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Abstract

Face recognition systems are becoming a prevalent au-

thentication solution on smartphones. This work is the

first to deploy a poisoning attack against an authentica-

tion system based on a state-of-the-art face recognition

technique. The attack is executed against the underly-

ing SVM learning model that classifies face templates

extracted by the FaceNet deep neural network. We

demonstrate how an intelligent attacker can undermine

the reliability of the authentication system through in-

jecting a single intelligently crafted adversarial image to

its training data. The most successful attacks within our

evaluation framework trigger an authentication error of

more than 50%. Our research illustrates the urge to eval-

uate and protect face authentication against adversarial

machine learning.

1 Introduction

The inspiring idea of using face as a biometric trait dates

back to the 1960s. The first successful face recognition

system was designed in the early 90’s [24]. The latest

advances in artificial intelligence made such systems

more resilient to light conditions, face orientation, poor

image quality and other sources of distortion. These im-

provements have recently led to many of the major smart-

phone manufacturers incorporating the most advanced

face recognition techniques as a phone unlock mecha-

nism, e.g. Apple’s Face ID (2017), Samsung Galaxy S8

(2017), OnePlus 5T (2017), LG G6 (2017) and others.

As a result, face recognition is swiftly becoming a new

smartphone security standard.

When a technique is considered for security purposes,

it has to be thoroughly assessed in an adversarial setting.

Since face as a biometric has gained enormous popular-

ity, a lot of effort has been dedicated to development of

anti-spoofing techniques [6, 14, 17]. However, spoofing

is not the only attack vector in the landscape of attack

possibilities. Machine learning (ML) algorithms driving

these face recognition systems can themselves become

an easy target. Adversarial ML research reveals how

intelligent attackers can exploit vulnerabilities of the

learning algorithms by carefully crafting malicious data

samples [8, 22, 11, 15, 3, 2]. As a result, the security

of the whole system relying on the ML model is com-

promised. The lack of universal adaptive defense mech-

anisms makes Adversarial ML an alarming challenge.

Moreover, due to the complexity and unpredictable na-

ture of such attacks, it is hard to assess upfront the effect

that adversarial inputs will have on a particular system.

All this underlines the urge of evaluating modern face

recognition systems against Adversarial ML.

In this work, we evaluate the security of a state-of-

the-art face recognition system in the presence of an

intelligent adversary who aims to deny service to au-

thentic users or let impostors bypass the system. More

specifically, we perform a poisoning attack on an au-

thenticator based on the open-source face recognition

framework OpenFace [1] extended with a Support Vector

Machine (SVM) classifier. OpenFace implements the

FaceNet [19] deep neural network (DNN) that extracts

identifying features from faces. These feature vectors,

also called templates, can be classified using classical

ML algorithms, such as SVMs. The poisoning attack

requires some control over the training set of the classi-

fier, as it implies a possibility for the attacker to inject

a crafted malicious data point to the training data. Most

face unlock systems on mobile phones will periodically

retrain their authenticators on new images of the authen-

tic user in order to adapt to changes in their appearance1.

This continuous learning process gives an opportunity

for the attacker to add adversarial images to the training

set and poison the system.

As a result, we present the first execution of a poison-

ing attack in the area of face recognition. We explore

the practical feasibility of applying a poisoning attack

1For instance, Apple’s Face ID and Sensory’s AppLock both feature

automatic adaptation to changes in the user’s appearance.





the OpenFace framework. It learns a mapping function

from a face image to a low-dimensional feature vector

that characterizes a person’s face in a way that is most

meaningful for authentication. The framework uses the

FaceNet CNN model [19]. This network has a deep

multi-layered structure and is pre-trained with thousands

of labeled input images through backpropagation. The

loss function that the FaceNet model optimizes during

training is a Triplet Loss function that minimizes the

distance between all face images of the same identity

and at the same time maximizes the distance between

face images from different identities. This enables the

network to find such a template from the image to the fea-

ture space that not only maps faces of the same identity

onto a single point in the feature space, but also enforces

discriminability to other identities. The source of the

FaceNet’s feature extraction power is manifold, and we

refer the reader to their technical report [19] for the in-

depth description of the neural network architecture and

training algorithm.

