Fishy Faces: Crafting Adversarial Images to Poison Face Authentication
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Abstract

Face recognition systems are becoming a prevalent au-
thentication solution on smartphones. This work is the
first to deploy a poisoning attack against an authentica-
tion system based on a state-of-the-art face recognition
technique. The attack is executed against the underly-
ing SVM learning model that classifies face templates
extracted by the FaceNet deep neural network. We
demonstrate how an intelligent attacker can undermine
the reliability of the authentication system through in-
jecting a single intelligently crafted adversarial image to
its training data. The most successful attacks within our
evaluation framework trigger an authentication error of
more than 50%. Our research illustrates the urge to eval-
uate and protect face authentication against adversarial
machine learning.

1 Introduction

The inspiring idea of using face as a biometric trait dates
back to the 1960s. The first successful face recognition
system was designed in the early 90’s [24]. The latest
advances in artificial intelligence made such systems
more resilient to light conditions, face orientation, poor
image quality and other sources of distortion. These im-
provements have recently led to many of the major smart-
phone manufacturers incorporating the most advanced
face recognition techniques as a phone unlock mecha-
nism, e.g. Apple’s Face ID (2017), Samsung Galaxy S8
(2017), OnePlus 5T (2017), LG G6 (2017) and others.
As a result, face recognition is swiftly becoming a new
smartphone security standard.

When a technique is considered for security purposes,
it has to be thoroughly assessed in an adversarial setting.
Since face as a biometric has gained enormous popular-
ity, a lot of effort has been dedicated to development of
anti-spoofing techniques [6, 14, 17]. However, spoofing
is not the only attack vector in the landscape of attack
possibilities. Machine learning (ML) algorithms driving
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these face recognition systems can themselves become
an easy target. Adversarial ML research reveals how
intelligent attackers can exploit vulnerabilities of the
learning algorithms by carefully crafting malicious data
samples [8, 22, 11, 15, 3, 2]. As a result, the security
of the whole system relying on the ML model is com-
promised. The lack of universal adaptive defense mech-
anisms makes Adversarial ML an alarming challenge.
Moreover, due to the complexity and unpredictable na-
ture of such attacks, it is hard to assess upfront the effect
that adversarial inputs will have on a particular system.
All this underlines the urge of evaluating modern face
recognition systems against Adversarial ML.

In this work, we evaluate the security of a state-of-
the-art face recognition system in the presence of an
intelligent adversary who aims to deny service to au-
thentic users or let impostors bypass the system. More
specifically, we perform a poisoning attack on an au-
thenticator based on the open-source face recognition
framework OpenFace [1] extended with a Support Vector
Machine (SVM) classifier. OpenFace implements the
FaceNet [19] deep neural network (DNN) that extracts
identifying features from faces. These feature vectors,
also called templates, can be classified using classical
ML algorithms, such as SVMs. The poisoning attack
requires some control over the training set of the classi-
fier, as it implies a possibility for the attacker to inject
a crafted malicious data point to the training data. Most
face unlock systems on mobile phones will periodically
retrain their authenticators on new images of the authen-
tic user in order to adapt to changes in their appearance’.
This continuous learning process gives an opportunity
for the attacker to add adversarial images to the training
set and poison the system.

As a result, we present the first execution of a poison-
ing attack in the area of face recognition. We explore
the practical feasibility of applying a poisoning attack

!For instance, Apple’s Face ID and Sensory’s AppLock both feature
automatic adaptation to changes in the user’s appearance.
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Figure 1: Workflow of the OpenFace-based face authentication system.

algorithm against the SVM-extended OpenFace authen-
tication system. In the first stage of the attack, we acquire
the best possible attack point from the face templates that
has the power to undermine the SVM predictions. In the
second stage, we explore how to adapt the original image
so that its feature vector is similar to that of the found
best possible attack point. Our research demonstrates
effectiveness of this attack against the state-of-the-art
face authentication system. In our experiments, we are
able to achieve a 50% classification error. Our key
contributions are therefore as follows:

e We are the first to explore face authentication in
an adversarial setting where an attacker can control
some of the user’s training data.

We introduce a novel strategy called reverse map-
ping for adapting images in a way that allows the
attacker to compose the desired face templates.

We empirically evaluate the effectiveness of our
attack under varying system parameters, and show
how a single malicious data point injection can
fully violate integrity and render the authentication
system ultimately useless.

2 Authentication System Design

This section presents an overview and underlying theo-
retical concepts of the face authentication system con-
sidered in our study. Its overall structure and high-
level workflow are depicted in Figure 1. Our authen-
ticator is based on the state-of-the-art face recognition
system: an OpenFace feature extractor that finds most
meaningful facial characteristics in input images needed
for authenticating the user. The second component of the
authenticator is a linear one-class SVM classifier, which
learns the facial pattern of the identity. The classifier
analyzes the feature values extracted by OpenFace, and
if they comply with the known pattern, it may conclude
that the face on the image belongs to a known user. As
a result, the authenticator verifies the identity of the user
based on the input image.

