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Abstract
Running on billions of today’s computing devices,

JavaScript has become a ubiquitous platform for deploy-
ing web applications. Unfortunately, an application de-
veloper who wishes to include a third-party script must
enter into an implicit trust relationship with the third-
party—granting it unmediated access to its entire appli-
cation content.

In this paper, we present js.js, a JavaScript interpreter
(which runs in JavaScript) that allows an application to
execute a third-party script inside a completely isolated,
sandboxed environment. An application can, at runtime,
create and interact with the objects, properties, and meth-
ods available from within the sandboxed environment,
giving it complete control over the third-party script. js.js
supports the full range of the JavaScript language, is
compatible with major browsers, and is resilient to at-
tacks from malicious scripts.

We conduct a performance evaluation quantifying the
overhead of using js.js and present an example of using
js.js to execute Twitter’s Tweet Button API.

1 Introduction

The web has undoubtedly become one of the most
dominant application deployment platforms. Thanks to
its wide support from today’s consumer devices—from
desktops and laptops to tablets and smartphones—the
web’s scripting language, JavaScript, is available on bil-
lions of devices.

One problem facing a web application developer is
the implicit trust of including third-party scripts. A
third-party script is a JavaScript file included from a
party other than the application owner. Examples of
commonly used third-party scripts are Google Analytics,
Facebook’s Like button, Twitter’s Tweet buttons, and ad-
vertising platforms. When including one of these third-
party scripts, the application is trusting the third-party

script to execute only what is expected of it. The third-
party, however, has full access to the application. It could
redirect the page, modify the DOM, or insert malware.

An application owner could download the third-party
script and serve it from his or her own servers. This
at least ensures that the script being run by the applica-
tion hasn’t been modified without the application owner
knowing. However, this is not always possible with
dynamically-generated scripts (e.g., advertisements), and
it still doesn’t ensure that the third-party script is not ma-
licious. Third-party services often compress their code
(e.g., using the closure compiler), producing a large soup
of JavaScript that can make it very difficult for a human
or static analyzer to verify its behavior. Alternatively,
the application could include the third-party scripts in an
iframe, but iframes still have privileges (e.g., alerts, redi-
rection, etc.) that the application might want to disallow.
It also requires cumbersome inter-iframe messaging for
communication.

Static analyzers can be used to rewrite third-party
JavaScript [16, 9, 2, 17] before it gets executed. This is
often used on small, user-submitted widgets to guaran-
tee their safety, but doesn’t provide flexible, fine-grained
control over the third-party script’s privileges, and there-
fore, are not applicable to large, third-party libraries.
Other approaches extend the browser itself to provide
security mechanisms for third-party scripts [12]. While
a nice approach, adopting a new standard in all major
browsers is difficult and breaks backwards-compatibility.

In this paper, we present js.js, a JavaScript interpreter
that runs on top of JavaScript. It allows site operators
to mediate access to a page’s internals by executing a
third-party script inside a secure sandbox. We created a
prototype js.js implementation by compiling the Spider-
Monkey [3] JavaScript engine to LLVM [11] and then
translating it to JavaScript using Emscripten [20]. The
implementation is used to demonstrate the js.js API se-
curity features and benchmark performance on the Sun-
Spider benchmark suite [4].
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Figure 1: js.js architecture for example application

2 Design

The design goals for js.js are as follows:
• Fine-grained control: Rather than course-grained

control, e.g., disallowing all DOM access, an appli-
cation should have fine-grained control over what
actions a third-party script can perform.

• Full JavaScript Support: The full JavaScript lan-
guage should be supported, including with and eval,
which are impossible to support with static analysis.

• Browser Compatibility: All major browsers
should be supported without plugins or modifica-
tions.

• Resilient to attacks: Resilient to possible attacks
such as page redirection, spin loops, and memory
exhaustion.

With these goals in mind, the js.js API has been de-
signed to be very generic, similar in structure to the Spi-
derMonkey API. Rather than being specific to a web en-
vironment, the js.js API can be used to bind any kind of
global object inside the sandbox space. Initially, a sand-
boxed script has no access to any global variables ex-
cept for JavaScript built-in types (e.g., Array, Date, and
String), but the application can add additional names. In
the web environment, these include global names like
window and document. The js.js API allows an applica-
tion, for example, to add a global name called alert that,
when called inside the sandbox, calls a native JavaScript
function. This way, the application using js.js has com-
plete control over the sandboxed script since the only
access the sandbox has to the outside is through these
user defined methods. Thus these methods must give the
script access only to the elements that the user allows.

