension of hitherto unknown network pro-
tocols for security-relevant tasks. Use-case examples for
static traffic reverse engineering are the analysis of bot-
nets [13], the setup of honeypots [13, 14], vulnerability
testing by fuzzing [12], and the automated modeling of
networks [21].

Current methods for traffic analysis are mainly based
on algorithms originating from natural language process-
ing and bio-informatics. Although these fields solve the
related problem of inferring structure from sequences of
values, in their context the challenge is reduced by ad-
ditional knowledge about their data. Natural language
processing determines words from delimiters, separat-
ing atomic parts of the vocabulary, and then identifies
keywords by their frequency of occurrence. In bio-
informatics it is often known which sequences of amino-
acids are relevant in DNA or protein-sequences, there-
fore, aligning multiple sequences on their sub-sequences
is a robust method of identifying similarity between the
sequences.

Network protocols do not necessarily provide the re-
quired properties to apply either of these methods ef-
ficiently: A lot of protocols do not use keywords that
would be discernible by natural language processing; in
bio-informatics only few different sequences need to be
aligned at a time. In contrast, inferring message for-
mats from network traffic traces requires a large num-
ber of messages of one protocol to observe the vari-
ability of values. However, large corpora of message
traces critically impact the performance, due to the expo-
nential complexity [18] of multiple sequence alignment.
Therefore, neither natural language processing nor bio-
informatics can provide for sufficient inference of the
structure of binary data in a network protocol message.

Subsequent analysis steps of protocol reverse engi-
neering, like message type identification, semantic de-
duction, or behavior analysis to derive the state model of

the protocol, are highly dependent on the format infer-
ence quality. To cluster message types or align field se-
quences more precisely, the main goal of message format
inference is to reliably and automatically segment each
message on byte-positions that constitute field bound-
aries.

Contributions: Our paper contains two major contri-
butions: Foremost, we propose a new method to infer
structure from network messages. Additionally, we in-
troduce the first quantitative measure of the quality of a
message format inference.

To infer structure from network messages, we exploit
typical patterns of value changes in network messages
as heuristic for field boundaries. This yields a message
segmentation derived from the distribution of value char-
acteristics throughout each individual message. The ba-
sic idea of this method is to exploit the intrinsic struc-
ture of each single message for the analysis, instead of
comparing multiple messages with each other. This ap-
proach obviated the need for pairwise comparisons of
messages as the initial feature extraction step of proto-
col reverse engineering. We implement our approach
in the tool NEMESYS: NETWORK MESSAGE SYNTAX
ANALYSIS.

To evaluate NEMESYS and to compare multiple in-
ference results, we introduce the measure Format Match
Score (FMS), which quantifies the quality of the format
inference for a specific message. We apply this mea-
sure to our results and compare them to the sequence-
alignment field inference performed by the tool Netzob1.

This article is structured as follows: In the next sec-
tion we discuss related work and revisit the relevant com-
mon terminology for the discussion about network mes-
sages. In Section 3 we present the details of our ap-
proach. In Section 4 we describe the design of its im-
plementation NEMESYS. We define the Format Match
Score, our quality measure for network message syntax
inference, in Section 5. Section 6 contains the results of
our evaluation of NEMESYS by applying FMS. Finally,
we outline our ideas for future work and conclude the
paper in Sections 7 and 8.

2 Related Work

Static traffic analysis is a specific kind of protocol reverse
engineering, where network traffic between two genuine
entities is monitored purely passively. First solutions
have been proposed by Beddoe [1] and Rauch [16]. The
basic application of sequence alignment to network pro-
tocols originates from Beddoe. Based on his work, the
most versatile available tool implementing static traffic
analysis is Netzob [4]. We utilize Netzob’s functionality
to leverage our approach.

Since Beddoe’s paper, algorithms from natural lan-
guage processing and bio-informatics have been applied
to network protocols.

Methods based on natural language processing work
well on protocols which use ASCII-encoded keywords
to structure their messages. Figure 1 shows part of a
textual protocol with separator chars clearly delimiting
keyword and data fields. Binary protocols, packing data
more densely and not separating fields by delimiters or
labeling them by explicit keywords, do not exhibit these
characteristics, which, however, are necessary for natu-
ral language processing. Therefore, these methods inher-
ently are not applicable to binary protocols.

As for bio-informatics algorithms, to derive a poten-
tial structure from an alignment of multiple messages, it
requires that the same value is transmitted in the same
relative position of a sequence of multiple values within
each message. However, it cannot be unconditionally ex-
pected to find the same value in the byte sequence of mul-
tiple independent messages in binary protocols. On the
other hand, long variable message parts bias the align-
ment by spurious relationships of values across messages
and therefore lead to false positive identification of field
boundaries.

ScriptGen [14], Discoverer [8], and Netzob use se-
quence alignment to infer message formats. Both, Script-
Gen and Discoverer differ from Netzob in that they
align subsequences of messages (tokens) instead of sin-
gle bytes. They propose effective methods to generate
such tokens from textual protocols. In addition, Script-
Gen proposes to derive tokens from frequency, variance,
and other byte characteristics throughout all messages
of a trace. Although ScriptGen and Discoverer envision
their methods to be universally applicable, they leave it
to future work to solve the details of inferring binary pro-
tocols.

ProDecoder [19] and PRISMA [13] use statistical
methods known from natural language processing. Both
tools use these methods to find tokens by identifying se-
quences that appear together frequently and coherently.
Due to the missing keywords and separators in binary
protocols, natural language processing produces very
limited results and is inefficient for large traces.

FieldHunter [3] is a recent promising approach com-
bining concepts from Netzob, Discoverer, ScriptGen,
and other related methods. It provides advanced solu-

Textual protocol (SMTP):

RCPT ␣ TO: ␣ <twanda@blue6.ex> ␣

Binary protocol (DHCP):

638253633501053604ac140301330400000e10

Key:

Keyword

Separator

Value

Figure 1: Snippets of textual and binary protocols.

tions for a number of challenges for format inference,
like characterization of field types. However, Field-
Hunter does not exploit features contained inside one sin-
gle message. Thus, like previous methods, it misses a lot
of details of the structure of messages.

Despite this wide variety of methods and features
which have been proposed for traffic analysis, to the best
of our knowledge, a feature extraction from the intrin-
sic structure of messages has never been proposed in this
context. Moreover, we are not aware of any kind of mea-
sure for the correctness and precision of the format in-
ference of network messages. Therefore, we propose the
first such measure in this paper.

