
Software Grand Exposure: SGX Cache Attacks Are Practical

Ferdinand Brasser1, Urs Müller2, Alexandra Dmitrienko2, Kari Kostiainen2, Srdjan Capkun2, and
Ahmad-Reza Sadeghi1

1System Security Lab, Technische Universität Darmstadt, Germany
{ferdinand.brasser,ahmad.sadeghi}@trust.tu-darmstadt.de

2Institute of Information Security, ETH Zurich, Switzerland
muurs@student.ethz.ch, {alexandra.dmitrienko,kari.kostiainen,srdjan.capkun}@inf.ethz.ch

Abstract
Intel SGX isolates the memory of security-critical ap-

plications from the untrusted OS. However, it has been
speculated that SGX may be vulnerable to side-channel
attacks through shared caches. We developed new cache
attack techniques customized for SGX. Our attack differs
from other SGX cache attacks in that it is easy to deploy
and avoids known detection approaches. We demon-
strate the effectiveness of our attack on two case studies:
RSA decryption and genomic processing. While cache
timing attacks against RSA and other cryptographic op-
erations can be prevented by using appropriately hard-
ened crypto libraries, the same cannot be easily done for
other computations, such as genomic processing. Our
second case study therefore shows that attacks on non-
cryptographic but privacy sensitive operations are a seri-
ous threat. We analyze countermeasures and show that
none of the known defenses eliminates the attack.

1 Introduction
Intel Software Guard Extension (SGX) [14, 23] en-

ables execution of security-critical application code,
called enclaves, in isolation from the untrusted system
software. SGX provides protections in the processor to
prevent a malicious OS from directly reading or mod-
ifying enclave memory at runtime. The architecture is
especially useful in cloud computing applications, where
data and computation can be outsourced to an external
computing infrastructure without having to fully trust the
cloud provider and the entire software stack.

However, researchers have recently demonstrated that
SGX isolation can be attacked by exploiting information
leakage through various (software) side-channels. One
type of information leakage is based on page faults: In
SGX, memory management (including paging) is left to
the untrusted OS [14]. Consequently, the OS can force
page faults at any point of enclave execution and from
the requested pages learn the secret-dependent enclave
control flow or data access patterns [53]. Another type

of information leakage is based on overseeing caches
shared between the enclave and the untrusted software,
as pointed out in [14] and by Intel [27, p. 35]. Cache at-
tacks have been studied extensively independent of SGX
[43, 39, 30, 36, 54, 21, 20]. Recently, a number of cache-
based attacks targeted SGX platforms [44, 38, 19].

To tackle the information leakage problem in SGX,
different countermeasures have also been proposed. A
promising system-level approach is to detect when the
OS is intervening with enclave execution as done in T-
SGX [46] and Déjá Vu [10]. These solutions detect page
faults and allow the enclave to defend itself from a possi-
ble attack (i.e., to stop its execution). Another approach
against information leakage is obviously hardware re-
design as taken by Sanctum [15]. Although new hard-
ware design like Sanctum is out of our scope, we will
elaborate on it in Section 6.
Our goals and contributions. First, we explore novel
cache attack techniques customized for SGX that are eas-
ier to deploy than other SGX cache side-channel attacks
and are significantly harder to detect/prevent, particularly
by the recently proposed defenses [46, 10] mentioned
above. Second, we demonstrate that information leak-
age is a serious concern, since it can defeat one of the
core benefits of SGX, namely, secure computation over
sensitive data on an untrusted platform. We show this on
two case studies: first a cryptographic primitive and then
a non-cryptographic privacy-preserving algorithm.

Novel attack techniques. Our attack enables the ad-
versary to run both the victim enclave and its own pro-
cess uninterrupted in parallel, so that the victim enclave
is unaware of the attack and cannot take measures to de-
fend itself. Uninterrupted attack execution imposes tech-
nical challenges such as dealing with significant noise
in cache monitoring. To realize our attack effectively in
this setting, we needed to develop a set of novel attack
techniques. For instance, we leverage the capabilities of
the privileged adversary to assign the victim process to a
dedicated core, reduce the number of benign interrupts,

1

and perform precise cache monitoring using CPU per-
formance counters. Note that the SGX adversary model
includes the capabilities of the OS.

Our attack differs from other recently proposed cache-
based attacks on SGX [44, 38, 19] in various ways:
CacheZoom [38] interrupts the victim repeatedly and
can therefore be easily detected by the above men-
tioned countermeasures T-SGX [46] and Déjá Vu [10].
Gotzfried et al. [19] require synchronization between the
victim enclave and the attacker. Schwartz et al. [44] im-
plement their attack on the L3 cache (i.e., cross-core at-
tack). Our attack works on the L1 cache (i.e., same-core
attack) and does not require interrupts or synchrony be-
tween the victim and the attacker, which makes it signif-
icantly harder to detect and easier to deploy in practice.
We provide a more detailed comparison in Section 7.

Case studies. We show the effectiveness of our at-
tack techniques for two different case studies. The first
case study is the canonical example of RSA decryption
where we extract 70% of the private key bits with ap-
proximately 300 repeated decryptions (70% is sufficient
to recover the entire private key efficiently).

However, cache attacks can principally be mitigated at
the application level. In particular, many recent crypto-
graphic libraries provide implementations that have been
hardened against cache monitoring. For example, the
scatter-and-gather technique [8] is a widely deployed
protection, where every secret-dependent lookup table
access is manually changed to touch memory addresses
corresponding to all monitored cache sets. Hence, the ac-
cessed table element is effectively hidden from the adver-
sary. Also the SGX SDK includes cryptographic algo-
rithm variants that use the scatter-gather protection [28].
Thus, cache attacks on cryptographic enclaves may not
be a major threat in practice.

On the other hand, a more significant concern, and a
problem that has not been studied extensively in the past,
is information leakage of various and probably more
complex computations that are not developed by secu-
rity experts. While manual defenses like scatter-gather
can effectively prevent cache attacks, they require signif-
icant expertise and effort from the developer. It seems
unrealistic to assume that every enclave developer is
aware of possible information leakage and able to man-
ually harden his implementation against cache monitor-
ing. Hence, as the second case study we demonstrate in-
formation leakage from non-cryptographic, but privacy-
sensitive enclave for a genome indexing algorithm called
PRIMEX [34] that uses a hash table to index a genome
sequence. By monitoring the genome-dependent hash
table accesses we can identify if the processed human
genome (DNA) includes particular sequences that are of-
ten used in forensic analysis and genomic fingerprint-
ing [4]. We show that the information leaked through

caches during indexing is sufficient to identify the per-
son whose DNA is processed with high probability.

We argue that large classes of SGX enclaves, and
therefore many practical cloud computing scenarios, are
vulnerable to similar information leakage. Our analy-
sis on existing countermeasures shows that none of the
known defenses effectively prevents our attack.
Contributions. To summarize, this paper makes the
following main contributions:
• Novel SGX cache attack techniques. We demon-

strate that cache attacks are practical on SGX. In
particular, we develop novel cache attack tech-
niques for SGX that are easier to deploy and sig-
nificantly harder to detect/prevent.
• Leakage from non-cryptographic applications.