This structure resembles an existing authentication
framework called IDNet [5], a gait-based recognition
system for smartphones that similarly combines DNN-

extracted features with a one-class SVM classifier and is
trained only on the target user’s data.

Further we outline the working principles of the whole
face authentication system.

2.1 Feature Extraction with OpenFace

Here we elaborate on the algorithmic and architectural
aspects of the OpenFace [1] feature extractor placed at
core of the target facial recognition system considered in
our study. When applied to a raw input image, OpenFace
performs a multistage process to obtain a meaningful
representation of the image. This abstract representation
has a form of a multidimensional feature vector that
encapsulates the most distinctive facial characteristics
of the input image strongly correlated with the user’s
identity. The resulting representation can thereafter be
used for authenticating the user with a classifier.

The OpenFace workflow overview is depicted in Fig-
ure 1 on the left side, highlighting the following major
steps of the face recognition process performed on a
single input image [1]:

1. Face detection by using pre-trained models from
the dlib [10] or OpenCV [4] open-source computer
vision libraries.

Image preprocessing that transforms the detected
face to a format acceptable by the neural network.
Transformation is performed through dlib’s real-
time pose estimation with OpenCV’s 2D affine
transformation. As a result of this step, eyes, nose
and mouth appear in a specific location that is fixed
across every image. The affine transformation re-
sizes and crops the aligned image to 96 x 96 pixels.
. Feature extraction through a pre-trained convolu-

tional neural network (CNN). The CNN creates a

128-dimensional template of the face image which

serves as a generic representation of the face. This

CNN-based feature extraction process exploits sim-

ilarity between samples that belong to the same per-
son by computing the Euclidean distance between
their features. Consequentially, a larger distance
between two face templates means that the faces are
likely not of the same person.

The deep neural network component is the core of



the OpenFace framework. It learns a mapping function
from a face image to a low-dimensional feature vector
that characterizes a person’s face in a way that is most
meaningful for authentication. The framework uses the
FaceNet CNN model [19]. This network has a deep
multi-layered structure and is pre-trained with thousands
of labeled input images through backpropagation. The
loss function that the FaceNet model optimizes during
training is a Triplet Loss function that minimizes the
distance between all face images of the same identity
and at the same time maximizes the distance between
face images from different identities. This enables the
network to find such a template from the image to the fea-
ture space that not only maps faces of the same identity
onto a single point in the feature space, but also enforces
discriminability to other identities. The source of the
FaceNet’s feature extraction power is manifold, and we
refer the reader to their technical report [19] for the in-
depth description of the neural network architecture and
training algorithm.

2.2 Linear One-class SVM Classifier

The final step of the face authentication system, shown
most right in Figure 1, is classification of the image
representations retrieved by the feature extractor. De-
pending on the authentication problem, this may be a
multinomial, binary or one-class classification, in case of
multiple known identities, two identities or one known
user respectively. In our study, we are considering an
authentication system deployed on a personal device,
which means that the system will only authenticate one
identity, that is, the owner of the device. Every image
that does not belong to this identity should be denied by
the system as authentication material.

The corresponding classification algorithm that under-
pins the authentication process for a specific identity is a
one-class SVM. The basic SVM paradigm is developed
for supervised binary classification on high-dimensional
data and therefore suggests training the classifier on both
positive and negative examples. However, in case of
our authentication system, it is more meaningful to train
the classifier only on one person’s images in order to
learn a facial pattern of one target identity. Training
the SVM authenticator with only one person’s images
implies using solely positive examples for training. One-
class SVM is an extension of the SVM methodology
which handles training using only positive information,
i.e. samples of only that one class that the model is aim-
ing to learn. Such learning model is also more practical
for an authenticator, as it does not require training images
that belong to other identities who should be denied
by the system. Even though neural networks are also
fit for one-class classification, SVMs are generally less

computationally intensive.

One-class SVM was first suggested by Scholkopf et
al. [18]. The problem that one-class SVM classifier
solves is as follows: given a dataset with a probability
distribution P in the feature space, find a subset S of
the feature space such that the probability of a test point
from P lying outside S is less than or equal to some a
priori specified bounding value v € {0,1}. The problem
is solved by learning a decision function f that is positive
on S and negative on the complement set S:

o={ )

In the context of our authentication system, let
X1,X2,...,X, be multidimensional real feature vectors de-
rived from training images of the user that belong to
one class X which is a compact subset of RY. The
linear SVM first maps these vectors into a feature space
H by applying a linear kernel transformation function:
® : X — H. After transforming the training data of the
user to another space, the SVM separates the mapped
vectors from the origin by maximizing the distance or
margin in between. As a result, the origin of the feature
space becomes a single, artificial member of the negative
class, which is separated from the positive samples by
a learned separation hyperplane (the decision function).
According to Scholkopf et al.’s definition [18], in order to
find the hyperplane that maximizes the margin between
the positive data points and the origin, the following
problem needs to be solved:
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If such w and p exist that solve the problem, then the
resulting function is learned:

f(x) = sign((w-@(x)) —p)

This decision function will be positive for most training
points x;, namely, for approximately v -/ of them, as v
denotes an upper-bound to the fraction of training errors
(as well as a lower-bound to the fraction of training
samples that become support vectors of the model).