The surveys by Duchêne et al. [9] and Narayan et al.
[15] provide an overview of protocol reverse engineering
beyond the methods directly related to our work, in par-
ticular such that are based on software reverse engineer-
ing. Software reverse engineering for the analysis of an
executable that implements a network protocol has been
proposed and is well understood for scenarios where this
approach is applicable [6, 20]. In contrast to inferring the
parsing logic of an executable program, traffic analysis
remains possible in cases where the executable program
binary is not accessible for reverse engineering. We do
not further discuss these methods, since they utilize fun-
damentally different concepts to perform their task.

We adopt the terminology for protocol elements of
Narayan et al. [15]: For the message type to be dis-
cernible and for the information to be interpretable at the
receiver, each message needs a defined format following
a strict syntax. This syntax defines fields, and the speci-
fication associates them with semantic. Each field has a
length and a value. The length can be fixed or variable.
The value can be completely variable, like in a data field,
or it can be static, like a message type identifier, or it
can be ephemeral. Ephemeral values remain static dur-
ing exactly one session, such as the Identification field in
DNS, intended to match request and reply despite using
the connectionless UDP transport.

3 Approach

To discern the syntax of a network message, we utilize
the structure that is intrinsic to the message. Since each
network protocol is designed to be efficiently parseable
by its recipient, we can expect to find specific hints to-
wards the structure in each message itself. For exam-
ple, binary protocols typically use fields of the lengths of
common data types, such as 32 bits for an integer. How-
ever, field contents do not uniformly fill the value domain
of such a fixed numerical field.

For instance, numeric values are a common field data
type in network messages. Counted numbers exhibit a

specific variance distribution from its most to its least
significant byte. This observation is similar or even cor-
related to Benford’s Law [2] which predicts the anoma-
lous distribution of the digits of numbers found in the
real-world. To illustrate, this is most obvious in the case
of multiple zeros being the most significant bytes of a
fixed size integer. For example, a 4 byte integer field
containing the value 2069 would look like 00000815 in
hexadecimals.

The observation of network messages shows a typical
behavior throughout the sequence of values, which is in-
dicating substructures of messages. Our approach is to
segment a message according to features of its intrinsic
structure. This way we determine field candidates. After
investigating a number of different methods to charac-
terize bit sequences [7], we discovered the similarity of
consecutive message bytes to be a good feature to per-
ceive the intrinsic structure of a message.

3.1 Similarity Revealing Structure
The main similarity feature we use is the delta of the
congruence in bit values of consecutive bytes (BCD)
of one message. We assume that the message does con-
sist of multiple bytes, though our exposition is general-
izable to work with nibbles or words instead. We define
Bit Congruence as the bitwise similarity of bytes and uti-
lize the bitwise similarity defined by Sokal and Michener
[17]. We apply the Bit Congruence per each two consec-
utive bytes of the message.

For two bytes b and b their bits are denoted as bi and
b

i
, with 0≤ i < 8. The number of bits that have the same

value is called cagree(b,b) = |{0≤ i < 8 : bi = b
i}|. The

similarity metric by Sokal and Michener applied to b and
b yields what we call the Bit Congruence

BC(b,b) =
cagree(b,b)

8
.

Iterating over all bytes m0, . . . ,mn of a network message
m, we can determine a delta between the Bit Congru-
ences of consecutive byte pairs. It is calculated from the
difference of the Bit Congruence in every pair of consec-
utive byte positions k. The delta of this similarity within
a message of m bytes length then is the following vector.

∆BC =
(
BC(mk,mk+1)−BC(mk−1,mk)

)
0<k<n

Although bit values of longer sequences of numerical
data tend to have a recognizable BC pattern in network
messages, not all subsequences of bits obey this behavior
individually. Thus, the BC is a noisy feature and conse-
quently also ∆BC. Despite the noise, we need to reliably
find positions in the message where the feature property
changes noticeably across multiple bytes to discover the

2 4 6 8 1012 343638
Byte Position

0.4

0.2

0.0

0.2

0.4

0.6

e81f 010000010000000000000872656c6561736573076d6f 7a696c6c61036f 726700001c0001
Message:

2 4 6 8 10 12 30 32 34
Byte Position

0.6

0.4

0.2

0.0

0.2

0.4

0.6

dc d18182000100000000000004696374660263730475637362036564750000010001
Message:

2 4 6 8 10 12 25 27 29
Byte Position

0.4

0.2

0.0

0.2

0.4

0.6

fe 47 81 82 00 01 00 00 00 00 00 00 03 77 77 77 03 69 66 63 03 63 6f 6d 00 00 01 00 01
Message:

dns_ictf2010_deduped-100 | bitCongruenceDeltaGauss

(a) Features of one DNS message

1234 8 12 16 24 32 40 48
Byte Position

0.4

0.2

0.0

0.2

0.4

0.6

25 04 06 ec 00 00 02 68 00 00 13 7e 0a 64 00 c8 d2 3d 09 5f ac bb dd 53 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 d2 3d 0a 52 ac fe ea ac

Message:

1234 8 12 16 24 32 40 48
Byte Position

0.6

0.4

0.2

0.0

0.2

0.4

0.6

24 04 06 ec 00 00 02 79 00 00 12 20 0a 64 00 c8 d2 3d 05 60 2b 12 6b 75 d2 3d 09 6c d7 c7 ac c4 d2 3d 09 6e 27 e0 24 0a d2 3d 09 6e 27 e4 40 ba

Message:

1234 8 12 16 24 32 40 48
Byte Position

0.4

0.2

0.0

0.2

0.4

0.6

19 04 0a ec 00 00 02 7b 00 00 12 85 0a 64 00 c8 d2 3d 06 a2 53 5e d7 1e d2 3d 09 fa a4 67 33 15 d2 3d 09 fa a1 76 63 25 d2 3d 09 fa a1 7b 4b 10

Message:

ntp_SMIA-20111010_deduped-100 | bitCongruenceDeltaGauss

(b) Features of one NTP message.

Figure 2: Gaussian filtered Bit Congruence deltas as message feature: The red line is showing the smoothed ∆BC;
the fine black line ∆BC without smoothing; vertical blue dashed lines are true field boundaries; the byte values of the
displayed message are shown along the x-axis in hexadecimals.

overall tendency. Therefore, we smooth the ∆BC by a
standard Gaussian filter gσ (∆BC) with parameter σ .

