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Abstract

Biometric authentication is a trending topic in securing
modern devices. Examples of this can be found in many
widely deployed systems such as Apple’s Touch ID or
Microsoft’s Windows Hello face recognition. Miniatur-
ization and increased processing power are thereby lead-
ing to new applications not imaginable a couple of years
ago. Such a solution is the new fingerprint smart card
built by a Norwegian company that must not be named.
Their biometric match-on-card platform is designed to
provide a convenient solution for access, identity, and
payment applications and aims to replace PIN authenti-
cation for the next generation of payment cards by VISA
and Mastercard. In this paper, we are going to analyze
how this company has implemented their already avail-
able demo kit for access control in hardware and soft-
ware. We will point out critical weaknesses in its archi-
tecture and algorithm and show how these could be mis-
used for payment, access and identity fraud by attackers
able to steal or clone the device. Thereby, we combine
software and hardware hacking techniques as well as ex-
traction methods, to acquire fingerprints from photos and
latent prints, to successfully spoof the system in various
ways. This works in particular without the error-prone
creation of physical dummies due to the exploitation of
the insecure on-device communication. The attacks pre-
sented require little effort and low-cost equipment that
can be already refinanced by abusing a single card at all.
Finally, we will discuss countermeasures and ideas to im-
prove the security of this and future implementations for
match-on-card fingerprint authentication.

1 Introduction

Biometric authentication is evolving to one of the most
used authentication schemes for mobile applications.
That’s why, several research groups and companies try
to find new ways to make use of characteristics in users

iris, fingerprints or heartbeat. Based on this, they want
to provide a convenient authentication scheme to protect
private and sensitive data, stored for instance on mobile
devices. Despite the fact that no sufficient secure and
reliable method has been developed for low-cost biomet-
ric authentication, large manufacturers yet integrate these
solutions into devices and promote them as an improve-
ment in security and comfort. A good example of this is
a Norwegian company that must not be named. They try
to integrate their fingerprint match-on-card platform into
several devices to simplify payment, access and identity
applications. So far, only the first version of access con-
trol cards is available, but they already announced to inte-
grate their platform into the next generation of payment
and ID cards. According to [16, 24], the first payment
card, build in cooperation with VISA and Mastercard, is
already under test.

In contrast to these efforts, many publications like
[5, 22, 6, 7], clearly show that biometric authentication
mechanisms can be levered, manipulated and circum-
vented in various ways. The reasons for this are many
and varied. On the one hand, developers choose weak
acceptance rates to offer users a convenient and reliable
solution. On the other hand, mechanisms for liveness- or
spoof detection are often dispensed with, because they
are expensive, immature or inadequate. Another major
problem is in fact that biometric features are unique and
cannot be revoked or replaced like PINs and passwords.
Moreover, biometric features do not even represent good
secrets at all, because users tend to spread sensitive in-
formation on every object touched or copy them unin-
tentionally by creating image and video data containing
fingerprints and iris [22].

Taking all this into account, one can not simply trust
this technology; instead these systems need to be scru-
tinized to identify the accompanying threats and risks.
For this reason, we analyzed this new match-on-card de-
vice to explore its foundation and answer the question of
whether this approach is a security improvement or not.



Our Contribution is the proposal of a low-cost attack
against a biometric authentication device based on a new
match-on-card platform. The attack uses a small hard-
ware modification and some information gathering to by-
pass the authentication entirely and as often as needed.
Related to that, we explore what kind of weaknesses in
hardware and software can be abused to make this hap-
pen. To evaluate our findings, we provide all data and
knowledge acquired during exploration of this finger-
print matching device.

2 BACKGROUND

In the following, we provide the required background of
biometric authentication and fingerprint matching. We
then describe what kind of attacks are known to circum-
vent fingerprint matching systems and how to create a
physical dummy for traditional spoofing attacks.

2.1 Biometric Authentication
The term biometric is derived from the two Greek words
bios and metron meaning measurement of life and de-
scribes the identification of people based on features of
their bodies. Those features can be divided into static
(like fingerprint or face) and behavioral (like a persons
voice or signature). According to [14], all biometric fea-
tures have to satisfy the following requirements:

• Universality: All people possess the feature.

• Uniqueness: The feature is different for people so
the system can distinguish between them.

• Permanence: The feature only varies slightly over
time.

• Measurability: The system can acquire and pro-
cess the feature in an efficient way.

• Safe against circumvention: The system can dis-
tinguish between the real feature and a dummy.

Any biometric system requires thereby three main com-
ponents: A sensor that captures the feature, a biomet-
ric application to compute and compare features, and a
database to store a template [14]. A template is a math-
ematical description of the biometric feature. It is gen-
erated during the enrollment, the first stage of every bio-
metric process in which a user is introduced to the sys-
tem. During the later use, the live taken template will be
compared against the stored template. Biometric com-
parisons, other than passwords, do not result in a clear
right or wrong answer but in a probability of a match-
ing score. Depending on the determined thresholds this
matching score will lead to an accept or reject. Usually,
biometric systems apply this in two modus operandi [14]:

• Verification: During verification or 1:1 match the
user provides its template bound ID to the system.
The system then compares the live taken feature to
that template. If the threshold is matched, the user
is authenticated successfully.