The SVM learning algorithm optimizes the hinge loss
function that maximizes the margin. For a test point x
with a real label r = 41 and an output SVM prediction
y = f(x), the hinge loss function is computed as L(y) =
max(0,1 —1-y). As a result, L(y) equals O for correct
predictions (when ¢ and y have the same sign), while
incorrect predictions return linearly increasing losses
with the increase of y.

The bounding v-value is a high-impact hyperparame-
ter of the SVM model, as in the end it defines how likely



the model is to classify a test point x; € X as a positive
one and a test point y; ¢ X as a negative one. Basically,
this parameter reflects a trade-off between the usability
and security of the system: a small v-value would
enforce a more strict acceptance criteria by the authen-
tication system, while a bigger v-value would make the
system more flexible. As a result, lower values will cause
a higher false positive rate (FPR) of the authenticator,
whereas higher values will increase the false negative
rate (FNR). Another influential hyperparameter is n, the
number of training instances. The bigger the n-value, the
more training images are used to train the authenticator,
which makes it more likely that the training set is truly
representative of the user’s facial features. However,
demanding more images to train the system makes it
slower and less practical in use. Therefore, the v and n
values are design choices which affect the usability and
security of the authenticator.

3 Threat Model

Our work considers a threat model based on a theoretical
model of an attacker formalized by Biggio et al. [2] in the
context of adversarial pattern recognition. It requires to
make certain assumptions regarding the attacker’s goal,
knowledge and capabilities.

Goal Potential attacks against ML algorithms aim at
violation of integrity, availability or confidentiality of
the ML-based system. This work focuses on violation
of the integrity and availability of a target system being
the face authenticator. The integrity is breached when an
attacker can successfully impersonate a specific identity.
Such attack’s objective is to significantly increase the
amount of false positives (FP): the number of impostors
with forged authentication material that are accepted by
the system. Availability is violated when an authentic
user is no longer able to access the system (analogous
to the denial-of-service). The objective then becomes
to increase the amount of false negatives (FN). The
goal of our developed attack methodology, presented in
Section 4, is to achieve a significant accuracy drop of
the system predictions which will result in high FP and
FN rates and basically undermine the reliability of the
authenticator. In order to do so, the adversary has to
possess sufficient knowledge about the target system and
certain skills.

Knowledge For a thorough security evaluation of ML-
based authentication systems, it is essential to consider a
perfectly knowledgeable attacker. That allows to avoid
security by obscurity and sets the focus on security
by design, a much more desirable approach to secure

authentication that anticipates malicious practices. The
attacker therefore knows the following aspects of the
target system:

1. The feature extraction algorithm: he knows how the
OpenFace framework works. He is able to perform
the exact preprocessing and feature extraction steps
just like implemented in the authenticator itself.

2. The decision algorithm and its hyperparameters,
i.e. the attacker knows that a one-class SVM learn-
ing model is used for classification, and its corre-
sponding hyperparameter V.

3. The training data used to learn the decision func-
tion. He knows what images were used to train the
one-class SVM.

Capabilities A poisoning attack can only be deployed
by a very capable attacker, that is an attacker who can
modify training data. More specifically, we assume an
attacker who can add a single image to the training
data. In order for the injected malicious image to poi-
son the model, a retraining of the SVM model has to
be performed. The attacker should not necessarily be
able to force the retraining on the malicious data point.
However, because most authenticators follow a contin-
uous updating strategy to evolve along with the user’s
biometric changes, it appears realistic for an adversary
to rely on the periodic retraining. Therefore, we assume
that the adversary may inject a poisoning training sample
and await the retraining to take place.

4 Face Poisoning

This section describes the attack methodology developed
in our study. After providing the high-level algorithm
for the attack, we dive into technical details of the most
important stages: 1) the search for the attack point that
allows to achieve the attack goal when it is added to
the templates used for training; 2) the reverse feature
mapping strategy that converts the desired attack point
to the image of a face, such that it can be added to the
training data.

4.1 Attack Methodology

Here we outline the attack methodology step-by-step:

1. Obtain the images used for training, D,.. These
are pictures of the victim. Furthermore, the at-
tacker must acquire validation data, D,,. This
data consists of other images of the victim and
images of other identities, i.e. the attacker identities
(e.g. obtained through social media).

2. Calculate the face templates using OpenFace.
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Figure 2: From left to right: the original picture and heatmaps for features 1, 2 and 3 respectively. The heatmap
represents the change in the feature caused by applying a constant addition to a specific pixel in the image.