Even by simple observation in Figure 2, this smoothed
Bit Congruence delta clearly shows a periodic behavior
coinciding with fields as postulated.

Numbers have a characteristic distribution of Bit Con-
gruence deltas across their binary representation in one
field. In particular, at the transition from one field to
another, big-endian numeric values commonly have low
variability; from the beginning of the field, this rises into
high variability towards the end of the field. For count-
ing numbers, this is due to the order of the significance
of the bytes. We acknowledge that there are several data
types of fields used in binary protocols that do not change
their variability in a way recognizable by our feature.
Some examples are char sequences (byte positions 13
to 25 in Figure 2a), seemingly random session cookies,
message authentication codes, and nonces. While con-
secutive random-looking values cannot be split into their
components by any method without additional specifica-
tion, char sequences may change their variability accord-
ing to the letter frequency in natural language. This is
difficult to detect with our method, which compares only
small subsequences of the message. However, seemingly
random values occur comparatively seldom throughout a
message and are therefore clearly discernible by our fea-
ture from other parts of the message. Character strings
on the other hand are easily identifiable by their value
domain, as we will show in our implementation (Sec-
tion 4).

For an expedient analysis during steps after the ex-
traction of the ∆BC feature, a large number of messages
is needed to have a diverse set of samples. Only then
the different realizations of potentially multiple syntaxes

which are specified in one protocol become observable.
The reason we chose Sokal and Michener to provide the
Bit Congruence feature for our approach is twofold. For
one, it is simple to be calculated so that we can effi-
ciently analyze the necessary large numbers of indepen-
dent messages. On the other hand, it is a normalized bit
similarity metric. The normalization by the length of the
compared bit strings has one conceptual and one prac-
tical benefit: It makes the approach universally valid,
independently of the applied basic unit size. For com-
mon protocols, these basic units are bytes, but nibbles or
larger bit strings may be used alternatively. The practi-
cal benefit of normalizing is that it allows to apply opti-
mized default Gaussian-filter implementations, based on
the normalized Gaussian distribution. These implemen-
tations require the sequence for smoothing to be normal-
ized to values between zero and one.

3.2 Applying the Feature

We interpret the ∆BC feature to derive message segments
that constitute field candidates for each analyzed mes-
sage. Due to the explained typical feature-value distribu-
tion throughout one field, the segmentation is achieved
by determining approximates for the inflection points at
the rising edges of the discrete Gaussian-filtered Bit
Congruence delta gσ (∆BC). By reducing the noise
in the input data, the smoothing by the Gaussian filter
shows the overall variability level for longer sequences of
bytes in the message. It thereby prevents longer field can-
didates to be split up erroneously for a single deviating
byte-value outlier. Figure 2 shows plots of unsmoothed
and Gaussian-filtered ∆BC of two example messages.
The byte position next to an inflection point on the rising

edge of the smoothed ∆BC is marked with an orange dot.
The true field boundaries, we seek to infer, are marked by
vertical dashed blue lines.

The number of discrete values to deduct inflection
points from often are derived from only 2 to 4 bytes.
Therefore, we do not use interpolated inflection points
of gσ (∆BC) directly. The exact cut position for seg-
ments at the rising edge of Bit Congruence deltas is de-
termined from the maximum delta of the unsmoothed
∆BC in scope of each rising edge. Therefore, we de-
termine the scope of a rising edge from the interval of
a pair of local extrema (emin,emax). As cutting point, we
use the most distinctive change in each interval (en,en+1)
for each n where en is a local minimum and en+1 is a
local maximum. This yields exact points of transitions
from high to low variability throughout one message. To
illustrate, our approximation of the inflection points is
marked by blue triangles in Figure 2. Due to the noisy
nature of the feature, the resulting message segments are
not necessarily cut at the exact field boundaries and may
slightly skitter compared to the protocol specification.

Our approach now provides segmentation of messages
by approximating the inflection points of Gaussian-
smoothed deltas of Bit Congruences (gσ (∆BC)).

4 NEMESYS Implementation

We implement our approach in the tool NEMESYS:
NETWORK MESSAGE SYNTAX ANALYSIS.

4.1 Architecture
NEMESYS is implemented in Python 3 as a proof-of-
concept and consists of the modules SpecimenLoader,
MessageAnalyzer, and MessageSegment depicted in
Figure 3.

The SpecimenLoader reads a PCAP file and prepares
its representation for the analysis using methods of Net-
zob. MessageAnalyzer defines classes for each analysis
method, as well as an AbstractBaseClass for all of them.
Bit Congruence (BC), Bit Congruence delta (BCD), and
Gaussian-filtered BCD (BCDG) are implemented as ana-
lyzer subclasses. The BCDG class also contains methods
to approximate the inflection points and to cut the mes-
sage into according MessageSegments.

4.2 Segmentation
In NEMESYS, a MessageSegment is fully defined by the
message it originates from, the byte offset, the length
in bytes, and the kind of feature analysis performed on
the message to gain the segmentation. This encapsulates
a message together with an analysis method and allows
to slice the message according to the extracted features.

SpecimenLoader

PCAP file

MessageAnalyzer

MessageSegmentmessage format

message

BCDG +
inflection point approximation

refinements

Figure 3: Overview of the NEMESYS analysis process

Features are one or more analysis values that are used as
basis to detect a field boundary. Moreover, the architec-
ture to calculate and interpret features enables to flexibly
exchange the analysis method by writing a new analysis-
class that can be instantiated in the message segments.

The sole parameter of NEMESYS is the radius of the
smoothing by the Gaussian filter denoted as σ . σ is
the standard deviation of the Gaussian distribution that
is used as the kernel to convolute with the BCD value.
To illustrate the influence σ has on the smoothing, re-
gard another application of the Gaussian filter: image
processing. In this context, Gaussian filtering blurs the
image to reduce noise such as scratches and raster arti-
facts. It produces a weighted mean of each data point and
its neighbors.

In our application to network messages, the optimal
value for σ is dependent on the field lengths of the pro-
tocol. This parameter can be adjusted by the analyst to
improve the message segmentation precision. However,
for unknown protocols a reasonable assumption about
the typical field length must be made. Our empirical tests
have shown that for common protocols with field lengths
of 2 to 8 bytes, a value of 0.9 yields best field matching
results (see Appendix, Table 4 and Figure 10).