Through a case study on a genomic processing en-
clave we show that non-cryptographic, but privacy-
sensitive applications deployed as SGX enclaves are
vulnerable to cache attacks.
• Countermeasure analysis. We show that none of

the known defenses mitigates our attack in practice.
The rest of the paper is organized as follows. In Sec-

tion 2 we provide background information. Section 3 in-
troduces the system and adversary model and Section 4
explains the attack design. Section 5 summarizes our
RSA attack and details the genomic case study. We an-
alyze countermeasures in Section 6, review related work
in Section 7, and draw conclusions in Section 8.

2 Background
This section provides the necessary background on In-

tel SGX, cache architecture and performance monitoring
counters.

2.1 Intel SGX
SGX introduces a set of new CPU instructions for cre-

ating and managing isolated software components [37,
25], called enclaves, that are isolated from all software
running on the system including privileged software like
the operating system (OS) and the hypervisor. SGX as-
sumes the CPU itself to be the only trustworthy hard-
ware component of the system, i.e., enclave data is han-
dled in plain-text only inside the CPU. Data is stored un-
encrypted in the CPU’s caches and registers, however,
whenever data is moved out of the CPU, e.g., into the
DRAM, it is encrypted and integrity protected.

The OS, although untrusted, is responsible for creat-
ing and managing enclaves. It allocates memory for the
enclaves, manages virtual to physical address translation
for the enclave’s memory and copies the initial data and
code into the enclave. However, all actions of the OS are
recorded securely by SGX and can be verified by an ex-
ternal party through (remote) attestation [3]. SGX’s seal-

2

ing capability enables persistent secure storage of data.
During enclave execution the OS can interrupt and re-

sume the enclave like a normal process. To prevent in-
formation leakage, SGX handles the context saving of
enclaves in hardware and erases the register content be-
fore passing control to the OS, called asynchronous en-
clave exit (AEX). When an enclave is resumed, again the
hardware is responsible for restoring the enclave’s con-
text, preventing manipulations.

2.2 Cache Architecture
In the following we provide details of the Intel x86

cache architecture [26, 24].1 We focus on the Intel Sky-
lake processor generation, i.e., the type of CPU we used
for our implementation and evaluation.2

Memory caching “hides” the latency of memory ac-
cesses to the system’s dynamic random access memory
(DRAM) by keeping a copy of currently processed data
in cache. When a memory operation is performed, the
cache controller checks whether the requested data is al-
ready cached, and if so, the request is served from the
cache, called a cache hit, otherwise cache miss. Due
to higher cost (production, energy consumption), caches
are orders of magnitude smaller than DRAM and only a
subset of the memory content can be present in the cache
at any point in time. The cache controller aims to maxi-
mize the cache hit rate by predicting which data are used
next by the CPU. This prediction is based on the assump-
tion of temporal and spatial locality of memory accesses.

For each memory access the cache controller has to
check if the data are present in the cache. Sequentially
iterating through the entire cache would be very expen-
sive. Therefore, the cache is divided into cache lines
and for each memory address the corresponding cache
line can be quickly determined, the lower bits of a mem-
ory address select the cache line. Hence, multiple mem-
ory addresses map to the same cache line. Having one
cache entry per cache line quickly leads to conflicts and
the controller has to evict data from cache to replace it
with newly requested data. To minimize such conflicts
caches are often (set) associative. Multiple copies of
each cache line exist in parallel, also known as cache
sets, thus #cachesets many data from conflicting mem-
ory locations can stay in the cache simultaneously.

The current Intel CPUs have a three level hierarchy
of caches. The last level cache (LLC), also known as
level 3 (L3) cache, is the largest and slowest cache; it
is shared between all CPU-cores. Each CPU core has a
dedicated L1 and L2 cache, but they are shared between
the core’s simultaneous multi-threading (SMT) execu-

1We will use the terminology from Intel documents [1].
2At the time of writing Intel SGX is available only on Intel Sky-

lake and Kaby Lake CPUs. To the best of our knowledge there are no
differences in the cache architecture between Skylake and Kaby Lake.

tion units (also known as hyper-threading).
A unique feature of the L1 cache is the separation into

data and instruction cache. Code fetches only affect the
instruction cache and leave the data cache unmodified,
and vice versa. In the L2 and L3 caches code memory
and data memory compete for the available cache space.

2.3 Performance Monitoring Counters
Performance Monitoring Counters (PMC) are a fea-

ture of the CPU for recording hardware events. Their
primary goal is to give software developers insight into
their program’s effects on the hardware in order for them
to optimize their programs.

The CPU has a set of PMCs, which can be configured
to monitor different events, for instance, executed cycles,
cache hits or cache misses for the different caches, mis-
predicted branches, etc. PMCs are configured by select-
ing the event to monitor as well as the mode of opera-
tion. This is done by writing to model specific registers
(MSR), which can only be done by privileged software.
PMCs are read via the RDPMC instruction (read perfor-
mance monitoring counters), which can be configured to
be available in unprivileged mode.

Hardware events recorded by PMCs could be misused
as side-channels, e.g., to monitor cache hits or misses of
a victim process or enclave. Therefore, SGX enclaves
can disable PMCs on entry by activating a feature called
“Anti Side-channel Interference” (ASCI) [26]. This sup-
presses all thread-specific performance monitoring, ex-
cept for fixed cycle counters. Hence, hardware events
triggered by an enclave cannot be monitored through the
PMC feature. For instance, cache misses of memory
loaded by an enclave will not be recorded in the PMCs.

3 System and Adversary Model
We assume a system equipped with Intel SGX, i.e., a

hardware mechanism to isolate data and execution of a
software component from the rest of the system’s soft-
ware that is considered untrusted. The resources which
are used to execute the isolated component (or enclave),
however, are shared with the untrusted software on the
system. The system’s resources are managed by un-
trusted, privileged software (operating system – OS).
Figure 1 shows an abstract view of the adversary model,
an enclave executing on a system with a compromised
OS, sharing a CPU core with an attacker process.

The adversary’s objective is to learn secret information
from the enclave, e.g., a secret key generated inside the
enclave through a hardware random number generator, or
sensitive data supplied to the enclave after initialization
through a secure channel.
Adversary capabilities. The adversary is in control of
all system software, except for the software executed in-

3

Operating System (OS)

Core 0 (attack core) Core n

Victim
Enclave

Prime+
Probe

P
ro

ce
ss

1

P
ro

ce
ss

k

P
ro

ce
ss

2

Last Level Cache (LLC)

L1/L2 Cache L1/L2 Cache

Thread 1Thread 0 Thd m Thd m+1

Software
Stack

CPU

Figure 1: High-level view of our attack; vic-
tim and attacker’s Prime+Probe code run in
parallel on a dedicated core. The malicious
OS ensures that no other code shares that
core minimizing noise in L1/L2 cache.

cache line 0
cache line 1
cache line 2

cache line n
…

cache line 0
cache line 1
cache line 2

…
cache line n

cache line 0
cache line 1
cache line 2

…
cache line n

t0: Prime t1: Victim t2: Probe

for each cline Z

write(Z)

if (keybit[i] == 0)

read(X)

else

read(Y)

For each cline Z

read(Z)

measure_time(read)

