
Abusing Notification Services on Smartphones for
Phishing and Spamming

Zhi Xu
Department of Computer Science & Engineering

Pennsylvania State University
zux103@cse.psu.edu

Sencun Zhu
Department of Computer Science & Engineering
College of Information Sciences & Technology

Pennsylvania State University
szhu@cse.psu.edu

ABSTRACT
Notification service is a popular functionality provided by almost
all modern smartphone platforms. To facilitate customization for
developers, many smartphone platforms support highly customiz-
able notifications, which allow the third party applications to spec-
ify the trigger events, the notification views to be displayed, and the
allowed user operations on the notification views.

In this paper, we show that notification customization may allow
an installed trojan application to launch phishing attacks or anony-
mously post spam notifications. Through our studies on four major
smartphone platforms, we show that both Android and BlackBerry
OS are vulnerable under the phishing and spam notification attacks.
iOS and Windows Phone allow little notification customization,
thus launching the phishing and spam attacks will expose the iden-
tity of the trojan application. Attack demonstrations on all plat-
forms are presented.

To prevent the phishing and spam notification attacks while still
allowing notification customization, we propose aSemi-OS-Controlled
notification view design principle and aNotification Loggingser-
vice. Moreover, to protect applications from fraudulent views, we
propose a view authentication framework, namedSecureView, which
enables the third party applications to add the authentication im-
age and text to their sensitive views (e.g. the account login view).
The implementation and demonstrations of proposed defense ap-
proaches on Android are also presented in the paper.

1. INTRODUCTION
Phishing and spam attacks are two of the most successful and

profitable attacks [1, 2]. Both attacks have achieved great success
through traditional medias, such as email, web, and instant mes-
saging. With the fast growth of smartphone markets, we have seen
more and more attempts to launch phishing and spam attacks on
popular smartphone platforms [3, 4, 5]. According to the statistical
results inTrusteer report[6], smartphone users are more vulner-
able to phishing and spam attacks due to the constrained UI on
smartphones. However, most existing phishing and spam attacks
on smartphones still rely on traditional media, such as SMS [7],
mobile email [6] and mobile web [4]. Studies are needed regarding
launching phishing and spam attacks with new features provided
by modern smartphone platforms.

In this paper, we examine the notification service of four most
popular smartphone platforms [8], and investigate the feasibility
for an installed trojan application to distribute phishing notifica-
tions or anonymous spam notification on these platforms. The
selected smartphone platforms include Android (version 2.3 and
4.0), BlackBerry OS (version 7), iOS (version 5), and Windows
Phone (version 7.1). According to comScore’s latest report [8], the
selected four smartphone platforms cover98% share of the U.S.
smartphone market. Therefore, our results should have immediate

Table 1: A summary of experimental results(!means feasible
and#means infeasible)

Platforms
Send Anonymous
Notifications

Navigate To
Fraudulent View

Android 2.3 ! !

Android 4.0 ! !

BlackBerry OS 7 ! !

iOS 5 # #

Jailbroken iOS 5 ! !

Windows Phone 7.1 # !

impacts on the current smartphone market.
Notification service is a system service provided by the smart-

phone platform to both system and third party applications. It al-
lows a notification sender application to notify the smartphone user
with a notification view when a trigger event happens. Common
notifications include system update notifications, battery shortage
notifications, and calender reminder notifications.

Despite the differences in the design and implementation of dif-
ferent smartphone platforms, a notification can be described by
three elements: theTrigger Eventthat fires the notification; the
Notification Viewthat is displayed on the screen; and theAllowed
User Operationsthat defines the invoked actions when a user oper-
ates on the displayed notification view.

To facilitate the application development, many smartphone plat-
forms allow the third party applications to send customized notifi-
cations. For example, Android and BlackBerry allow third party
applications to submit a customized view object in the notification
view. iOS and Windows Phone, being less customizable, only al-
low submitting text content. On all these four smartphone plat-
forms, a sender application can trigger notifications when it is not
running in the foreground.

Notification customization is widely endorsed by the developer
communities. However, an installed third party application may
abuse the notification customization to send anonymous notifica-
tions or fraudulent notifications. The anonymous notifications can
be used to distribute unsolicited advertisements, and the fraudulent
notifications can be used to launch phishing attacks against other
installed applications. For example, a trojan application may gener-
ate a fraudulent notification that mimics the Facebook notification
and leads the user to a fraudulent login view.

Our studies on Android and BlackBerry OS show that it is fea-
sible for a trojan application to launch both phishing and spam at-
tacks using notification services while hiding among other appli-
cations. Through attack demonstrations, we show that a common
third party application can be easily modified to become a trojan
application capable of launching the proposed phishing and spam
notification attacks. According to the market share report [8], the
combined market share of Android and BlackBerry OS is about
63.4% in US. On iOS and Windows Phone, due to their limited cus-

1

tomizations, launching the phishing and spam attacks will expose
the identity of a trojan application. A summary of our experimental
results is shown in Table 1. Further, approaches for stealthy content
distribution are discussed to help the proposed trojan applications
bypass the application review process of the application store.

To prevent the phishing and spam attacks while still allowing
notification customization, we propose three defense approaches.

First of all, for smartphone platforms, we propose a newSemi-
OS-Controlleddesign principle for the notification view. A Semi-
OS-Controlled notification view contains a customizable subview
controlled by the sender application, and a wrapper frame that is
under control of the smartphone platform. To prevent the phishing
and spam attacks, the wrapper frame contains the authentication
information of the sender application.

Secondly, we propose a notification logging service that records
posted notifications with sender authentication information, so that
an user can review any suspicious notifications that were posted.

Thirdly, we propose a view authentication framework, namedSe-
cureView, which enables a third party application to prevent phish-
ing notification attacks by adding an authentication image and text
to its sensitive views (e.g. the account login view).

The contributions of paper are summarized as follows:
• To the best of our knowledge, we are the first to discuss the

feasibility of launching phishing attacks using the notifica-
tion service on smartphones.

• We present detailed designs, implementations, and demos
on how to launch phishing and spam attacks on four major
smartphone platforms.

• We present three feasible defense approaches that can be eas-
ily applied on existing smartphone platforms, and present the
implementations of the proposed approaches on Android.

We hope our proactive security study will draw attention of smart-
phone users as well as platform vendors.

2. SMARTPHONE NOTIFICATION SERVICE

2.1 Overview
A notificationis a message dialog that is shown on the surface of

a smartphone screen. To send a notification, the sender application
first prepares a notification object and registers a trigger event for
it. When the trigger event occurs, this notification will be fired.

