
Read It Twice! A mass-storage-based TOCTTOU attack

Collin Mulliner and Benjamin Michéle

Security in Telecommunications

Technische Universität Berlin and Telekom Innovation Laboratories

{collin,ben}@sec.t-labs.tu-berlin.de

Abstract

Consumer electronics and embedded devices often al-
low the installation of applications and firmware up-
grades from user-provided mass-storage devices. To
protect the integrity of these devices and the associ-
ated electronic markets, the software packages are pro-
tected by cryptographic signatures. The software instal-
lation code assumes that files on attached mass-storage
devices cannot change while the storage device is con-
nected. The software installation is therefore not bound
to the file integrity check, thus laying the founda-
tions for a time-of-check-to-time-of-use (TOCTTOU)
attack. This work presents a TOCTTOU attack via ex-
ternally attached mass-storage devices. The attack
is based on emulating a mass-storage device to ob-
serve and alter file access from the consumer device.
The TOCTTOU attack is executed by providing dif-
ferent file content to the check and installation code
of the target device, respectively. The presented at-
tack effectively bypasses the file content inspection,
resulting in the execution of rogue code on the de-
vice.

Keywords: race condition, USB, mass-storage, con-
sumer electronics, software attestation

1. Introduction

Consumer electronics today are heavily targeted by
the hacking and modding community with the primary
goal to modify or replace the software running the de-
vices. To fulfill this goal the attacker (the modder) has
to execute his own code on the target device. In most
cases the attack further needs to gain system or root
privileges on the target device.

There are many ways to achieve code execution and
firmware replacement mostly depending on the type
of device and software running on it. Low cost devices

are mostly not hardened against hacking and modding.
Here the effort mostly comes down to figuring out file
and firmware formats or finding the serial console on
the hardware. More costly devices contain more sophis-
ticated security measures. Here firmware upgrades are
protected by cryptographic signatures. Attacking the
more costly and thus protected devices comes down to
finding and exploiting software bugs to achieve code ex-
ecution often requiring a lot of effort.

Many embedded systems and especially consumer
electronics (CE) support the installation of software
and firmware upgrades through attached mass-storage
devices. Most commonly, USB mass-storage devices are
used for this, such as flash drives and hard disks. De-
pending on the type of embedded system, Secure Dig-
ital (SD) and Compact Flash (CF) cards are also pop-
ular.

In this paper we present a novel time-of-check-to-
time-of-use (TOCTTOU) attack that targets file con-
tent. We attack software installation and firmware up-
grade code that reads files from an external mass-
storage volume. Our attack is based on an emulated
mass-storage device that allows to change the content
of files while the mass-storage volume is connected to
the attacked target.

Our attack method is based on a number of obser-
vations that are present on many different consumer
electronics devices today. The main observation is that
code for software installation and firmware upgrade is
separated into two parts: check and install. If each part
implements its own file access it is potentially prone to
a TOCTTOU attack.

This work demonstrates a practical implementation
of such an attack against a Linux-based TV-set. We
show that we are able to install a shared library on the
system, which is then loaded by the main application
running on the TV-set. Our code runs with root privi-
leges. Our attack currently is the only method to root a
specific series of Samsung TV-sets. We further present
a tool to analyze the behavior of CE devices to deter-

mine if a device might be susceptible to mass-storage-
based TOCTTOU attacks.

Similar issues exist in the areas of trusted com-
puting and software attestation. One party tries
to verify or measure the integrity of another party
(the other partie’s code) before accessing or us-
ing it. If a time window between measurement and
access exists, the software attestation might be vul-
nerable to a TOCTTOU attack.

The contributions of this paper are the following:

• Read It Twice (RIT) Attack which is a mass-
storage-based TOCTTOU attack based on the
condition that software installation and firmware
upgrade code are separated into two parts: check
and install. If each code part individually reads
file(s) from an external mass-storage device an ex-
ploitable TOCTTOU condition might exist. Our
attack also specifically accounts for a possible ex-
isting block and file system cache on the target
device. Our approach is different from traditional
TOCTTOU attacks as we target the content of
files and not their permissions.

• USB-Mass-Storage RIT Attack Implemen-
tation and Evaluation against a Samsung TV-
set. Using this attack we were able to gain code
execution and root privileges on our target device.