C
ac

h
e

C
o

d
e

Figure 2: Prime+Probe side-channel attack technique; first the attacker
primes the cache, next the victim executes and occupies some of the
cache, afterwards the attacker probes to identify which cache lines have
been used by the victim. This information allows the attacker to draw
conclusion on secret data processed by the victim process.

side the enclave.3 Although the attacker cannot control
the program inside the enclave, he does know the ini-
tial state of the enclave, i.e., the program code of the
enclave and its initial data. In particular, randomization
through mechanisms like address space layout random-
ization (ASLR) are visible to the adversary. The attacker
knows the mapping of memory addresses to cache lines
and can reinitialize the enclave and replay inputs, hence,
he can run the enclave arbitrarily often. Further, since
the adversary has control over the OS he controls the al-
location of resources to the enclave, including the time
of execution, and the processing unit (CPU core) the en-
clave is running on. Similarly, the adversary can con-
figure the system’s hardware arbitrarily, e.g., define the
system’s behavior on interrupts, or set the frequency of
timers. However, the adversary cannot directly access
the memory of an enclave. Moreover, he cannot retrieve
the register state of an enclave, neither during the en-
clave’s execution nor on interrupts.
Attack goals. The adversary aims to learn about the
victim’s cache usage by observing effects on the cache
availability to its own program. In particular, he lever-
ages the knowledge of the mapping of cache lines to
memory locations in order to infer information about ac-
cess patterns of the enclave to the secret-dependent mem-
ory locations, which in turn allows him to draw conclu-
sions about sensitive data processed by the victim. We
show two concrete attacks for recovering an RSA key
and identifying individuals in genome processing appli-
cations in Section 5.

4 Our Attack Design
Our attack technique is based on the Prime+Probe

cache monitoring technique [39]. We will first explain
the “classical” variant of Prime+Probe, then we discuss
our improvements beyond the basic approach.

3Due to integrity verification, the adversary cannot modify the soft-
ware executed inside the enclave, since SGX remote attestation would
reveal tempering.

4.1 Prime+Probe
The main steps of the Prime+Probe attack are depicted

in Figure 2. First, at time t0, the attacker primes the
cache, i.e., the attacker accesses memory such that the
entire cache is filled with data of the attacker process.4

Afterwards, at time t1, the victim executes code with
memory accesses that are dependent on the victim’s sen-
sitive data, like a cryptographic key. The victim accesses
different memory locations depending on the currently
processed key-bit. In the example in Figure 2 the key-bit
is zero, therefore address X is read. Address X is mapped
to cache line 2, hence, the data stored at X are loaded into
the cache and the data that were present in cache line 2
before get evicted. The data at address Y are not accessed
and therefore the data in cache line 0 remains unchanged.

At time t2 the attacker probes which of his cache lines
got evicted, i.e., which cache lines were used by the vic-
tim. A common technique to check for cache line evic-
tion is to measure access times. The attacker reads from
memory mapped to each cache line and measures the ac-
cess time. If the attacker’s data are still in the cache the
read operation returns them fast, if the read operation
takes longer, the data were evicted from the cache. In
Figure 2, the attacker will observe an increased access
time for cache line 2. Since the attacker knows the code
and access pattern of the victim, he knows that address X
of the victim maps to cache line 2, and that the sensitive
key-bit must be zero. This cycle is repeated by the at-
tacker for each sensitive key-bit that is processed by the
victim until the attacker learns the entire key.

4.2 Prime+Probe for SGX
Cache monitoring techniques, like Prime+Probe, ex-

perience significant noise. Therefore, most of the pre-
viously reported attacks (that, e.g., extract a full crypto-
graphic key) require thousands and even millions of re-

4To prime all cache sets the attacker needs to write to #cachesets
cache pages, see Section 2.2 for details.

4

peated executions to average out the noise (e.g., [55, 56]).
Our goal is build an efficient attack, i.e., one that works
with much fewer executions. The key to this is reducing
noise (or pollution) in the cache monitoring channel.

There are two main aspects that guide our selection of
possible noise reduction techniques — and also distin-
guish us from most of the previous attacks. (1) Our goal
is to build an attack that cannot be easily detected us-
ing the recently proposed detection approaches [46, 10];
this requirement limits the possible noise reduction tech-
niques we can use (e.g., no interrupts). (2) In our setting
the adversary is the privileged OS; this condition enables
us to leverage new methods that were previously inac-
cessible to the attacker (e.g., performance counters).
Challenges. Given these conditions, we list the main
challenges in our attack realization.

1. Minimizing cache pollution caused by other tasks.
2. Minimizing cache pollution by the victim itself.
3. Uninterrupted victim execution to counter side-

channel protection techniques and prevent cache
pollution by the OS.

4. Reliably identifying cache evictions.
5. Performing cache monitoring at a high frequency.
Next, we describe a set of new attack techniques that

we developed to address each of the challenges above.

4.3 Noise Reduction Techniques
(1.) Isolated attack core. We isolate the attack core
from other processes in order to minimize the noise in
the side channel. Figure 1 shows our approach to isolate
the victim enclave on a dedicated CPU core, which only
executes the victim and our attacker Prime+Probe code.

By default Linux schedules all processes of a system
to run on any available CPU core, hence, impacting all
caches. The attacker cannot distinguish between cache
evictions caused by the victim and those caused by any
other process. By modifying the Linux scheduler, the
adversary can make sure that one core (we call it attacker
core) is exclusively used by the victim and the attacker
(“Core 0” in Figure 1). This way no other process can
pollute this core’s L1/L2 cache.
(2.) Self-pollution. The attacker needs to observe spe-
cific cache lines that correspond to memory locations rel-
evant for the attack. From the attacker’s point of view it
is undesirable if those cache lines are used by the victim
for any other reason than accessing these specific mem-
ory locations, e.g., by accessing unrelated data or code
that map to the same cache line.

In our attack we use the L1 cache. It has the advantage
of being divided into a data cache (L1D) and an instruc-
tion cache (L1I). Therefore, code accesses, regardless of
the memory location of the code, never map to the cache
lines of interest to the attacker. Victim accesses to unre-

lated data mapping to relevant cache lines leads to noise
in the side channel. This noise source cannot be influ-
enced by the attacker given that the memory layout of
the victim is fixed.
(3.) Uninterrupted execution. Interrupting the victim
enclave yields two relevant problems. (1) When an en-
clave is interrupted, an asynchronous enclave exit (AEX)
is performed and the operating system’s interrupt ser-
vice routine (ISR) in invoked (see Section 2.1). Both,
the AEX and the ISR use the cache, and hence, induce
noise. (2) By means of transactional memory accesses
an enclave can detect that it has been interrupted. This
feature has been used for a side channel defense mecha-
nism [46, 10]. We discuss the details in Section 6. Hence,
making the enclave execute uninterrupted ensures that
the enclave remains unaware of the side-channel attack.

In order to monitor the changes in the victim’s cache
throughout the execution, we need to access the cache
of the attack core in parallel. For this we execute the
attacker code on the same core. The victim is running on
the first SMT (simultaneous multi-threading) execution
unit while the attacker is running on the second SMT
execution unit (see Figure 1). As the victim and attacker
code compete for the L1 cache, the attacker can observe
the victim’s effect on the cache.