As the notification service is a common service with almost no
abuse reported yet, accessing notification service requires no secu-
rity permissions on most smartphone platforms, such as Android,
BlackBerry OS, and Windows Phone.1

Despite the differences in design and implementation, notifica-
tion services on existing smartphone platforms can be categorized
into three types (shown in Figure 1 and Table 2):

• Pop-up Notificationnotifies the user by popping up a notifi-
cation dialog on screen, e.g., the Toast Notification on An-
droid and Dialog Notification on BlackBerry OS.

• Status Bar Notificationadds a notification view as a status
bar at the top of screen, e.g., the Message List on BlackBerry
OS 7, the Status Bar Notification on Android, and the Noti-
fication Center on iOS 5.

• Icon Notificationshows the notification by making changes
on the icon of a sender application in the main menu, e.g., the
Badge notification on iOS 5 and the Icon Update function on
BlackBerry OS 7.

In this paper, we focus on launching phishing and spam attacks
with pop-up notification and status bar notification. The icon no-
tification is not applicable because it will expose the identity of a
sender application.
1iOS requires the third party applications to explicitly request per-
missions from the user for push notification service after installa-
tions

Figure 2: A comparison of OS-Controlled and App-Controlled
notification views

2.2 Notification Customization
For notification customization, a sender application specifies a

notification from three aspects: (1) the trigger event that will fire
this notification, (2) the content to display in this notification, and
(3) the allowed user operations on this notification.
Trigger Event: The trigger event is an event that fires the noti-
fication. It could be a system event (e.g. scheduled alarms), or an
application event generated by an application service running in the
background. The flexibility on notification triggering allows a tro-
jan application to fire anonymous notifications when it is not run-
ning in the foreground. For example, on Android, a sender appli-
cation can fire notifications whenever the screen is turned on with
theIntent.ACTION_SCREEN_ONintent broadcasted by OS.
Notification View: TheNotification Viewrepresents the displayed
view of a notification. It carries the content that the sender applica-
tion wants to show on the screen, such as a text message, an image,
or even a complex subview. By the control of displayed contents,
the notification views in existing notification services can be cate-
gorized into two groups,OS-ControlledandApp-Controlled.

In OS-Controllednotification views, the layout of a notification
view is fixed and the sender application can only pass a text mes-
sage to display. For example, in the Notification Alert on iOS 5
(shown in Figure 2(1)), the only thing that the sender application
can control is the text message shown in the notification view.

In App-Controllednotification views, a sender application is al-
lowed to manipulate the whole notification view, including the lay-
out of view. Typical App-Controlled notification views include the
Toast and Status Bar notification on Android, and the Dialog on
BlackBerry OS 7. In Figure 2(2), we present a toast notification on
Android with a single image in the notification view. Compared to
the Figure 2(1), this customized toast notification hides the identity
of sender application (i.e., “Notish”) and displays an unsolicited
advertisement by customizing the notification view.

Our proposed attacks rely on the App-Controlled notification
views to send fraudulent phishing notifications and anonymous spam
notifications without exposing the identity of a trojan application.
Allowed User Operations: The allowed user operations include
operations which the user can perform on the displayed notifica-
tion, as well as the invoked actions of these operations. Due to the
limited UI of smartphones, the allowed user operations are usually
restricted. One simple example of user operation would be:dis-
missing the notification when the notification view is tapped. More
advanced actions include launching local applications (e.g., by fir-
ing an Intent on Android), opening the web browser with a speci-
fied URL address (e.g., by calling the web browser API on Black-
Berry OS 7), and reopening the sender application (e.g., when a
user clicks the View button on the notification alert on iOS 5).

On Android and BlackBerry OS, a sender application can specify
all the allowed user operations of a notification. To the opposite, on
iOS, no customization is allowed on the allowed user operations.
On Windows Phone, the sender application can only specify the
view that will be navigated to.

2

Figure 1: Three types of notification services

Platforms
Pop-up
Notification

Status Bar
Notification

Icon
Notification

Android 2.3 Toast Status Bar #

Android 4.0 Toast Status Bar #
BlackBerry OS 7 Dialog Message List Icon
iOS 5 Alert Notification Center Badge

Windows Phone 7.1 ShellToast # Tile

Table 2: Notification services on smartphone platforms

The control of allowed user operations is a prerequisite for the
success of proposed phishing and spam notification attacks. In
spam notification attacks, a trojan application specifies the allowed
user operations to cover up its identity from being exposed to the
user. In phishing notification attacks, besides hiding its identity,
a trojan application navigates to the fraudulent views (e.g. a fake
login view) when the user taps the notification view.

3. PROPOSED PHISHING AND SPAM NO-
TIFICATION ATTACKS

In this section, we study the feasibility of sending fraudulent
phishing notifications and anonymous spam notifications using an
installed trojan application on a smartphone. Fraudulent notifica-
tions mimic the genuine notifications of target applications. Similar
to adware, spam notifications contain unsolicited advertisements,
such as commercial texts and images.

3.1 Overview of Proposed Attacks
To facilitate our discussion, we name our proposed trojan appli-

cationNotishand its application icon is totally different from the
Facebook application icon.

3.1.1 Phishing Notification Attack
In the phishing notification attack, the attack goal ofNotish is

to steal the user’s credentials for other installed applications, for
example, the user’s account id and corresponding password of an
installed mobile banking application. In our demonstrations, we
take theFacebookapplication as our target application, and show
how to trick the user to enter her user id and password on a view
controlled byNotish.

Briefly, Notishfirst sends a fraudulent notification mimicking the
notifications generated by the Facebook application. When the user
taps on the fraudulent notification, she will be led to a fraudulent
login view controlled byNotish. The fraudulent login view is a
part of Notish, but it looks exactly the same as the login view of
the Facebook application. The user id and the password entered
on the fraudulent login view will be received byNotish. When
the user clicks the login button, he will then be transferred to either
the genuine Facebook application (e.g. on Android), or the genuine
Facebook website (e.g. on BlackBerry). Meanwhile, the fraudulent
login view, together withNotish, will terminate immediately after
the transfer in order to hideNotish.

3.1.2 Spam Notification Attack
In the spam notification attack, the attack goal ofNotish is to

send spam notifications while hiding its identity from the user. Briefly,
Notish first sends a spam notification with unsolicited advertise-
ments. When the user taps on the spam notification, this spam no-
tification will dismiss and the user will be led to a spam website in
the mobile browser.

However, the spam notification attacks are also more perceptible
in that the user will notice the posted unsolicited notifications. If
the user can identify the sender application of spam notification,
he may uninstall the trojan application and report the abuse to the

app store. Although the trojan vendor may introduce new trojan
applications after the exposure, the ephemeral trojan application
will make the spam attack expensive. A detailed study of detecting
notification attacks will be presented in Section 5.

3.2 Attack Flows
We elaborate the attack flow in 3 phases:plot → play → cleanup.

3.2.1 Plot
The plot phase happens when the trojan application is active,

running either in the foreground or in background. In this phase,
Notishspecifies the details of the notification to be posted.