• Mass-Storage File Access Analysis Method
and tool for black box investigation of file ac-
cess to external mass-storage devices. This anal-
ysis method allows to detect possible TOCTTOU
conditions in firmware upgrade and software in-
stallation code of embedded systems that read files
from external mass-storage devices.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce our novel Read It Twice attack. In
Section 3 we provide a brief overview of our target, a
TV-set. Section 4 presents our Mass-Storage File Ac-
cess Analysis method and tool. Our method is general
and can be used for black box analysis of arbitrary de-
vices that read files from a USB mass-storage device.
In Section 5 we present a practical implementation of
our RIT attack against the software installation sub-
system of our TV-set. In Section 6 we discuss related
work and in Section 7 we briefly conclude.

2. The Read It Twice Attack

Our Read It Twice (RIT) attack is based on the ob-
servation that software installation and firmware up-
grade code on embedded devices assumes that files on

an attached mass-storage device will not change dur-
ing the installation. In general, an installation consists
of the following steps:

Check the software package or firmware upgrade.
This step verifies version numbers and crypto-
graphic signatures of the packages that are going
to be installed.

Install the actual software or firmware upgrade. This
step copies the files from the external storage de-
vice to the internal storage or flashes the firmware.

The check and installation phases are not com-
bined in an atomic operation as file contents are
assumed to be immutable while the mass-storage de-
vice is plugged-in.

Our RIT attack works as follows:

Given the file-X that is expected by the check-install
code. We have the benign file-B and the modified ver-
sion file-M. We construct a mass-storage device that
can observe the read requests to fileX. For the first ac-
cess to fileX our mass-storage device serves the benign
file-B. This is likely the check code that calculates and
compares the cryptographic hashes or verifies other pa-
rameters contained in fileX. For the second read access
to fileX our mass-storage device serves our modified
file-M. This is likely the installation phase of software
install code.

The attack succeeds if the check code verifies the sig-
nature of the benign file file-B and then the install code
uses the modified file file-M. Effectively our attack cir-
cumvents the signature check and/or file content in-
spection.

2.1. Boundary Conditions

There are two boundary conditions for our RIT at-
tack that have to be resolved in real world implemen-
tations. These are:

File size of the benign file and the modified file
likely need to be equal. Further the filesystem us-
age must be exactly the same to guarantee that
both files are located within the same blocks in
each filesystem image.

Block cache. Embedded devices running sophisti-
cated operating systems such as Linux, BSD, and
Windows implement a block cache. If the target
file fits in the block or filesystem cache the at-
tack has to be adjusted so that the install code
will read the file from the attached device rather
than from the block cache.

2

Another boundary condition is that the target de-
vice does not copy the software package or firmware up-
grade file to internal memory before checking it. This
is an obvious countermeasure for our attack that we
briefly discuss in Section 5.3. In the remainder of this
paper we will discuss these boundary conditions and
how we dealt with them to successfully launch our at-
tack.

3. The Samsung TV-set

Our target TV-set is the Samsung LE32B650T2-
PXZG [13], a 32 inch version of the Samsung B se-
ries LCD-based television set. We chose this TV-set be-
cause this series has a very active modding community
called SamyGO [15]. Through this community many
technical details of this line of Samsung TVs are avail-
able to the general public. Our TV model has a Com-
mon Interface Plus (CI+) [1] slot for Conditional Ac-
cess Modules (CAM). CI+ was developed to protect
digital video broadcasts and offers a protected data
path between the CAM and the TV set. Vendors put
a lot effort in securing these TV sets as a compromise
is likely to give access to decrypted video broadcasts.

The TV-set consists of a display and a computing
unit. The computing part is an ARM-based Linux sys-
tem. Besides the audio and video interfaces such as
HDMI, SCART, and an antenna plug the TV-set fea-
tures an Ethernet interface and multiple USB inter-
faces. The USB interface can be used to plug in a
USB WiFi adapter (to replace the Ethernet connec-
tion) or for connecting USB storage devices such as
USB flash disks or hard disks. The TV-set is able to
play back audio and video files from the USB stor-
age devices.

This TV is equipped with 290MB of RAM and a to-
tal of approximately 650MB of flash memory for per-
manent storage.

