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Abstract

An uninitialized use refers to a common coding mistake
where programmers directly use variables on the stack
or the heap before they are initialized. Uninitialized
uses, although simple, can lead to severe security con-
sequences. In this paper, we will share our experience
in gaining arbitrary kernel code execution in the latest
macOS Sierra by exploiting two uninitialized use vul-
nerabilities for Pwnfest 2016. Specifically, we first ana-
lyze the attack surface of the XNU kernel and mitigation
techniques, and then study common types of uninitial-
ized uses and potential threats. Then we elaborate on the
vulnerabilities and exploitation techniques. Lastly, we
summarize the whole exploitation and discuss the relia-
bility of the exploitation.

1 Introduction

Although not directly leading to memory corruptions,
uninitialized use has become a kind of severe security
vulnerability. The uninitialized use may result in infor-
mation leaks or control of the instruction pointer, in the
case that attackers can effectively control memory lay-
out and usage by using advanced exploitation techniques
such as stack based or heap based spraying.

Many researchers have proposed different methods or
systems to detect, eliminate, or mitigate uninitialized
uses. For example, MemorySanitizer [21] and kmem-
check [19] perform checks on each memory read and
write operation to detect uninitialized reads but they in-
cur significant overhead. STACKLEAK [22], proposed
by PaX, clears the kernel stack when returning to the user
space but it does not prevent uninitialized use in the ker-
nel heap. Kangjie Lu’s UniSan [17], which is effective in
detecting stack based and heap based uninitialized uses
and has slight overhead, requires rebuilding the source
code thus it can only be applied to open-source projects.
In short, such methods or systems are still hard to be ap-

plied to entire modern operating systems. In this paper,
we will share our experience of gaining arbitrary kernel
code execution in the latest macOS Sierra by exploiting
two uninitialized use vulnerabilities in Pwnfest 2016.

macOS Sierra is the thirteenth major release in ma-
cOS, Apple Inc.’s desktop and server operating system
for Macintosh computers. It was released to end users
on September 20, 2016. Pwnfest is a security contest
held on November 10-11, 2016, in Seoul, South Korea
that aims to improve the security of current popular
operating systems by awarding hackers that are able to
hack the latest operating systems and browsers. There
are eight main targets (listing in Table-1) for hackers in
Pwnfest 2016.

Table 1: Targets in Pwnfest 2016

Target

Microsoft Edge + Windows 10 x64 RS1
Microsoft Hyper-V + Windows Server 2016
Google Chrome + Windows 10 x64 RS1
Android 7.0 + Google Pixel
Adobe Flash + Microsoft Edge + Windows 10 x64 RS1
Apple Safari + macOS Sierra
Apple iOS 10 + iPhone 7 Plus
VMWare Workstation Pro 12 + Windows 10 x64 RS1

In Pwnfest 2016, our target was Safari on macOS
Sierra. We first exploited an info-leak vulnerability
(CVE-2017-2355) and a UAF vulnerability (CVE-2017-
2356) to gain remote code execution in the context of
Safari, when Safari processed a crafted web page. How-
ever, to win the contest and get the bonus, we needed to
escape the Safari sandbox and gain the root privilege. To
achieve this, we exploited two uninitialized value vul-
nerabilities in the kernel. This paper will focus on the
kernel exploitation. Specifically, the contribution of this



research includes:

• A detailed demonstration and analysis of exploit-
ing uninitialized value bugs to bypass modern ker-
nel mitigations such as kernel ALSR and SMAP/S-
MEP on macOS Sierra.

• State-of-the-art exploitation techniques for exploit-
ing macOS Sierra kernel.

• A systematic review of attack surfaces of macOS
Sierra.

The rest of the paper is organized as follows. We re-
view Safari, XNU kernel and the mitigations systemati-
cally in §2. Then we analyze the common types of unini-
tialized use and the potential threats in §3. We analyze
and exploit the vulnerabilities in detail in §4. We summa-
rize our exploitation and make discussion in §5. Related
work is summarized in §6. Lastly, we conclude in §7.

2 An Analysis of macOS Sierra

2.1 Safari Browser & Sandbox
Safari is developed by Apple Inc. and it is the default
browser on macOS Sierra. In this part, the process model
of Safari browser will be first introduced and then the
sandbox will be discussed. The Safari browser is com-
posed of several separated processes. Safari employs an
isolated process model and obeys least privilege princi-
ples which means each of its components can only access
limited system resources which it requires. Specifically,
Safari can be divided into four parts [11]:

• WebProcess, which is also called WebContent, is re-
sponsible for parsing HTML files, rendering DOM
objects and drawing layouts for a webpage. It deals
with Javascript and other active web contents as
well.

• NetworkProcess is responsible for network commu-
nication of a browser like loading pages, loading
resources (pictures, audios, videos) and posting re-
quests.

• PluginProcesses is responsible for managing plug-
ins of a browser like Adobe Flash.

• UIProcess is the parent process of all the other pro-
cesses mentioned before. It is responsible for dis-
patching events and messages between other pro-
cesses.

macOS uses the sandbox mechanism [7] to minimize
the damage to the system and user data if an app becomes

compromised. The kernel implements a Mandatory Ac-
cess Control (MAC) sandbox model. When a sandboxed
process tries to access some system resource, the kernel
will consult the app’s sandbox file to determine whether
to allow or to deny this operation.

Safari is also partially sandboxed. The WebProcess,
the NetworkProcess and the PluginProcesses are sand-
boxed but the UIProcess is not sandboxed. After ex-
ploiting some vulnerabilities in WebCore or JavaScript-
Core, attackers usually gain arbitrary code execution in
the sandboxed WebContent process (aka WebProcess). It
is still quite restricted to do something further so sandbox
escape is necessary.

Commonly, two different paths are available. The first
one is attacking system services which are not sandboxed
and accessible in the WebProcess sandbox. Target ser-
vices could be WindowServer, fontd, launchd, etc.. Ex-
ploiting vulnerabilities in these services help escape the
sandbox and gain root privileges (if the target service is
running as root). The other choice is exploiting kernel
vulnerabilities directly. Attackers can gain kernel priv-
ilege and break out of the sandbox at the same time by
exploiting kernel vulnerabilities. However, this way is
much harder than the first one because of the sandbox.
Only a small number of user clients are accessible from
a WebProcess sandbox (Table 2). Nevertheless, in Pwn-
fest 2016, the second way was used and two vulnerabili-
ties were exploited to gain the kernel privileges.