For trigger events,Notishmay set the trigger event of notifica-
tion at a time point whenNotishis inactive or running in the back-
ground. For example, on Android,Notishmay use the broadcasted
Intent to trigger the notification whenever the screen is turned on;
on BlackBerry OS 7,Notishcan set a scheduled alarm to fire the
notification at any time point suitable forNotishto hide itself.
Phishing Attacks: To craft the fraudulent notification view,Notish
will select the target application from installed applications on the
current smartphone. To get the list of installed applications, it may
use thePackageManager API on Android andCodeModuleManager
API on BlackBerry OS. According to the selected target applica-
tion,Notishprepares the fraudulent notification view and the fraud-
ulent login view. For the allowed user operations on the fraudulent
notification view and login view,Notishhas to mimic those opera-
tions provided by the target applications. Meanwhile,Notishhas to
make sure that the user will not be able to tell the identity ofNotish
based on the fraudulent notification and fraudulent login view.
Spam Attacks: The unsolicited advertisements are predefined. Re-
ceiving spam contents from remote parties enablesNotish to up-
date the spam content as well as bypassing the application review
process in the app store. The detailed benefits and design will be
presented in Section 5. Also,Notish has to carefully specify all
allowed user operations on this spam notification. For example,
a conservative option would be dismissing the notification imme-
diately no matter what operation the user will perform. A better
option would be leading the user to a dedicated spam website after
the user operates on the notification.

3.2.2 Play
When the specified trigger event occurs, the fraudulent phishing

or spam notification will be displayed on the screen of smartphone.
Phishing Attacks: After tapping on the notification, the fraudulent
login view will be displayed asking the user to enter his user id and
password to login. According to [9], asking the user to enter user
id and password is common for mobile banking and online social
applications. Users will not be surprised about being asked to enter
such information.

Notishmay also navigate the user to a fraudulent login website in
the browser instead of a fraudulent login view. This trick is popular
in email phishing attacks and discussed in [4, 5]. However, fraud-
ulent login view is more favorable when the target is an installed
application. Fraudulent login website may cause suspicion.
Spam Attacks: After tapping on the spam notification, the notifi-

3

Figure 3: Phishing and spam notification attack scenarios on Android2.3

cation view will dismiss and the user might be led to a dedicated
spam website in the mobile browser.

3.2.3 Cleanup
The major task in the cleanup phase is to erase traces of the

phishing and spam notification attack so that the suspecting user
will not be able to pinpointNotish. In the cleanup phase, actions
specified in the plot phase will be taken when user operations are
received. For example, the displayed notification will be dismissed
immediately; if the notification is fired by a background service of
the trojan application, the service will be ended as well.
Phishing Attacks: Note that, when the fraudulent login view is
displayed,Notishwill take the risk of being active and running in
the foreground. Thus, cleanup works are needed for both the noti-
fication view and the fraudulent login view. A detailed analysis of
attack detection will be presented in Section 5.
Spam Attacks: Further, ifNotishreceives the spam contents from
its application vendor, it will delete the received spam content as
well in the clearnup phase.

3.3 Proposed Attacks on Android
Android is the dominant smartphone platform in the U.S. smart-

phone market with about43.7% market share in 2011 Q2, accord-
ing to [8]. In our study, we consider two releases of Android:
Android 2.3 Gingerbread, the current major version, and Android
4.0 Ice Cream Sandwich, the latest version released in October 19,
2011. Both versions have a Toast notification, which is a type of
Pop-up notification, and a Status Bar notification.

The proposed phishing and spam notification attacks are success-
ful on both versions of Android. As there is little change on the no-
tification service from Android 2.3 to Android 4.0, in this section
we use Android 2.3 for demonstration. Due to the space limit, the
demonstration on Android 4.0 is presented in the Appendix A.

3.3.1 Attack with Toast
Android allows sending a toast notification with a default layout

provided by Android, or with a customized layout provided by the
sender application. The default layout only accepts text content
and shows no authentication information. The customized layout is
under fully control of sender application. As shown in Figure 3(b),
the trojan application can successfully send toast without exposing
its identity within the notification view.

Moreover, the toast notification does not accept user operations,
and will be dismissed automatically after display. Thus, the an-
noyed user cannot identify the sender application based on the dis-
played toast notification.

3.3.2 Attack with Status Bar Notifications
On Android, the status bar notification service provides two types

of notification views. One type of notification view is generated
with the default layout. The other type of view is assigned directly
by the sender application. With the default layout, the sender ap-
plication is allowed to manipulate the application icon as well as
the text content. As shown in Figure 3(b),Notishreplaces its ap-
plication icon with a Facebook icon in order to trick the user. With
the view assigned by the sender application, the sender application
can manipulate the notification view at will. In Figure 3(b),Notish
displays a single image in the notification view.

For status bar notification, a user is allowed to perform only two
types of operations, one is “Clicking the notification”, and the other
is clicking the “Clear all notifications” button on the screen, which
will trigger IntentcontentIntentanddeleteIntent, respectively. The
trojan application can specify the corresponding actions for these
two Intents in the plot phase when creating the spam notification.
For example, in our demo of Figure 3(b), when the user clicks on
the notification, the spam notification will dismiss, and the default
web browser will be launched with the URL of a spam website.

As the notification view and all allowed user operations are under

4

The trojan application steal the user’s

credentials using a fraudulent login view

The REAL Facebook website

is launched by trojan

application after

stealing the credentials

Mixed with real

Facebook notifications

Fraudulent

login view

FAKE

REAL

Click

Click

REAL

A comparison of notifications

displayed in the Message List

Fake

A comparison of notifications

displayed in the Message Box

Message

List

Message

Box

(a) Phishing notification attacks with Message List

Fraudulent

login view
Fraudulent

notification view

The REAL Facebook website is

launched by trojan application after

stealing the credentials

A comparison of

Facebook session expire dialog

FAKE

REAL

(b) Phishing notification attacks with Dialog

Figure 4: Phishing notification attack scenarios on BlackBerry OS 7

control of the trojan application, a user cannot identify the sender
application from the displayed spam notification.

3.3.3 Attack Demonstration
Phishing Attacks: In Figure 3, we present the attack flow specif-
ically on Android 2.3, and compare it with the work flow of the
genuine Facebook application. The proposed attack uses status bar
notification because it is also used by the genuine Facebook ap-
plication on Android. As the Toast accepts no user operations, it
cannot be used for phishing attacks.

As shown in the Figure 3, by customizing the notification view,
the trojan application can send a fraudulent notification view that is
exactly the same as the real notification from the Facebook appli-
cation. When the user taps on the fraudulent notification view, the
fraudulent login view will be brought to foreground.