• Identification: Identification or the 1:n match com-
pares the live taken feature against all the templates
stored in the database. As a result, the template with
the highest match score is selected, and if the thresh-
old is exceeded, a successful match is indicated.

2.2 Fingerprint Authentication
Fingerprint authentication is the process of matching fin-
gers based on the structure of the upper skin. During
the prenatal development of a human being, the skin of
hands and feet fold in a random process leading to ridges
and valleys. Those end or bifurcate at certain points
called minutiae. Although some genetic influence, the
position, orientation and type of these minutiae points are
unique for each human and even each finger. To recog-
nize someone based on that, we first of all need to acquire
the features. As summarized by [14], various technolo-
gies have been used to sample the fingerprint. Today, the
most popular ones are the optical and capacitive sensors.

• Optical: Optical sensors use the effect of frustrated
total reflection. Light is shined on a prism and the
reflections are collected by a camera. Depending
on whether a ridge or valley is touching the prism,
the light is either reflected or scattered creating an
image of the fingerprint.

• Capacitive: An array of single capacitor plates are
exposed to the sensor surface. The capacitance of
each plate depends on the material above. This way,
one can distinguish between the skin of the ridges
and the air in the valleys of a fingerprint.

• Ultrasonic: Ultrasonic waves are sent into the fin-
ger, get reflected on deeper layers of the skin and
will be collected by the sensor. This even works
well for dirty fingers and dry skin.

• Thermal: Thermal sensors measure the heat dis-
tribution and derive the fingerprint image from the
different thermal properties of valleys and ridges.

• Pressure: Pressure based fingerprint acquisition
works with an array of small sensors able to mea-
sure the pressure of ridges contacting it.

After sampling a fingerprint, the created image will usu-
ally be graphically preprocessed to reduce noise and er-
rors, for example by thinning the ridges to a width of one
pixel. Following that, a mathematical description will
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be derived from this intermediate image to make it com-
parable and easy to store. The most popular matching
techniques are based on image correlation, phase match-
ing, skeleton matching or minutiae matching [13]. Due
to its storage efficiency and accuracy, the minutiae-based
matching is the most popular approach and has long
since proven itself in criminal investigations and foren-
sic applications.

To extract minutiae points, an algorithm travels along
all ridges until these end or bifurcate. For those points,
their relative position, orientation, and minutiae type will
be stored. This can be done by creating a template using
a standard format as defined in ISO/IEC 19794-2 [12].
When verifying the user, the algorithm applies the same
method to the live captured fingerprint and compares this
data with the stored template created during enrollment.

This matching process is generally a sophisticated
pattern-recognition problem, because of the large intra-
class variations due to pressure, rotation, translation and
many physiologic conditions like skin dryness or cuts
[13]. Additionally, there is a large interclass similarity
between fingerprint images from different fingers, be-
cause there are only three types of major fingerprint pat-
terns in particular: arch, loop, and whorl [13]. Within
this error space, we have to carefully align both templates
to initiate the verification. One basic approach is to align
the fingerprints based on some random local minutiae
structures and then consolidate the local matching on a
global scale. This procedure usually involves four steps,
as described in [13]:

1. Compute pairwise similarity between minutiae of
two fingerprints by comparing the invariant minu-
tiae descriptors.

2. Both fingerprints are being aligned according to the
most similar pair of minutiae.

3. Search for minutiae pairs that are close enough in
position and direction to be matching pairs.

4. Calculate the similarity score between both finger-
prints based on the number of matching pairs, con-
sistency of ridge count in between, et cetera.

2.3 Known Attacks and Related Work
As stated in [11], the main threat to any assets protected
by a biometric system is that of an impostor impersonat-
ing another person who is enrolled and gaining access to
the protected assets. When successful, the authentication
mechanism is considered broken. A structured overview
covering a threat model and risk evaluation for finger-
print matching systems is discussed in [11] and [26]. The
threats discussed by [11], include four major scenarios to
attack a matching system, namely: use of a dummy, use

of latent prints, use of a biometric lookalike and use of
the real finger of the victim.

Much more practical research results can be found in
[22] and [6]. The author presents and analyzes real meth-
ods to spoof and trick specific implementations of fin-
gerprint matching algorithms. A very prominent way to
do this is to collect and physically clone the biometric
features with fingerprint fuming or by extracting the fea-
tures from photos of the victim. We will describe these
techniques in more detail in Section 2.3.1.