Figure 1 shows an example application architecture
using js.js. The Mediator is a JavaScript application that
uses the js.js library to execute a third-party script in a
sandbox. The Virtual DOM is comprised of the usual
web-specific global variables that a script expects, but
instead of referring directly to the browser, the media-

var src = "nativeAdd (17, 2.4);";

var jsObjs = JSJS.Init();

function nativeAdd(d1, d2) {

return d1 + d2;

}

var dblType = JSJS.Types.double;

var wrappedNativeFunc = JSJS.wrapFunction ({

func: nativeAdd ,

args: [dblType , dblType],

returns: dblType });

JSJS.DefineFunction(jsObjs.cx, jsObjs.glob ,

"nativeAdd", wrappedNativeFunc , 2, 0);

var rval = JSJS.EvaluateScript(jsObjs.cx,

jsObjs.glob , src);

// Convert result to native value

var d = rval && JSJS.ValueToNumber(jsObjs.cx

, rval);

Figure 2: Example of binding a native function to the
global object space of a sandboxed script.

tor intercepts all access, such that it can allow or reject
requests.

The js.js API aims to be easy to use and flexible. The
example in Figure 2 demonstrates using the API to bind
to the sandboxed environment, a global function called
nativeAdd that accepts two numbers as arguments and re-
turns the sum. Init initializes a sandboxed environment
with standard JavaScript classes and an empty global ob-
ject. wrapFunction is a helper function that allows an
application to specify expected types of a function call.
If the wrong types are passed to the function, an error is
triggered in the sandbox space, which will result in an
error handler being called in native space, allowing ap-
plications to detect sandboxed errors. DefineFunction
binds the wrapped function to a name in the global ob-
ject space of the sandbox, EvaluateScript executes
the script, and ValueToNumber converts the result of
evaluating the expression to a native number.

In addition to primitive types like bool, int, and dou-
ble, the js.js API also includes helper functions for bind-
ing more complex types like objects, arrays, and func-
tions to the sandboxed space. With the js.js API, an ap-
plication can expose whatever functionality of the DOM
it wants to a sandboxed script. It can also be used to run
user-submitted scripts in a secure way, even providing a
custom application-specific API to its users. Currently,
creating this virtualized DOM is fairly complex. As fu-
ture work, we wish to extend the js.js API to make it eas-
ier to use by allowing the user to easily setup white/black
lists of browser elements, sites, etc.
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Fine-Grained Full JS Page Spin Loop / Memory Suspend /
DOM Control Support Redirection Terminate Exhaustion Resume

Direct Include % ! % % % %

iframe % ! % % % %

Web Worker % ! ! ! % %

Static ! % ! % % %

Static + Runtime ! % ! % % %

js.js ! ! ! ! ! !

Figure 3: Table of related work and the attack vectors which they can protect against or support (!) and those that
they cannot (%). “Static” refers to purely static techniques such as ADsafe and Gatekeeper, while “Static + Runtime”
refers to techniques such as Caja and WebSandbox.

The power of eval and with make them difficult to ex-
ecute securely. For example, malicious code can use eval
to disable or circumvent any protections that have been
added through JavaScript code. Thus, most other tech-
niques either completely prohibit using them or provide
some limited version. However, the powerful sandbox-
ing of scripts that js.js employs means that even eval and
with can be executed securely as they can still only ac-
cess the protected Virtual DOM.

Since js.js contains a full JavaScript interpreter (a
compiled version of SpiderMonkey in our prototype im-
plementation), it supports all variants of JavaScript that
the interpreter supports. The js.js API allows an applica-
tion to specify what version of the JavaScript language to
use, anywhere from 1.0 to 1.8. Since an application can
bind any name to the sandboxed space, full DOM sup-
port can be emulated. In addition, js.js is currently com-
patible with Google Chrome 7+, Firefox 4+, and Safari
5.1+. Because it requires Typed Array support, js.js will
not support Internet Explorer until version 10 (currently
in development) is released.

Another benefit of having the interpreter in JavaScript
is that js.js has full execution and environmental control
of sandboxed scripts. Thus it is relatively simple for js.js
to prevent scripts staying in infinite loops or consuming
large quantities of memory by placing optional checks
inside the interpreter loop. This kind of protection is typ-
ically not possible in a normal protection system given
the nature of JavaScript.

As seen in Figure 3, js.js is the only technique to meet
all of our desired goals. A more detailed discussion of
related work can be found in Section 6.