The trojan application can launch the real Facebook application
after receiving the credentials. Many mobile applications keep the
user’s session for a long period of time [9]. For example, as ob-
served in [10], the Facebook app on Android will keep the session
forever unless the user manually logout the app. If the session is
not expired, when the trojan application launches the genuine Face-
book application, the genuine Facebook application may navigate
to the main menu directly (as shown in Figure 3). This will help
further reduce the suspicion of phishing attacks. If the current ses-
sion has expired, a new login view identical to the fraudulent login
view will be shown by the genuine Facebook application. Seeing
the new login view might cause little cause suspicion. However, as
buttons on the touchscreen are close to each other, it is common for
the user to enter wrong passwords by mistake and then be directed
to the login view again.

To sum up, three advanced characteristics of the view navigation

mechanism on Android are the keys to the success of our phishing
notification attack. Firstly, status bar notification view is customiz-
able. Secondly, Android allows a user to be navigated to a specified
view belonging to the sender application, such as the fraudulent lo-
gin view. Thirdly, Android allows an installed application to launch
another installed application.
Spam Attacks: In Figure 3(b), we show the demonstrations of
spam notification attacks launched by a trojan application. In all
demonstrations, we trigger the notification 5 seconds after the screen
is turned on using a background service.

3.4 Proposed Attacks on BlackBerry OS
BlackBerry OS is a popular smartphone platform that is famous

for its customizable notification service. The BlackBerry OS 7 pro-
vides aDialog service for pop-up notification, aMessage Listser-
vice for status bar notification, and anIcon Updateservice for icon
notification. Here we show that it is feasible to launch phishing
notification attacks with either the Dialog or the Message List.

3.4.1 Attack with Dialog
Dialog is a system service that pops up a predefined dialog on

the screen and waits for user input. To trigger a notification, sys-
tem events can be applied. For example, in our demo attack,No-
tish keeps a background service which auto-runs on startup. The
background service uses aBackgroundClockListenerto generate
the trigger event at a time point specified byNotish.

The notification view of Dialog is App-Controlled, which means
Notishfully controls the contents of notification views. As shown
in Figure 5, BlackBerry OS 7 allows filling the Dialog notification
view with not only text content by its default layout, but also cus-
tomized views (e.g., the fraudulent Facebook notification).

5

Dialog provides richer notification views that allow buttons to be
contained within the notification view. However, all user operations
on the notification view of Dialog are under the control of a trojan
application. Take the “OK” button in Figure 5 as an example,No-
tishcan associate it with a button handling function. When the user
presses the “OK” button, the Dialog will be closed and the default
web browser will be launched with the URL of a spam website.
Furthermore, BlackBerry allows specifying responses even from
the hard keyboard. In case the user presses any button in the hard
keyboard, the Dialog will be closed and the spam website will be
brought up in the browser.

3.4.2 Attack with Message List
Message List is a type of status bar notification service that only

supports text based notifications. One unique feature of Message
List is that, when a new notification is put into the status bar, a
copy of notification messages may be saved within theMessage
Box. The same trigger events for Dialog notifications can also be
applied to Message List notifications.

The notification views in both the Message List and the Message
Box are OS-Controlled with a fixed layout. However, the sender
application is allowed to specify almost all the contents within the
default layout. As shown in Figure 5,Notishcan specify the image
of indicator in Figure 5 (1), the subject and text content in Figure 5
(2.1), and the icon and text contents in Figure 5 (2.2). The only
element thatNotishcannot manipulate directly is the application
icon shown in Figure 5 (2.1). To cover up the real application icon,
the updateIconfunction can be invoked byNotish to temporarily
change its application icon to a fake icon, e.g., the Facebook icon
shown in this demo. The risk of changing application icon is that,
a skeptical user may check the application icons through the main
menu to discoverNotish. Thus,Notishmust set an expiration time
for the notification and erase it when expired.

A safer way forNotishto prevent exposure would be marking the
spam notification asreadand save it into the Message Box directly.
As only new notifications will be displayed within the Message
List, the “read” spam notifications will appear in the Message List,
thusNotishneed not change its application icon.

On the notification views of Message List, a user can tap both
the messages and the application title bars. In both cases, the oper-
ations are under the control ofNotish. The user will be navigated
to the spam website in the spam notification attacks.

On the notification views of Message Box, the platform provides
a set of default operations that are unrelated to the sender applica-
tion. Also, the sender application can add customizable operations
through theApplicationMenuItem. Again, these customizable op-
erations will delete the evidences of posted notifications and navi-
gate the user to the spam website.

3.4.3 Attack Demonstration
We present the attack flow of both attacks in Figure 4 and 5.

Phishing Attacks: As shown in the Figure 4, by customizing the
notification view,Notishcan easily fabricate the fraudulent notifi-
cations identical to the genuine Facebook notifications. By specify-
ing the allowed user operations on both views,Notishwill navigate
the user to a fraudulent login view of the trojan application.

One flaw of the proposed phishing attack is thatNotishcan no
more cover the attack by launching the genuine Facebook applica-
tion as on Android, because launching another application from a
third party application is not allowed on BlackBerry OS. To reduce
the suspicion,Notishmay navigate the user to the “password incor-
rect webpage” of the genuine Facebook website(shown in Figure4).
Spam Attacks: in Figure 5, we show the demos of spam notifica-
tion attacks with both Dialog and Message List. Different to the
phishing notification attack, the trojan application will navigate the

(1) The trojan application uses a

fraudulent Facebook icon for the

spam notification

(2.1) The spam notification shown in the

Message List

(pretend to be a Facebook notification)

(2.2) The spam notification also shown in

the Message box

(mimicking real Facebook notifications)

Real Facebook

notifications

(3) the user will be led to a spam

website in the mobile browser

Click

Click

C
l i
c
k

C
li
c
k

App

Icon

New

Noti.

Indicator

Message

Box

Spam

Notification

Click

the

OK

button

(1.1) A text spam

notification using Dialog

(1.2) An image spam

notification using Dialog

OR

Figure 5: Dialog and Message List based spam notification at-
tack scenarios on BlackBerry OS 7

Figure 6: A spam notification shown in the Notification Center of iOS
5 (Notish is exposed in the notification view)

user to a spam website instead of a fraudulent login view.

3.5 Proposed Attacks on iOS
With the newly introduced Notifications Center feature, iOS 5

has still been complained by application developers for placing re-
strictions on notification customization [11]. Briefly, the iOS 5 pro-
vides a pop-up notification service, calledAlert, a status bar notifi-
cation service, calledNotification Center, and an icon notification
service, called badge notification.

Unlike other smartphone platforms, the user of iOS 5 decides
how to display the notification on the screen. To send a notification,
a third party application constructs anUILocalNotification ob-
ject and passes it the iOS. Depending on user preference, the notifi-
cation will be posted either as an alert dialog in the center of screen
or as a banner on the top of screen. No matter which form the noti-
fication is displayed, it will be saved in theNotification Centerthat
can be expanded at the top of screen.