2.2 Linear One-class SVM Classifier

The final step of the face authentication system, shown

most right in Figure 1, is classification of the image

representations retrieved by the feature extractor. De-

pending on the authentication problem, this may be a

multinomial, binary or one-class classification, in case of

multiple known identities, two identities or one known

user respectively. In our study, we are considering an

authentication system deployed on a personal device,

which means that the system will only authenticate one

identity, that is, the owner of the device. Every image

that does not belong to this identity should be denied by

the system as authentication material.

The corresponding classification algorithm that under-

pins the authentication process for a specific identity is a

one-class SVM. The basic SVM paradigm is developed

for supervised binary classification on high-dimensional

data and therefore suggests training the classifier on both

positive and negative examples. However, in case of

our authentication system, it is more meaningful to train

the classifier only on one person’s images in order to

learn a facial pattern of one target identity. Training

the SVM authenticator with only one person’s images

implies using solely positive examples for training. One-

class SVM is an extension of the SVM methodology

which handles training using only positive information,

i.e. samples of only that one class that the model is aim-

ing to learn. Such learning model is also more practical

for an authenticator, as it does not require training images

that belong to other identities who should be denied

by the system. Even though neural networks are also

fit for one-class classification, SVMs are generally less

computationally intensive.

One-class SVM was first suggested by Schölkopf et

al. [18]. The problem that one-class SVM classifier

solves is as follows: given a dataset with a probability

distribution P in the feature space, find a subset S of

the feature space such that the probability of a test point

from P lying outside S is less than or equal to some a

priori specified bounding value ν ∈ {0,1}. The problem

is solved by learning a decision function f that is positive

on S and negative on the complement set S:

f (x) =

{

+1 if x ∈ S

−1 if x ∈ S

In the context of our authentication system, let

x1,x2, ...,xn be multidimensional real feature vectors de-

rived from training images of the user that belong to

one class X which is a compact subset of RN . The

linear SVM first maps these vectors into a feature space

H by applying a linear kernel transformation function:

Φ : X → H. After transforming the training data of the

user to another space, the SVM separates the mapped

vectors from the origin by maximizing the distance or

margin in between. As a result, the origin of the feature

space becomes a single, artificial member of the negative

class, which is separated from the positive samples by

a learned separation hyperplane (the decision function).

According to Schölkopf et al.’s definition [18], in order to

find the hyperplane that maximizes the margin between

the positive data points and the origin, the following

problem needs to be solved:

min
1

2
‖w‖2 +

1

νn

n

∑
i=1

ξi −ρ,subject to

(w ·Φ(xi))≥ ρ −ξi i = 1,2, ...,n ξi ≥ 0

If such w and ρ exist that solve the problem, then the

resulting function is learned:

f (x) = sign((w ·Φ(x))−ρ)

This decision function will be positive for most training

points xi, namely, for approximately ν · l of them, as ν
denotes an upper-bound to the fraction of training errors

(as well as a lower-bound to the fraction of training

samples that become support vectors of the model).

The SVM learning algorithm optimizes the hinge loss

function that maximizes the margin. For a test point x

with a real label t = ±1 and an output SVM prediction

y = f (x), the hinge loss function is computed as L(y) =
max(0,1− t · y). As a result, L(y) equals 0 for correct

predictions (when t and y have the same sign), while

incorrect predictions return linearly increasing losses

with the increase of y.

The bounding ν-value is a high-impact hyperparame-

ter of the SVM model, as in the end it defines how likely



the model is to classify a test point xi ∈ X as a positive

one and a test point yi /∈ X as a negative one. Basically,

this parameter reflects a trade-off between the usability

and security of the system: a small ν-value would

enforce a more strict acceptance criteria by the authen-

tication system, while a bigger ν-value would make the

system more flexible. As a result, lower values will cause

a higher false positive rate (FPR) of the authenticator,

whereas higher values will increase the false negative

rate (FNR). Another influential hyperparameter is n, the

number of training instances. The bigger the n-value, the

more training images are used to train the authenticator,

which makes it more likely that the training set is truly

representative of the user’s facial features. However,

demanding more images to train the system makes it

slower and less practical in use. Therefore, the ν and n

values are design choices which affect the usability and

security of the authenticator.