3. Find the best attack point x. by using the SGA
algorithm described in Section 4.2.

4. Find a face image img, corresponding to x,.

. Add the image to the training data D;, <— D, Uimg,.

6. Await the retraining of the classifier on D,

91

4.2 Adversarial SVM

We apply the poisoning attack against SVMs formalized
by Biggio et al. [3]. The attacker model corresponds to
the one outlined in Section 3. The objective of the attack
is to find a point that, when added to the training set,
maximizes the decrease in classification accuracy. This
is achieved by maximizing the SVM hinge loss function,
defined in Section 2.2. The search space is a non-convex
objective function. Hence, a stochastic gradient ascent
(SGA) technique is used to iteratively search for a local
maxima.

Compared to the original algorithm described by Big-
gio et al. [3], we had to add an L2 normalization step.
This is to ensure that the acquired attack point is within
the hypersphere of possible feature vectors.

Algorithm 1 Poisoning attack against SVM

Input: D,,: training data; D,,: validation data; xf.o ):
intial attack point; ¢: step size, L: the function to
maximize.

Output: x.: the final attack point

. p+0

2: while L(:") — L") ™1) > e do

3 train the SVM on D, U {xE.p )}
compute % on D, (see [3] for further details)
set u to a unit vector aligned with %
xE-p) — xf-pil) +tu
xE-p ) normalizers (xE-p ))
p+—p+1

return x. — x”)

® > ok

The search procedure is described in Algorithm 1. In
each iteration, the attack point xﬁk ) will be optimized

by stepping in the direction of the gradient of the loss

function L. This gradient can be calculated from the
validation data D, (for more information on how to
compute the gradient, we refer the reader to the original
paper [3]). The procedure is repeated until a local optima
is achieved.

Two influential parameters of the algorithm need to be
chosen by the attacker: 1) the initial attack point xgo) ,and
2) the step size ¢.

Initial attack point We select 15 random elements
x; from one of the other identities in D,,; and remove
them from the validation data. For each x;, we search
for the local optimum they converge to. The optimum
that maximizes the hinge loss function is selected as a
final attack point. The number of initial attack points
considered depends on the amount of effort the attacker
wants to invest in the search for the best attack point.

Step size The step size ¢ determines the convergence
rate: if ¢ is small, convergence to a local maxima will be
slow. However, choosing a larger ¢+ might lead to a poor
local maxima.

4.3 Reverse Mapping Strategy

Once an attack point has been found by the SGA tech-
nique described in Section 4.2, an image with a template
approximating this point has to be forged. Here, we
outline a novel black-box technique to acquire a specific
feature vector from OpenFace.

The attacker considers OpenFace as a black-box and
can query the framework in any way desired. The
reverse mapping algorithm he follows is inspired by an
observation that some regions in the original image affect
a specific feature in the image template. This effect
is illustrated in Figure 2. The figure is achieved by
adding a constant value to one out of the 96 x 96 pixels
of the preprocessed image and observing the resulting
modifications of the feature vector. The heatmaps for the
first three features show which pixels lead to the biggest
modifications. Interestingly enough, most important
regions on the faces, e.g. mouth, eyes and nose, become
outlined and can be clearly observed.
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Figure 3: Non-overlapping sliding window.

The objective of reverse mapping is to craft an image
whose feature vector is as close to the ideal attack point
as possible. The chosen distance metric is the mean
squared error (MSE). We iteratively apply random per-
turbations to certain regions of the image. These regions
are accessed through a non-overlapping sliding window,
as shown in Figure 3. In these regions of dimension / x /
the following equation holds: 96 mod / = 0. The number
of possible regions is then Nyegions = N? = (%)2. Every
region is indexed by m,n € [0 : N —1]. It consists of
the pixels with column index i € [m*!:m=[— 1] and
row index j € [nx[:nxIl—1]. In each iteration, we
apply a random perturbation p;, with dimensions / x [ to
each of the RGB channels in the sliding window. The
perturbation is bounded by a parameter h. The exact
procedure is described in Algorithm 2.

Algorithm 2 Reverse mapping function
Input: img;,;: initial image, the starting point; X,p;:
objective feature vector; /: window size; iter the
number ofiterations; frg(.): function that extracts
the features; h: upper-bound of perturbation
Qutput: img;: final adapted image
1: k=0

2 xg 4 frE(imginir)

3 imgy +— iMginir

4: d < mse(Xopj — Xinir)

5: N= (%)

6: while k < iter do

7: offseti=k modN

8: offset; =k//N mod N

9: imgl < imgy,

10: img2 < imgy

11: foric [of fset;:of fset; +1—1] do
12: for j € [of fsetj:of fsetj+1—1] do
13: r < random number € [0 : A]
14: imgl; j < img; j+r

15: img2; j < img; j—r

16: dl < mse(x,bj— fre(imgl))
17: d2 + mse(x,bj— fre(img2))
18 d < min(d,d1,d2)

19: imgy, < ming (imgy,imgl,img2)
20: k<—k+1
return imgy

As a result, the reverse mapping function has four
parameters: the window size [, the perturbation upper-
bound 4, the amount of iterations iter and the initial
image that will be adapted. As an initial image, we
choose a random image of the victim in the validation set
(other options include crafting an image from scratch or
selecting an image that is the closest to the attack point).
The motivation behind our choice is the following: if a
human does a sanity check on the training images, the
adapted image will be harder to spot, as it is a valid
picture of the victim.