The attacker code is, like the victim code, executed un-
interrupted by the OS. Interrupts usually occur at a high
frequency, e.g., due to arriving network packages, user
input, etc. By default interrupts are handled by all avail-
able CPU cores, including the attack core, and thus the
victim and attacker code are likely to be interrupted.

To overcome this problem we configured the interrupt
controller such that interrupts are not delivered to the at-
tack core, i.e., it can run uninterrupted. The only ex-
ception is the timer interrupt which is delivered per-core.
Each CPU core has a dedicated timer and the interrupt
generated by the timer can only be handled by the associ-
ated core. However, we reduced the interrupt frequency
of the timer to 100Hz, which allows victim and attacker
code to run for 10ms uninterrupted. This time frame is
sufficiently large to run the complete attack cycle undis-
turbed (with high probability).5 As a result, the OS is not
executed on the attack core while the attack is in progress
(depicted by the dashed-line OS-box in Figure 1). Also,
the victim is not interrupted, thus, it remains unaware of
the attack.
(4.) Monitoring cache evictions. In the previous
Prime+Probe attacks, the attacker determines the evic-
tion of a cache line by measuring the time required for ac-
cessing memory that maps to that cache line. These tim-
ing based measurements represent an additional source

5When an interrupt occurs, by chance, the attack can be repeated. If
the time frame is too short the timer frequency can be reduced further.

5

of noise to the side channel. Distinguishing between
cache hit and miss requires precise time measurements.
For instance for the L1 cache a cache hit takes at least
4 cycles. If the data got evicted from the L1 cache, they
can still be present in the L2 cache and read from there,
which takes 12 cycles in the best case.6 This small differ-
ence in access times makes it challenging to distinguish
a cache hit in L1 cache and a cache miss in L1 that is
served from L2 cache. Reading the time stamp counter
itself suffers from noise which is in the order of the dif-
ference between L1 and L2 cache accesses. Thus, when
the timing measurement does not allow for a definitive
distinction between a cache hit and a cache miss, the ob-
servation has to be discarded. To eliminate this noise
we use Performance Monitoring Counters (PMC) to de-
termine if a cache line got evicted by the victim. This
is possible in the SGX adversary model because the at-
tacker controls the OS and can freely configure and use
the PMCs.

Usage of performance counters for cache attacks was
previously explored in [49, 6]. For instance, [49] demon-
strated that measurements collected using PMC and L1
cache misses require the least amount of traces compare
to other measurement methods, such as time stamp coun-
ters. One should, however, note that PMCs are only ben-
eficial if adversary is privileged, but cannot directly read
the victim memory. To the best of our knowledge, we are
the first to use PMCs in such a setting.

We recall that Intel processors provide Anti Side-
Channel Interference (ASCI) feature (cf. Section 2.3)
that prevents monitoring of cache related events caused
by enclave execution. This, however, does not prevent
our attack, since we do not monitor cache activity of the
victim, but instead observe cache events of the attacker
process, which shares the cache with the victim.
(5.) Monitoring frequency. As discussed before, the
victim should run uninterrupted while its cache accesses
are monitored in parallel. Hence, we need to execute
priming and probing of the cache at a high frequency
to not miss relevant cache events. In particular, prob-
ing each cache line to decide whether it has been evicted
by the victim is time consuming and leads to a reduced
sampling rate. The required monitoring frequency de-
pends on the frequency at which the victim is accessing
the secret-dependent memory locations. To not miss any
access the attacker has to complete one prime and probe
cycle before the next access occurs. In our implementa-
tion the access to PMCs is the most expensive operation
in the Prime+Probe cycle.

To tackle this challenge we monitor individual (or a
small subset of) the cache lines over the course of multi-

6Reported values for Skylake architecture, however, “Software-
visible latency will vary depending on access patterns and other fac-
tors” [24].

ple executions of the victim. In the first run we learn the
victim’s accesses to the first cache line, in the second run
accesses to the second cache line, and so on. By aligning
the results of all runs we learn the complete cache access
pattern of the victim.

5 Attack Instantiations
We implemented and evaluated two concrete attacks.

Our evaluation platform was a Dell Latitude E5470 with
an Intel Core i7-6600U CPU @ 2.60GHz running Linux
14.04 with a custom 4.4.0-57 kernel and Intel SGX soft-
ware developer kit (SDK) version 1.6.

RSA attack. Our first attack targets the RSA decryp-
tion. Since cache attacks on cryptographic algorithms
are well understood from previous literature [43, 39, 30,
36, 54, 21, 20], we only summarize our RSA attack here.
The full details can be found in an extended version of
this paper [7].

We attacked a standard fixed-window RSA implemen-
tation from the SGX SDK version 1.6 [29]. The imple-
mentation uses the Chinese Remainder Theorem (CRT)
optimization and performs two 1024-bit exponentiations
per decryption. By monitoring private key dependent
memory accesses to a pre-computed multiplier table we
were able to extract 70% of the complete 2048-bit RSA
key with 300 repeated decryptions. From the extracted
bits, the full RSA key can be effectively recovered [22].
We note that the adversary can easily repeat decryption
with the same ciphertext, since she controls the OS ()re-
run the enclave and replay all inputs).

Comparable attacks on cryptographic implementa-
tions are described in parallel work [44, 38, 19]. We
describe the main differences to our attack in Section 7.

Genomic attack. As already mentioned, many crypto-
graphic libraries are hardened against cache monitoring
(e.g., scatter-gather technique), and thus such attacks can
be prevented by using a suitable cryptographic library.
Unfortunately, similar protections cannot be easily added
to all enclaves, as manual application hardening requires
both developer expertise and effort. Consequently, many
non-cryptographic, but privacy-sensitive SGX applica-
tions remain vulnerable to cache attacks. We demon-
strate this problem using a genomic processing enclave
as our second attack case study.

Genome data analysis is an emerging field that highly
benefits from cloud computing due to the large amounts
of data being processed. At the same time, genome data
is highly sensitive, as they may allow the identification
of persons and carry information about a person’s pre-
disposition to specific diseases. Thus, maintaining the
confidentiality of genomic data is paramount, in particu-
lar when processed in untrusted cloud environments.

Genome sequences are represented by the order of the

6

A T C G C G A C T A G C A T C G A C T …

AA
AC
AG
AT
CA
CC
CG
CT
GA
GC
GG
GT
TA
TC
TG
TT

Line 0
Line 1
Line 2
Line 3

H
as

h

Cache

Memory

Input

A T C G CSatellite

L0 L3 L1 L2

Figure 3: Genome sequence analysis based on hash
tables; subsequences positions of the genome (called
k-mers) are inserted into a hash table for statistical anal-
ysis and fast search for k-mers.

four nucleotides adenine, cytosine, guanine and thymine,
usually abbreviated by their first letter (A, C, G, T). Mi-
crosatellites or short tandem repeats (STR) are repetitive
nucleotides base sequences. STR analysis is a common
genomic forensics technique, where the length of the mi-
crosatellite at specific locations are used to identify an
individual [9]. For example, many US forensics labs
use STR lengths in 13 standardized locations to define
a genotype for an individual.