3 Threat Model

Our work considers a threat model based on a theoretical

model of an attacker formalized by Biggio et al. [2] in the

context of adversarial pattern recognition. It requires to

make certain assumptions regarding the attacker’s goal,

knowledge and capabilities.

Goal Potential attacks against ML algorithms aim at

violation of integrity, availability or confidentiality of

the ML-based system. This work focuses on violation

of the integrity and availability of a target system being

the face authenticator. The integrity is breached when an

attacker can successfully impersonate a specific identity.

Such attack’s objective is to significantly increase the

amount of false positives (FP): the number of impostors

with forged authentication material that are accepted by

the system. Availability is violated when an authentic

user is no longer able to access the system (analogous

to the denial-of-service). The objective then becomes

to increase the amount of false negatives (FN). The

goal of our developed attack methodology, presented in

Section 4, is to achieve a significant accuracy drop of

the system predictions which will result in high FP and

FN rates and basically undermine the reliability of the

authenticator. In order to do so, the adversary has to

possess sufficient knowledge about the target system and

certain skills.

Knowledge For a thorough security evaluation of ML-

based authentication systems, it is essential to consider a

perfectly knowledgeable attacker. That allows to avoid

security by obscurity and sets the focus on security

by design, a much more desirable approach to secure

authentication that anticipates malicious practices. The

attacker therefore knows the following aspects of the

target system:

1. The feature extraction algorithm: he knows how the

OpenFace framework works. He is able to perform

the exact preprocessing and feature extraction steps

just like implemented in the authenticator itself.

2. The decision algorithm and its hyperparameters,

i.e. the attacker knows that a one-class SVM learn-

ing model is used for classification, and its corre-

sponding hyperparameter ν .

3. The training data used to learn the decision func-

tion. He knows what images were used to train the

one-class SVM.

Capabilities A poisoning attack can only be deployed

by a very capable attacker, that is an attacker who can

modify training data. More specifically, we assume an

attacker who can add a single image to the training

data. In order for the injected malicious image to poi-

son the model, a retraining of the SVM model has to

be performed. The attacker should not necessarily be

able to force the retraining on the malicious data point.

However, because most authenticators follow a contin-

uous updating strategy to evolve along with the user’s

biometric changes, it appears realistic for an adversary

to rely on the periodic retraining. Therefore, we assume

that the adversary may inject a poisoning training sample

and await the retraining to take place.

4 Face Poisoning

This section describes the attack methodology developed

in our study. After providing the high-level algorithm

for the attack, we dive into technical details of the most

important stages: 1) the search for the attack point that

allows to achieve the attack goal when it is added to

the templates used for training; 2) the reverse feature

mapping strategy that converts the desired attack point

to the image of a face, such that it can be added to the

training data.

4.1 Attack Methodology

Here we outline the attack methodology step-by-step:

1. Obtain the images used for training, Dtr. These

are pictures of the victim. Furthermore, the at-

tacker must acquire validation data, Dval . This

data consists of other images of the victim and

images of other identities, i.e. the attacker identities

(e.g. obtained through social media).

2. Calculate the face templates using OpenFace.













underlying distribution, craft malicious samples against

it and transfer them to the actual target model. With this

technique, the attacker might not require full information

about the classifier at the core of the target authentication

system, or might even treat it as a black-box. As previous

research suggests, such approach is applicable to SVM

classifiers and demonstrates similar performance [16].

The feasibility of using transferability for poisoning au-

thentication systems can be assessed by using a substi-

tute One-Class SVM classifier trained on images of the

victim which do not overlap with the actual training set,

but are separately acquired by an adversary. Currently,

the Adversarial ML research is focusing on generalized

transferability of evasion and targeted poisoning attacks,

which should allow to weaken the attacker model [23].

The effectiveness of the attack is shown to be highly

correlated to the SVM hyperparameter tuning. This

underlies the importance of taking into account security

when training models in sensitive contexts. For instance,

a careful system designer would proactively defend the

authenticator by considering higher ν values for smaller

training set sizes. This concern is likely to arise in the

earliest deployment stages of an authenticator, when only

few user images are available to the system.