Another attack scheme, based on a mathematic anal-
ysis of a large number of fingerprints, is presented in
[1]. This work shows that so-called ”MasterPrints” can
be synthesized based on similarities in different finger-
prints, which can impersonate users with a given prob-
ability. This technique works best for systems using
multiple partial fingerprints of a user to enroll, which is
quite common today. While this attack was shown in
theory and validated using a commercial fingerprint ver-
ification software (Verifinger 6.1), no real authentication
system was bypassed. Moreover, the ”MasterPrints” are
intended to impose a subset of users with a given prob-
ability and do not allow to target a specific person. The
MasterPrints are not published and can not be tested.

More related work is presented in [4]. The authors
point out the risk of known template attacks for minutiae-
based matching algorithms. The overall problem is that
sensitive data, stored on the device or in large databases,
might be leaked in one way or another. Related to
this, the paper presents a method to create sophisticated
and natural-looking fingerprints only from the numerical
template data. They successfully evaluate this approach
against a number of undisclosed state-of-the-art algo-
rithms and the NIST Fingerprint Image Software [25].

2.3.1 Circumvention with Physical Dummies

The circumvention of fingerprint systems with dummies
consists of two parts, the collection of a high-quality im-
age of the finger and the creation of the dummy itself.
Since the skin is producing sweat and grease, we consis-
tently leave latent prints on all surfaces we touch. Those
prints are an exact copy of the ridges and valleys that
form our fingerprint. When making these residues vis-
ible, they can be used to produce a dummy. There are
different techniques known from police work to enhance
latent prints on different surfaces. For glossy surfaces,
like displays, latent prints are visible and can be digital-
ized easily using a scanner or camera [23]. To increase
the contrast, the light of a specific wavelength and dif-
ferent angles can be projected onto the print or colored
powder can be applied. On physical contact, there is al-
ways a chance of damaging the print. That’s why the
contactless technique using cyanoacrylate vapor is often
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used nowadays. Cyanoacrylate, the main ingredient of
super glue, is put into a small chamber covering the area
of the print. The vapor reacts with the grease leaving a
solid white fingerprint. The grease from the print will not
only stick onto glossy surfaces but also will be absorbed
by the paper. To make use of this an amino acid indicator
like Ninhydrin can be applied. This reacts with the amino
acids in the latent print turning it purple. The result can
be digitalized using a scanner or a camera and enhanced
with an image editing application to reduce noise and
scale it properly. Depending on the application the im-
age must be inverted and/or mirrored. The final result
is then transferred to a photodefinable PCB that acts as
a mold. The dummy material, e.g. wood glue, is then
poured into the mold and cured. To enhance the electri-
cal properties graphite spray can be applied. After some
time, the dummy finger can then be used to fool the sen-
sor. As long as there are no fake detection mechanisms in
place, the system will not be able to distinguish between
the dummy and a living finger. [6]

3 Analysis and Weaknesses

In this section, we describe how the access control card
is used and how it is implemented. We also present the
findings gathered by exploring the device components.

3.1 Implementation Overview
First of all, we will have a look at how the card works.
As documented in [28], the system implements the prin-
ciples from Section 2.2 in a straightforward way. First of
all, the card owner needs to enroll to the card in a trusted
environment. During this step, the fingerprint is captured
10 times and the extracted minutiae data is stored on the
card according to the ISO/IEC 19794-2 standard [12].
Afterward, the activated card can be used like any other
smart card. The owner inserts the card into the terminal
or near the NFC field and has to identify himself to au-
thorize the desired action. Without entering a PIN, the
user places his finger on the built-in sensor to prove its
identity. Then the system extracts the minutiae points
from the finger and compares it with the stored template.
When successful, the RFID functionality of the card will
be enabled, authorizing the card to communicate with
the reader and execute the following steps. In addition,
the smart card will also support 3-factor authentication.
When enabled, the user needs to provide the card, his
fingerprint, and the PIN.

To perform all these functions the card integrates var-
ious hardware components. For RFID capabilities they
offer multiple card versions with NFC Transponders like
Mifare Classic, DESFire EV1, and others. These are
compatible with most contactless ISO14443 RF readers

Figure 1: Frontside of the uncased access control card.

CPU

SENSOR
WIRES

VIA

Figure 2: Backside of the uncased access control card.

and feature RF-field energy harvesting. The most inno-
vative part is the integrated FPC1020 Touch Fingerprint
Sensor manufactured by Fingerprints [8]. It is build us-
ing a capacitive array, has a size of 11×11mm and a spa-
tial dot density of 508dpi. This way it can generate 8bit
grayscale images with a dimension of 192x192 pixel.
Moreover, there are two LEDs on the card to indicate the
systems state and the result of enrollment and verifica-
tion attempts. Sensor, LEDs and the RFID-subsystem are
connected to an Atmel SAM4S microcontroller, which is
based on a 32-bit ARM Cortex-M4 processor. This mi-
crocontroller executes a proprietary matching algorithm
and supports procedures for enrollment and verification.
The algorithm is optimized for embedded devices and
can process a single evaluation in round about 500 to
550µs. The biometric template is stored on the internal
memory of the microcontroller and will be encrypted. To
protect confidential data and firmware the SAM4S pre-
vents memory access by using security and lock bits to
denial access via ICE and Flash programming interfaces.
According to the SAM4S manual, the external bus inter-
face is scrambled and memory integrity checks are im-
plemented as well [8]. The announced payment and ID
cards will be produced in ISO/IEC 7810 ID-1 card for-
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mat. The access control card is slightly larger, packed in
a plastic cover and requires an extra battery.