The notification view in both the Alert and Notification Center
are OS-Controlled. The sender application is only allowed to pro-
vided a short text message that will be displayed in the notification
view with the sender application’s name and icon. We present the
notification view of Alert and Notification Center in Figure 2 and
Figure 6, respectively. As shown in both demos, the notification
view of Alerts shows the name of the sender application, and the
notification view of Notification Center displays both the name and
the application icon of the sender application. Therefore, the spam
notification attack fails because sending spam notification will ex-
pose the true identity of a trojan application.

Neither the phishing notification attack nor the spam notification
attack is feasible on iOS 5 because of the OS-Controlled notifica-
tion views. The attempting trojan application will expose its true
identity on the notification view. Further, even if the user is so care-
less by ignoring the displayed identity of the trojan application, the
allowed user operations on the alert notification is under control
of the iOS instead of the trojan application. For example, when
a user taps on theView button in an Alert or a notification in the
Notification Center, iOS will navigate to the last view of the trojan

6

Figure 7: A spam notification on Windows Phone 7.1

application or its starting view if it has been terminated. In either
case, the phishing and spam notification attack will fail because
there is no way to navigate the user to the designated view.

3.6 Proposed Attacks on Windows Phone
Similar to the iOS, the phishing and spam attack on Windows

Phone OS 7.1 (abs. WP 7.1) also failed because the exposure of
Notishon the notification view. WP 7.1 provides two types of noti-
fication services. One is a pop-up notification service, called Toast,
which displays notification views on the top of screen; and the other
is an icon notification service, called Tile, which displays notifica-
tion view on the icon of a sender application. We investigate the
feasibility of sending spam notification via the Toast service.

On WP 7.1, the sender application is allowed to register a back-
ground agent, calledScheduled Task Agent, to theScheduledAc-
tionService. This registered background agent can be invoked by
system events, such as time alert, when the sender application is
inactive. Within the background agent, the sender application can
specify a piece of code that will be executed when the agent is
invoked. In our case, the sender application can fire aShellToast
notification on the screen, as shown in Figure 7.

Similar to the notification center on iOS 5, the ShellToast is OS-
Controlled and allows no customization on notification views. As
shown in Figure 7, the application icon of the sender application
(i.e., Notish in the attack) will be shown in the notification view
and the sender application can not interfere it. Different from iOS
5, WP 7.1 allows the sender application to specify a propertyNav-
igationUri of notification, with which the user will be transferred
to a designated view of the sender application when he taps on the
notification view. However, the OS-Controlled notification view of
ShellToast will expose the identity of a spam sending application.

4. DEFENSE MECHANISMS
Basing on the observations in the presented attacks, we propose

defense mechanisms to mitigate these threats for both the smart-
phone platforms and the victim applications (e.g. the Facebook
application). The implementation and demonstrations of proposed
defense mechanisms are on Android because it is open source and
is the most exploited smartphone platform.

4.1 Semi-OS-Controlled Notification
As shown in Figure 8, current smartphone platforms fall into two

extremes on notification customization. On Android (left side), the
most customizable smartphone platform, a third party application is
given the full control over the notification service. To the opposite
(on the right side), on iOS, little customization is allowed.

From the evolution of notification service, we have seen the trend
of allowing customization in the notification service. However,
from the proposed attacks, we see that the abuse of notification
customization may enable a trojan application to launch phishing
and spam notification attacks. New notification design is needed to
allow notification customization while preventing the attacks.

Thus, we propose a design principle for notification view design,
namedSemi-OS-Controllednotification view, which takes into con-
sideration both customization and notification authentication. Briefly,
as presented in Figure 8(2), a Semi-OS-Controlled notification view
contains an OS-Controlled frame and a App-Controlled subview.
Sender authentication information, such as application icon and ap-

plication name, will be displayed within the frame. The sender ap-
plication cannot modify the content in the OS-Controlled frame.
But, the control of subview, together with the allowed operations
on this subview, can be given to the sender application.

For demonstration, we have updated the notification view from
App-Controlled to Semi-OS-Controlled. Specifically, in our im-
plementation, we modified the source code ofToast, Notification,
andNotificationManager. Figure 9(a) presents an example when a
third party application assigns a customized notification view to a
status bar notification by settingNotification.contentView. Instead
of posting the customized notification view directly, the modified
NotificationManagerwill first retrieve the sender application iden-
tity from PackageManager, and build a frame view. The frame
view wraps the received customized notification view as well as
the sender application identity.

In this way, the trojan application will expose its identity with
the updated notification service. Further, our modification does not
affect any existing APIs thus no update is required to existing third
party applications.

4.2 Notification Logging Service
On all existing smartphone platforms, a displayed notification

view will be dismissed after the user operates on it. No notifica-
tion logging service has been provided by the existing smartphone
platforms. The Message Box on BlackBerry OS provides a simple
logging service. However, the stored messages can be manipulated
and even deleted by a sender application.

4.2.1 Failure of Android EventLog
Android provides an EventLog service that allows a smartphone

user to access the system diagnostic event records (certain system-
level events). However, by observing the event records during the
proposed toast and status bar based notification attacks, we found
out that the EventLog service does not include any sender applica-
tion information of toast and status bar notifications.

After examining the source code of Toast, Notification, and No-
tificationService on Android OS, we see that, except for error mes-
sages, most logging functionalities in these source codes only work
in debug mode. For example, in the NotificationService, most log-
ging functions are called only in debug mode (i.e. when “DBG==true”);
and in the Toast, all logging functions are called at a very low
LOGV level. By default, these logs with LOGV are compiled out
when the OS is built. Thus, in order to observe the information of
sender application, the smartphone user has to rebuild the Android
OS from source code with debug mode enabled (e.g., by specify-
ing the “-eng” option when building the OS [12]). With common
Android smartphones sold in stores, common users will not be able
to discover the sender information by observing the event log with
Android SDK.

4.2.2 Proposed Notification Logging Service
Disappointed by the default EventLog service on Android and

Message Box on BlackBerry OS, we propose a Notification Log-
ging service in the smartphone platform. On Android, we imple-
ment the Notification Logging service as a Java written system ser-
vice (namedNotiLogService) running in the Application Frame-
work layout.NotiLogServicestarts when the smartphone is turned
on and maintains a list of the latest toast and status bar notifications.
The record of each piece of notification includes the triggering time
and the sender application identity.