7 Related Work

Machine learning algorithms are more and more de-

ployed to tackle a variety of problems. However, as their

adaptation grows, the impact of unexpected side effects

increases, giving rise to the emerging Adversarial ML

area. Naturally, such a security-sensitive and ML heavy

application as face recognition has drawn efforts of the

Adversarial ML researchers, resulting in a number of

evasion attacks. Sharif et. al. [20] present physically

realizable white-box attacks against face recognition that

allow to evade recognition or impersonate another in-

dividual through altering the test inputs. Other attacks

by Sharif et. al. [21] build on Generative Adversarial

Networks [7] which are specifically trained to generate

adversarial samples for evasion. These works, even

though successful, do not touch upon poisoning attacks:

the authors consider an attacker who gains access to

the system only after it had been trained, and therefore

cannot inject samples or alter training data. Moreover,

the related work does not extend face recognition to the

more complex task of face authentication.

As one of the first prominent examples of poisoning

attacks against SVM, one may consider the study by

Xiao and Eckert [25]. The authors introduce the label flip

attack (that later has been extended by Biggio et al. [3]),

where they consider theoretical poisoning attacks against

SVM. It is this attack that we execute in practice against

a face authenticator.

Another poisoning attack targeting face templates has

been developed by Biggio et al. [2]. The difference

with our work is that they perform classification through

distance metrics, thus not applying a learning function.

Furthermore, their attack is considered only for PCA

based face-verification, whereas modern face templates

are powered by deep neural networks, which pose new

challenges for adversaries. Our research bridges this gap

by considering a modern authentication system design

based on both a deep neural network and an SVM model.

The biometrics community has been mainly occupied

with investigating which privacy sensitive information

can be extracted from biometric templates [12]. Other

work focused on ensuring that biometric data is not being

spoofed and satisfies the liveliness check [6, 14, 17].

These authentication system aspects are not considered

in our work, for we advocate a system design that can

solely withstand the threat of poisoning attacks instead

of merely relying on a secure entry point for the data.

8 Conclusion

We showed that poisoning attacks pose a threat against

modern face authentication systems. By injecting an

adversarial sample in the training set, we were able

to fully violate the integrity of the system. The most

successful execution of the attack led to an authentication

error of over 50%, rendering the face authentication sys-

tem entirely useless. Additionally, we proposed a novel

black-box strategy to construct an adversarial image that

approximates a desired attack point in the feature space.

Our practical security evaluation showed the impact

of design parameters on the resilience of the underlying

machine learning model against poisoning attacks. This

illustrates that the system designer has to consider both

usability and security in adversarial settings.

We believe that adversarial machine learning endan-

gers current authentication techniques, and we advocate

thorough security evaluation and proactive defensive

measures for future authentication systems.
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A Summary of the empirical results for

varying one-class SVM parameters

Table 1: The mean false positive rate and standard

deviation for varying parameters: ν and training set car-

dinality. The evaluation is performed over the validation

set following the experimental protocol as defined in

Section 5.2. The classification error is evaluated three

times: before attack point injection, when injecting the

image corresponding to the initial attack point, after

performing the full attack.