4.3 Refinements
It is possible to make computationally cheap refinements
of the results. These are intended to take additional
knowledge about typical protocol design into account.
We implemented one kind of value-based refinement to
demonstrate the procedure. In particular, we address the
issue of character sequences, which do not exhibit the
same structure as numerical fields. Such fields may very
well be embedded within binary protocol messages, like
DNS containing a domain name.

Typically, character sequences are split into segments
too short. In some cases, segments before or af-
ter character sequences contain one or more character
bytes. Therefore, NEMESYS merges consecutive seg-
ments which completely consist of printable-character

values into one text field. We chose to define printable
characters according to the ASCII encoding as either \t,
\n, or \r, or having a value between ≥ 0x20 and ≤ 0x7e.
Afterwards, NEMESYS checks whether segments adja-
cent to text segments need to be split and re-segmented to
keep consecutive chars together. These operations have
almost no effect on purely binary protocols but improve
the inference of text fields within binary protocols.

5 Format Match Score

We introduce the Format Match Score (FMS) as quan-
titative measure that provides a reference value for the
quality of a format inference. To the best of our knowl-
edge, this score is the first of its kind to adequately incor-
porate the relevant aspects of correctness of a message
format inference. It is designed to (1) take into account
the ratio of correctly recognized fields, (2) differentiate
between shifted field boundaries and completely wrongly
inferred fields, which result in too many or too few fields
of one message, and (3) quantify the decreasing utility of
the different aspects of deviation of the inference. Devia-
tions and ratios are determined by applying the protocol
specification to a specific inferred message. The FMS
is intended as a benchmark for the message format in-
ference quality to be applied with a known protocol as
representative test specimen. It cannot serve as an oracle
for the quality of the inference of a truly unknown proto-
col. Nevertheless, knowing the efficacy of a format infer-
ence algorithm by benchmarking it allows to deduce the
expected result quality of the approach for an unknown
protocol of similar kind.

5.1 Quality Aspects

The FMS is based on a number of quality aspects as in-
troduced above. To formalize these, we first define the
necessary properties of a message, its real format, and its
inference.

For a single message, we define the properties:
RRR: The set of real field boundaries and |R| their number.
III: The set of inferred boundaries and |I| their number.
rrrkkk with 000 <<< kkk <<< |RRR|: The byte index of the kth real field

boundary; to ease notation, we always set r0 = 0
at the start of the message and r|R| as the message
length.

iiilll with 000 <<< lll <<< |III|: The byte index of the lth inferred
field boundary.

We define a scope for each true field boundary rk
within a single message. A scope begins at the center
between the previous and the current boundary rk and
ends right before the center between the current and the

r0 r1 r2 . . . r|R|−1 r|R|

Scope of r1 Scope of r2 . . . Scope of r|R|−1

Figure 4: Scope of each true field boundary.

subsequent boundary as illustrated in Figure 4. The mes-
sage start r0 and end r|R| have no scopes assigned and are
not considered inferable boundaries. Thus, an inferred
boundary il is within the scope of rk for any 0 < k < |R|
if the following inequality holds:

rk−1 +
rk− rk−1

2
≤ il < rk +

rk+1− rk

2
(1)

We define δδδ rrr as the distance of a real field boundary
rk to the nearest inferred field boundary il :

δr = min{|i− r|, where i satisfies Equation (1)}

As usual, we define the minimum operator on an empty
set to be min /0 =−∞. Consequently, δr is interpreted as:

δr =−∞: no matching inferred boundary exists for the
true boundary r

δr = 0: an exactly matching inferred boundary exists for
the true boundary r

−∞ < δr < 0: the nearest inferred boundary for the true
boundary r is δr bytes left of r

δr > 0: the nearest inferred boundary for the true
boundary r is δr bytes right of r.

5.2 Calculating the Format Match Score
Knowing R, I, and δr, we can now calculate the FMS.

We use Gaussian weights to assign a measure of qual-
ity exp

(
−(δr/γ)2

)
to an inferred field with field dis-

tance δr. The parameter γ decreases the steepness of the
quality drop towards larger deviations from zero of the
distance between inferred and real field boundaries. De-
pending on the use case, γ can be adjusted for bench-
marks to represent the requirements of the use case in
regard to the accuracy of the format inference.

The Format Match Score for one message then is

FMS= exp

(
−
(
|R|− |I|
|R|

)2
)

︸ ︷︷ ︸
Specificity penalty

· 1
|R| ∑r∈R

exp

(
−
(

δr

γ

)2
)

︸ ︷︷ ︸
Match gain

The specificity penalty incorporates the deviation of
the inferred field count from the true amount of fields
in the format. Any deviation from zero reduces the

δr exp
(
−
(

δr
γ

)2
)

Note

0 1 exact match
±1 0.779
±2 0.368
±3 0.105
±4 0.018
−∞ 0 no matching inferred field

Table 1: Rounded weights of inferred fields correspond-
ing to real fields r at distance δr for γ = 2.

FMS proportional to a Gaussian distribution. The non-
linearity of the penalty takes into account that the use-
fulness of the inference typically decreases slowly for
only few additional or missing fields, but the inference
becomes useless with increasing pace for larger skitter.

The match gain incorporates near field matches,
which are weighted by the distance from their true field
boundary positions, and exact field matches. It is nor-
malized by the amount of true fields in the message for-
mat. The weight of an exact match is 1 and of a true field
that lacks any counterpart in the inference it is 0. Each
near match is weighted non-linearly by a Gaussian dis-
tribution dependent on the distance of the true from the
inferred field. Table 1 gives some examples for values of
near matches, assuming a factor of γ = 2.

The overall FMS assumes 1 for an exact match of the
inferred and true format. It approaches 0 for increased
deviation of inferred and true format.

6 Evaluation

We evaluate the quality of our format inference ap-
proach by applying the FMS to the inference re-
sults of our method’s implementation NEMESYS. For
the evaluation, we implemented the Python-modules
MessageComparator and ParsedMessage as add-on of
NEMESYS. The two modules obtain the dissection of
each message and compare these real field boundaries
to the inferred ones by applying FMS. We illustrate this
process in Figure 5.