3.2 A Closer Look
To analyze the card we, first of all, removed the plastic
cover revealing a two-layer PCB with all the components
mounted on the upper side. After identifying the respon-
sible pins, we initially confirmed the correct configura-
tion of the SAM4S security bits using a JTAG debugger.
We then started to analyze the application specific com-
ponents of the device. As one can see in Figure 1 and
2, the fingerprint sensor and the microcontroller are con-
nected with six wires, routed on both sides of the card. To
sniff the communication between sensor and microcon-
troller we tapped the connection using a logic analyzer
and soldering enameled wires to the VIAs. We have used
the Saleae logic analyzer [20] and their software suite for
a total of $109. After evaluating several recorded tracks,
we were able to identify the implemented communica-
tion bus: A Serial Peripheral Interface (SPI) configured
with a 12 MHz clock signal and transfer Mode 0. SPI
is based on a master-slave architecture. In this case, the
microcontroller represents the master and the fingerprint
sensor the slave. This way the CPU can request data from
the sensor that can be selected by sending special com-
mands to the sensor.

3.3 Communication Protocol
Using the recorded tracks, we have started to get a bet-
ter understanding of the intercepted protocol payload. In
fact, we were able to identify several values and promi-
nent communication flow patterns, which are clearly re-
lated to the matching algorithm. In Figure 3, we present
a listing of the most interesting sections we have iden-
tified. To understand the data, we have visualized it as
a grayscale image using one pixel per byte. After some
manual alignments, we could identify the raw image of
the evaluated fingerprint. This demonstrates that the SPI
communication observed is not encrypted and all data
transmitted can be intercepted, recorded and analyzed.

In further detail, the tracks we have recorded are com-
posed of the following elements: Initially, the CPU sends
a 0xFC command that is responded with the byte se-
quence 0x020A by the sensor. Afterward, the CPU will
initialize the sensor using some values and commands
we do not fully understand. In the following, the device
goes into a short sleep cycle and will wake up repeatedly
every 27ms to poll the sensors actual state. When ac-
tivity is detected the sensor will signal this by sending a
0x81 byte. Following that, the CPU requests the overall
image size and subsequently gather 12 small samples of
the finger covering only partial sections of it (each with

FC00 006C 3390 3768 
3636 3636 3F3F 3F3F 
9C55 4000 3F24 8800 
0800 009C 5540 003F 
348C 32A8 0F1E 5C0B 
A00A 01A0 0A01 ....
1C00 241C 00A0 0A01 
1C 00A0 0A01.. .... 
.... .... .... .... 
.... ..1C 00A0 0A01 
5430 6060 081C 00C0 
1C00 C400 00.. .... 
.... .... .... 0000 
5400 C000 C01C 00C0 
1C00 C01C 00C4 0000 
0000 .... .... 0000 
A00A 0100 0000 0000

0002 0A00 0000 0A00 
0808 0909 1212 1313 
0055 4000 3F24 0000 
0000 0000 5540 003F 
2400 0200 0F1E 0003 
0000 0000 0A01 ....
00FF 0000 0000 0A01
00 0000 0A01.. ....
.... .... .... ....
.... ..00 8100 0A01 
0000 C000 C000 8100 
0020 0000 AAA8 A59E 
.... .... .... 7870 
0030 6060 0800 0000 
0000 0000 2000 00F5 
F4F5 .... .... 9DA9 
000A 0100 0000 0000

» Hardware ID “FPC1020A”

» Unknown device configuration

» Sleep 0.1448 seconds
» Polling the sensor
   Repeat until finger detected

» Finger detected 0x81
» Request image size 0xC0C0
» Transmission of 12 subimages
   8 x 8 x 12 = 768 Bytes

» Transmission of full image
   192 x 192 x 8 = 36864 Bytes
» End of communication

CPU Payload (MOSI) Sensor Payload (MISO) Description

Figure 3: SPI communication between CPU and sensor.

a size of 8×8 pixel). Afterward, the transmission of the
full image takes place, which is signaled with the byte
sequence 0x200000. Following that, 36864 bytes will be
transmitted, describing a 192×192 pixel grayscale image
with one pixel per byte. In the end, the communication
between sensor and CPU is terminated. For enrollment,
we can observe a similar communication flow, but in this
case, 10 images are sequentially requested by the CPU.