5.1 Victim Enclave

Efficient search of genome sequences is vital for many
analysis methods. Therefore, the genomic data is usu-
ally preprocessed before the actual analysis is performed.
One common way of preprocessing is to divide the
genome sequence into substrings of a fixed length k,
called k-mer. The k-mers represent a sliding window
over the input string of genome bases.

In Figure 3 the input AGCGC. . . is split into 2-mers.
Starting from the left the first is AG, next the sliding win-
dow is moved by one character resulting in the second
2-mer GC, and so on. The k-mers are inserted into a hash
table, usually, for each k-mer its position in the genome
sequence is stored in the hash table. Thus, given a k-mer
that is part of a microsatellite one can quickly lookup at
which position it appears in the input genome sequence.

Another use case is statistics of the input genome se-
quence, for instance, the distribution of k-mers in the se-
quence can easily be extracted from the hash table.

Primex. Our victim enclave implements the prepro-
cessing step for a genome sequence analysis, as de-
scribed above. We used an open source k-mer analysis
tool called PRIMEX [34]. The tool inserts each k-mer
position into the hash table. Each hash table entry holds
a pointer to an array, which is used to store the positions
of each k-mer.

Algorithm 1 Hash-Index Generation
Require:Genome G with Gi ∈ {A,C,G,T}, k ∈ N>0
Ensure:Hash-Index H
1: Let H← HashTable with 4k entries
2: for each k-mer M ∈ G do
3: Let pos be the offset of M in G
4: Let idx← 0
5: for each nucleotide n ∈M do
6: switch n do
7: case A:

∼
n← 0

8: case C:
∼
n← 1

9: case G:
∼
n← 2

10: case T:
∼
n← 3

11: idx← 4 · idx+
∼
n

12: end for
13: H[idx].append(pos)
14: end for

5.2 Attack Details
Our attack aims at leaking the length of microsatellites

at the standardized locations used for STR analysis when
an input genome sequence is preprocessed (indexed) by
the victim enclave. Due to the controlled environment of
our attack the execution time of the victim is determin-
istic, allowing precisely correlating of cache monitoring
observations with position in the input sequence.

Through our cache side channel we can observe cache
activities that can be linked to the victim’s insertion op-
eration into the hash table (Algorithm 1). Figure 3 shows
that insertions into the hash table affect different cache
lines. For each k-mer the victim looks up a pointer to
the respective array from the hash table. From the source
code we learn the hash function used to determine the ta-
ble index for each k-mer, and by reversing this mapping
we can infer the input based on the accessed table index.

Unfortunately, individual table entries do not map to
unique cache lines. Multiple table entries fit within one
cache line, so from observing the cache line accesses we
cannot directly conclude which index was accessed. This
problem is illustrated in Figure 3. Here four table indexes
map to a single cache line. When the attacker observes
the eviction of cache line 0, it does not learn the exact
table index of the inserted k-mer, but a set of candidate
k-mers that could have been inserted ({AA,AC,AG,AT}).

However, the attacker can split up the microsatellite he
is interested in into k-mers and determine which cache
lines will be used when it appears in the input sequence.
In Figure 3 the microsatellite is split into four 2-mers,
where the position of the first 2-mer (AT) will be inserted
in the first quarter of the table, hence, cache line 0 will be
used by the victim enclave. The position of the second
2-mer (TC) will be inserted into the last quarter of the
hash table, thus activating cache line 3. Following this
scheme the attacker learns a sequence of cache lines used
by the enclave, which will reveal to her that sequence of
processed k-mers.

7

5.3 Attack Results
We provided a genome sequence string to the victim

enclave and ran it in parallel to our attack code. We
chose k = 4 for the k-mers leading to 44 = 256 4-mers
(four nucleotides possible for each of the four position).
Each 4-mer is represented by a unique table entry, each
table entry is a pointer (8byte), and thus each cache line
contains 64byte/8byte = 8 table entries.

The attack attempts to determine the microsatellite
length at each of the 13 standardized locations. For ex-
ample, in location CSF1PO we try to extract the length
of the expected repeating sequence TAGA. First, the four
4-mers occurring repeatedly in the microsatellite are de-
termined, and for each 4-mer the corresponding cache
lines: TAGA ⇒ cache line 7; AGAT ⇒ cache line 28;
GATA⇒ cache line 9; ATAG⇒ cache line 20.

We monitor these four cache lines individually and
align them, as shown in Figure 4. When the microsatel-
lite appears in the input string, the cache lines 7, 28, 9 and
20 will all be used repeatedly by the victim enclave. This
increase in utilization of these cache sets can be observed
in the measurements. In Figure 4 the increased density
of observed cache events is visible, marked by the solid
line rectangle. Since all four cache lines are active at the
same time, one can conclude that the microsatellite did
occur in the input sequence.
False positives. False positives due to monitoring noise
are very unlikely due to the fact that we are observing
four cache lines. Figure 4 shows extensive activation in
the top cache line (pink) marked by the dashed line rect-
angle. However, in all three other cache lines there is low
activity making this event clearly distinguishable from a
true positive event.
Length accuracy. For STR analysis one should, ide-
ally, know the exact microsatellite length at sufficiently
many standard locations. Due to cache monitoring noise,
as seen in Figure 4, our attack is unable to extract precise
microsatellite lengths.

We determine possible microsatellite lengths by man-
ually comparing the attack traces (see Figure 4) to pre-
computed reference traces for known lengths. Through a
manual verification we confirm that our attack is able to
extract the length with an accuracy of ±1 in the vast ma-
jority of test samples. That is, if the correct length is 11
in a location CSF1PO, our attack gives us three possible
alternatives (10, 11, 12) for that location.
Target identification. Given the three possible lengths
for each standard location, one can compute the probabil-
ity that a random person from a given population would
match the leaked genomic information as the Combined
Probability of Inclusion (CPI) [9]. The probability of
identifying an individual depends on the genotype of the
attack target. The worst case, and therefore the lower

bound for attack accuracy, is when the target individ-
ual has the most common genotype, i.e., the most fre-
quently seen microsatellite length in each of the 13 loca-
tions. Assuming that the attack target is a Caucasian per-
son with the most common genotype, from the known
frequencies [9, Chapter 11] we compute a CPI value
7.027× 10−5. This means that from a population of 10
million people (e.g., a small country), statistically 703
people would have a genotype that matches the informa-
tion leaked through the attack.

The average case is one where the attack target has
more variation in his genotype. In the majority of such
cases, statistically less than one person from a population
of 10 million match the leaked information. We conclude
that our attack is, therefore, able to identify the person
whose genome is processed with high probability.
Other applications. Similar information leakage is
likely to apply to many other applications as well. Es-
pecially, programs that build or access lookup tables, or
similar data structures, are ideal targets for our attack.
Such patterns are often seen in database systems, medical
and scientific data processing applications, and machine
learning models.