Table 2: User clients allowed to be opened in
WebProcess

# User Client Name KEXT Name

1 AppleUpstreamUserClient AppleUpstreamUserClient.kext
2 AppleMGPUPowerControlClient AppleGraphicsControl.kext
3 RootDomainUserClient System.kext
4 IOAudioControlUserClient IOAudioFamily.kext
5 IOAudioEngineUserClient IOAudioFamily.kext
6 IOAccelerator IOGraphicsFamily.kext
7 IOAccelerationUserClient IOGraphicsFamily.kext
8 IOSurfaceRootUserClient IOSurface.kext
9 IOSurfaceSendRight IOSurface.kext
10 IOFramebufferSharedUserClient IOGraphicsFamily.kext
11 AppleSNBFBUserClient AppleIntelSNBGraphicsFB.kext
12 IOHIDParamUserClient IOHIDFamily.kext
13 AppleGraphicsControlClient AppleGraphicsControl.kext
14 AppleGraphicsPolicyClient AppleGraphicsControl.kext
15 AGPMClient AppleGraphicsPowerManagement.kext

2.2 XNU attack surface

XNU [6] is a computer operating system developed at
Apple Inc. and is used widely as the kernel for macOS,
iOS, tvOS, and watchOS operating systems. XNU is a
recursive abbreviation of “XNU is Not Unix”. In this
part, the attack surface of XNU will be detailedly dis-
cussed.



On the top view of XNU, XNU is a hybrid kernel
which contains features of both monolithic kernels and
microkernels. XNU can be considered as a mixture of
the Mach kernel and the BSD kernel. XNU’s BSD com-
ponent uses FreeBSD as the primary codebase and it is
responsible for process management, basic security poli-
cies, BSD system calls, network stack, filesystems, etc..
XNU’s Mach component is based on Mach 3.0 devel-
oped by CMU in the middle 1980s. Mach is responsi-
ble for multitasking, memory management, process com-
munication and so on [16]. Besides BSD and Mach,
XNU contains a special driver framework called I/O Kit.
The I/O Kit [9] is a collection of system frameworks,
libraries, tools, and other resources for creating device
drivers in OS X. It is implemented in a restricted form
of C++ which omits features like multiple inheritance
and exception handling, which are unsuitable for a mul-
tithreaded kernel. It also provides user space programs
with the capability of communicating with the drivers in
the kernel.

Basically, any communication channels between the
user space and the kernel can be considered as an attack
surface. According to the XNU architecture mentioned
above, POSIX/BSD system calls, ioctl, file system and
IOKit are all large attack surface for attackers. Table 3
lists the vulnerabilities used by famous jailbreak tools.

The IOKit driver framework deserves further discus-
sion here. The IOKit is an ideal attack surface due to the
following reasons:

• Some of the device drivers are developed by third-
party companies, like the drivers for AMD graphic
cards and the drivers for NVIDIA graphic cards.
The code quality of these drivers cannot be guar-
anteed and these device drivers are more likely to
contain security flaws than those drivers developed
by Apple.

• There are hundreds of device drivers in macOS so
there is much more code involved than the XNU
kernel itself. Moreover, a majority of these drivers
are not open source and are rarely audited by re-
searchers.

• The IOKit provides dozens of API in the user space

to communicate with drivers in the kernel and each
device driver may have dozens methods for user
space programs to call, which leaves a large attack
surface for attackers.

To start a communication with an IOKit driver in the
kernel, the following three steps are usually taken:

1. Get the name of the service that the driver corre-
sponds to. The name can be obtained from the out-
put of “ioreg” command in a terminal. Then pass
the name to IOServiceMatching(), which is an
API provided by the IOKit framework, to create a
matching dictionary for the next step.

2. Pass the matching dictionary in step 1 to IOSer-

viceGetMatchingServices() to get an iterator
of all the services which match the name in the
matching dictionary. Objects in the iterator are
IOService ports, which correspond to the devices’
instances in the kernel.

3. Iterate over the iterator in step 2 and call IOSer-
viceOpen() on each port. IOServiceOpen() also
returns a port corresponding to an IOUserClient

instance. This port is necessary for the following
communication. IOServiceOpen() has an integer
parameter named type and the driver creates differ-
ent IOUserClient instances according to the type
parameter.

IOService class is the subclass to provide driver
functionality and IOUserClient class is the subclass to
provide user space interfaces. After obtaining a port of
an IOService instance or an IOUserClient instance,
several operations can be performed:

• Set properties. Properties, which are key-value
pairs, can be associated with an IOService in-
stance or an IOUserClient instance. Drivers rely
on these properties to function properly. User space
program can call IORegistryEntrySetCFProp-
erty() to set a value for a property. It is danger-
ous if a user space program can modify any prop-
erties of a driver. A driver can override the ::set-
Property() to allow a user space program to set

Table 3: Vulnerabilities used in jailbreaks

Tool Name Version Attack Surface Description

limera1n/greenpois0n iOS 4.1 ioctl DIOCADDRULE ioctl handler improper initialization
JailbreakMe 3 iOS 4.2.x file system HFS legacy volume name stack buffer overflow

Corona iOS 5.0 file system HFS heap overflow
p0sixspwn iOS 6.1.3 POSIX System Calls posix spawn improperly checks file action data
evasi0n7 iOS 7.0.x ioctl ptmx get ioctl out-of-bounds memory access



properties. To ensure safety, privilege checks are
necessary to prevent unprivileged user space pro-
grams from modifying sensitive properties. CVE-
2016-1825 [10] showed the severity of lacking priv-
ilege checks. The vulnerability lied in IOHIDe-

vice driver which overrode the ::setProperty()
but did not check the privilege. Thus an un-
privileged user space program could set arbitrary
properties on an IOHIDevice instance. If an at-
tacker set the IOUserClientClass key with the
value of IOPCIDiagnosticsClient and then call
IOServiceOpen() on this IOHIDevice instance,
the attacker would obtain an IOPCIDiagnostic-

sClient instance which would give the attacker ar-
bitrary read/write capability over the kernel map.