For example, as shown in Figure 8, theNotificationManagerwill
add an record in theNotiLogServiceservice whenever a status bar
notification is triggered. As theNotiLogServiceservice is a system
service, installed third party applications do not have access to the
service. Thus, theNotiLogServiceservice itself is secured. Cur-

7

Figure 8: The App-Controlled notification view allows view customization but is lack of sender authentication information; The OS-Controlled
notification view (e.g. iOS) is immune to proposed notification attacks but limits the capacity of app developers. The proposed Semi-OS-Controlled
notification view supports view customization and is immuneto notification attacks.

(a) Implementation of Semi-OS-
Controlled notification view on Android

(1) SecureView set up

(including an authentication image

and an authentication greeting)

(2) View authentication

with SecureView

(b) The setup and application of Se-
cureView

Figure 9: Proposed defense mechanisms

rently, the user can access theNotiLogServicethrough a dedicated
UI app built with Android source code. In our future work, we are
going to integrate this service into the “Settings” menu of Android.

4.3 SecureView Framework
The proposed phishing attack exposes an important vulnerability

of lacking a view authentication service in the current view-based
smartphone platforms. View is the basic UI of smartphone plat-
forms. The application running in the foreground has control of the
current view on the screen and accepts all user inputs on this view.
However, on all current smartphone platforms, no view authentica-
tion information is displayed with the view, such as the identity of
the foreground application.

In the proposed phishing attacks, the trojan application could
generate fraudulent login views mimicking login views of target
applications. Due to the limited UI on smartphone, it is difficult for
the user to sense the difference based on the fraudulent view.

To protect the sensitive views, we propose aSecureViewframe-
work for a third party application to provide application authenti-
cation information on its sensitive views (e.g. login views). Specif-
ically, using the SecureView framework, the user is allowed to
choose a security image as well as writing a text-based security
greeting after installing the application. Both the image and greet-
ing are stored locally on the smartphone. This authentication infor-
mation is associated with the current installation instead of the user
account with this application.

Whenever a sensitive view is displayed, the application can show
the security image and greeting on the sensitive view to provide
view authentication to the user. In Figure 9(b), we present a demo
of the setup and application of SecureView. As all applications are
isolated on Android, other installed (malicious) applications cannot
record the SecureView displayed on the screen.

The trust model for SecureView framework is that, there exists
a secure storage for each application on the smartphone platform.
This secure storage can only be accessed by its belonging applica-

tion. Without subverting the platform, the trojan application cannot
get knowledge about the security image and greeting, thus it cannot
generate fraudulent sensitive views with valid view authentication
information. This assumption is true for most existing smartphone
platforms. One exception is the jail-broken iOS, in which a third
party application has access to all the storage on the device.

5. DISCUSSION

5.1 Stealthiness of Trojan App
As described in Section 3, the trojan app carefully manipulates

the posted notification in order to conceal its true identity from be-
ing discovered by smartphone users. Besides, other attack-specific
strategies can be applied to enhance the stealthiness of attacks.

In the phishing notification attack, the trojan application mimics
the target application (e.g., the Facebook application) so that the
user will not realize being attacked. Another advantage for phish-
ing notification attack is that, the number of target applications on
one smartphone is very limited. To steal the user credentials of a
target application, one successful attack would already be enough
for the attacker. As the attack rate for phishing notification attack
can be extremely low, the chance of exposing the attack and the
trojan app will also be small.

In the spam notification attack, the smartphone user will cer-
tainly be aware of the unsolicited advertisements. As we described
previously, the trojan application will dismiss the notification im-
mediately after display so as to prevent being traced. On the side,
one important observation is that, with the thriving of mobile app
ecosystem, mobile app advertising has become popular and ac-
ceptable to smartphone users [13]. Based on this observation, two
strategies may be adopted by the spam notification attacks. Firstly,
the trojan app may lower the frequency of posting spam notifica-
tions. Secondly, the trojan app may take some other installed mo-
bile applications as scapegoat. For example, the trojan application
may add the spam notifications with advertisements related an in-
stalled free game so as to mislead the annoyed user.

5.2 Stealthy Spam Content Distribution
To distribute and update the spam contents on smartphones, a

straightforward way is to hard code the spam content within the tro-
jan application. The trojan application vendor may update the hard
coded spam contents with the application updates. This approach is
simple and requires no further networking communication between
the trojan application and the trojan application vendor. However,
the spam contents may be noticed by reviewers in the application
review process of the application store [14]. Also, the update of
spam contents can not be prompt.

8

A better approach for spam content distribution and update would
be sending the spam content separately from the trojan application
vendor to the installed trojan application. Briefly, the trojan appli-
cation vendor may send a “clean” version of a trojan application to
the application store first. With the “clean” version, the trojan ap-
plication could bypass the application review process easily. Once
the trojan application is installed, the trojan application vendor then
distributes spam contents through the network communication to
the installed trojan application. A spam notification update may in-
clude the text and image to be displayed in the notification view, as
well as the URL of a spam website that the user will be navigated
to. Besides the common Internet connections, the push services
may also be abused for the spam content distribution. Due to the
limit of space, we present the details of applying push notification
for spam content distribution in the Appendix B.

5.3 Incentives of Proposed Attacks
In the phishing notification attacks, the attacker may make prof-

its by selling the phished account in the underground market [15]
or abusing the phished account (e.g. PayPal and bank account) di-
rectly. With the increasing number of mobile finance apps, we be-
lieve the phishing attacks on mobile apps will gain more and more
attentions to the attackers.

In the spam notification attacks, the major revenue may come
from the unsolicited advertisement. According to Gartner’s re-
port [13], the worldwide mobile advertising revenue was about$1.6
billion in 2010 and about$3.3 billion in 2011. With the proposed
spam notification attacks, the trojan application can make profits
from distributing unsolicited advertisements that are not accepted
by normal mobile advertising company, such as AdMob.

Even when the trojan app is discovered, the loss to the trojan app
developer is not significant. First of all, building a feature-rich and
attractive mobile application has become easy. One quick approach
to build a trojan application is to repackage existing legitimate mo-
bile applications. As observed in [16], within the 68,187 apps the
author collected from six third-party Android marketplaces,5% to
13% apps are repackaged.

Secondly, even the trojan app is reported and removed in the of-
ficial market places, there exist many third party market places and
app forums [17, 18] to distribute trojan applications. Those third
party markets are not that managed as the official market places,
and especially attractive to smartphone users looking for free pirat-
ical mobile applications.

Thirdly, the cost of an account in the official application market
places is trivial compared to the revenue gained in the proposed
attacks (especially the phishing attacks). For example, on Android
market place, there is only a one-time$25 registration fee for a
developer account.