6 Countermeasure Analysis
In this section we discuss potential countermeasures

against cache-based side-channel attacks and elaborate
on their applicability to protection of SGX enclaves.
Cache disabling. The most straightforward counter-
measure against cache-based side channels is to disable
caching entirely [2], which, however, would lead to se-
vere performance degradation. Even cache disabling dur-
ing enclave execution only might be prohibitively ex-
pensive, given that enclaves may need to process large
datasets (e.g., human DNA), perform expensive compu-
tation (e.g., cryptography), or run large applications [5].
Architectural changes to cache organization. An-
other approach to mitigate cache-based side channels is
to introduce countermeasures through redesign of the
cache hardware. Respective techniques largely fall into
two categories, the first one relying on access random-
ization within cache memory [51, 52, 31, 35], and the
second one using cache partitioning, so that security sen-
sitive code never shares caches with untrusted processes
[40, 41, 50, 51, 17]. Moreover, hardware approaches
can also co-exist with software defenses. For instance,
the Sanctum [15] architecture, which provides protected
enclave execution for RISC-V platforms, applies cache
partitioning for the last level cache (LLC), while flush-
ing the per-core L1 cache upon enclave exit.7 However,

7Flushing is sufficient to ensure that L1 it is never shared between
an enclave and any other code on systems like Sanctum, that do not sup-
port simultaneous multi-threading SMT (or hyper-threading). On Intel

8

Time

ATAG

GATA

AGAT

TAGA

Figure 4: Access pattern of hash table accesses by PRIMEX processing a genome sequence [34]. Four cache sets are
shown in different colors with 20 repeated measured for each cache set. The cache sets are correspond to the 4-mers
of the microsatellite TAGA. Increased activity in all four cache sets (marked by the solid line rectangle) indicates the
occurrence of the microsatellite in the processed genome sequence.

hardware changes can only be incorporated by hard-
ware manufacturers, which is hard to achieve in practice.
In particular, Intel SGX does not incorporate any pro-
tections against side-channel attacks at the architectural
level.

Obfuscation techniques. Oblivious RAM (ORAM)
[18, 47, 48], hides memory access patterns of programs
by continuously shuffling and re-encrypting data as they
are accessed in RAM memory, disk or from a remote
server. ORAM is typically applied in server-client mod-
els, and requires the client to store some state that is up-
dated throughout the execution. While one could think
of using similar techniques for cache protection, they
are not directly applicable, as it is challenging to store
ORAM-internal state securely. Without hardware sup-
port this would require storing client state in a cache
side-channel oblivious way, which is unfeasible given the
small size of every cache line.

Other obfuscation techniques suggest to perform pe-
riodic scrubbing and flushes of shared caches [57] or
add noise to memory accesses [40, 39] to interfere with
the signal observable by the attacker. These techniques,
however, introduce a significant overhead and are less ef-
fective on systems supporting simultaneous multithread-
ing, where two threads or processes can be executed lit-
erally simultaneously, not in a time-sharing fashion. In
this case the attacker process running in parallel with the
victim can still observe memory access patterns between
scrubbing and flushing rounds. Furthermore, an attacker
may collect multiple execution traces and process them
to filter out the injected noise.

Application hardening. Application-level hardening
techniques modify application code to protect secrets
from side-channel leakage. Such solutions can be classi-
fied into two categories: (i) Side-channel free implemen-
tations (e.g., for cryptographic algorithms, such as AES
and RSA [8, 32]) and (ii) automated transformation tools
that can be applied to existing programs [13, 12, 16].
Side-channel free implementations, like scatter-gather,

systems, however, the attacker can read the L1 cache without causing
an enclave exit.

are application-specific and require significant manual
effort and expert knowledge about side-channel attacks
(all application developers cannot be expected to be se-
curity experts). On the other hand, approaches that rely
on automated compiler transformations are either proba-
bilistic [13], i.e., making attacks harder but not impossi-
ble, or target only a specific type of side-channel attacks,
like execution-time-based attack [12, 16].
Randomization. Recently, Seo et al. [45] proposed the
SGX Shield framework that enables code randomiza-
tion for SGX enclaves. While the primary goal of SGX
Shield is to protect enclaves from exploitable software
bugs, authors mention that randomization imposes addi-
tional burden to side channel attackers, and in particular
it provides reasonable protection against page-fault side-
channel attacks, as it forces an attacker to brute force 27

times in order to identify a single address value. How-
ever, this argumentation does not directly apply to our
attack, because SGX Shield concentrates on randomiza-
tion of code, but does not randomize data. Hence, SGX
Shield cannot hide data access patterns leveraged in our
attack. More generally, randomization of data segments
is challenging due to dynamic data allocations, large data
objects (e.g., tables) that need to be split up and random-
ized, and pointer arithmetic which is typically used to
access parts of large data objects (e.g., base-pointer rela-
tive offsets are often used to access table entries).
Attack detection. Previous works [42, 11] suggested to
use system-level monitoring of performance counters to
detect cache performance anomalies as a signature of on-
going cache-based attacks. However, this method is not
applicable in the context of the SGX adversary model,
since an attacker has sufficient privileges to disable any
monitoring at system level.

Recently, two interesting works, T-SGX [46] and Déjá
Vu [10], proposed detection methods for side-channel at-
tacks that are based on frequent interruption of the vic-
tim enclave. A prime example of such privileged at-
tacks is the deterministic side channel based on page-
faults [53]. Here the OS incurs page faults during enclave
execution and learns the execution flow or data access
patterns of the enclave from the requested pages. Both

9

works suggest using a hardware implementation of trans-
actional memory in Intel processors called Intel Transac-
tional Synchronization Extensions (TSX) to notify an en-
clave about a (page fault) exception without interference
by the system software.

T-SGX [46] modifies the enclave code such, that
any interruption is detected and execution is terminated.
However, this approach requires, in order to be effective,
that the enclave cannot be restarted after the attack at-
tempt was detected. To achieve this T-SGX requires one-
time tokens provided by an external party over a secure
channel. If the adversary targets the cryptographic pro-
tocol used in the establishment of that secure channel,
this condition cannot be enforced (the attacker can initi-
ate and replay the protocol). Once the attacker has ex-
tracted a valid token he can misuse it to run the enclave
arbitrarily often, i.e., extract information despite the self-
termination of the enclave.

Déjá Vu [10] extends enclave programs with execu-
tion time checks in order to detect delays caused by in-
terruption of the enclave. SGX does not provide a re-
liable, fine-grained time source to enclaves, therefore,
Déjá Vu uses a counting thread as a timer. The timer
thread guards itself from being interrupted through the
use of TSX. While cache eviction might slow down the
victim, leading to a detectable delay, the timer thread can
be slowed down as well, without interrupting it. The au-
thors acknowledge that the timer thread can run on a core
with the CPU’s lowest frequency setting while the victim
runs on a core set to maximum frequency. This can lead
to a discrepancy of factor two or more, while, based on
our experiments, L1 cache eviction due to constant prim-
ing slows down the victim by only 27%.

Summary. To summarize, the existing defense mech-
anisms are either not directly applicable in the context
of Intel SGX, or have various drawbacks such as pro-
hibitive performance penalty, limited scalability and ef-
fectiveness, or have to be integrated by hardware manu-
facturers, which hinder their applicability in practice.

7 Related Work
In this section we review works related to side-channel

attacks mounted against SGX enclaves. In the extended
version of this paper [7] we additionally survey works on
SGX applications and cache-based side-channel attacks
targeting non-SGX platforms.