As baseline information about the protocol specifica-
tion, we utilize tshark2. For each message in the trace, we
compare the inference results to the according protocol
dissector provided by tshark. ParsedMessage hands each
message to a tshark process and parses the JSON output
of its dissectors. As specimens, we use the binary pro-
tocols DNS, NTP, and DHCP. We chose these protocols
as representatives of different typical binary protocols.
DHCP has varying amounts and lengths of fields. We
chose NTP because it is a protocol of fixed field lengths,

MessageComparator

ParsedMessage

running tshark and parsing its output

FMS

inferred MessageSegment

format
comparison

Figure 5: Overview of the evaluation process

where the lengths range from 1 to 8 bytes for the different
fields. DNS contains mostly 2 byte binary fields mixed
with variable length fields of ASCII-encoded characters.
The traces we analyzed are publicly available3; we pre-
processed each raw trace by removing duplicates of the
payload and truncating them to traces of the sizes of 100,
1 000, and 10 000 messages.

To visualize the accuracy of the inference for a whole
trace, we generated histograms of the amounts of in-
ferred boundaries positioned around true boundaries of
fields. Figure 6 depicts this histogram for 10 000 mes-
sages of DNS and NTP each. (We placed the respective
plot for DHCP in the Appendix, Figure 8.) In these plots,
the vertical dashed blue lines denote true boundaries; the
bars count in how many messages a boundary was in-
ferred at that byte position. Since our format inference
method is heuristic, inferred field boundaries are scat-
tered around the true field boundaries. The narrower the
bars of the plot are scattered around the true fields, the
better the inference matches the true format. To deter-
mine the distance between each true field boundary and
its nearest inferred counterparts, we needed to take the
variable length fields of DNS and DHCP into account.
Therefore, we aligned the true field boundaries and their
nearest inferred counterparts across all messages for the
graphical representation to the maximum length of each
field in the messages’ sequences.

To provide a quantitative evaluation, we applied our
novel FMS. We chose the parameter of the FMS to be
γ = 2 in our evaluation so that small deviations in the
inference still are rewarded as shown in Table 1. Thus,
a distance of an inferred field by 1 still is rewarded by
about 0.78 of an exact match, whereas for a distance of 4
byte positions only less than 0.02 remains. For compar-
ison with our results and to validate the FMS, we used
Netzob to infer the same messages as NEMESYS. Ta-
ble 2 shows the inference results in FMS for the best
matching message in the trace and the average inference
quality over all messages in the trace. We repeated the
analysis with traces of different sizes and recorded the
runtime of each analysis.

20 40 60 80 100 120
Aligned Byte Position

0

2000

4000

6000

8000

dns_ictf2010_deduped-9911 | distances-distribution_bcDeltaGauss0.6

(a) Inferred boundary positions for 10 000 DNS messages.

10 20 30 40 50 60 70
Aligned Byte Position

0

2000

4000

6000

8000

ntp_SMIA-20111010_deduped-9995 | distances-distribution_bcDeltaGauss1.2

(b) Inferred boundary positions for 10 000 NTP messages.

Figure 6: Histograms of inferred field boundaries around true field boundaries. The vertical dashed blue lines denote
true boundaries; the bars count in how many messages a boundary was inferred at that byte position.

Netzob NEMESYS
Trace size 100 1 000 100 1 000 10 000

FMS
(best)

DNS 0.56 0.56 0.60 0.68 0.71
DHCP 0.53 —4 0.66 0.70 0.73

NTP 0.71 0.66 0.61 0.66 0.67

FMS
(avg.)

DNS 0.56 0.54 0.47 0.45 0.45
DHCP 0.44 —4 0.52 0.53 0.54

NTP 0.56 0.39 0.47 0.44 0.45

runtime
in sec.

DNS 0.6 246 0.1 1.0 10
DHCP 15 2224 0.5 4.3 47

NTP 0.7 312 0.1 0.9 10

Table 2: Format inference results for best and average
quality of all messages measured in FMS.

Both, Netzob and NEMESYS require a parameter,
which we needed to set for our test runs. To select these,
we iterated the respective parameters during test runs of
each tool. We then used the best NEMESYS σs and Net-
zob similarity-thresholds for each protocol, according to
the FMS. For Netzob the similarity thresholds used were
53 (DNS), 75 (DHCP), and 66 (NTP); for NEMESYS
we used σ = 0.6 (DNS, DHCP) and 1.2 (NTP).

In the best case inferences, NEMESYS shows moder-
ate (DNS) to significant (DHCP) better format match-
ing than Netzob, while both approaches yield com-
parable results for NTP. In the average case, Netzob
and NEMESYS yield a similar FMS, partly with Net-
zob leading (DNS, 100 NTP messages), partly with
NEMESYS leading (more than 100 NTP messages).
Overall, we conclude that the inference quality of Net-
zob and NEMESYS is similar.

What sets NEMESYS apart is that it does not need
to do any comparison between multiple messages in the
trace. Dependent on the length and number of messages,
this results in a linear complexity of the analysis. On the

other hand, global multiple sequence alignment — per-
formed by Netzob and most other protocol reverse engi-
neering tools — has exponential runtime. It guarantees
to optimally align k sequences of the maximum length
l at the complexity of O(lk) [10]. The analysis run of
10 000 messages could not be performed with Netzob
due to the exponential increase in its runtime and mem-
ory consumption. The runtimes of the analyses in Table 2
show this advantage of our approach in scalability. This
becomes even more distinct when considering the maxi-
mum lengths of the messages in our the analysis traces:
NTP and the DNS trace we used contain small messages
of 68 and 96 bytes at max. Our DHCP trace contains
largest messages of 548 bytes. Neither of these lengths
are unusual and should not be prohibitive for an auto-
mated message analysis. NEMESYS completes the seg-
mentation of even the largest trace of longest messages
in under one minute, while Netzob requires almost 40
minutes for only the tenth of this amount of messages, as
can be seen regarding DHCP in Table 2.

6.1 Limitations
A general limitation of static traffic analysis is that it
is prevented by encryption of the messages. This can
only be overcome by obtaining a plain-text trace. One
method to accomplish this is memory introspection dur-
ing the runtime of a program before or after encryption
[9]. Therefore, this approach is not a method of static
traffic analysis. Alternatively, a Man-in-the-Middle be-
tween two genuine entities can record the decrypted mes-
sages in transit [11]. Both methods require control over
either the entities’ execution environment or over the net-
work topology.