• Call methods. Drivers provide several methods for
user space programs to exchange data. These meth-
ods are called external methods. A driver may have
several user clients and each user client may have
several external methods. Each method takes nine
parameters. The first parameter is a unique integer
named selector which is an ID of this method in a
driver. The following four parameters are four types
of input/output, they are scalarInput which refers
to integer inputs, structureInput which refers to
binary value inputs, scalarOutput which refers to
integer outputs and structureOutput refers to bi-
nary value outputs. The last four parameters are
four integers to specify the length of scalar/struc-
ture inputs/outputs. User space programs can in-
voke these external methods via IOConnectCall-

Method(). This API takes a port of a user client, a
selector, four inputs/outputs and four lengths. The
kernel checks whether these parameters are valid
and the lengths match the lengths pre-defined in
the driver’s binary file. Then these parameters are
passed to the external method according to the se-
lector if all checks are passed. If the kernel de-
tects that invalid parameters are supplied, IOCon-
nectCallMethod() returns fail immediately.

• Shared memory. User space programs can ask
the user clients for shared memory via IOCon-

nectMapMemory(). The driver should override
its ::clientMemoryForType() and manages its
shared memory itself. In the past many drivers have
problems dealing with shared memory and the most
common type is race condition.

• Notification. A User space program can regis-
ter a notification port for a user client instance
via IOConnectSetNotificationPort() and re-
ceives notification messages on this port later when
a certain event happens . The first vulnerability used

in Pwnfest 2016 is related to this notification mech-
anism and will be further discussed in §4.

2.3 Mitigations
Modern operating systems have spent great effort on
hardening their kernels and have implemented lots of
mitigations that make the vulnerabilities much harder to
exploit or even make some kinds of vulnerabilities not
exploitable. In this part, some general mitigations will
first be discussed and then new mitigations added in ma-
cOS Sierra will be discussed in detail.

KASLR. Address Space Layout Randomization [1]
(ASLR) which is a computer security technique involved
in preventing exploitation of memory corruption vulner-
abilities. KASLR means that this randomization is ap-
plied in the kernel space. It is first introduced in OS X
Mountain Lion (Mac OS X 10.8). However, KASLR is a
little bit weaker than user space ASLR because the ker-
nel and the kernel extensions share the same slide while
user space ASLR ensures that each module (the main
program and the dynamic libraries) has a unique slide
which makes it harder for attackers to determine the tar-
get address to jump/call.

WˆX. Write XOR eXecute [5] (WˆX) is the name of a
security feature in macOS since OS X 10.4. It is a mem-
ory protection policy which enforces each memory page
to be either writable or executable but not both. This pol-
icy applies to both user space and kernel space memory
pages including the stack and the heap.

SMEP. Supervisor Mode Execution Protection [3]
(SMEP) is a CPU-level feature which prevents the ker-
nel from executing code in user space. The 20th bit of the
CPU’s control register CR4 indicates the state of SMEP.
If this bit is set, execution of code in a higher ring gener-
ates a fault.

SMAP. Supervisor Mode Access Protection [2]
(SMAP) is another CPU-level feature which prevents the
kernel from accessing data in the user space. It is im-
plemented to complement SMEP which only prevents
X (execute) and extends the protection to RW (read &
write). SMAP is indicated by the 21st bit of CR4. SMAP
is only available for CPUs newer than Intel’s Broadwell
microarchitecture. In other words old macs are not pro-
tected by SMAP.

SIP. System Integrity Protection [4] (SIP or root-
less) is a security feature introduced in OS X El Cap-
itan. It protects system files and directories that are
flagged for protection. Even a process with root privi-
lege cannot modify the files/directories protected by SIP
unless the process holds a special entitlement named
com.apple.rootless.install which is only distributed by
Apple and is only contained in few products developed
by Apple.



New mitigations - hardened heap. First of all, all
zones in the kernel heap use metadata now. A page
metadata struct represents a virtual page (4KB). Ac-
cording to the definition of zone page metadata (List-
ing 1), different page metadata can be linked together
by pages. Each virtual page maintains a freelist and
freelist offset specifies the head of the free list in
this page. free count indicates how many free ele-
ments are available in this page. zindex indicates what
zone this page belongs to. real metadata offset and
page count are used in multipage allocation. By map-
ping a virtual page to a page metadata struct the kernel
is able to track all the memory it allocates and eliminates
the free-to-wrong-zone attack [23] (Figure 1), which can
now be detected by comparing the zindex in a page’s
metadata with the zone the memory is about to free to.
Secondly, the zone allocator now poisons freed mem-
ory. The freed memory in kalloc zones whose size
is smaller than a CPU-cache-related value will be poi-
soned to 0xdeadbeefdeadbeef. Zones of larger sizes
will be poisoned periodically and the period is related
to zone’s size. This change in the zone allocator makes
uninitialized use vulnerabilities impossible to exploit in
small zones and harder to exploit in large zones. In OS
X EI Capitan, the first 8 bytes of a free element is a
free pointer. It points to the next free element in the
same zone. In macOS Sierra, this pointer is xor-ed with
the zp nopoison cookie and thus it always points to
an invalid address. This change eliminates the point-to-
free-vtable attack (Figure 2), which is a useful and stable
exploitation technique in exploiting UAF vulnerabilities,
especially UAFs caused by race condition. This attack
takes advantages of the fact that the virtual table lies at
the same position as the free pointer. By putting the fake
virtual table in the next free element, the execution flow
will be hijacked if a virtual call is invoked on the freed
object.

Listing 1: Definition of struct page metadata
struct zone_page_metadata {

queue_chain_t pages;

union {

uint32_t freelist_offset;

uint32_t real_metadata_offset;

};

uint16_t free_count;

uint8_t zindex;

uint8_t page_count;

};

3 An Analysis of Uninitialized Use

Uninitialized use is a common programming mistake and
some types of uninitialized use are really hard to dis-
cover. In this part, the common causes and the potential
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threats will be discussed in detail.

3.1 Common Types
There are five types of coding mistakes that will cause
uninitialized use:

1. Missing field initialization or partial initialization.
In Listing 2, the field a is not initialized and then v

is memcpy-ed into out buffer. If this is a function
in the kernel space and out buffer is eventually
sent to the user space, this causes 8-byte uninitial-
ized kernel heap data leaking to the user space. Ac-
tually, the first vulnerability used in our exploitation
is of this type.

2. Uninitialized stack variables. This type of unini-
tialized use refers to a situation that a programmer
allocates a stack variable but does not initialize it
before using this stack variable (Listing 3). The
second vulnerability used in our exploitation is of
this type.