3 Implementation

Our initial prototype implementation of the js.js runtime
has been created by compiling the SpiderMonkey [3]
JavaScript interpreter to LLVM [11] bytecode using the
Clang compiler and then using Emscripten [20] to trans-

late the LLVM bytecode to JavaScript.
Emscripten works by translating each LLVM instruc-

tion into a line of JavaScript. Typed Arrays (a browser
standard) allows Emscripten to emulate the native stack
and heap, such that loads and stores can be translated to
simple array accesses. When possible, Emscripten trans-
lates operations to native JavaScript operations. For ex-
ample, an add operation is translated into a JavaScript
add operation. An LLVM function call is translated into
a JavaScript function call. It also has its own version of a
libc implementation. By doing this, the translated output
can achieve good performance.

SpiderMonkey comprises about 300,000 lines of C
and C++. A lot of our implementation effort was spent
patching SpiderMonkey so that it compiles into LLVM
bytecode that is compatible with Emscripten’s translator.
Due to JavaScript’s inability to execute inline assembly,
the JIT capabilities of SpiderMonkey were disabled. We
also contributed patches to Emscripten for corner cases
that it had previously not encountered. We then wrote the
js.js API wrapper around the resulting interpreter. Thus
the js.js API greatly resembles SpiderMonkey’s JSAPI.

The translated SpiderMonkey shared library
(libjs.js) is 365,000 lines of JavaScript and 14MB
in size. After closure compiling (libjs.min.js), it
is 6900 lines and 3MB in size. After gzipping (which
all browsers support), it is 594KB. Our wrapper API is
about 1000 lines of code. The compiled SpiderMonkey
library is available under the Mozilla Public License,
while the rest (wrapper script and build scripts) are
available under a BSD License. The library can be found
at https://github.com/jterrace/js.js.

4 Demo Application

To give an example of running a third-party script using
js.js, this section describes how to run Twitter’s Tweet
Button inside js.js. Twitter makes a script available for
embedding a button on an application’s website. Nor-
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mally, an application loads Twitter’s script directly from
platform.twitter.com/widgets.js. Instead, we serve the
unmodified widget code from our own server, as this ver-
sion is confirmed to work with js.js, and use js.js to inter-
pret it.

The Twitter widget script is 47KB of complicated,
closure-compiled JavaScript. It expects to be running in-
side a web page with full access to the DOM. The basic
flow of the script is as follows: a large amount of boil-
erplate code runs first that checks browser compatibility,
the DOM is searched for <a> elements that match the
twitter class selector, and each match is replaced with
a new <iframe> element containing the Twitter button.
Given that it spans a large portion of the DOM API, it
is a good representative example of third-party scripts.
Supporting this in js.js involved all of the following func-
tionality:
• Binding many global objects to the sandbox space

that the browser compatibility code checks for, such
as location, screen, navigator, and window

along with many of their properties and functions.
• Allowing the sandboxed code to bind to event han-

dlers such as DOMContentLoaded, the <iframe>

onload event, and the message event handler (used
for inter-iframe communication).

• Many document utility functions such as
getElementsByTagName, getElementById,
and createElement.

• Wrapping real DOM elements with sandbox-space
objects that provide functions like getAttribute

and setAttribute, returning the real DOM ele-
ment attributes when necessary.

When providing these objects, methods, functions,
and handlers, we only provided the sandboxed code with
just enough functionality that it can achieve its goal—
creating a Twitter button—without allowing it access to
any other unnecessary functionality. This demo script
can be found at http://jterrace.github.com/js.
js/twitter/.

5 Evaluation

We evaluate the js.js prototype implementation with both
microbenchmarks of its API functions as well as with the
SunSpider JavaScript Benchmark Suite [4]. The evalua-
tion platform is a Macbook Pro with a 2.4 GHz P8600
and 4GB of RAM. The native tests were performed us-
ing SpiderMonkey (tag 20111220) with the JIT disabled.
The js.js runtime was compiled from SpiderMonkey (tag
20110927) using clang and LLVM version 3.0, and Em-
scripten version 2.0.

Figure 4 shows the mean time (across ten executions)
required to execute the startup and shutdown routines for
the js.js runtime as well as the time required to evaluate

Function Time (ms)

libjs.min.js load 84.9
NewRuntime 25.2
NewContext 35.8
GlobalClassInit 15.5
StandardClassesInit 60.1
Execute 1+1 70.6
DestroyContext 33.3
DestroyRuntime 1.8

Figure 4: Mean (across 10 executions) runtime for vari-
ous js.js initialization and execution procedures.

a simple 1+1 expression. The overhead of creating the
runtime environment to start executing a script is not an
expensive cost.