Due to the nature of our approach, being a heuristic
method, there are some limitations regarding the result

Worst (FMS 0.10): 2126 0100 0001 0000 0000 0000 055f6c646170045f74637011436f6e6669674d616e616765725369746506
5f(continued) 7369746573026463065f6d736463730575736166610264730261660365647500 0021 0001
N

N N

Average (FMS 0.45): d95e 0100 0001 0000 0000 0000 0377777706676f6f676c6502617400 0001 0001N N

Best (FMS 0.71): 51c6 8182 0001 0000 0000 0000 0e666c75677375626d697373696f6e00 0001 0001N

(a) Inferred DNS messages (worst, average, and best case)

Worst (FMS 0.07): d9 00 0a fa 00000000 00010400 00000000 0000000000000000 0000000000000000 0000000000000000
d2(continued) 3d20986645a1ca 67040000 00000000000000000000000000000000N

Average (FMS 0.45): 19 06 0a fa 00001475 00042070 ac110205 d23d36d31b81981b d23d36c386157837 d23d36c36b8ec0f8
d2(continued) 3d3ac397d9e767 62040000 00000000000000000000000000000000

N N N N
N

N
N

Best (FMS 0.67): 1c 05 0a fa 00000c5f 0000236f ac140102 d23d4a7dcbd37634 d23d4c431df9c62a d23d4c430bd37634
d2(continued) 3d4c430bd37634 00000000 ae840d599377b365f479f156b0e84097

N N N

N N N

(b) Inferred NTP messages (worst, average, and best case)

Figure 7: Example segmentations of messages from the specimen traces annotated with the comparison to the dissec-
tor: True fields are separated by SPACEs; inferred fields are in framed boxes. Values are in hexadecimal notation.

FMS I M N S M
at

ch
G

ai
n

Sp
ec

ifi
ci

ty
Pe

na
lty

D
N

S worst 0.10 17 1 4 -9 0.37 0.28
average 0.45 8 2 3 0 0.45 1.00
best 0.71 7 5 1 1 0.72 0.98

D
H

C
P worst 0.20 6 4 2 12 0.31 0.64

average 0.54 21 7 9 2 0.54 0.992
best 0.73 25 13 7 -1 0.73 0.998

N
T

P worst 0.07 4 1 2 8 0.12 0.64
average 0.45 10 2 6 2 0.47 0.97
best 0.67 11 5 4 1 0.68 0.99

Table 3: Quality aspects examples (rounded) from the
evaluation analysis runs of NEMESYS with 10 000 mes-
sages. M is the number of exact matches, N of near
matches. For the sample messages see Figures 7 and 9.

precision. To illustrate what kind of errors account for a
suboptimal inference by NEMESYS, we discuss exam-
ple message segmentations annotated with true fields for
comparison. For each protocol, we present the best, aver-
age, and worst case FMS of an inferred message format
in Figure 7. (Due to the message length, we placed an ab-
breviated depiction of DHCP messages in the Appendix
in Figure 9.)

Besides other quality aspects, Table 3 gives the num-
ber of over- and underspecified field boundaries in col-
umn S. The specificity S = −9 for the message of
DNS with the worst inference result may be read as
NEMESYS having inferred nine fields too much. Fig-
ure 7a shows that this is due to the character sequence
embedded in the message blue . Three fields have not
been inferred due to unset values orange . They con-
tain only zero-bytes with no indication of field bound-

aries in between. This sums up to the nine overspecified
fields. The three near field matches are off-by-one er-
rors due to the heuristic feature (green N). In the aver-
age case of DNS inferences, the character sequence
leads to three fields too much. The same amount of fields
is missing due to unset fields with zero-values . In the
best case, two such fields are not inferred. The near field
match (green N) is due to the heuristic.

Regarding NTP in Figure 7b also shows unset fields
with zero-values causing a bias at the previous and
following field. For all shown NTP messages, the heuris-
tic causes an off-by-one error at several field starts (green
N). Two positions in the average and best cases are mis-
interpreted as boundaries (red N). An example is the last
field of the best NTP match. This is a message authen-
tication code, and as such a pseudo-random value not a
counting number, to which neither Benford’ Law nor any
similar principle applies. Moreover, our method cannot
infer single byte fields, like the four values at the begin-
ning of the NTP messages beige .

While our evaluation shows a good approximation for
areas of potential fields, pinpointing of the exact field
boundaries is challenging with this feature. Despite some
mismatches due to the heuristic approach, our evalua-
tion shows that the inflection points in our feature of Bit
Congruence deltas yields reasonably precise results. Fur-
thermore, by abstracting from concrete binary values to
a heuristic feature, we are able to discover structural pat-
terns which remain hidden when only exact byte value
matches are considered. Bearing in mind that we only
analyze one message at a time, NEMESYS is able to in-
fer message formats with competitive precision and ex-
cellent performance.

7 Future Work

NEMESYS generates message segments from the
change in Bit Congruence between bytes. Besides this
similarity metric, a large number of other metrics ex-
ist [7] that could be evaluated to extract an alternative
binary similarity feature that reveals message structure.
For example, a similarity which weights agreement on
1-bits over agreement on 0-bits may be more suited to
discriminate flag-like fields.

NEMESYS’ message segments are heuristic and
therefore fuzzy in regard to the inferred field boundary.
To pinpoint the exact boundaries, specific characteristics
of the Bit Congruence or value based refinements in the
vicinity of field candidates may be used. Learning char-
acteristics of these features from fields in known proto-
cols could also help to recognize the data type and de-
crease the skitter for non-numeric field types.

For an overall quality value, we used the average FMS
over the messages of a trace in the evaluation. Adding
single messages that contain more inferable structure in-
creases the overall quality score of the larger trace. In-
versely, eliminating the worst-inferred messages effec-
tively increases the quality. This is easy for a known
protocol, for which a FMS can be calculated; for an
unknown protocol it is impossible. Thus, it remains to
be solved how to identify messages that do not exhibit
enough discernible structure for syntax analysis.

As the next step in the protocol reverse engineering
process, the analyzed messages need to be classified into
clusters of equal format. Thus, the resulting field candi-
dates can be combined into field “templates” according
to their similarity in terms of the Bit Congruence or other
features. As described above, these features can be used
to hypothesize about the data type of the field. Com-
bining the templates with their hypothetical field type
renders it possible to utilize a method like ScriptGen’s
region analysis [14] or Discoverer’s type-based align-
ment [8] Such kind of type-based alignment and cluster-
ing can use this information to more efficiently catego-
rize messages without having to align byte-by-byte. To
evaluate methods using data type identification, the FMS
could be enhanced to assess the inference of field data
types.