Listing 2: Partial initialization
void vul_f(char* out_buffer){

typedef struct vul{

uint64_t a;

uint32_t b;

uint32_t c;

}vul_t;

vul_t* v = malloc(sizeof(vul_t));

v->b = 0x1234;

v->c = 0x5678;

memcpy(out_buffer, v, sizeof(vul_t));

}

Listing 3: Uninitialized stack variables
uint64_t vul_f(){

uint64_t local_vul;

not_always_initialize(&local_vul);

return local_vul;

}

3. Buffer partial copy. In Listing 4, a buffer
vul buffer is allocated from the heap with a
fixed size MAX LABEL LENGTH. However, the mem-
cpy copies length bytes of data into vul buffer
and if length is smaller than MAX LABEL LENGTH,
this will leave some bytes at the end of vul buffer
uninitialized.

Listing 4: Buffer partial copy
char* vul_f(char* short_buffer, int length){

#define MAX_LENGTH 0x20

char* vul_buffer = malloc(MAX_LENGTH);

memcpy(vul_buffer, short_buffer, length);

return vul_buffer;

}

4. Buffer over copy. In Listing 5, a buffer
over copy buffer is allocated on the stack with
a fixed size 0x200. The function init initialize
over copy buffer and return the actual length of
over copy buffer in length. This length is
supposed to be used in memcpy but the programmer
makes a mistake and supplies memcpy with a fixed
size 0x200. This also copies some uninitialized val-
ues on the stack which causes an info leak.

Listing 5: Buffer over copy
void vul_f(char* out_buffer){

// out_buffer can hold up to 0x200 bytes

char over_copy_buffer[0x200];

int length = init(over_copy_buffer);

// should use length instead of 0x200

memcpy(out_buffer, over_copy_buffer, 0x200);

}

5. Struct padding bytes. This is a kind of uninitialized
use which is not caused by coding mistakes but a
complier feature. Generally, it is much faster to ac-
cess an aligned memory address by the processor

than an unaligned address. For better performance,
the complier tends to add padding bytes within a
structure to properly align its fields. In Listing 6,
the complier pads 7 bytes at the end of field b so
that the whole structure vul is aligned to 8-bytes
(on x86 64). Although the following code initial-
ized all the fields of vul, however the last 7 bytes
will never be initialized. All 16 bytes are memcpy-
ed into out buffer thus causing a leak. This type
of uninitialized use is really hard to notice by the
programmers since the padding bytes are added by
the complier and the programmers are not aware of
the existence of these padding bytes.

Listing 6: Struct padding bytes
void vul_f(char* out_buffer){

typedef struct vul{

uint64_t a;

boolean_t b;

}vul_t;

vul_t* v = malloc(sizeof(vul_t));

v->a = 0x1234;

v->b = true;

memcpy(out_buffer, v, sizeof(vul_t));

}

4 Exploitation

Uninitialized use issue is actually small negligence of
programmers but it may cause really bad consequences.
Some types of uninitialized use may cause info leaks
which defeat (K)ASLR while some types may lead to
code execution. In this section, we will show you how
to exploit the macOS kernel with two uninitialized use
vulnerabilities. In our exploitation, two vulnerabilities
were exploited - one for an info leak and another for code
execution. Both could be classified as uninitialized use
vulnerabilities. We turned the first vulnerability into an
info leak since the uninitialized data can be retrieved by a
user space program. We first found an appropriate object
to taint the kernel heap with some sensitive information
(function pointer). Then we figured out a way to trig-
ger the vulnerability inside the WebProcess sandbox and
retrieved the function pointer. We subtracted the base ad-
dress in the kernel binary from this pointer and obtained
the kernel slide. We used the second vulnerability to ex-
ecute arbitrary code in the kernel. We first figured out a
way to taint the kernel stack with an address of a object
we faked on the kernel heap. Then we faked a virtual
table in the fake object and hijacked the execution flow
when a virtual call was invoked. Next, we used a small
chain of ROP gadgets to disable SMEP and SMAP. Fi-
nally, we jumped to the shellcode in the user space, es-
calated the privilege to ROOT, did some fix-up and then
exited.



4.1 Part I CVE-2017-2357

In this part, we show how we exploited an uninitialized
use vulnerability caused by partial initialization by turn-
ing it into an info leak and using it to bypass KASLR.
The vulnerability was in IOAudioFamily (≤204.4) [8],
whose source code is available on Apple’s OpenSource
website. The driver for IOAudioFamily is reachable
from the WebProcess sandbox.

4.1.1 Vulnerability Analysis

According to §2, IOKit provides a notification mecha-
nism for the drivers in the kernel to send notification
messages to the ports registered to them. IOAudioFam-
ily, which is a base family for audio drivers, supports
this notification mechanism as well. IOAudioContro-

lUserClient, which is a user client of IOAudioFamily,
allows user space programs to register a notification port
via IOConnectSetNotificationPort(). IOAudio-

ControlUserClient overrides ::registerNotifi-

cationPort() to implement its own mechanism. List-
ing 7 is a code snippet of ::registerNotificationPort():

Listing 7: A snippet of ::registerNotificationPort()
IOReturn IOAudioControlUserClient::

registerNotificationPort(mach_port_t port,

UInt32 type, UInt32 refCon)

{

...

if (notificationMessage == 0) {

notificationMessage = (

IOAudioNotificationMessage *)

IOMallocAligned(sizeof(IOAudioNotificationMessage),

sizeof (IOAudioNotificationMessage *));

if (!notificationMessage) {

return kIOReturnNoMemory;

}

}

notificationMessage->messageHeader.msgh_bits =

MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0);

notificationMessage->messageHeader.msgh_size =

sizeof(IOAudioNotificationMessage);

notificationMessage->messageHeader.

msgh_remote_port = port;

notificationMessage->messageHeader.

msgh_local_port = MACH_PORT_NULL;

notificationMessage->messageHeader.msgh_reserved

= 0;

notificationMessage->messageHeader.msgh_id = 0;

notificationMessage->ref = refCon;

...

}

The function first checked if notificationMes-

sage existed and allocated one if not via IOMallo-

cAligned(). However, IOMallocAligned() never ze-
roes out the memory it allocates. Then the function set
some fields of notificationMessage and returned. It
seems clear that this function was designed to prepare a

notification message - it set the message’s bits, size, des-
tination port. Moreover, IOAudioControlUserClient
would reuse this notificationMessage during its life
cycle since this notificationMessage would only be
allocated the first time registerNotificationPort()
is called . Listing 8 shows the definition of IOAudioNo-
tificationMessage.