The window size impacts both the visibility of the
modification and the minimization of the distance. As-
sociating a large window size with a high & value leads
to less accurate results. On the other hand, selecting a
small window size results in slower convergence rates
or high h values. High & values lead to very visible
modifications. We tuned these parameters experimen-
tally. We allowed for a total of 270 iterations, where
the algorithm is consecutively executed with the follow-
ing parameters (h,/,iter): (16,8,18), (8,12,36), (4,16,72),
(2,20,144). The output image obtained with the first set
of parameters serves as the input image for the procedure
with the second set of parameters. The output image of
the second execution is the input image for the third one,
and so on, until the algorithm is executed four times.

Next, we demonstrate the convergence of the reverse
mapping algorithm. To this end, we execute the algo-
rithm in the setting described above. Figure 4 shows
the initial image and the resulting images after each suc-
cessive execution. A more patient attacker may achieve
less visible modifications by tuning the parameters of the
mapping procedure further.

Figure 5 shows the convergence of the initial image
to an image with a feature vector that is close to the
final attack point. For reference, we show how the SGA
technique finds a final attack point by iteratively adapting
the initial one. After each iteration of the SGA algorithm,
we calculate the distance between the current attack point
and the initial one and observe its gradual decrease.

5 Evaluation

In this section, we perform evaluation of our attack
methodology against an authentication system. First,
we describe the dataset of images that was used for
evaluation. Then, we introduce the experimental proto-
col. Lastly, the experimental results are presented and
discussed.

5.1 Dataset

For an in-depth evaluation, we require a database that
offers a high quantity of identities and samples per
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Figure 4: The evaluation of a face image through the reverse mapping procedure. (a) The raw image. (b) The
preprocessed image. (c) From left to right, the results after consecutively applying Algorithm 2 with a decreasing

window size / and an increasing perturbation upper-bound 4.
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Figure 5: The distance (mean square error) between (a) the initial attack point and the final attack point after each
iteration of Algorithm 1, and (b) between the initial image and final image after each iteration of Algorithm 2.

identity. The Facescrub dataset [13] offers 562 celebrity
identities with about 200 images per person in a variety
of conditions. We randomly selected 45 identities, with
110 images per person, resulting in approximately 5000
images overall. The OpenFace preprocessing library is
used to obtain aligned 96 x 96 pixels images. Each pixel
is characterized by an RGB value. Thus, a preprocessed
image is a 96 x 96 x 3 tensor, where the values are
integers within the interval [0 : 255].

5.2 Experimental Protocol

Here we present the empirical evaluation of the poison-
ing attack. Namely, we outline the experimental strategy
and define the metrics used to evaluate our work.

Data splits The attack, as described in Section 4.2,
requires a training set D, and a validation set D,,;. Since
the attack point is fitted by evaluating the gradient of the
hinge loss function on the validation set, a third set is
required to assess the performance: the test set Dyqg.

The training set consists of images belonging to only
one identity, i.e. the target user. In a real world system,
these images are acquired by the system designer. The
validation set is acquired by the attacker. This set
consists of images belonging to the attacked identity and
other attacking identities. The test set consists of the
same identities as the validation set. The resulting three
data sets have to be disjunct.

For the attack evaluation, we randomly selected 9
attacking identities and one victim identity. We repeat
every experiment ten times on chosen identities. At
each run, the images in the three datasets are selected
randomly. In other words, we perform 10-fold cross val-
idation with random sample selection. In order to further
generalize the obtained results and attack performance,
we repeat this procedure five times where the 9 attacking
identities are reselected.

Metrics The strength of an authenticator is often de-
scribed by two parameters: the false negative rate (FNR)
and the false positive rate (FPR). The FNR can also
be expressed as a function of the true positive rater
(TPR): FNR =1—TPR. These parameters and their
implications on the system are discussed in Section 2.2
Another interesting parameter is the classification er-
ror CE, as it will provide the rate of falsely classified
images to the total amount of test images. CE is also the
counterpart of the classification accuracy ACC:

_ FP+FN B
 TP+TN+FP+FN

CE 1-ACC (1)

5.3 Experimental Results

We deployed the attack on authentication models trained
with different SVM hyperparameters, being the upper-
bound v-value and the size of training data. As we
discuss in Section 2.2, these parameters are chosen by
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Figure 6: The ROC curve of (a) the worst performing attack point, (b) an attack point with average performance and
(c) the best performing attack point. The FPR and FNR are evaluated over the validation and test set at different
moments: before the attack; at the deployment of the attack with a random point (i.e. without performing the SGA
procedure), and after deployment of the full attack methodology.
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Figure 7: The mean classification error after deploying the attack against models trained with (a) a varying size of the
training set and a fixed v = 0.1, and for models trained with (b) a varying v and 50 training samples.

the system designer and tuned to achieve the best perfor-
mance of the authenticator. With this in mind, we found
v =0.1 and a training size of 50 samples to be reasonable
design choices.