SGX side channels. Costan and Devadas [14] analyzed
SGX architecture and hypothesized that side-channel at-
tacks could be mounted against SGX enclaves, though
they did not provide any concrete evidence. Xu et
al. [53] demonstrated page-fault side-channel attacks on
SGX, where an untrusted operating system exfiltrates se-
crets from protected applications by tracking memory ac-

cesses at the granularity of memory pages.
Lee et al. [33] use branch shadowing to infer the con-

trol flow of an enclave. Their approach requires the vic-
tim enclave to be interrupted at a high frequency, which
enables effective detection methods [46, 10].

Parallel work on SGX cache attacks. Parallel to us,
other works on SGX cache attacks have been published.

First, Schwarz et al. [44] study a scenario, where an
unprivileged attacker process (hiding in an enclave) is
spying on the L3-cache utilization of another process (or
enclave). The main difference to our work is that their
attack monitors L3 (cross core), while our attack works
on L1 (same core). As a result, our attack techniques are
completely different.

Second, CacheZoom [38] attacks an AES implemen-
tation through L1 cache by interrupting the victim, and
thus increasing the temporal resolution of the attack. En-
clave exits introduce noise in a subset of cache lines ren-
dering them unobservable. Additionally, the interrupts
make the attack easily detectable [46, 10].

Third, Götzfried et al. [19] also attack AES on L1.
Similar to our attack, they run the victim uninterrupted
to avoid disturbance due to enclave exits. However, their
attack assumes synchronization (collaboration) between
the victim and the attacker – an assumption which typ-
ically does not hold in practice. In particular, they as-
sume that (1) the victim and attacker code run as a single
process in two separate threads; (2) victim and attacker
have a shared memory which they used to communicate
and exchange data, e.g., the attacker provides cipher text
which needs to be decrypted by the victim; (3) the vic-
tim synchronizes with the attacker by indicating to the
attacker when the last round of AES decryption is per-
formed. This allows the attacker to prime the cache im-
mediately before the last decryption round is executed,
and probe it directly after it has finished.

Compared to these parallel works, the main benefit of
our attack is that it requires no interrupts or synchrony
assumptions, which makes it harder to detect and easier
to deploy in practice.

8 Conclusion

In this paper we demonstrate that cache attacks on
SGX are indeed practical and pose a serious threat on the
core security benefit of SGX. Our goal was to develop
an attack that cannot be mitigated by the known counter-
measures, and therefore we mount the attack on uninter-
rupted enclave execution. We developed a set of novel
attack techniques and demonstrated our attack on RSA
decryption and genome indexing. Effectively defending
non-cryptographic, but privacy-sensitive enclaves from
cache attacks remains an open problem.

10

Acknowledgements
This work was supported in part by the German Sci-

ence Foundation (project P3, CRC 1119 CROSSING),
the European Union’s Horizon 2020 Research and Inno-
vation Programme (grant agreement No. 643964 – SU-
PERCLOUD), the Intel Collaborative Research Institute
for Secure Computing (ICRI-SC), the German Federal
Ministry of Education and Research within CRISP, and
Zurich Information Security and Privacy Center (ZISC).

References
[1] An overview of cache. http://download.intel.com/

design/intarch/papers/cache6.pdf.

[2] O. Acıiçmez, B. B. Brumley, and P. Grabher. New re-
sults on instruction cache attacks. In International Con-
ference on Cryptographic Hardware and Embedded Sys-
tems, 2010.

[3] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. In-
novative technology for CPU based attestation and seal-
ing. In Workshop on Hardware and Architectural Support
for Security and Privacy, 2013.

[4] K. Ballantyne, M. Goedbloed, R. Fang, et al. Mutabil-
ity of Y-Chromosomal Microsatellites: Rates, Character-
istics, Molecular Bases, and Forensic Implications. The
American Journal of Human Genetics, 2010.

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding appli-
cations from an untrusted cloud with haven. In USENIX
Symposium on Operating Systems Design and Implemen-
tation, 2014.

[6] S. Bhattacharya and D. Mukhopadhyay. Who watches the
watchmen?: Utilizing performance monitors for compro-
mising keys of RSA on Intel platforms. In Cryptographic
Hardware and Embedded Systems, 2015.

[7] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A.-R. Sadeghi. Software Grand Expo-
sure: SGX Cache Attacks Are Practical. Technical report,
arXiv:1702.07521 [cs.CR], 2017. https://arxiv.org/
abs/1702.07521.

[8] E. Brickell, G. Graunke, and J.-P. Seifert. Mitigating
cache/timing attacks in AES and RSA software imple-
mentations. In RSA Conference 2006, session DEV-203,
2006.

[9] J. Butler. Fundamentals of Forensic DNA Typing. Aca-
demic Press, 2009.

[10] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting
privileged side-channel attacks in shielded execution with
Déjá Vu. In ACM Symposium on Information, Computer
and Communications Security, 2017.

[11] M. Chiappetta, E. Savas, and C. Yilmaz. Real time detec-
tion of cache-based side-channel attacks using hardware
performance counters. Applied Soft Computing, 2016.

[12] J. V. Cleemput, B. Coppens, and B. De Sutter. Compiler
mitigations for time attacks on modern x86 processors.
ACM Transactions on Architecture and Code Optimiza-
tion, 2012.

[13] B. Coppens, I. Verbauwhede, K. D. Bosschere, and
B. D. Sutter. Practical mitigations for timing-based side-
channel attacks on modern x86 processors. In IEEE Sym-
posium on Security and Privacy, 2009.

[14] V. Costan and S. Devadas. Intel SGX Explained. Techni-
cal report, Cryptology ePrint Archive. Report 2016/086,
2016. https://eprint.iacr.org/2016/086.pdf.

[15] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Mini-
mal hardware extensions for strong software isolation. In
USENIX Security Symposium, 2016.

[16] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and
M. Franz. Thwarting cache side-channel attacks through
dynamic software diversity. In Network and Distributed
Systems Security Symposium, 2015.

[17] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh,
and D. Ponomarev. Non-monopolizable caches: Low-
complexity mitigation of cache side channel attacks.
ACM Transactions on Architecture and Code Optimiza-
tion, 2012.

[18] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious RAMs. Journal of the ACM,
1996.

[19] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache
Attacks on Intel SGX. In European Workshop on Systems
Security, EuroSec, 2017.

[20] D. Gruss, C. Maurice, and K. Wagner. Flush+Flush: A
stealthier last-level cache attack. Computing Research
Repository (CoRR), abs/1511.04594, 2015.

[21] D. Gruss, R. Spreitzer, and S. Mangard. Cache tem-
plate attacks: Automating attacks on inclusive last-level
caches. In USENIX Security Symposium, 2015.

[22] N. Heninger and H. Shacham. Reconstructing RSA pri-
vate keys from random key bits. In Advances in Cryptol-
ogy - CRYPTO 2009, 2009.

[23] Intel. Intel software guard extensions. Tutorial slides.
https://software.intel.com/sites/default/
files/332680-002.pdf. Reference Number: 332680-
002, revision 1.1.

[24] Intel. Intel 64 & IA-32 AORM. Intel 64 and
IA-32 architectures optimization reference man-
ual. http://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-

architectures-optimization-manual.pdf, 2012.

[25] Intel. Intel Software Guard Extensions programming
reference. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf,
2014.