Listing 8: Definition of IOAudioNotificationMessage
typedef struct _IOAudioNotificationMessage

{

mach_msg_header_t messageHeader;

UInt32 type;

UInt32 ref;

void * sender;

} IOAudioNotificationMessage;

According to the definition, an IOAudioNotifica-

tionMessage object contains a mach msg header mes-
sageHeader, a 4 bytes uint type, a 4 bytes uint ref and
an 8 bytes pointer sender. registerNotification-

Port() only initialized messageHeader & ref and left
type & sender uninitialized.

When the system audio volume changes, IOAudio-
ControlUserClient will send a notification message
to the port registered before via sendChangeNotifi-

cation() (Listing 9). sendChangeNotification()

set the type field of notificationMessage and then
sent this notificationMessage to user space via
mach msg send from kernel().

Listing 9: A snippet of sendChangeNotification
void IOAudioControlUserClient::sendChangeNotification

(UInt32 notificationType)

{

if (notificationMessage) {

kern_return_t kr;

notificationMessage->type = notificationType;

kr = mach_msg_send_from_kernel(&

notificationMessage->messageHeader,

notificationMessage->messageHeader.

msgh_size);

if ((kr != MACH_MSG_SUCCESS) && (kr !=

MACH_SEND_TIMED_OUT)) {

IOLog("IOAudioControlUserClient:

sendRangeChangeNotification() failed

- msg_send returned: \%d\n", kr);

}

}

}

Note that sender never got initialized since noti-

ficationMessage was allocated and the message was
then sent to the user space, which would leak 8 bytes of
kernel heap data to user space.

To recap, open an IOAudioControlUserClient via
IOServiceOpen(), register a notification port via IO-

ConnectSetNotificationPort(), change the system
audio volume (or other actions that can fire the audio



event) and our user space program will retrieve a mes-
sage with 8 bytes of kernel heap data.

4.1.2 Exploiting the Vulnerability

Exploiting this vulnerability is not trivial. First, after a
complete manual inspection, we confirmed that sender,
which could be totally under control, had no effects on
kernel execution. In other words, we could not hijack
kernel execution through sender. Second, although we
could achieve a stable leak through this vulnerability, the
leaked information is limited. We still need to transform
a limited leak to a KASLR bypass.

Collect Basic Info of the Vulnerable Object. First,
we have to find out the size of IOAudioNotifica-

tionMessage. Note that notificationMessage is al-
located via IOMallocAligned() which will align the
memory according to the second parameter of IOMal-
locAligned(). In this case, the alignment is the size
of a pointer, which is 8 bytes. Moreover, IOMallo-

cAligned() allocates an extra 0x10 bytes (in debug ver-
sion of kernel it is 0x18 bytes) to store some metadata
of this allocation (the allocation size and the allocation
address). Furthermore, the address returned by IOMal-

locAligned() is 0x10 bytes away from the real alloca-
tion address to jump over the metadata header. The size
of IOAudioNotificationMessage is 0x30 and taking
the header and the alignment into consideration, IOAu-
dioNotificationMessage is eventually allocated in
kalloc.80 and the offset of sender is 0x38 (Figure 3).

allocation size

allocation address
IOMalloc header

Owned by process

Return address

mach msg header

type ref

sender

+ 0x8

+ 0x30

+ 0x38

+ 0x40

+ 0x50

alignment
(not used)

(+ 0x10)

+ 0x0

Figure 3: IOAudioNotificationMessage layout

Find Candidate Object and Leak Sensitive Infor-
mation. In order to get some data we are interested
in, we have to taint the kernel heap before notifica-

tionMessage is allocated. In XUN, the heap memory
is divided into different zones by size. Objects are allo-
cated into different zones according to their sizes. The
kalloc.80 zone holds objects whose size is bigger than

0x40 bytes and smaller than or equal to 0x50 bytes. We
developed a small tool to extract the sizes of IOKit ob-
jects with the help of IDA pro. We call an object a can-
didate object if its size meets the requirement. We found
93 candidate objects in the kernel and kernel extensions
(KEXT).

We call an object a target object if it meets following
requirements:

• It must contains an interesting value at the offset of
0x38 like a heap address, an address in the TEXT
segment or something else.

• It must be reachable from a WebProcess sandbox.

For the first requirement, an address in the TEXT seg-
ment would be the best choice since this directly gives
us the kernel slide. A heap address is also a good choice
if we have an arbitrary-read primitive. For the second re-
quirement, since the kernel is reachable from any sand-
box, we first search for target objects in the kernel. For
an additional requirement, if the object is sprayable, the
stability and success rate will be greatly improved.

We finally found a target object called OSSerialize

which is used when the kernel serializes data. Its size
is 0x50 and the member at +0x38 is an Editor called
editor (Listing 10). According to the definition of Ed-
itor (Listing 11), editor is actually a function pointer.
In IORegistryEntryCreateCFProperties(), an
OSSerialize object is first allocated and then the
editor is set to the address of GetPropertiesEdi-

tor(), which is another function in the kernel. When
IORegistryEntryCreateCFProperties() exits,
the OSSerialize object is then deallocated. If we
can get notificationMessage to reuse this freed
memory and we will retrieve the address of GetProp-
ertiesEditor(). By subtracting the base address of
GetPropertiesEditor() in the kernel binary from
the leaked address we can obtain the kernel slide.

Listing 10: Definition of OSSerialize
class OSSerialize : public OSObject

{

...

private:

char * data;

unsigned int length;

unsigned int capacity;

unsigned int capacityIncrement;

OSArray * tags;

bool binary;

bool endCollection;

Editor editor;

void * editRef;

...

}



Listing 11: Definition of Editor
typedef const OSMetaClassBase * (*Editor)(

void* reference,

OSSerialize* s,

OSCollection* container,

const OSSymbol* name,

const OSMetaClassBase* value);

Make the Memory Flashing. However, OSSerial-
ize is not perfect because we cannot control when to
free the OSSerialize object. The object is allocated
and deallocated within a single function call. During
the interval between the deallocation and reallocation,
the freed memory might be used by other objects since
kalloc.80 is an active zone. Moreover, we cannot spare
large numbers of OSSerialize objects for the same rea-
son.