First we demonstrate the effectiveness of the attack
on particular attack scenarios. To that end, we selected
the worst case scenario, an average result, and the best
case scenario.Figure 6 shows the ROC curve of the face
authenticator calculated over the validation and test sets
at different moments: before the attack; when the attack
would be executed by selecting a random image (that
is, without executing the SGA procedure, thus with a
randomly selected initial attack point); and after the
full attack has been deployed. The ROC curve shows
spectacular decreases of the authentication system per-
formance in the best case scenario. The decrease in
performance in an average case appears to be significant.
However, we observe that in case of a poor choice of
an initial attack point, the decrease in performance can
be rather negligible. In general, a badly chosen initial
attack point converges to a poor local optimum. When
this occurs, the attacker can further explore the hinge
loss space by selecting new initial attack points until he
succeeds.

Next, we investigate the impact that the initial authen-
tication model parameterization has on its vulnerability
or resilience to poisoning attacks. Namely, we study
the effect of varying the training size for a fixed v-
value and vice-versa. In Figure 7, we observe that
increasing the training size or increasing Vv negatively
affects the effectiveness of the attack. Increasing these
parameters basically makes the classifier more sensitive
to small changes in the inputs. However, larger v
affects the usability of the system for it makes it less
flexible. Moreover, significantly increasing the size of
the training set is simply impractical for it complicates
the enrollment phase of the user to the authentication
system. These limits on the system design strengthen
the potential impact of the poisoning attacks.

We evaluate the attack on different training sets of
varied size and different values for v (a summary of the
results can be found in Appendix A). We vary v from
0.05 to 0.2 with steps of 0.05. The training size is varied
from 30 to 90 samples with steps of 20. The attack
shows to be the most successful when the SVM is trained
with 30 samples and v is set to 0.05: an impressive
mean CE of 40.11% £ 6.78% is achieved. This is an
increase in mean authentication error of almost 37% over
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Figure 8: The ROC curve of the best performing attack
point when the one-class SVM is trained with v = 0.05
and 30 training samples. The FPR and FNR are evaluated
over the validation and test sets at different moments:
before the attack; at the deployment of the attack with a
random point (i.e. without the SGA procedure), and after
deployment of the full attack methodology.

the original system, while the mean FPR increase is over
40%. The most successful attack deployment leads to a
classification error on the test set of 51.23%, making the
face authentication system entirely useless.

The effectiveness of the attack is illustrated by Fig-
ure 8. It shows the ROC curve of the authentication
system at different stages during the attack methodol-
ogy in contrast with the authentication system before
it was attacked. Note that the ROC curve after full
attack deployment is below the first diagonal. Another
interesting observation is that by increasing v, increasing
the FPR/FNR ratio becomes more difficult, whereas with
a low v the amount of false positives is predominant. In
case of higher values of v, false negatives become easier
to obtain. This is not entirely surprising, since increasing
v allows the system designer to tune the system in favor
of integrity at the cost of usability.

6 Discussion

This section reviews the implications of our research,
main assumptions and directions for future work.

Our study adapts the poisoning attack developed by
Biggio et al. [2] to the security-sensitive area of face
authentication systems. To do so, we model an au-
thenticator as a one-class SVM which is targeted by an
intelligent and resourceful adversary. The experiments
demonstrate a good feasibility of obtaining a highly
effective attack point by exploring a limited portion of
the validation space.

During the attack point computation, we consider
batches of 10 identities instead of a specific attacking

identity. As a result, rather than granting access to a
single adversarial identity, we are increasing the clas-
sification error over the whole batch of identities. An
adversary could exploit this attack to retrieve a smaller
set of identities which is better suited to maximize the
classification error. Then, the attack can be re-applied
on smaller batches to find the best attacking identity. An
extension of this work would consider a larger number
of samples for each identity and a bigger validation set:
e.g. given a validation set composed by the attacked
identity, one could evaluate the effectiveness of the attack
in terms of the FNR maximization.

We focus on injecting a single attack point into the
training set, which is, as our research shows, an effective
strategy. However, with the growth of the training set, the
effectiveness of the attack reduces. One could consider
poisoning bigger training sets by adopting the multi-
point attack strategy, as proposed by Biggio et. al. [2].
This approach should allow to identify the best subset of
attack points from the validation set.