4 Proof Of Concept

In this section, we describe the technical details on how
we interfaced the card and evaluated the overall perfor-
mance of the device against various attacks.

4.1 Setup
Since we know that the communication between sen-
sor and CPU is not confidential, we designed a man-in-
the-middle attack that allows us to scrutinize more in-
depth features of the device. Therefore, we prepared the
backside of the card by carefully cutting the MISO wire
disconnecting the sensor from the CPU. Afterward, we
rerouted this signal through an FPGA by soldering two
wires at both ends and connect them to the GPIO pins
of the FPGA. Additionally, we tapped the SPICLK to be
able to process the data transmitted. Based on this con-
figuration, we created an FPGA design capable of read-
ing and spoofing the communication stream. This appli-
cation features two use-cases: A pass-through mode, re-
connecting the origin wire signals and an injection mode
overwriting the original data stream with a modified one
stored in the FPGAs memory. To upload this data, we
have added a UART communication interface connecting
the FPGA with a host computer via USB UART/FIFO
IC. For this implementation, we have used a DE0-Nano
board containing an Altera Cyclone IV FPGA with 32
MB SDRAM (Comparable solutions available for $42).
Certainly, the FPGA features only 3.3V inputs, while the
card requires 1.8V, hence we added a level conversion
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solution in between. Clearly, this solution is for experi-
mental use and can not be used inconspicuously in front
of other people. However, due to its NFC capabilities,
this logic can be easily built on a small daughterboard
attached on the backside of the device. Hereby the front
side of the card will remain untouched and does not look
suspicious at all.

Based on this setup, we created a number of experi-
ments to scrutinize the internal functions of the biometric
smart card. The experiments are based on an enrolled fin-
gerprint of a real test person. We used the implemented
enrollment procedure of the card and instructed the test
person with the user guide published by the vendor [28].
The data and tools to repeat the experiments can be found
in our repository [9].

4.2 Replay Attack
First of all, we tested how the system responds to a replay
of a valid verification we have recorded. Using our im-
plementation, we simply configured the FPGA that any
data sent by the sensor will be discarded and replaced
with the previously recorded one that is stored in the
FPGA memory. On the first try, the replayed fingerprint
was immediately accepted, and the attack could be re-
peated multiple times. From this simple experiment, we
have already determined two major facts:

• No replay and no liveness detection was triggered

• No tamper protection was violated by our hardware
modification

Furthermore, this shows that the recorded payload covers
all the configuration and data required to perform a valid
authentication. By modifying and replaying this payload,
we are now able to scrutinize the in-depth functionality
of the device that was difficult to access beforehand.

4.3 Fuzzing the Protocol
In the following, we started to manipulate single mes-
sages of the replay data to spot additional attack vectors.
The recorded communication data has a size of round
about 37 Kilobyte, but may vary depending on the num-
ber of wrong attempts and wait time during the record-
ing. As described in Section 3.3, the protocol contains a
preview function that sends 12 small samples (8x8 pixel)
before the full image is transmitted. These samples have
a fixed position and are distributed equally on the sensor
at several points. According to the documentation, this
feature is intended to decrease the response time and im-
prove the overall performance [8]. However, the preview
is not even evaluated by the card and can be replaced with
arbitrary data. Furthermore, we modified several config-
uration fields received by the microcontroller from the

sensor. We tried to manipulate the Hardware ID, vary
the capture size and inject interesting corner cases for
other parameters, to cause side-effects like out-of-bound
read/write or downgrading of sensor capabilities. Based
on our observation, the modification of these values was
not effective. A succeeding read of these values returned
their original configuration or did not yield any interest-
ing change. Most probably, these values are hard-coded
in the application, at least for this product version.

4.4 Fingerprint Extraction Attacks
In the following, we started to manipulate the image data
that is sent to the CPU, as shown in Figure 3. We created
a tool to replace the data in the recorded sample with
arbitrary image data. Furthermore, we have taken related
research into account that shows how the biometric data
of a victim can be collected [22]. As described there,
fingerprints can be extracted from photos or copied from
touched objects like coffee cups, keyboards, and other
things. To test the device against this threat, we have
developed two more experiments.