This line of Samsung TV-sets is one of the first
that offers installation of widgets and games. On the
TV-set these features are accessible through the Con-
tent menu. The content subsystem can launch two
kinds of executables: Adobe Flash files and na-
tive code loaded as a shared object (a simple .so

file). Content packages can be executed and in-
stalled from a USB drive.

The busybox-based Linux system executes a large
binary called exeDSP. This binary controls the entire
TV-set. It is responsible for showing the On Screen
Display (OSD) to navigate through the TV chan-

1 <?xml version="1.0" encoding="utf-8"?>

2 <contentlibrary>

3 <contentpack id="tocttou">

4 <category>Wellness</category>

5 <title language_id="English">tocttou</title>

6 <startpoint language_id="English">

7 tocttou.so</startpoint>

8 <thumbnailpath>tocttou.bmp</thumbnailpath>

9 <totalsize>1</totalsize>

10 </contentpack>

11 </contentlibrary>

Figure 1. Example clmeta.dat file that we used
for testing and the RIT attack.

nels, changing the TV settings, interacting with UPnP
servers, and for accessing the content applications. The
exeDSP application runs as user root, i.e., with full
privileges.

3.1. Samsung TV Software Packages

Software packages with content for the Samsung TV
consist of a minimum of three files [14]: The executable
code (Adobe Flash or a shared object), a bitmap (the
application icon), and the package description in the
clmeta.dat file. Figure 1 shows an example of such
a package description. The important values in the
clmeta.dat file are the startpoint and the category.
The startpoint specifies which file contains the exe-
cutable code; in this example it is the shared object
tocttou.so. The category specifies the kind of appli-
cation. The TV-set recognizes categories such as Game,
Children, and Wellness among others.

Interestingly, the category implies the kind of ex-
ecutable code expected to be contained in the pack-
age. Games come in the form of shared objects while
packages belonging to the other categories are Adobe
Flash-based.

Every game’s shared object has to provide a sin-
gle function called Game Main [14] that is called once
the shared object is loaded by the exeDSP process. Ap-
plications can be developed in pure C and by using
the Simple DirectMedia Layer (SDL) [2] library that is
pre-installed on the Samsung TV-sets. Figure 2 shows
the code for a very simple exemplary plugin.

3.2. The SamyGO Jailbreak

Previously, before the introduction of CI+ [1] de-
vices, Samsung TV-sets allowed to execute and install

3

int Game_Main(char *path, char *udn)

{

system("telnetd &");

return 0;

}

Figure 2. Simple Samsung content library appli-
cation that executes system(3).

applications based on shared objects from USB mass-
storage devices. Execution of an application is straight-
forward: The application was selected and run from the
content menu. The only requirement for installing an
application on the TV-set was to enable write access to
the TV-set’s internal memory via the WiseLink Write
option in the TV configuration [16]. Once the applica-
tion was installed, the shared object could be loaded by
the exeDSP process. As exeDSP is run with root privi-
leges, code from the user-supplied shared object is exe-
cuted with root privileges, too, hence taking over con-
trol of the TV system. This enabled the installation of
custom applications like a telnetd server or flashing of
customized firmware versions to the TV set.

Flashing a customized firmware involves additional
steps, which are not important in the scope of this
work. They can be found on the SamyGO Wiki [15].

4. Mass-Storage File Access Analysis

To determine if a specific device is suscepti-
ble to our RIT attack the behavior of its check
and install code has to be analyzed. We devel-
oped a Mass-Storage File Access Analysis tool
that allows black box analysis of the access behav-
ior to USB mass-storage devices.

Our analysis tool is implemented using a
gumstix [10] board running Linux. The gum-
stix board is equipped with a USB OTG [4]
port and thus can emulate a USB client de-
vice. The Linux USB stack already has support
for USB mass-storage emulation through the gad-
get API [3]. The driver source is in file storage.c

(in linux/drivers/usb/gadget/), which com-
piles as the kernel module g file storage.ko.

The g file storage module works in a simple way.
At module load time, the filename of a filesystem im-
age or block device is passed to the module as a pa-
rameter. The module exports the given file or block
device as a USB mass-storage volume. Each block re-
quested by the host is read from the file by the mod-

ule and sent back to the host via USB.