We propose a novel reverse-mapping technique to
minimize the distance between two templates by mod-
ifying an initial image. Previous research has focused
on crafting adversarial samples exploiting the CNN im-
plementation details [9]. Here, we relax the adversarial
model by assuming that the attacker is able to exploit the
CNN as a black-box, that is without having access to its
details. The evaluation of this technique demonstrates
that an attacker can craft a real-world sample which ap-
proximates the objective with a high enough accuracy for
a successful attack deployment. Future directions may
include the application of the reverse-mapping technique
or its possible optimized versions in evasion scenarios.

Our threat model inherits two unrealistic assumptions
from the prior work. The strongest assumption re-
gards the possibility for the attacker to inject an image
into the system that will be used to retrain the model.
Such assumption is intrinsic to the poisoning scenario,
therefore the authentication system is only vulnerable if
it satisfies the conditions under which the assumption
holds. For instance, an adversary could target an adaptive
authentication system which retrains on the images that
have passed through the authentication check. In this
case, a malicious sample can only be injected into the
system by first being accepted by the classifier as a valid
test instance. This would impose strict constraints on
the adversarial samples, calling for a more cautious ap-
proach, perhaps through a continuously adapted injection
strategy.

The second assumption of this paper regards the ad-
versary’s knowledge of training faces of the attacked
identity. This assumption can be relaxed by leverag-
ing the Transferability in ML paradigm which allows
to train an alternate model on data sampled from the



underlying distribution, craft malicious samples against
it and transfer them to the actual target model. With this
technique, the attacker might not require full information
about the classifier at the core of the target authentication
system, or might even treat it as a black-box. As previous
research suggests, such approach is applicable to SVM
classifiers and demonstrates similar performance [16].
The feasibility of using transferability for poisoning au-
thentication systems can be assessed by using a substi-
tute One-Class SVM classifier trained on images of the
victim which do not overlap with the actual training set,
but are separately acquired by an adversary. Currently,
the Adversarial ML research is focusing on generalized
transferability of evasion and targeted poisoning attacks,
which should allow to weaken the attacker model [23].

The effectiveness of the attack is shown to be highly
correlated to the SVM hyperparameter tuning. This
underlies the importance of taking into account security
when training models in sensitive contexts. For instance,
a careful system designer would proactively defend the
authenticator by considering higher v values for smaller
training set sizes. This concern is likely to arise in the
earliest deployment stages of an authenticator, when only
few user images are available to the system.

7 Related Work

Machine learning algorithms are more and more de-
ployed to tackle a variety of problems. However, as their
adaptation grows, the impact of unexpected side effects
increases, giving rise to the emerging Adversarial ML
area. Naturally, such a security-sensitive and ML heavy
application as face recognition has drawn efforts of the
Adversarial ML researchers, resulting in a number of
evasion attacks. Sharif et. al. [20] present physically
realizable white-box attacks against face recognition that
allow to evade recognition or impersonate another in-
dividual through altering the test inputs. Other attacks
by Sharif et. al. [21] build on Generative Adversarial
Networks [7] which are specifically trained to generate
adversarial samples for evasion. These works, even
though successful, do not touch upon poisoning attacks:
the authors consider an attacker who gains access to
the system only after it had been trained, and therefore
cannot inject samples or alter training data. Moreover,
the related work does not extend face recognition to the
more complex task of face authentication.

As one of the first prominent examples of poisoning
attacks against SVM, one may consider the study by
Xiao and Eckert [25]. The authors introduce the label flip
attack (that later has been extended by Biggio et al. [3]),
where they consider theoretical poisoning attacks against
SVM. It is this attack that we execute in practice against
a face authenticator.

Another poisoning attack targeting face templates has
been developed by Biggio et al. [2]. The difference
with our work is that they perform classification through
distance metrics, thus not applying a learning function.
Furthermore, their attack is considered only for PCA
based face-verification, whereas modern face templates
are powered by deep neural networks, which pose new
challenges for adversaries. Our research bridges this gap
by considering a modern authentication system design
based on both a deep neural network and an SVM model.

The biometrics community has been mainly occupied
with investigating which privacy sensitive information
can be extracted from biometric templates [12]. Other
work focused on ensuring that biometric data is not being
spoofed and satisfies the liveliness check [6, 14, 17].
These authentication system aspects are not considered
in our work, for we advocate a system design that can
solely withstand the threat of poisoning attacks instead
of merely relying on a secure entry point for the data.

8 Conclusion

We showed that poisoning attacks pose a threat against
modern face authentication systems. By injecting an
adversarial sample in the training set, we were able
to fully violate the integrity of the system. The most
successful execution of the attack led to an authentication
error of over 50%, rendering the face authentication sys-
tem entirely useless. Additionally, we proposed a novel
black-box strategy to construct an adversarial image that
approximates a desired attack point in the feature space.