5.4 Heuristic Approaches for Sender Applica-
tion Identification

Admittedly, for security professionals, the trojan application may
be identified in special environment with platform debugging tools.
However, for normal users, the approaches on an off-the-shelf smart-
phones are limited. An intuitive approach would be examining all
installed third party applications one by one. The user may unin-
stall a suspicious application and wait for a period of time. If no
more spam notification or phishing notification is displayed, the
uninstalled application would probably be the trojan application.
However, this approach is neither effective nor efficient. Because
the trojan application may simply lower the attack frequency or
even hibernate for a period of time to decrease its suspicion. Thus,
disappearance of spam or phishing notifications cannot be easily
used as a direct evidence for accusing a suspicious application.

With the featured functions not related to notification services,

some perseverant users may try heuristic approaches to narrow down
the list of suspicious applications. We discusses several heuristic
approaches that the user could use on Android and BlackBerry OS.

5.4.1 Android
On Android, there exists a delay between the time that an appli-

cation requests to end itself and the time that it is actually ended by
the platform. Therefore, the trojan application may still be shown
in the list of running applications for a period of time even it has
requested to end itself immediately after firing the notification.

Based on this observation, when the spam or phishing notifi-
cation is displayed on the screen, the user may use the “Manage
Apps” function provided by Android OS to check the list of run-
ning applications and services immediately. The “Manage Apps”
function is very similar to the well knownTask Managerof Win-
dows operating systems on PC.

However, the delay is unpredictable depending on the Android
OS. Further, the trojan application does not need to wait until the
user sees the notification, and can stop immediately after firing the
notification. The effectiveness of this heuristic approach is not
guaranteed. Moreover, the list of running applications could be
long, because allowing background services is a featured function
on Android platform. Many third party applications keep back-
ground services, including news agent applications, online social
network applications and music players.

5.4.2 BlackBerry OS
The BlackBerry OS provides a function called “Switch Applica-

tion” that allows the user to switch among applications that are cur-
rently running. Based on our experience through experiments, we
note that the BlackBerry OS stops applications faster than Android.
However, when the spam or phishing notification is displayed on
the screen, the user may check the listed running application. The
trojan application would probably be within the list. However, the
background service has been widely applied in third party appli-
cations on BlackBerry OS to keep monitoring the updates, such as
news and email. Also, there is still no direct evidence to tell the
trojan application from the list of running applications.

5.5 Jailbroken iOS
There exists a huge population of jailbroken iOS users [19, 20,

18]. One important feature with the jailbroken iOS is allowing
customizable notification services. On jailbroken iOS 4 and iOS
5 [11], the sender application can manipulate the notification view,
adding components, as well as taking control over the allowed user
operations. Thus, both jail broken iOS 4 and iOS 5 are vulnerable
to the proposed phishing and spam notification attacks.

In addition, the iOS 5 Notification Center on iPhone includes
a weather widget and a stock widget, which are able to display
customizable views in the notification center. Although no other
third party widgets are available so far, WillFour20 [21] presented
a demo of building customizable widgets on jailbroken iOS 5 with
only open APIs. We see the possibility of allowing customizable
notifications and widgets on future iOS platforms.

6. RELATED WORKS

6.1 Spam Attacks on Smartphones
Short Message Service (SMS) has been widely applied in dis-

tributing spam messages to smartphone users. To defend the SMS
spam attack, the user may report the sender number to the phone
carriers [22], or rely on content based filtering applications, such
as theAnti SMS Spam & Private Boxfor Android [23] andiBlack-
List for iOS [24]. Cormack et al. [25] suggested that new features
are needed for SMS spam filters. Vura and Venter [3] proposed an

9

artificial immune systems based approach to detect botnet spam-
ming programs on Android phones. We also observed advertising
Android apps, such as AirPush [26], which utilize the status bar
notification to post third party advertisements on Android smart-
phones. Different from existing advertising apps that actively ex-
poses their identity, our proposed trojan application hides its iden-
tity in the proposed spam notification attacks. Moreover, we show
the feasibility of distribution spam notifications not only via status
bar notification but also the toast notification service.

6.2 Phishing Attacks on Smartphone
Niu et al. [4] also studied the design flaws of mobile browsers

that may allow web based phishing attacks. They pointed out that
many featured functions of mobile browsers, such as URL trunca-
tion and hiding URL bar on page load, may cause the difficulties
for user to sense the phishing webpage.

Besides Email and Browser, attempts of phishing attacks with
fake applications have also been discovered. In the09Droid case,
a programmer named “09Droid” published several fake banking
applications on Google’s Android Market trying to steal the user’s
account login information.

Also, Felt and Wagner [5] studied the feasibility of navigating
the user to a fraudulent login view or login webpage by abusing the
control transfer function provided on Android and iOS. One con-
cern in their approach is the identity of trojan application is easy to
reveal. For example, if the user is interacting with a malicious ap-
plication before the transfer, the identity of this mobile application
is known to the user. In our proposed phishing attacks, identify the
trojan application will be much difficult for the smartphone user.

Recently, Schulte and Percoco [27] presented a trojan based phish-
ing attacks on Android, which claims to be able to exploit a design
flaw of Android platform so as to lead the user to a fraudulent Face-
book login view controlled by an installed trojan app. Google ar-
gued that such attacks are impractical [27] . Compared to the pro-
posed view-based phishing attacks, the notification-based phishing
attacks we proposed are more practical and easier to implement.
Further, demonstrations of proposed phishing notification attacks
on Android are presented as well.

7. CONCLUSIONS
In this paper, we study the feasibility of launching phishing and

spam attacks with an installed trojan application by abusing the
customizable notification service. Experimental results and attack
demonstrations are presented on four major smartphone platforms.
Further, we present approaches for stealthy spam content distribu-
tion that can help the trojan applications bypass the application re-
view process in application stores. To defend the proposed attacks,
we suggest a Semi-OS-Controlled design principle for notification
view, a SecureView framework for general view authentication, and
a notification logging service for notification review.

8. ACKNOWLEDGMENTS
We thank the reviewers for the valuable comments. This work

was supported in part by NSF CAREER 0643906. The views and
conclusions contained in this document are those of the author(s)
and should not be interpreted as representing the official policies,
either expressed or implied, of NSF or the U.S. Government.

9. REFERENCES
[1] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. Voelker,

V. Paxson, and S. Savage, “Spamalytics: An empirical analysisof
spam marketing conversion,” inProc. of ACM CCS’09, 2009.

[2] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in
Proc. of the SIGCHI conference on Human Factors in computing
systems, 2006.

[3] I. Vural and H. S. Venter, “Detecting mobile spam botnets using
artificial immune systems,” inIFIP Int. Conf. Digital Forensics,
2011, pp. 183–192.

[4] Y. Niu, F. Hsu, and H. Chen, “iPhish: Phishing Vulnerabilities on
Consumer Electronics,” inProc. of UPSEC ’08, 2008.

[5] D. W. Adrienne Felt, “Phishing on mobile devices,” inProc. of
W2SP’11: WEB 2.0 Security and Privacy, 2011.