Our tool works as follows:

g file storage.ko operates as designed. The given
file is exported as an emulated mass-storage vol-
ume. Blocks requested by the host are read from
the file and sent back to the host.

Block and file system access tracking. We track
every block read access and match the file and di-
rectory associated to that block. This allows us to
monitor which files are accessed by the host and
how often a given file is actually read from our
emulated block device. We implemented this for
FAT16 and FAT32 [12] as these are the common
filesystems for our target devices. Other filesystem
types can easily be added if required.

Our tool enables us to conduct black box analysis
of USB mass-storage-based firmware upgrade and soft-
ware installation code running on embedded systems
such as CE devices. We were able to gather the follow-
ing information about our Samsung TV-set by using
this tool.

File and directory access during the check and in-
stall phase of the target device. This allows us to
identify the files actually being accessed by the
check and install code during a firmware update
or software package installation.

Files read by the check and install code. This dis-
closes if files are read completely or only partially.

Timing of file access. The time of each block ac-
cess is logged accurately, thus allowing the obser-
vation of delays between accesses to consecutively
read files. This can provide hints about processes
such as signature checks after having read one file
and before reading the next one.

The output of our analysis tool provides a great
starting point for designing our attack. Figure 3 shows
an example output for the installation of a content li-
brary application on our Samsung TV set.

This output allows to deduce some of the TV set’s
internal functioning by matching user interface inter-
actions to file access patterns. After invoking the USB
inspection menu of the content library (11:18:56), the
TV set scans each directory for a clmeta.dat file. Each
of these files is read to populate entries in each of the
content categories, being Wellness in our example soft-
ware package.

As the user opens the Wellness category (11:19:10),
the TV set reads the corresponding bitmap file of each
package as indicated in the clmeta.dat file. These

4

11:18:56 TOCTTOU (DIR)

11:18:56 CLMETA.DAT (471b) [/TOCTTOU]

11:18:56 CLMETA.DAT -> read completed!

11:18:56 CACHE (DIR)

11:18:56 CLMETA.DAT (450b) [/CACHE]

11:18:56 CLMETA.DAT -> read completed!

11:19:10 CACHE.BMP (843758b) [/CACHE]

11:19:10 CACHE.BMP -> read completed!

11:19:10 TOCTTOU.BMP (490734b) [/TOCTTOU]

11:19:10 TOCTTOU.BMP -> read completed!

11:19:56 TELNETD (1745016b) [/TOCTTOU]

11:19:56 TELNETD -> read completed!

11:19:56 TOCTTOU.SO (4608b) [/TOCTTOU]

11:19:56 TOCTTOU.SO -> read completed!

Figure 3. The output shows files and directories
being access. In addition it shows that files are
being read completely and the time at which the
files have been accessed.

bitmaps are then displayed to the user as the pack-
age’s icon.

Finally, the user selects an application to be installed
(11:19:56), which in our example is the TOCTTOU
package. The package content, i.e., the entire directory,
is then copied from the mass-storage device to the in-
ternal flash memory. This includes the executable files
telnetd and tocttou.so.

After installation, the user can launch the freshly
installed application from internal memory by select-
ing it in the content menu. Each time the application
is launched, the TV set will analyze the clmeta.dat

to choose how to launch the application, i.e., as Adobe
Flash or as a shared object.

Note that the clmeta.dat and the bitmap file is not
read again as it is copied to the internal memory. This
indicates that these files are copied directly from the
internal block cache and that no second access to the
block device occurred (cf. Section 2.1).

Based on the results of our analysis we design and
implement our RIT attack and corresponding tool,
which we present in the following Sections.

5. The RIT Attack

Our Samsung LE32B650 TV, like all current Sam-
sung CI+ TV-sets, does not allow to execute or copy
applications based on shared objects from a USB drive.
Only Adobe Flash-based applications may be executed
and copied from USB drives. But pre-installed games
such as WiseStar are based on the shared object inter-

face, therefore, shared object-based applications still
seem to be supported.

Our RIT attack is based on the observation that
shared object applications are supported while only
Flash applications can be copied to the device. The
goal of our attack is to trick the TV-set into copy-
ing an application that is based on a shared object to
the TV-set’s internal memory from which it can be ex-
ecuted.