All these disadvantages make the exploitation unsta-
ble. However, we develop a technique named “flash-
ing”. It keeps allocating and deallocating the OSSerial-
ize objects by keep calling IORegistryEntryCreate-
CFProperties() in several threads. This makes some
memory regions be allocated and deallocated quite fre-
quently and OSSerialize objects look like flashing on
the heap.

By flashing the heap, as long as notificationMes-
sage falls into these flashing regions, we are able to leak
the function pointer stably.

Trigger the Vulnerability in Sandbox. As we men-
tioned before, we have to fire an audio event to trig-
ger the vulnerability by changing the system volume or
some other operations. We can achieve this by pressing
the “volume up” or the “volume down” button on our
keyboard. However in a security contest like Pwnfest
or pwn2own, the participants are not allowed to interact
with the PC when the exploitation is running. So we need
to do this in a programmatically manner.

We can also trigger the vulnerability by setting a
value for a property called IOAudioControlValue via
IORegistryEntrySetCFProperties(). However, the
WebProcess sandbox does not allow to set this property.
By greping IOAudioControlValue, we found coreau-
diod, which is a daemon service located in /usr/sbin,
can set this property. coreaudiod is also responsible for
mach service com.apple.audio.coreaudiod. Luck-
ily, according to the WebProcess’s sandbox file, WebPro-
cess is allowed to communicate with this service. As a
result, we can instruct coreaudiod to change the vol-
ume and trigger the notification event.

A One-shot-more-kill Way. As we discussed be-
fore, an IOAudioControlUserClient object can only
hold one notificationMessage and this means a sin-
gle user client instance can leak only once.

We use a small trick to leak several times but only
trigger the vulnerability once. We first create many

Figure 4: WebProcess can talk to coreaudiod

IOAudioControlUserClient objects through IOSer-

viceOpen(). Then we register different notification
ports for each IOAudioControlUserClient instance
via IOConnectSetNotificationPort(). Each IOAu-

dioControlUserClient allocates a notification-

Message with 8 bytes uninitialized data. If we trigger the
vulnerability, each IOAudioControlUserClient will
send a notification message to our user space program
with 8 bytes leak data. As a result, we can leak several
times by triggering the vulnerability once.

Chain All Pieces Together. To chain up, we use the
following four steps to exploit this vulnerability and by-
pass KASLR:

1. Create 8 separate threads which keep calling
IORegistryEntryCreateCFProperties().

2. Create 32 IOAudioControlUserClient in-
stances and register a unique port for each user
clients instance.

3. Trigger the vulnerability by communicating with
coreaudiod service.

4. Retrieve the leak data and treat the most com-
mon address as the address of GetPropertiesEd-
itor().

5. Subtract the base address of GetPropertiesEdi-
tor() from the leaked address and obtain kernel
slide.

4.2 Part II CVE-2017-2358
In this part, we will show how to exploit an uninitialized
use vulnerability caused by uninitialized stack variable to
gain arbitrary code execution. The vulnerability lied in
kernel extension AMDRadeonXx000 (x may vary on dif-
ferent platforms). The extension is the driver for AMD’s
graphic card and it is closed-source. The driver is also
reachable from the WebProcess sandbox. We take AM-

DRadeonX4000 as an example while other versions are
almost the same.



4.2.1 Vulnerability Analysis

As we mentioned in §2, drivers provide external meth-
ods for user space programs to call. AMDRadeonX4000

also implements several external methods. The
vulnerability existed in the external method AM-

DRadeonX4000 AMDSIGLContext::SurfaceCopy()

with a selector of 0x201. This external method even-
tually invoked AMDRadeonX4000 AMDAccelShared::

SurfaceCopy(), in which a local stack variable was
not initialized before it was used.

In Listing 12 (irrelevant code is omitted), two local
variables, v46 and v47, were declared but they were not
initialized. Then their memory addresses were passed
to IOAccelShared2::lookupResource(). The fol-
lowing check ensured v46 and v47 are both non-
zero and two virtual calls were invoked on v46

and v47 afterwards. SurfaceCopy() assumed that
lookupResource() would always initialize v46 and
v47. lookupId() (Listing 13), which actually imple-
ments lookupResource(), took 2 arguments a2 and
a3. a2 was a resource id and a3 was a stack address
to store the resource object. lookupId() first checked
if the required resource id was smaller than the maxi-
mum id. It would returned 0 immediately if a2 was in-
valid. Then a2 was treated as an index into a resource
array and RAX was retrieved from this array. If RAX

was not zero, it was treated as a valid resource object
and it was stored in *a3. If RAX was zero the function
returned 0 immediately and *a3 would not be set. In
short, lookupResource() would initialize the resource
object only if a valid resource id was supplied. How-
ever, in SurfaceCopy(), we can control the id passed to
lookupResource() since a2 is user’s structure input.
As a result, if we supply a structure input which contains
an invalid resource id, v46 and v47 will never be initial-
ized and invoking a virtual call on v47 or v46 causes a
panic.

4.2.2 Exploit the Vulnerability

Control the Stack. The first thing we should think about
is how to put the stack in a control state because gener-
ally the values on the stack are almost random - they are
“junk” values left by previous function calls. In order to
control pc, we have to first control the value of the unini-
tialized stack variable.

We found an external method (selector 7333) in AGPM-
Client that could help us control the stack. Accord-
ing to Listing 14, it copies user-controlled bytes (spec-
ified by a2->structureInputSize and at most 4096
bytes ) of user-controlled non-zero data (specified by a2-
>structureInput) onto the stack. By calling this func-
tion, we can easily control the value of the uninitialized
stack variable.

Listing 12: A snippet of SurfaceCopy() (decompiled by
IDA Pro)

__int64 __fastcall AMDRadeonX4000_AMDAccelShared::

SurfaceCopy(IOAccelShared2 *this, __int64 a2,

__int64 a3, __int64 a4)

{

// local variable declaration

...

IOAccelResource2 *v46; // [rsp+38h] [rbp-88h]@9

void *v47; // [rsp+40h] [rbp-80h]@9

...

// code

...

IOAccelShared2::lookupResource(this, *(_DWORD *)(a2

+ 8), &v47);

IOAccelShared2::lookupResource(this, *(_DWORD *)(a2

+ 4), (void **)&v46);

v6 = -536870206;

if ( !v47 || !v46 )

goto LABEL_41;

v12 = (*(__int64 (**)(void))(*(_QWORD *)v47 + 368LL

))();

v13 = (*(__int64 (**)(void))(*(_QWORD *)v46 + 368LL

))();

...