nu size initial FPR injection FPR attack FPR

0.05 30 0.71 ±0.86 7.52 ±1.56 43.62 ±7.71

0.05 50 1.71 ±1.09 7.12 ±1.29 37.16 ±4.24

0.05 70 1.89 ±0.85 5.97 ±3.16 25.70 ±4.23

0.05 90 1.64 ±0.85 4.06 ±1.24 16.17 ±2.05

0.1 30 0.35 ±0.38 2.60 ±0.94 22.91 ±4.87

0.1 50 0.43 ±0.44 1.47 ±0.51 8.70 ±2.72

0.1 70 0.62 ±0.52 1.27 ±0.68 4.60 ±1.34

0.1 90 0.68 ±0.38 0.86 ±0.47 3.17 ±0.96

0.15 30 0.51 ±0.63 1.65 ±1.11 8.84 ±4.11

0.15 50 0.32 ±0.31 0.66 ±0.40 2.35 ±1.52

0.15 70 0.28 ±0.30 0.57 ±0.38 1.77 ±0.85

0.15 90 0.29 ±0.19 0.45 ±0.25 1.16 ±0.72

0.2 30 0.15 ±0.19 0.49 ±0.35 2.34 ±2.84

0.2 50 0.14 ±0.28 0.31 ±0.37 0.76 ±1.17

0.2 70 0.14 ±0.18 0.30 ±0.24 0.50 ±0.80

0.2 90 0.17 ±0.20 0.28 ±0.29 0.45 ±0.57



Table 2: The mean classification error and standard

deviation for varying parameters: ν and training set car-

dinality. The evaluation is performed over the validation

set following the experimental protocol as defined in

Section 5.2. The classification error is evaluated three

times: before attack point injection, when injecting the

image corresponding to the initial attack point, after

performing the full attack.

nu size initial injection attack

0.05 30 3.46 ±0.44 8.86 ±1.59 41.04 ±6.45

0.05 50 2.84 ±0.68 7.63 ±1.09 35.07 ±3.79

0.05 70 2.65 ±0.57 6.31 ±2.81 24.69 ±3.82

0.05 90 2.16 ±0.65 4.39 ±1.11 15.82 ±1.97

0.1 30 3.09 ±0.17 4.67 ±0.88 23.22 ±3.89

0.1 50 2.29 ±0.20 2.91 ±0.39 9.76 ±2.49

0.1 70 1.89 ±0.27 2.44 ±0.59 5.73 ±0.91

0.1 90 1.45 ±0.24 1.58 ±0.40 3.89 ±0.62

0.15 30 3.29 ±0.34 4.12 ±0.67 10.94 ±3.31

0.15 50 2.30 ±0.14 2.59 ±0.27 4.50 ±0.82

0.15 70 1.69 ±0.17 1.93 ±0.24 3.16 ±0.49

0.15 90 1.47 ±0.09 1.62 ±0.14 2.44 ±0.36

0.2 30 3.57 ±0.16 3.61 ±0.07 6.42 ±1.93

0.2 50 2.58 ±0.18 2.73 ±0.22 3.68 ±0.50

0.2 70 1.92 ±0.12 2.01 ±0.13 2.58 ±0.29

0.2 90 1.59 ±0.10 1.67 ±0.13 1.98 ±0.27

Table 3: The mean classification error and standard

deviation for varying parameters: ν and training set

cardinality. The evaluation is performed over the test

set following the experimental protocol as defined in

Section 5.2. The classification error is evaluated three

times: before attack point injection, when injecting the

image corresponding to the initial attack point, after

performing the full attack.

nu size initial injection attack

0.05 30 3.33 ±0.11 8.28 ±1.35 40.11 ±6.78

0.05 50 2.93 ±0.63 7.20 ±1.18 34.67 ±3.64

0.05 70 2.52 ±0.68 6.38 ±2.70 24.19 ±3.57

0.05 90 2.18 ±0.43 4.33 ±1.11 15.46 ±1.57

0.1 30 3.33 ±0.26 4.85 ±0.86 22.41 ±4.15

0.1 50 2.51 ±0.19 3.17 ±0.55 9.91 ±2.43

0.1 70 1.85 ±0.27 2.31 ±0.55 5.87 ±1.18

0.1 90 1.41 ±0.19 1.49 ±0.34 3.71 ±0.65

0.15 30 3.27 ±0.27 4.00 ±0.52 10.42 ±2.85

0.15 50 2.38 ±0.16 2.61 ±0.34 4.38 ±0.72

0.15 70 1.84 ±0.09 2.08 ±0.19 3.15 ±0.51

0.15 90 1.36 ±0.08 1.43 ±0.09 2.16 ±0.48

0.2 30 3.53 ±0.28 3.69 ±0.16 6.26 ±1.44

0.2 50 2.76 ±0.14 2.81 ±0.13 3.51 ±0.39

0.2 70 2.19 ±0.15 2.21 ±0.16 2.67 ±0.17

0.2 90 1.48 ±0.07 1.55 ±0.12 1.83 ±0.17