The software check-install code determines the kind
of application by inspecting the clmeta.dat file, as
shown in Figure 1 and described in Section 3.1. The
categories Wellness and Children denote Adobe Flash-
based applications that may be installed, i.e., copied
to internal flash memory. The Game type application
is based on a shared object and thus may not be in-
stalled. We call this first part the check code as de-
scribed in Section 2.

The install code that actually copies the applica-
tion files to the TV-set’s internal memory is not check-
ing the clmeta.dat file and just copies the whole sub-
directory. If we can change the clmeta.dat file from
category Wellness to category Game our tocttou ap-
plication will change to a shared object-based applica-
tion. As a result we will have our code running inside
the exeDSP process which runs with root privileges.

Note that the execution of code from shared object
files is prohibited only for files from external storage.
Once this code is executed from internal storage, no
restrictions apply. Therefore, an attacker has to per-
suade the check-install code to copy the shared object
file and a corresponding clmeta.dat to internal mem-
ory.

The remainder of this section describes our attack
tool and how it is leveraged to perform our RIT attack
against the Samsung TV set.

5.1. The Attack Tool

Our attack tool is an extension of our analysis tool,
basically two features were added. These are:

Trigger file monitoring. Our version of
g file storage takes an additional filename as
the trigger file. Every time the trigger file is read
from the block device the trigger counter is incre-
mented. The match of block access to filename is
done via our block and filesystem access track-
ing code that we added for our analysis tool (cf.
Section 4).

Filesystem switch. When the trigger counter
reaches the trigger value, which is passed as a pa-
rameter to our version of g file storage, all block

5

requests are redirected to the modified filesys-
tem image. Effectively, the volume is switched to
the modified filesystem image.

Hence, our version of the g file storage module re-
quires three additional parameters: the path to our
modified filesystem image, a filename as the trigger file,
and the trigger value to switch between the original and
the modified filesystem image.

5.2. Executing the Attack

To execute the attack we require two FAT filesys-
tem images. The first image contains the benign filesys-
tem (compare file-B in Section 2). The second image
contains the modified filesystem (file-M). Both filesys-
tems contain exactly the same files with the exception
of the clmeta.dat file. In the modified filesystem the
clmeta.dat file of our tocttou application specifies the
category Game whereas it is Wellness in the benign
image.

Note that the two filesystem images are required to
be completely identical as the host will use the FAT of
the benign image to request blocks of the modified im-
age. This can be achieved by first creating the benign
image and modifying a copy thereof to create the mod-
ified image. Alternatively, copying the files in exactly
the same order to both images will yield suitable im-
ages.

To execute the attack we have to further ensure that
the clmeta.dat file is actually read multiple times. The
problem is, as described in Section 2.1, that the TV
runs Linux and thus has a block cache. Therefore, the
TV will read each block from the external storage de-
vice only once and then store it in the block cache.
To resolve this issue and to force the TV to re-read the
clmeta.dat file from our tocttou application, we added
a second application named cache. The second appli-
cation is basically a copy of our tocttou application
with a different name. To circumvent the block cache,
we padded the clmeta.dat file from the cache appli-
cation with spaces until it hit 260 Megabytes. When
the TV-set reads this large file all previously cached
blocks are discarded. The file size of 260MB was deter-
mined by experimenting with various reasonable val-
ues, i.e., common RAM sizes. Using our block access
tracking code we can easily observe if the blocks of
the clmeta.dat from our tocttou application are re-
quested again by the host. If this happens, the blocks
are not in the block cache anymore and our attack suc-
ceeds.

Figure 4 shows the basic concept of our attack. The
tool’s output for a successful RIT attack is shown in
Figure 5.

TV-set

g_file_storage

block access tracker

 +

filesystem switcher

Filesystem

Image

M

Filesystem

Image

B

USB Host

1

3

2 4

gumstix

Figure 4. Our attack in 4 steps: 1) The TV-set
request block 23 from our emulated storage de-
vice. 2) Our tool reads block 23 from the benign
filesystem image and delivers it to the TV-set. 3)
At a later point, the TV-set again requests block
23 form the storage device. 4) This time our tool
reads block 23 from the modified filesystem im-
age and delivers the block to the TV-set.

5.3. Countermeasures

There are many possibilities for countermeasures
against our RIT attack; here we only discuss one sim-
ple solution that is straightforward.