}

Listing 13: A snippet of lookupId() (decompiled by IDA
Pro)

char __fastcall IOAccelNamespace::lookupId(

IOAccelNamespace *this, unsigned int a2, void **

a3)

{

if ( *((_DWORD *)this + 6) <= a2 )

return 0;

_RAX = *(void **)(*((_QWORD *)this + 2) + 8LL * a2)

;

if ( !_RAX )

return 0;

*a3 = _RAX;

__asm { prefetcht0 byte ptr [rax] }

return 1;

}

Listing 14: A snippet of the method in AGPMClient (F5
code generated by IDA Pro)

case 7333:

kprintf("kAGPMSetPlimit plimit = %llu type = %s\n

", *a2-> scalaInput, a2-> structureInput);

v14 = (char *)&v19 - ((a2->structureInputSize + 1

+ 15LL) & 0xFFFFFFFFFFFFFFFF0LL);

strncpy(v14, (const char *)a2->structureInput, a2

->structureInputSize);

The next question is which value should we “initial-
ize” for the uninitialized stack variable. Generally we
have two choices. One choice is a pointer that points
to an object we fake on the heap. Another is a pointer
points to a real object on the heap. The aim of the sec-
ond choice is to hopefully build an arbitrary read/write
primitive by turning this vulnerability into a type confu-
sion. However, SurfaceCopy() is a really complicated



function and it is hard to find an candidate object that can
survive the following several virtual calls. So we chose
the first choice. We fake an object and a virtual table
on the heap and taint the stack to make the uninitialized
stack variable point to this fake object.

Fake Object(s). Assuming that we fake an object in
the kernel heap, how can we know the exact address of
our fake object since the kernel heap address is also ran-
domized during each boot. We also have two choices
here.

The first choice is to reuse the info leak vulnerability
to leak the address of our fake object. The info leak vul-
nerability gives us the capability of reading 8-bytes from
an object in kalloc.80 at the offset of 0x38. So we
have to find an object which locates in kalloc.80 and
contains a buffer pointer at the offset of 0x38. Also, the
user space program should be able to control the content
of the buffer. It is quite hard to find such a target ob-
ject. Moreover, we need to first allocate large numbers
of such target object which contains our target buffer and
then deallocate them to taint the heap (target buffers will
be deallocated automatically at the same time). Then we
have to get notificationMessage structures to reuse
this tainted memory and trigger an audio event to leak
some heap addresses. Finally, we deallocate these noti-
ficationMessage structures and reallocate target ob-
jects and buffers to cover those leaked heap addresses.
There are twice free-refill operations involved which will
definitely make the exploitation unstable.

The second choice is leveraging the weakness of
heap randomization. First of all, the zone starts at
zone map min address which is heavily dependent on
the kernel slide (Table 6, Figure 6). The kernel slide is at
most 0x20000000 (512 MB). Secondly, the heap alloca-
tion always starts from low address to high address and
the allocation at high addresses tend to be linear (Fig-
ure 5). Thus if we first spray 512MB * 2 (512 MB for
defragment and 512 MB for compensation for KASLR)
to raise the heap to a relatively high address then the fol-
lowing allocation is much easier to predict. We choose
to spray 2 GB of fake objects to ensure our fake objects
always cover a relatively high heap address (we choose a
fixed high address 0xffffff8060010110).

We use vm map copy struct to spray in the kernel heap
since it is following advantages:

• It is very fast. It takes less than one second to spray
4 GB data on the heap.

• It has small side effects because it creates no addi-
tional objects.

• We can control the size of the spray data (up to
0x1000 bytes) and the content of the data as well.
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Figure 5: Linearity of heap allocations

The only restriction of vm map copy is that we can-
not control the first 0x18 bytes of the data since it is the
header struct used by vm map copy. However, we can
adjust the value on the stack and jump over this header.

We put our fake object at the offset of 0x110 to jump
over the uncontrollable header and set the value on the
stack to be 0xffffff8060010110. The first 8 bytes of
our fake object is a virtual table pointer. We point it to
the offset of 0x800, where we put our ROP [20] stack.

vm_map_copy header

Padding
Fake vtable ptr

Fake object

ROP stack

+0x110

+0x800 4K

Figure 7: Layout of our fake object

The ROP Chain. In the ROP chain, we first use
some JOPs [12] to store several important registers
and then call a stack pivot. The ROP chain disables
SMEP & SMAP and then returns to the shellcode in
the user space. After the shellcode returns, the rest
of ROP chain re-enables SMEP & SMAP and returns
to thread exception return() to get back to user
mode. The whole exploitation finishes.

By clearing the 20th and 21st bits of Control Regis-
ter 4 (CR4) we are able to disable SMEP & SMAP and



Table 4: Zone start address vs. kslide

# zone map min address (with kslide) kslide zone map min address (without kslide)

1 0xffffff8012b0f000 0xcc00000 0xffffff8005f0f000
2 0xffffff800a495000 0x4600000 0xffffff8005e95000
3 0xffffff801eeeb000 0x19000000 0xffffff8005eeb000
4 0xffffff801cb6c000 0x16c00000 0xffffff8005f6c000
5 0xffffff80189cc000 0x12a00000 0xffffff8005fcc000
6 0xffffff80210d8000 0x1b200000 0xffffff8005ed8000
7 0xffffff80116be000 0xb800000 0xffffff8005ebe000
8 0xffffff8024429000 0x1e400000 0xffffff8006029000
9 0xffffff80229d4000 0x1ca00000 0xffffff8005fd4000

10 0xffffff800aaab000 0x4c00000 0xffffff8005eab000
11 0xffffff801721f000 0x11200000 0xffffff800601f000
12 0xffffff80149b2000 0xea00000 0xffffff8005fb2000
13 0xffffff801beae000 0x16000000 0xffffff8005eae000
14 0xffffff8020078000 0x1a000000 0xffffff8006078000
15 0xffffff800e5fd000 0x8600000 0xffffff8005ffd000
16 0xffffff801ad63000 0x14e00000 0xffffff8005f63000
17 0xffffff800aeea000 0x5000000 0xffffff8005eea000
18 0xffffff800c6b5000 0x6800000 0xffffff8005eb5000
19 0xffffff801f741000 0x19800000 0xffffff8005f41000
20 0xffffff80158b6000 0xfa00000 0xffffff8005eb6000

Figure 6: Zone start address vs. kslide



then jump to our shellcode in the user space. There are
gadgets in the kernel which help us manipulate CR4:

• read CR4: mov rax, cr4 ,..., ret

• Write CR4: mov cr4, rax ,..., ret

5 Discussion

The whole exploitation takes the following seven steps:

1. Taint the kernel heap by allocating large numbers
of the target objects and then deallocating them all.
The target object is allocated in kalloc.80 and
contains a function pointer at the offset 0x38

2. Create many user client instances and register dif-
ferent ports for them to allocate the vulnerable no-
tificationMessage structures which reuse the
tainted heap memory.