Our practical security evaluation showed the impact
of design parameters on the resilience of the underlying
machine learning model against poisoning attacks. This
illustrates that the system designer has to consider both
usability and security in adversarial settings.

We believe that adversarial machine learning endan-
gers current authentication techniques, and we advocate
thorough security evaluation and proactive defensive
measures for future authentication systems.
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A  Summary of the empirical results for
varying one-class SVM parameters
Table 1: The mean false positive rate and standard

deviation for varying parameters: v and training set car-
dinality. The evaluation is performed over the validation
set following the experimental protocol as defined in
Section 5.2. The classification error is evaluated three
times: before attack point injection, when injecting the
image corresponding to the initial attack point, after
performing the full attack.

nu size initial FPR injection FPR attack FPR
005 30 0.71+0.86 7.52+1.56 43.62 £7.71
0.05 50 1.71 £1.09 7.12%1.29 37.16 £4.24
0.05 70 1.89+0.85 5.97+3.16 25.70 +£4.23
005 90 1.64+0.85 4.06£1.24 16.17 £2.05
0.1 30 0354038 2.60+0.94 22.91 +4.87
0.1 50 043+044 1.47+051 8.70 £2.72
01 70 0.62+052 1.27£0.68 4.60 £1.34
0.1 90 0.68+0.38 0.86+0.47 3.17 £0.96
0.15 30 0514063 1.65=+1.11 8.84 +4.11
0.15 50 0324031 0.66 +0.40 2.35£1.52
0.15 70 0.28+0.30 0.57 £0.38 1.77 £0.85
0.15 90 029 +0.19 0.45+0.25 1.16 £0.72
02 30 0.1540.19 0.49 £0.35 2.34 £2.84
02 50 0144028 0.31+0.37 0.76 £1.17
02 70 0.1440.18 0.30 £0.24 0.50 £0.80
02 9 0174020 0.28 £0.29 0.45 £0.57




Table 2: The mean classification error and standard
deviation for varying parameters: v and training set car-
dinality. The evaluation is performed over the validation
set following the experimental protocol as defined in
Section 5.2. The classification error is evaluated three
times: before attack point injection, when injecting the
image corresponding to the initial attack point, after
performing the full attack.

Table 3: The mean classification error and standard
deviation for varying parameters: Vv and training set
cardinality. The evaluation is performed over the fest
set following the experimental protocol as defined in
Section 5.2. The classification error is evaluated three
times: before attack point injection, when injecting the
image corresponding to the initial attack point, after
performing the full attack.

nu size initial injection attack nu size initial injection attack

0.05 30 346+044 8.86£1.59 41.04+6.45 0.05 30 3.33£0.11 8.28+1.35 40.11 £6.78
0.05 50 2.84+£0.68 7.63£1.09 35.07+£3.79 0.05 50 2.934£0.63 7.204+1.18 34.67 £3.64
0.05 70  2.65+£0.57 6.31+2.81 24.69+3.82 0.05 70  2.52£0.68 6.38+2.70 24.19 £3.57
005 9 216=£0.65 439+£1.11 1582+1.97 0.05 90 2.18£043 433 +1.11 1546 +£1.57
0.1 30 3.09+£0.17 4.67+0.88 23.22+3.89 0.1 30 3334026 4.85+0.86 2241 +4.15
0.1 50 229+£020 291+£039 9.76 £2.49 0.1 50 2514£0.19 3.17=£055 991 £2.43
0.1 70 1.89 £0.27 2.44 +£0.59 5.73 £0.91 0.1 70 1.85+0.27 231 +0.55 5.87+£1.18
0.1 90 1.45+0.24 1.58 £0.40 3.89 £0.62 0.1 90 1.41 £0.19 149 +£0.34 3.71 £0.65
0.15 30 3.29+0.34 4.12+0.67 10.94 £3.31 0.15 30 3274027 4.00+0.52 1042 +2.85
0.15 50 2.30+£0.14 2.59£0.27 4.5040.82 0.15 50 238 £0.16 2.61 £0.34 4.38+0.72
0.15 70 1.69 £0.17 1.93 £0.24 3.16 +0.49 0.15 70 1.84 £0.09 2.08 £0.19 3.15 £0.51
0.15 90 1.47 £0.09 1.62 £0.14 2.44 +0.36 0.15 90 1.36 £0.08 1.43 £0.09 2.16 +£0.48
02 30 3.57+£0.16 3.61£0.07 6.42+1.93 0.2 30 3.53+£028 3.6940.16 6.26+1.44
02 50 258+£0.18 2.73+£0.22 3.68+£0.50 02 50 276+0.14 281=+0.13 3.51+£0.39
02 70 1.92 £0.12 2.01 £0.13  2.58 £0.29 02 70  2.194+0.15 221+£0.16 2.67+£0.17
02 90 1.59 £0.10 1.67 £0.13  1.98 £0.27 02 90 1.48 £0.07 1.55+0.12 1.83 £0.17