For use cases like anomaly detection, it may not be re-
quired to exactly know the format but a characterization
of messages to recognize their protocol without knowing
the exact specification. Our method could be adapted not
to segment messages but to characterize them in whole
by Bit Congruence features. Such a characterization
could be applied as fingerprint of allowed protocols with-
out requiring deep packet inspection.

8 Conclusion

In this paper, we present a novel method of format in-
ference for unknown network protocol messages. More-
over, we introduce a measure to quantitatively compare
the quality of format inferences.

NEMESYS segments messages without relying on
identical byte values to determine similarity. The nov-
elty of our approach is that we do not compare multiple
messages to find similarities in byte values, but that we
analyze a single message at a time to discover its intrin-
sic structure. With this method we are able to efficiently
identify the message syntax of binary protocols. The re-
sulting message segments need further interpretation to
determine the exact field boundaries reliably. Neverthe-
less, we achieve results comparable to sequence align-
ment by analyzing only isolated messages. Compared
to the exponential complexity of any pairwise compar-
ison, we reveal structure more efficiently, i. e., scaling
with the message amount and the message sizes in lin-
ear time. Moreover, by abstracting from concrete bi-
nary values to a heuristic feature, we are able to discover
structural patterns, which remain hidden when only exact
value matches are considered.

Not having enough information about a protocol spec-
ification makes guessing the quality of a reverse engi-
neering result a vague task. Evaluating a format infer-
ence method, like Netzob or NEMESYS, using known
protocols allows a quantitative comparison. The Format
Match Score we introduce is the first of its kind to mea-
sure the quality assessment of a method. It takes into ac-
count the specific measurable aspects of the divergence
between inferred and true message formats. Our eval-
uation applies the Format Match Score to NEMESYS,
mutually validating both contributions of this paper.

The specific benefit of the approach of NEMESYS is
that it works without having to analyze arbitrary parts
of all messages in a set of specimens. With further re-
finement, it provides the means to (1) pinpoint the exact
field boundaries from the heuristic candidates it yields,
(2) identify field types through the feature characteristics,
and (3) identify message types from the feature profile.

Notes
1http://netzob.org/
2https://www.wireshark.org/docs/wsug_html_chunked/
AppToolstshark.html

3 NTP and DHCP filtered from http://download.netresec.com/
pcap/smia-2011/; DNS filtered from http://ictf.cs.ucsb.
edu/ictfdata/2010/dumps/ictf2010pcap.tar.gz

4We considered Netzob’s parsing of the already aligned 1 000 DHCP
messages as failed after 100 hours of runtime.

All URLs last accessed on May, 20 2018.

http://netzob.org/
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
http://download.netresec.com/pcap/smia-2011/
http://download.netresec.com/pcap/smia-2011/
http://ictf.cs.ucsb.edu/ictfdata/2010/dumps/ictf2010pcap.tar.gz
http://ictf.cs.ucsb.edu/ictfdata/2010/dumps/ictf2010pcap.tar.gz

References
[1] Marshall A. Beddoe. Network Protocol Analysis using Bioinfor-

matics Algorithms. Tech. rep. McAfee Inc., 2004.

[2] Frank Benford. “The Law of Anomalous Numbers”. In: Pro-
ceedings of the American Philosophical Society 78.4 (1938),
pp. 551–572.

[3] Ignacio Bermudez, Alok Tongaonkar, Marios Iliofotou, Marco
Mellia, and Maurizio M. Munafò. “Towards Automatic Proto-
col Field Inference”. In: Computer Communications 84 (June
2016).

[4] Georges Bossert, Frédéric Guihéry, and Guillaume Hiet. “To-
wards Automated Protocol Reverse Engineering Using Seman-
tic Information”. In: Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security. ASIA
CCS ’14. ACM, 2014.

[5] CAPEC Content Team. CAPEC - CAPEC-192: Protocol Re-
verse Engineering (Version 2.6). June 2014.

[6] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin
Zhijie Chen, Edward XueJun Wu, and Dawn Song. “MACE:
Model-inference-Assisted Concolic Exploration for Protocol
and Vulnerability Discovery.” In: Proceedings of the 20th
USENIX Security Symposium. 2011.

[7] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C. Tappert. “A
Survey of Binary Similarity and Distance Measures”. In: Jour-
nal of Systemics, Cybernetics and Informatics 8.1 (2010).

[8] Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang. “Dis-
coverer: Automatic Protocol Reverse Engineering from Net-
work Traces”. In: Proceedings of 16th USENIX Security Sym-
posium. 2007.

[9] Julien Duchêne, Colas Le Guernic, Eric Alata, Vincent
Nicomette, and Mohamed Kaâniche. “State of the Art of Net-
work Protocol Reverse Engineering Tools”. In: Journal of Com-
puter Virology and Hacking Techniques (Jan. 2017).

[10] Robert C. Edgar. “MUSCLE: Multiple Sequence Alignment
with High Accuracy and High Throughput”. In: Nucleic Acids
Research 32.5 (Mar. 2004).

[11] Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras,
Markus Miettinen, Ahmad-Reza Sadeghi, Matthias Hollick,
and Mauro Conti. “Breaking Fitness Records without Mov-
ing: Reverse Engineering and Spoofing Fitbit”. In: CoRR
abs/1706.09165 (June 2017). arXiv: 1706.09165.

[12] Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi,
Daniel Arp, and Konrad Rieck. “PULSAR: Stateful Black-Box
Fuzzing of Proprietary Network Protocols”. In: 11th Interna-
tional Conference of Security and Privacy in Communication
Networks, Revised Selected Papers. SecureComm. Springer,
2015.

[13] Tammo Krueger, Hugo Gascon, Nicole Krämer, and Konrad
Rieck. “Learning Stateful Models for Network Honeypots”. In:
Proceedings of the 5th ACM Workshop on Security and Artifi-
cial Intelligence. ACM, 2012.

[14] Corrado Leita, Ken Mermoud, and Marc Dacier. “ScriptGen:
An Automated Script Generation Tool for Honeyd”. In: Pro-
ceedings of the 21st Annual Computer Security Applications
Conference. IEEE Computer Society, 2005.

[15] John Narayan, Sandeep K. Shukla, and T. Charles Clancy. “A
Survey of Automatic Protocol Reverse Engineering Tools”. In:
ACM Computing Surveys 48.3 (Dec. 2015).

[16] Jeremy Rauch. Protocol Debug (PDB). Blackhat. Las Vegas,
2006.