3. Trigger an audio event by instructing the coreau-

diod service to set the system volume and retrieve
an address of a kernel function which helps bypass
KASLR.

4. Spray our fake objects which contain a fake virtual
table and a ROP stack in the kernel heap and set
up the shellcode in the user space to prepare for the
second part of our exploitation.

5. Taint the kernel stack by calling an external method
in AGPMClient.

6. Trigger the second vulnerability by call-
ing the vulnerable external method in AM-

DRadeonX4000 AMDSIGLContext user client.

7. Escalate the privilege and do some cleanup in the
shellcode.

There are two special notes for this exploitation. The
first one is what we call “common stack hazard”. In our
tests, we found that the stack used in kernel mode var-
ied from time to time. Sometimes the kernel might use
a common stack which might have been used by other
kernel threads before while sometimes the kernel might
use a totally clear stack. If we enter the kernel mode with
a clear stack in step 6 the kernel will panic immediately.
We used an eclectic approach to avoid these bad cases by
tainting the kernel stack several times in step 5 to cover as
many kernel stacks as possible. The second one is about
the cleanup. The SurfaceCopy() holds a lock of AMD
driver and we have to drop it in our shellcode. Otherwise,
the screen will freeze after the exploitation returns since
the other functions in AMD driver are all blocked by the
lock.

The exploitation is very reliable. According to our
test, the exploitation only failed 3 times out of 50 tries,
which gives 94% success rate. There are 3 weaknesses
that could cause the exploitation to fail:

• Kernel slide leakage failure. We must let notifi-
cationMessage reuse the heap memory tainted by
us before. However, if the notificationMessage
does not reuse the heap memory, we will get the
wrong kernel function address thus the kernel slide
calculated will also be incorrect and exploitation
will definitely fail. We are able to reduce the possi-
bility of this situation by allocating large numbers
of notificationMessage objects and checking
whether the calculated kernel slide is valid(it should
be 2MB aligned and smaller than 0x20000000). Ac-
cording to our test, we never fail due to an incorrect
kernel slide.

• Heap spray failure. We assume the fixed address(
0xffffff8060010110) is always occupied by our
fake objects. However, in theory, this fixed address
could also be used before we spray. In this case, the
exploitation would fail. According to our test, the
fixed address can always be occupied by our fake
objects.

• Common stack hazard. According to our test, the
exploitation failed 3 times and they are all caused
by “common stack”. The “common stack” seems
to be a feature of macOS and although we taint the
kernel stack several times in step 5, there are still
cases that we enter kernel mode with a clear stack.
The “common stack” is the Achilles’ heel of the ex-
ploitation.

For the first vulnerability, the technique used is not
universal and it takes lots of time hunting for the target
object which leaks a function pointer. For the second
vulnerability, the technique of spraying memory and the
technique of locating fake object are universal and can be
used in other exploitations. The technique used to disable
SMEP & SMAP is dependent on the kernel binary since
it requires gadgets to manipulate CR4.

As we can see in the analysis, these two vulnerability
are both caused by small coding mistakes or negligence.
As a result, it is always a good programming habit to zero
out the newly allocated memory and set an initial value
for a local variable before it is used by others.

6 Related Work

Exploitation techniques. The main idea of exploiting
uninitialized use vulnerabilities is to control the uninitial-
ized variable. Kees Cook [13] gave a talk about exploit-
ing an uninitialized stack variable vulnerability in detail.



He overlapped the uninitialized stack variable in the vul-
nerable code path by a local variable(of type char[32]),
in another code path within the same function. By con-
trolling the uninitialized stack variable, he could write
an arbitrary value to an arbitrary address. Mercy [18]
demonstrated the stack-reuse technique to exploit unini-
tialized stack vulnerabilities. Halvar Flake [14] proposed
an algorithm to find out all the code paths which had
overlapped stack frame within a function. By analyzing
the offsets of the local variables in the overlapped stack
frame this helps to quickly find the way to control the
uninitialized variable.

Kernel data leak detection and prevention. PaX
proposed a plugin called STACKLEAK [22] which
aimed at preventing data leakage from the kernel stack
by clearing the used kernel stack before return to user
space. Split kernel [15] however, clears the stack frame
at ever time a function is called. Both STACKLEAK and
Split kernel are able to prevent data leaking from ker-
nel but they could impose significant overhead. Another
weakness is that they cannot detect nor prevent data leak-
age from the kernel heap. K Lu proposed UniSan [17],
which is a compiler-based approach to eliminate data
leaks from both kernel stack and heap. However, UniSan
requires re-compiling the source code and cannot be ap-
plied to those close-source projects.

Uninitialized use vulnerabilities discovery. XB
Chen [24] proposed two kinds of fuzzing strategies, ac-
tive fuzzing and passive fuzzing, to fuzz iOS IOKIT
bugs. Active fuzzing refers to supplying all kinds of
possible test cases to IOKIT and passive fuzzing refers
to hook some kernel APIs and modify the parameters
passed to IOKIT. However uninitialized use vulnerabil-
ities do not always crash the kernel hence they are far
more difficult to be caught by fuzzing than code execu-
tion vulnerabilities.

7 Conclusion

This paper discusses the whole exploitation chain of a
local-privilege-escalation attack caused by two uninitial-
ized use vulnerabilities from a Safari sandbox in detail.
If combined with remote code execution vulnerabilities
in Safari, an attacker can easily take over the control of
a latest MacBook. This paper also presents a warning
for all programmers to always keep initialization in mind
when coding. Furthermore, operating systems are be-
coming more and more hardened and new mitigations
make the vulnerabilities harder and harder to exploit,
which will encourage researchers to develop new ex-
ploitation techniques.
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