4.4.1 Latent Fingerprints on the Device

With regard to the manufacturer’s promise that ”finger-
print data cannot be extracted from the card”, it was the
most obvious idea to recover a latent fingerprint from the
device itself. In everyday life, the card owners will touch
the cards surface and its components and hence spread
biometric data all over the device. To imitate this, the
test person was requested to touch a similar smart card
at several points intentionally. Afterward, the card was
evaluated to spot latent prints and recover the biometric
data from its surface. Figure 4 shows that multiple fin-
gerprints are visible on the device, especially when it is
illuminated and aligned in the right way (90◦ between the
point of view and the light source). To copy the finger-
print residues we made several pictures using a standard
iPhone 5 camera. We reviewed the pictures taken and se-
lected the most promising one in terms of image quality.
Afterward, we extracted a suitable fingerprint dummy us-
ing the following steps:

1. Crop the image area covering the whole fingerprint

2. Apply grayscale conversion, then color inversion

3. Crop and scale the relevant fingerprint area with re-
spect to the physical and digital sensor size, e.g.
11×11mm, 192×192 pixel, 508dpi

4. Improve brightness, contrast, and gamma.

Using our tools, we embedded the extracted fingerprint
dummy into the recorded communication payload and
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Figure 4: Step-wise extraction process: 1. Initial photo of a smart cards surface with latent prints (w/o modification);
2. Remove irrelevant parts of the image; 3. Grayscale and color inversion; 4. Crop a final digital fingerprint dummy.

uploaded this to the FPGA. When activating the card,
the FPGA injected the custom fingerprint created from
the latent prints on the card. This way, we have success-
fully bypassed the authentication in a repeatable fashion.

4.4.2 Fingerprints on Digital Images

Another, more passive way to extract the biometric data
can be done by using pictures of the actual user cover-
ing his fingerprints. These pictures can be created by the
attacker from a distance or can be found on the web as
discussed in [22]. To evaluate this scenario, we created
multiple pictures covering the test person while showing
his fingers. We set up an increasing target distance re-
spectively to 3, 4, 5, 6 and 7 meters. The pictures were
taken using a Canon EOS-D1 X with a 200mm lens in
an outdoor daylight setting. After taking the pictures,
we started the extraction process similar to the previous
one. The main difference is in fact that we had to flip
the image horizontally and further scale the area depend-
ing on the target distance. In Table 1 we are describing
this relation and the final upscale factor we have used.
Figure 5 shows the pictures taken and the extracted dum-
mies. Again, we injected the obtained fingerprints into
the recorded communication payload. We defined a max-
imum amount of 3 attempts per image, which has given
us the freedom to slightly improve the image gamma,
brightness, and contrast. Under these constraints, 3 out
of 5 dummies caused a valid authentication and could
successfully bypass the matching algorithm.

Distance Crop Size Upscale Evaluation
3 m 136×136 px 141 % Valid
4 m 101×101 px 190 % Invalid
5 m 88×88 px 218 % Valid
6 m 68×68 px 282 % Valid
7 m 57×57 px 337 % Invalid

Table 1: Results for dummies created from pictures.

4.5 Algorithmic Weaknesses

The previously shown attacks are not only resulting from
design issues and the lack of security measures. One of
the major reasons for this are various algorithmic weak-
nesses that undermine the attack resistance of this device.

First of all, we discovered that just 50% of the finger-
print image is sufficient to authenticate a user success-
fully. This means, with respect to the attacks shown,
we don’t even need to extract an ideal fingerprint snip-
pet. Single parts of poor quality can easily be removed
to improve the attack, as shown in Figure 6. Further-
more, we figured out that ridges without minutiae can be
removed from a fingerprint, as long as they got replaced
with some arbitrary ridges. In practice, we have simply
created some circle-like elements which will be traced
by the matching algorithm but do not yield any minu-
tiae data. Combining these findings, we could gradually
remove most parts of one fingerprint, until we had a min-
imal version to authenticate. Such a fingerprint dummy
is shown in Figure 7.

The most concerning weakness we have identified is
related to the required amount of matching minutiae. Ac-
cording to ISO/IEC 19794-2, this is the most important
parameter for any minutiae-based matching system. The
recommended minimum amount for enrollment is 16 and
for verification is 12. Lowering these numbers will have
a huge impact on the attack resistance of the system [12].
With this in mind, we tested the device for standard com-
pliance. First of all, we tested how many minutiae points
are actually required for enrollment. We created several
fingerprint images, similar to the examples in Figure 8,
which we have each enrolled and verified on the device.
In conclusion, as long as enough ridges are contained, we
could enroll even extremely simplistic fingerprints with
less than 5 minutiae and verify them with success.

Secondly, we started to remove single minutiae from
a previously enrolled fingerprint to determine the min-
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3m, Valid 4m, Invalid 5m, Valid 6m, Valid 7m, Invalid

Figure 5: Original finger images (cropped by 450×450 pixel) and obtained fingerprint dummies for 3-7m distance.

Valid Valid Invalid

Figure 6: Examples of incomplete fingerprint samples.
From left to right the images are cut by 23%, 40%, 53%.

Figure 7: Replace irrelevant ridges with circle structures
to evaluate the corner cases of the matching algorithm.

imum threshold for verification. For our baseline tem-
plate, containing 18 minutiae points overall, we have re-
duced the number to less than 10 points and were still
able to authenticate. Indeed, the concrete threshold de-
pends on the amount of perceived and stored minutiae,
image quality, and the applied scoring system. Since
these factors cannot be reviewed for the proprietary al-
gorithm, further investigation is not meaningful. Never-
theless, from these examples, we can already conclude
that this device is not compliant with ISO/IEC 19794-2
and several corner cases can be exploited to make attacks
more reliable. More examples can be found in [9].