The most obvious and easiest to implement is to
first copy the software or firmware files to internal stor-
age and then execute the checks on the copy. After all
checks have passed, the installation process is executed
using the internal copy of the files. This countermea-
sure is only possible if the target device has enough un-
used storage space. Alternatively, the copy could also
be held in free memory (RAM), if available.

This simple copy-based countermeasure will only
work for devices that contain excess storage or sys-
tem memory. Consumer electronics devices are mostly
built to be cheap and use as few resources as possi-
ble, often having just enough storage to support the
operational functionalities of the device. More sophis-
ticated countermeasures have to be developed to pro-
tect devices that do not contain enough memory to im-
plement a simple copy-based check-install procedure.

6

1 TOCTTOU (DIR)

2 CLMETA.DAT (471b) [/TOCTTOU]

3 CLMETA.DAT -> read completed! [1/2]

4 CACHE (DIR)

5 CLMETA.DAT (272630223b) [/CACHE]

6 CLMETA.DAT -> read completed! [2/2]

[device switched!]

7 CACHE.BMP (843758b) [/CACHE]

8 CACHE.BMP -> read completed!

9 TOCTTOU (DIR)

10 TOCTTOU.BMP (490734b) [/TOCTTOU]

11 TOCTTOU.BMP -> read completed!

12 TELNETD (1745016b) [/TOCTTOU]

13 TELNETD -> read completed!

14 TOCTTOU.SO (4608b) [/TOCTTOU]

15 TOCTTOU.SO -> read completed!

16 CLMETA.DAT (471b) [/TOCTTOU]

17 CLMETA.DAT -> read completed! [3/2]

Figure 5. Output of our attack tool for the RIT
attack. In line 6 the device is switched to the
modified filesystem image after the access to
the clmeta.dat file in the cache directory. The
clmeta.dat in the cache directory is 260MB in
size to flush tocttou/clmeta.dat from the block
cache of the TV-set. The attack is finalized in
line 16 where the TV-set reads clmeta.dat again
but this time the block are read from the modi-
fied filesystem image.

6. Related Work

Related work falls into four different areas. First,
general race conditions and file-based TOCTTOU at-
tacks, second USB mass-storage-based attacks, third
USB-based attacks, and fourth trusted comput-
ing and software attestation.

Bishop et al. [7] characterized and analyzed a simi-
lar class of TOCTTOU attacks that targets file access
on UNIX systems. Their work mainly targeted file per-
mission checks versus file open operations. In this pa-
per we present a novel TOCTTOU attack against the
content of files.

The PSjailbreak and the open source version PS-
Groove [6] attack to jailbreak Sony’s PlayStation 3 is
based on a rogue USB device. The exploit leverages a
memory corruption bug in the PlayStation USB driver
code that parses USB device descriptors. The attack
works by emulating multiple USB devices with mali-
cious content in the device descriptors. The attack al-

lowed arbitrary code execution on the PlayStation 3.

In [17] the authors added malicious functionality to
the USB drivers of an Android-based smartphone to at-
tack the attached computer while the phone was con-
nected for charging its battery. The malicious function-
ality emulated a keyboard and mouse to interact with
the computer.

There are various attacks based on USB mass-
storage devices [8, 11] that contain autorun files for
either Windows or Linux.

The GTV Hacking scene [5] found that the Sony
Google TV could be rooted and downgraded by a sim-
pler version of our RIT attack. Their attack is based
on three USB flash drives that contain different ver-
sions of firmware and firmware meta files. The attack
works by inserting and removing the USB flash disk
during a firmware upgrade. Since the Sony GTV soft-
ware doesn’t seem to check if a device is inserted and
removed during the upgrade process this simple attack
is able to downgrade the firmware version. After the
downgrade the device can be rooted since the older ver-
sion contains a software vulnerability that allows shell
command injection. Our attack is similar but targets
more hardened systems that can detect removal of the
upgrade medium such as the USB flash drive.

Our work also falls into the area of trusted comput-
ing and software attestation. One of the challenges in
these areas is to prove the integrity of data stored in
the off-chip memory, i.e., memory not part of the ac-
tual CPU. [9] presents a survey on memory authenti-
cation mechanisms and attacks that also deal with ex-
ternal memory and storage. Our attack relies on the
ability to modify the content of an external storage de-
vice that is connected to the target system.