[26] Intel. Intel 64 and IA-32 architectures software devel-
oper’s manual. http://www.intel.com/content/
www/us/en/architecture-and-technology/64-

ia-32-architectures-software-developer-

manual-325462.html, 2016.

[27] Intel. Software Guard Extensions Developer Guide,
2016. https://download.01.org/intel-sgx/
linux-1.7/docs/Intel SGX Developer Guide.pdf.

11

http://download.intel.com/design/intarch/papers/cache6.pdf
http://download.intel.com/design/intarch/papers/cache6.pdf
https://arxiv.org/abs/1702.07521
https://arxiv.org/abs/1702.07521
https://eprint.iacr.org/2016/086.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf

[28] Intel. Software Guard Extensions for Linux
OS: Intel IPP Cryptography library, 2016.
https://github.com/01org/linux-sgx/blob/
master/external/crypto px/sources/ippcp/

src/pcpngrsamontstuff.c#L438.

[29] Intel. Software Guard Extensions for Linux
OS: Intel IPP Cryptography library, 2016.
https://github.com/01org/linux-sgx/blob/
master/external/crypto px/sources/ippcp/

src/pcpngrsamontstuff.c#L336.

[30] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A shared
cache attack that works across cores and defies VM sand-
boxing – and its application to AES. In IEEE Symposium
on Security and Privacy, 2015.

[31] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and
S. Kaxiras. Non deterministic caches: A simple and ef-
fective defense against side channel attacks. Design Au-
tomation for Embedded Systems, 2008.

[32] R. Könighofer. A fast and cache-timing resistant imple-
mentation of the AES. In The Cryptographers’ Track at
the RSA Conference on Topics in Cryptology, 2008.

[33] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado. Inferring fine-grained control flow inside
sgx enclaves with branch shadowing. In 26th USENIX
Security Symposium, USENIX Security, 2017.

[34] M. Lexa and G. Valle. PRIMEX: Rapid identification
of oligonucleotide matches in whole genomes. Bioin-
formatics, 2003. https://www.researchgate.net/
publication/233734306 mex-099tar.

[35] F. Liu and R. B. Lee. Random fill cache architecture.
In 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 2014.

[36] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
level cache side-channel attacks are practical. In IEEE
Symposium on Security and Privacy, 2015.

[37] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Inno-
vative instructions and software model for isolated exe-
cution. In Workshop on Hardware and Architectural Sup-
port for Security and Privacy, 2013.

[38] A. Moghimi, G. Irazoqui, and T. Eisenbarth. CacheZoom:
How SGX Amplifies The Power of Cache Attacks. Tech-
nical report, arXiv:1703.06986 [cs.CR], 2017. https:

//arxiv.org/abs/1703.06986.

[39] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: The case of AES. In The Cryptog-
raphers’ Track at the RSA Conference on Topics in Cryp-
tology, 2006.

[40] D. Page. Defending against cache-based side-channel at-
tacks. Information Security Technical Report, 2003.

[41] D. Page. Partitioned cache architecture as a side-channel
defence mechanism. In IACR Eprint archive, 2005.

[42] M. Payer. HexPADS: a platform to detect stealth attacks.
In International Symposium on Engineering Secure Soft-
ware and Systems, 2016.

[43] C. Percival. Cache missing for fun and profit. In BSDCon,
2005.

[44] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and
S. Mangard. Malware guard extension: Using sgx to con-
ceal cache attacks. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, DIMVA, 2017.

[45] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han,
and T. Kim. SGX-Shield: Enabling address space lay-
out randomization for SGX programs. In Network and
Distributed System Security Symposium, 2017.

[46] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX:
Eradicating controlled-channel attacks against enclave
programs. In Network and Distributed System Security
Symposium, 2017.

[47] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. In ACM SIGSAC Conference on
Computer and Communications Security, 2013.

[48] S. Tople, H. Dang, P. Saxena, and E. C. Chang. Per-
muteRam: Optimizing oblivious computation for ef-
ficiency. http://www.comp.nus.edu.sg/~shruti90/
papers/permuteram.pdf, 2015.

[49] L. Uhsadel, A. Georges, and I. Verbauwhede. Exploiting
hardware performance counters. In 2008 5th Workshop on
Fault Diagnosis and Tolerance in Cryptography, 2008.

[50] Z. Wang and R. B. Lee. Covert and side channels due
to processor architecture. In Annual Computer Security
Applications Conference, 2006.

[51] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In 34th An-
nual International Symposium on Computer Architecture,
2007.

[52] Z. Wang and R. B. Lee. A novel cache architecture
with enhanced performance and security. In 41st Annual
IEEE/ACM International Symposium on Microarchitec-
ture, 2008.

[53] Y. Xu, W. Cui, and M. Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating
systems. In IEEE Symposium on Security and Privacy,
2015.

[54] Y. Yarom and K. Falkner. FLUSH+RELOAD: A high
resolution, low noise, l3 cache side-channel attack. In
USENIX Security Symposium, 2014.

[55] Y. Yarom, D. Genkin, and N. Heninger. CacheBleed: A
timing attack on OpenSSL constant time RSA. Techni-
cal report, Cryptology ePrint Archive. Report 2016/224,
2016. https://eprint.iacr.org/2016/224.pdf.

[56] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
vm side channels and their use to extract private keys. In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security, 2012.

[57] Y. Zhang and M. K. Reiter. Düppel: Retrofitting com-
modity operating systems to mitigate cache side channels
in the cloud. In ACM SIGSAC Conference on Computer
and Communications Security, 2013.

12

https://github.com/01org/linux-sgx/blob/master/external/crypto_px/sources/ippcp/src/pcpngrsamontstuff.c#L438
https://github.com/01org/linux-sgx/blob/master/external/crypto_px/sources/ippcp/src/pcpngrsamontstuff.c#L438
https://github.com/01org/linux-sgx/blob/master/external/crypto_px/sources/ippcp/src/pcpngrsamontstuff.c#L438
https://github.com/01org/linux-sgx/blob/master/external/crypto_px/sources/ippcp/src/pcpngrsamontstuff.c#L336
https://github.com/01org/linux-sgx/blob/master/external/crypto_px/sources/ippcp/src/pcpngrsamontstuff.c#L336
https://github.com/01org/linux-sgx/blob/master/external/crypto_px/sources/ippcp/src/pcpngrsamontstuff.c#L336
https://www.researchgate.net/publication/233734306_mex-099tar
https://www.researchgate.net/publication/233734306_mex-099tar
https://arxiv.org/abs/1703.06986
https://arxiv.org/abs/1703.06986
http://www.comp.nus.edu.sg/~shruti90/papers/permuteram.pdf
http://www.comp.nus.edu.sg/~shruti90/papers/permuteram.pdf
https://eprint.iacr.org/2016/224.pdf

	Introduction
	Background
	Intel SGX
	Cache Architecture
	Performance Monitoring Counters

	System and Adversary Model
	Our Attack Design
	Prime+Probe
	Prime+Probe for SGX
	Noise Reduction Techniques

	Attack Instantiations
	Victim Enclave
	Attack Details
	Attack Results

	Countermeasure Analysis
	Related Work
	Conclusion