4.6 Known Template Attack

Due to the poor performance of the algorithm, it becomes
clear on how frighteningly little data is needed to trick
this device. That’s why we evaluated a more general
threat for biometric devices related to the work from [4].
Biometric data is stored and used on multiple devices
like smartphones, smart cards, and ID cards. Further-
more, it is known that the integrated memory in these
devices is not fully secure. A large number of attacks
have been published in the past to read sensitive data
from different kinds of memory without authorization,
like [21]. Additionally, software bugs and side-channels
will further augment the attack surface of systems storing
and processing biometric data. A very close example is
given by [7]. They demonstrate how non-invasive side-
channel attacks can be used to extract the template data
from matching algorithms during processing. In the end,
the leaked data can be used to create artificial fingerprints
with similar features like the original [4].

To take up this work, we have tested how resistant
this particular system is against the reuse of template
data. Therefore, we extracted the corresponding template
from the fingerprint of the enrolled test person, including
minutiae coordinates, types and orientations. Based on
this information only, we started to create several artifi-
cial fingerprints. We placed the correct type of minutiae
at their relative locations and successively added some
arbitrary ridges by applying the findings of our previous
analysis. The resulting fingerprint images can be seen in
Figure 8. Obviously, any human can recognize that these
fingerprints are clearly counterfeit, but the implemented
algorithm accept them without complaining.
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Template Data Dummy 1: Valid Dummy 2: Valid

Figure 8: Hand-crafted fingerprint dummies only based
on template data, with minutiae locations and directions.

4.7 Limitations

In the following, we discuss the limitations, obstacles,
and assumptions we have made for the attacks.

First of all, all attacks shown suffer from the fact
that the attacker needs to guess which finger is enrolled.
Starting from 10 fingers, we can halve this number by
figuring out if a person is right or left-handed. In addi-
tion to that, most users will deliberately use the thumb or
index finger, due to the way how a smart card is held with
a single hand. Additionally, the cropped fingerprint sec-
tion needs to be part of the enrolled template, although it
is unknown to the attacker. However, the device manual,
like most fingerprint matching systems, advises the user
to increase coverage as much as possible during enroll-
ment [28]. This increases the usability as much as the
chances of a successful attack. At least, the central part
of the fingerprint might always be covered. Additionally,
some attacks require that the selected fingerprint section
need to physically and digitally fit the size of the sen-
sor (e.g. 11×11 mm, 192×192 pixel). Having a phys-
ical copy of the fingerprint the relevant area can easily
be measured. Other cases, such as picture extraction as
shown in Figure 5, require a special scaling ratio related
to the target distance. For similar setups, these values
could be derived from Table 1. To determine the limits
of this technique, we have evaluated how the system re-
sponds when different zoom levels will be applied. Start-
ing from an ideal section with a size of 192×192, we in-
crementally selected a smaller/larger area of the finger-
print and cropped it again to the size of 192×192 pixel.
This transition relates to the error made during the ex-
traction of the fingerprint by estimating the distance and
dimension of the finger. As shown in Table 2, an error of
± 30 pixel can still result in a valid authentication.

When a promising image region has been selected and
scaled, any irregularities need to be compensated. The
easiest way is to use image editing tools to change the
contrast, brightness or gamma values of the image. In
this context, analysis tools for fingerprints such as vFin-
ger [18] can be used to measure if changes have im-
proved or degraded the overall quality. For us, a subjec-
tive review was always sufficient. In addition, enrollment

Zoom Zoom In Zoom Out
Deviation Crop Size Evaluation Crop Size Evaluation
± 0 px 192 px valid 192 px valid
±12 px 180 px valid 204 px valid
±22 px 170 px valid 214 px valid
±28 px 164 px valid 220 px valid
±30 px 162 px invalid 222 px valid
±32 px 160 px invalid 224 px valid
±42 px 150 px invalid 234 px invalid

Table 2: Evaluation of zoom thresholds.

algorithms like [18] will also help to compose decent fin-
gerprints out of multiple photos from different parts of
the fingerprint.

5 DISCUSSION

In the final section, we discuss open questions and con-
clude our findings. We also describe countermeasures
and ideas to make this and similar devices more secure.