7. Conclusions

In this work we presented a novel time-of-check-to-
time-of-use (TOCTTOU) attack that targets the con-
tent of files based on emulated mass-storage devices.
Our attack is called Read It Twice! (RIT). We designed
and implemented a USB mass-storage-based version of
our novel TOCTTOU attack to inject a shared object
into a Samsung TV-set bypassing the implemented se-
curity checks. The shared object is executed with root
privileges thus it is effectively rooting or jailbreaking
the device.

We believe that our RIT attack applies to many
kinds of consumer electronics and embedded systems
that install software packages from external storage
devices, given the same boundary conditions apply.
Mainly the check and install code must not be bound
together.

7

Although we developed our proof-of-concept attack
for USB-based mass-storage, we believe the attack
transfers to any kind of flash and disk technology as
long as the block access can be observed and altered.
A prime example of another kind of external storage
device is a Secure Digital (SD) or Multi Media Card
(MMC) card. Any storage device technology that can
be emulated can be used to carry out our RIT at-
tack. Storage devices containing a sophisticated pro-
cessor may be modified via software to carry out a RIT
attack without emulation but directly returning differ-
ent data for multiple read operations of the same block.

In the future, manufacturers need to take special
care when reading sensitive data from external at-
tached mass-storage devices. The device could be emu-
lated to carry out an attack such as our Read It Twice!
attack.

Acknowledgements

The authors would like to thank Patrick Stewin,
Dmitry Nedospasov, and Jean-Pierre Seifert for review-
ing early versions of this paper.

References

[1] CI Plus (CI+). http://www.ci-plus.com.

[2] Simple DirectMedia Layer. http://www.libsdl.org.

[3] USB gadget API of the Linux kernel. http://kernel.
org/doc/htmldocs/gadget.html.

[4] USB on-the-go. http://www.usb.org/developers/

onthego/.

[5] About Sony Downgrade + Rebooter (Root).
http://gtvhacker.com/index.php/About_Sony_

Downgrade_+_Rebooter_(Root), February 2012.

[6] Y. Alaoui. PSGroove. https://github.com/

psgroove/psgroove, December 2010.

[7] M. Bishop,M.Bishop, andM.Dilger. Checking for Race
Conditions inFile Accesses. Computing Systems, 9:131–
152, 1996.

[8] A. Crenshaw. Plug and Prey: Malicious USB Devices.
http://www.irongeek.com/downloads/Malicious%

20USB%20Devices.pdf, January 2011.

[9] R.Elbaz,D.Champagne,C.H.Gebotys,R.B.Lee,N.R.
Potlapally, and L. Torres. Hardware mechanisms for
memory authentication: A survey of existing techniques
and engines. Transactions on Computational Science -

Special Issue on Security in Computing, 4:1–22, 2009.

[10] Gumstix Inc. gumstix. http://www.gumstix.com/,
2012.

[11] J. Larimer. USB autorun attacks against
Linux. http://blogs.iss.net/archive/papers/

ShmooCon2011-USB_Autorun_attacks_against_

Linux.pdf, January 2011.

[12] Microsoft Corporation. Microsoft Extensible Firmware
Initiative FAT32 File System Specification, FAT Gen-
eral Overview On-Disk Format. http://msdn.

microsoft.com/en-us/windows/hardware/gg463084,
December 2006.

[13] Samsung Inc. LE32Bxxx LCD TV. http://www.

samsung.com.

[14] SamyGO. Creating Content Library applications
- SamyGO. http://wiki.samygo.tv/index.php5/

Creating_Content_Library_applications.

[15] SamyGO. SamyGO, Samsung Firmware on the GO.
http://www.samygo.tv.

[16] SamyGO. Service Menu Enabling Add/Delete in Con-
tent Manager - SamyGO. http://wiki.samygo.

tv/index.php5/Service_Menu\#Enabling_Add.

2FDelete_in_Content_Manager.

[17] Z. Wang and A. Stavrou. Exploiting smart-phone USB
connectivity for fun and profit. In Proceedings of the

26th Annual Computer Security Applications Confer-

ence, ACSAC ’10, pages 357–366. ACM, 2010.

8