[17] Robert R. Sokal and Charles D. Michener. “A Statistical
Method for Evaluating Systematic Relationships”. In: Univer-
sity of Kansas Scientific Bulletin XXXVIII-2.22 (Mar. 1958),
pp. 1409–1438.

[18] Lusheng Wang and Tao Jiang. “On the Complexity of Multi-
ple Sequence Alignment”. In: Journal of Computational Biol-
ogy 1.4 (1994).

[19] Yipeng Wang, Xiao-chun Yun, Muhammad Zubair Shafiq,
Liyan Wang, Alex X. Liu, Zhibin Zhang, Danfeng Yao,
Yongzheng Zhang, and Li Guo. “A Semantics Aware Approach
to Automated Reverse Engineering Unknown Protocols”. In:
Proceedings of the 20th IEEE International Conference on Net-
work Protocols. IEEE Computer Society, 2012.

[20] Gilbert Wondracek, Paolo Milani Comparetti, Christopher
Krügel, and Engin Kirda. “Automatic Network Protocol Anal-
ysis”. In: Proceedings of the Network and Distributed System
Security Symposium. The Internet Society, 2008.

[21] Christian Wressnegger, Ansgar Kellner, and Konrad Rieck.
“ZOE: Content-based Anomaly Detection for Industrial Control
Systems”. In: Proceedings of the 48th Conference on Depend-
able Systems and Networks. 2018.

Appendix

20
0

40
0

60
0

80
0

Al
ig

ne
d

By
te

 P
os

iti
on

0

20
00

40
00

60
00

80
00

10
00

0
dh

cp
_S

M
IA

20
11

10
1X

_d
ed

up
ed

-1
00

00
 |

di
st

an
ce

s-
di

st
rib

ut
io

n_
bc

De
lta

Ga
us

s0
.6

Figure 8: Histogram of inferred field boundaries around
true field boundaries for 10 000 DHCP messages. The
vertical dashed blue lines denote true boundaries; the
bars count in how many messages a boundary was in-
ferred at that byte position.

W
or
st

(F
M
S
0.
20
):

01
01

06
00

0e
e4

3d
20

0a
00

80
00

ac
13

01
06

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
..

.0
0
00

..
.0

0

63
(c
on

ti
nu

ed
)

82
53

63
35

01
08

2b
02

5e
00

ff
N

N

A
ve
ra
ge

(F
M
S
0.
54

):
01

01
06

00
f1

6c
48

52
00

00
00

00
ac

12
03

3c
00

00
00

00
00

00
00

00
00

00
00

00
00

0c
29

a7
48

37
00

00
00

00
00

00
00

00
00

00
00

..
.0

0
00

..
.0

0

63
(c
on

ti
nu

ed
)

82
53

63
35

01
03

3d
07

01
00

0c
29

a7
48

37
0c

06
73

6f
6c

61
72

31
51

0a
00

00
00

73
6f

6c
61

72
31

2e
3c

08
4d

53
46

54
20

35
2e

30

37
(c
on

ti
nu

ed
)

0b
01

0f
03

06
2c

2e
2f

1f
21

f9
2b

ff
00

00
00

00

N
N

N
N

N

N

N

N
N

N

B
es
t
(F
M
S
0.
73
):

02
01

06
00

49
68

00
7c

00
04

80
00

00
00

00
00

c0
a8

00
b2

c0
a8

00
fe

00
00

00
00

00
30

48
68

00
7c

00
00

00
00

00
00

00
00

00
00

31
(c
on

ti
nu

ed
)

39
32

2e
31

36
38

2e
30

2e
32

35
34

00
00

00
00

00
00

00
00

00
00

..
.0

0
2f

62
6f

6f
74

2f
70

78
65

67
72

75
62

00
00

00
00

00
00

00
00

00
00

..
.0

0

63
(c
on

ti
nu

ed
)

82
53

63
35

01
05

36
04

c0
a8

00
fe

33
04

00
00

0e
10

01
04

ff
ff

00
00

03
04

c0
a8

00
fe

1c
04

c0
a8

00
ff

2a
04

c0
a8

00
c8

ff
00

..
.0

0

N

N
N

N
N

N

N

N
N

N

Fi
gu

re
9:

E
xa

m
pl

e
D

H
C

P
m

es
sa

ge
se

gm
en

ta
tio

ns
an

no
ta

te
d

w
ith

th
e

co
m

pa
ri

so
n

to
th

e
di

ss
ec

to
r.

Tr
ue

fie
ld

s
ar

e
se

pa
ra

te
d

by
S

PA
C

E
s;

in
fe

rr
ed

fie
ld

s
ar

e
in

fr
am

ed
bo

xe
s.

V
al

ue
s

ar
e

in
he

xa
de

ci
m

al
no

ta
tio

n.
T

he
co

lo
rc

od
e

of
th

e
m

ar
ks

is
ex

pl
ai

ne
d

in
Se

ct
io

n
6.

1.

Protocol σ
Format Match Score

worst average best

DNS 0.9 0.021 0.362 0.695
0.6 0.103 0.447 0.711

DHCP 0.9 0.115 0.433 0.701
0.6 0.198 0.535 0.733

NTP 0.9 0.094 0.423 0.671
1.2 0.074 0.453 0.672

Table 4: Comparison of the inference quality depending on parameter σ : Format inference results for worst, average,
and best quality of 10 000 messages of each protocol inferred with default σ = 0.9 and the individual optimum for
each protocol trace (see Section 6). The differences of these quality scores are visualized in Figure 10.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fo
rm

at
M

at
ch

Sc
or

e

DNS

σd = 0.9 σo = 0.6

∆worst= 0.08

∆average= 0.09

∆best = 0.02

DHCP

σd = 0.9 σo = 0.6

∆worst= 0.08

∆average= 0.10

∆best= 0.03

NTP

σd = 0.9 σo =1.2

∆worst= -0.02

∆average= 0.03

∆best= 0.00

Figure 10: Comparison of the inference quality depending on parameter σ : the difference ∆ between an inference
with the proposed default of σd = 0.9 for unknown protocols and an inference with the individually optimal σo for
each evaluated protocol trace as presented in Section 6; worst, average, and best refers to the FMS results as listed in
Figure 10.

	Introduction
	Related Work
	Approach
	Similarity Revealing Structure
	Applying the Feature

	NEMESYS Implementation
	Architecture
	Segmentation
	Refinements

	Format Match Score
	Quality Aspects
	Calculating the Format Match Score

	Evaluation
	Limitations

	Future Work
	Conclusion