[6] M. Boodaei, “Mobile users three times more vulnerable to phishing
attacks,” http://www.trusteer.com/blog/
mobile-users-three-times-more-vulnerable-phishing-attacks.

[7] Wikipedia, “Mobile phone spam,”
http://en.wikipedia.org/wiki/Mobile_phone_spam.

[8] S. Schroeder, “2 of every 3 smartphones sold are android orios,”
http://mashable.com/2011/10/06/
2-of-every-3-smartphones-sold-are-android-or-ios-report/.

[9] M. Jakobsson, E. Shi, P. Golle, and R. Chow, “Implicit authentication
for mobile devices,” inProc. of HotSec Workshop ’09, 2009.

[10] G. Wright, “Facebook plist mobile security hole allows identity
theft,” http://garethwright.com/blog/
facebook-mobile-security-hole-allows-identity-theft,4 2012.

[11] S. Perez, “A new reason to jailbreak: Custom widgets in
ios 5’s notifications center,” http://developersarena.com/web/2011/06/
a-new-reason-to-jailbreak-custom-widgets-in-ios-5s-notifications-center/.

[12] Android, “The android open source project,”
http://source.android.com/.

[13] G. Inc., “Gartner says worldwide mobile advertising revenue forecast
to reach 3.3 billion in 2011,”
http://www.gartner.com/it/page.jsp?id=1726614.

[14] Apple Inc., “App store review guidelines,”
https://developer.apple.com/appstore/guidelines.html.

[15] Krebsonsecurity, “How much is that phished paypal account?”
http://krebsonsecurity.com/2011/10/
how-much-is-that-phished-paypal-account/.

[16] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
Proc. of CODASPY’12, 2011.

[17] WeiPhone, “Weiphone forum,” bbs.weiphone.com.
[18] J. Freeman, “Cydia,” http://cydia.saurik.com/.
[19] J. Herrman, “ios 4 jailbroken within a day of first release,”

http://gizmodo.com/5558277/
ios-4-jailbroken-within-a-day-of-first-release.

[20] E. Fish, “ios 5 jailbreak is already here; geeks not surprised,”
http://www.pcworld.com/article/241877/ios_5_jailbreak_is_already_
here_geeks_not_surprised.html.

[21] WillFour20, “An example of a custom notification centre widget on
ios 5,” https://github.com/WillFour20/WeeAppTest.

[22] ATT, “Block spam text messages on your wireless phone,”
http://www.att.com/esupport/article.jsp?sid=KB115812&cv=820\
#fbid=VLIsitNsUpI.

[23] D. Mate, “Anti sms spam & private box for android,”
https://play.google.com/store/apps/details?id=org.baole.app.
antismsspam&hl=en.

[24] “iblacklist for iphone,” http://www.iblacklist.com.br/.
[25] G. V. Cormack, J. M. G. Hidalgo, and E. P. Sánz, “Feature

engineering for mobile (sms) spam filtering,” inProc. of ACM SIGIR
conference on Research and development in information retrieval,
ser. SIGIR ’07. New York, NY, USA: ACM, 2007, pp. 871–872.

[26] airpush, “The android ad netowrk,” http://www.airpush.com/.
[27] E. Mills, “Android could allow mobile ad or phishing pop-ups,”

http://news.cnet.com/8301-27080_3-20089123-245/
android-could-allow-mobile-ad-or-phishing-pop-ups/, August 2011.

[28] G. Developers, “Android cloud to device messaging framework,”
http://code.google.com/android/c2dm/index.html.

[29] B. Developer, “Blackberry push service options,”
http://us.blackberry.com/developers/platform/pushapi.jsp.

[30] A. Inc., “Apple push notification service,” http://developer.apple.
com/library/mac/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/ApplePushService/ApplePushService.html.

[31] Microsoft, “Push notifications overview for windows phone,”
http://msdn.microsoft.com/en-us/library/ff402558(v=vs.92).aspx.

10

(1) Toast with

text spam content

(2) Toast with

image spam content

(3) Status bar notification with

text spam content

(4) Status bar notification with

image spam content

Click

on

the

view

After clicking the notification view, the user

will be led to a dedicated spam website.

The spam notification view will be dismissed.

Spam website

Figure 10: Demo of spam notification attack on Android 4.0

APPENDIX

A. ANDROID 4.0
Android 4.0 also provides toast and status bar notifications. We

have examined the source code related to toast and status bar no-
tification in Android 4.0.3. According to our studies, there is little
change on the notification service from Android 2.3 to Android
4.0. The proposed phishing and spam notification attack will work
fine on Android 4.0 with exactly the same effectiveness as that on
Android 2.3. For demonstrations, we present the proposed spam
notification attacks on Android 4.0 in Figure 10.

B. PUSH SERVICE
Push service is a featured service that is gaining more and more

popularity. It allows third-party application servers to actively send
data to their installed applications, even when the installed appli-
cation is currently not running. To use the push service, the appli-
cation vendor has to register at the service provider (e.g., Google
and Apple). However, the push service provider has no knowledge
about the contents distributed through the push service. The data
distributed through the push service are messages that the vendor
server wants to notify about. Depending on the handling function
defined in the installed application, the pushed data may or may not
be displayed directly on the screen as notifications.

Popular push services provided include theAndroid Cloud to De-
vice Messaging Framework(C2DM) for Android [28], theBlack-
Berry Push Essentials and Push Plusfor BlackBerry OS [29], the
Apple Push Notification Servicefor iOS [30], and theMicrosoft
Push Notification Servicefor Windows Phone [31]. In the first two
services on Android and BlackBerry, the pushed data are for gen-
eral usage of data distribution. While, in the last two services on
iOS and Windows Phone, the pushed data are specifically for noti-
fication and can be displayed directly through the local notification
service. Due to the limit of space, we take the push service on An-
droid as an example to demonstrate the application of push service

in the proposed spam notification attacks.
For Android, Google provides a C2DM infrastructure that allows

the third party application to push a short message to the installed
application. The payload of a message is up to 1024 bytes. The
smartphone receiving the message will use Intent to awake and no-
tify the receiver application. With the received message, the no-
tified third party application can then synchronize with the server
about the details. The handling function for the received short mes-
sage in C2DM is defined and controlled by the installed applica-
tion, and the receiver application decides whether or not to notify
the user upon the received messages.

In the proposed spam notification attacks with text spam con-
tents, the 1024 bytes payload is already enough for the icon, text
content, and the URL of spam websites. For spam notifications
with image contents, the 1024 bytes restriction may limit the size
of the image to display. Thus, the trojan application being notified
may further synchronize with its vendor for details.

In the proposed phishing notification attacks, the C2DM service
can also be applied to distribute the text and image data used in the
fraudulent notification view and login view to the trojan applica-
tion.

11