5.1 Countermeasures
Our research has shown that, besides ARM memory pro-
tection, no further active or passive countermeasures in
hard- or software is used on the evaluated system. In
the following section, we want to summarize what tech-
niques can be applied to mitigate fraud. The shown at-
tacks generally benefit from the missing replay and live-
ness detection. On embedded devices, replay detection
can be done by using rolling or fuzzy hashes of already-
seen fingerprints. These hash methods are able to iden-
tify bit-identical samples, as well as slightly modified
ones. An introduction to this and additional information
can be found in [15] and [10]. For live detection capabil-
ities, the device might process multiple samples instead
of single ones or integrate more sophisticated sensors
able to evaluate the physical characteristics of the test
object. To protect the on-device communication, data
bus encryption can be used to mitigate wiretapping at-
tacks. In addition, session identifiers, nonces or times-
tamps can be used to detect replay attacks of encrypted
content. Hardware countermeasures like logic duplica-
tion and mesh detectors are able to detect physical mod-
ification of the device [17]. To prevent side-channels, as
shown in [7], dummy instructions or side channel free
algorithms must be used. Overall, it will be important
to improve and modify the internal thresholds and de-
crease the false match rate. In particular, the guideline
and parameters for matching and decision from ISO/IEC
19794-2 should be taken into account [12]. For users, we
highly recommend making use of the optional 3-factor
authentication which requires a valid card, PIN, and the
fingerprint. In the end, most countermeasures will affect
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the product’s performance, cost and user acceptance, but
will strengthen trust and confidence. Even when other
attacks remain possible, it will increase the effort, costs,
and skills to attack such a device in a meaningful way.

5.2 Conclusion

In this paper, we presented the fundamentals of biomet-
ric fingerprint authentication based on the example of a
new match-on-card device created by a company who
must not be named. We have analyzed the already avail-
able demo card for access control of their match-on-card
platform, which is going to be integrated into upcoming
payment and identity cards [27, 16]. The final product
version could not be evaluated because it is not released
and due to legal and ethical issues. However, this work
is intended to help developers and responsible parties to
improve this and similar systems before deployment and
point out the risks to the customers beforehand.

In summary, we have shown how software and hard-
ware hacking techniques can be used to bypass the
match-on-card device. The underlying threat model re-
quires to steal or copy the card and extract some biomet-
ric data of the user. Using these ingredients, an attacker
can exploit several design flaws to spoof the communica-
tion between the CPU and sensor. Due to this issue, it is
possible to pass arbitrary data to the biometric matching
algorithm, and this way inject digital fingerprint dum-
mies to bypass the authentication mechanism. The re-
quired biometric data will be unintentionally spread by
a user touching the card or any other object. This data
can be copied and collected using various techniques. To
demonstrate this, we have evaluated how latent finger-
prints can be photographed from surfaces like the card
itself. In addition to that, we have tested how sufficient
fingerprint dummies can be created from pictures show-
ing the palms of a victim. During this step, the attacker
normally needs to create a physical dummy, which is
an elaborate and error-prone task, as shown in [6]. In
contrast, our attack can make use of digital dummies
that vastly increase the quality, ease of use and reusabil-
ity of the dummy. Furthermore, we have demonstrated
the practical impact of leaked fingerprint templates on
a real device. In comparison to [4], this is possible even
without the effort of creating natural-looking fingerprints
from the template. In fact, we created obviously counter-
feit fingerprints that nevertheless could be used to bypass
the matching algorithm successfully.

In conclusion and with respect to the threats discussed
in [11] and [26], this device is suffering from several
kinds of attacks: the use of dummies (no liveness or
replay detection), the use of latent prints (reuse of fin-
gerprint residues) and the use of biometric lookalikes
(known template attack). The main reasons for this are

the weak matching algorithm, badly chosen thresholds
and the lack of software and hardware countermeasures.
As a consequence, an impostor can easily impersonate
another person who is enrolled and gain access to the
protected assets. For this reason and with respect to [11],
the evaluated architecture cannot be considered secure.
Compared to a PIN-protected card, nobody can prevent
that the secret key will be unconsciously leaked by touch-
ing the device, taking pictures or in various other ways.
A PIN-protected card provides way more protection be-
cause the attacker needs to guess, extort or find the writ-
ten PIN, which is at least under the control of the user.
To improve the idea of match-on-card fingerprint authen-
tication, we provide several countermeasures for the re-
sponsible people. To evaluate our test cases on this or
similar platforms, we publish our tools and examples in
a public repository [9].

Disclosure Note. The results have been disclosed to
the company before publication on July 3rd, 2018. The
company requested to remove all of their brands from the
report. The company also wants to state that the analyzed
product, a version of the company’s access card, was
discontinued and represents technology that is severely
outdated from a hardware, firmware and security fea-
ture perspective. Additionally, there are fundamental ar-
chitecture and technology differences between the com-
pany’s access control and the payment and ID offerings.
The technology and findings of the report are not rele-
vant for the company’s payment and ID products, and the
findings relate in no way to the current state of the com-
pany’s technology offering. The authors want to state
that there is no legal agreement with the company. The
analyzed cards have been ordered from the company’s
online shop, and the device is still available there. We
don’t know whether and how the architectural and tech-
nological differences impair the attacks on other devices.
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