Figure 5 shows the SunSpider benchmark results for
js.js in both Chrome and Firefox. For Chrome, most
benchmarks fall in the 100x to 200x slowdown range,
while Firefox lags behind in some benchmarks. This
slowdown is due to a combination of inefficiency in
the Emscripten compiler and the overhead of running
JavaScript within JavaScript. Further efforts to improve
the Emscripten compiler, along with manual optimiza-
tion of the resulting JavaScript, could result in even bet-
ter performance. However, this level of overhead could
be acceptable to protect websites from untrusted third-
party scripts. Trusted JavaScript code can still run na-
tively alongside js.js protected code, especially effective
if js.js is running in a Web Worker1 The majority of the
execution time is spent in js.js’s main interpreter loop, a
very large function that Emscriptenm, and JIT compilers
in browsers, do not do very well at optimizing. We are
currently working on ways to improve the performance
of this function.

Also note that although the performance overhead of
running js.js is high, other implementations of the js.js
API could improve performance. For example, an imple-
mentation of the API could be built with Native Client [6]
or incorporated directly into future versions of browsers,
with the pure JavaScript implementation being used as a
fallback if no faster implementations are available.

6 Related Work

iframes have been widely adopted because of the flexi-
bility they provide for sandboxing third-party pages. An
iframe allows each third-party script to have its own page

1Note that since the DOM API is synchronous and Web Workers are
asynchronous, a blocking mechanism, such as the HTML5 file-system
API, would have to be used.
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Figure 5: Relative Slowdown of js.js running the Sunspider benchmark in Google Chrome and Firefox 9. The median
of ten runs of each benchmark is shown, with error bars corresponding to the minimum and maximum.

and the cross-origin policy prevents it from accessing
the DOM outside of where it originates, however this
approach has not fared well because today’s web pages
are complex and limiting a third-party’s access to a sin-
gle fixed-size iframe is not flexible enough. In addi-
tion, cross-iframe messaging is cumbersome—requiring
established message-passing protocols between parties.
iframes also don’t prevent page redirection, window
alerts, browser denial-of-service (via spin-loop), and
memory exhaustion.

There has been a lot of work [17, 15, 14, 9, 1, 7] in
the area of static javascript analysis of third-party scripts
to restrict content and enforce security policies. These
implementations typically restrict the way the JavaScript
language features are used. They enforce these restric-
tions by using static analysis techniques to check the
parameters passed to the various functions used by the
script. Since much of the policy enforcement is done
statically, these solutions typically have good runtime
performance. However, it is very hard to determine the
security aspects of such parameters by plain parameter
checking unless one does a very robust execution trac-
ing at runtime. For example, GateKeeper [9] employs
a parameter checking model, but they cannot check the
safety of the complex but useful functions, such as eval,
setTimeout etc., whose parameters need to be passed to
the JavaScript parser. In the cases of FBJS [1] and AD-
safe [17], untrusted scripts are allowed to make calls to
an access-controlled DOM interface, which again sup-
ports a very restricted version of Javascript and many
of these access control checks are not sound. The cost

in employing a restricted JavaScript subset is that some
scripts may not conform to the subset, requiring they be
ported.

Many recent techniques [16, 2, 8, 18] have taken
the approach of transforming untrusted JavaScript code
dynamically to interpose runtime policy enforcement
checks. These works try to cover the many diverse
ways in which a malicious code may subvert static pol-
icy enforcement checks. But even these policies re-
strict features of JavaScript (e.g., eval and with) or
some functions that eschew redefinition as in Browser-
Shield [18]. WebSandbox [2], for example, adopts a
parameter checking model to verify the parameters be-
ing passed, but additionally creates a virtualized environ-
ment for third-party scripts in which the variables have
a different namespace than what is visible to the native
engine. However, the arguments of functions like eval,
when generated dynamically, would bypass such instru-
mentation. Since the execution is still done on the native
JavaScript engine, eval cannot be safely executed in the
WebSandbox approach.

The Google Caja project [16] enforces security poli-
cies using a mixture of static and runtime techniques.
Caja provides a compiler that transforms (cajoles) the
third-party script into a milder version with less capabil-
ity, i.e., it restricts the way a script might use the DOM
API or various JavaScript constructs such as with and
eval. This is done by verifying that the script adheres to
the required security policy using static analysis. Where
it cannot confirm that the script is well behaved, it will
annotate the application with runtime checks. In con-
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trast, access to the DOM with js.js is unavailable by de-
fault and has to be explicitly allowed for the third-party
script to be able to access a DOM object. This negates the
need for changing the script source or restricting the way
the third-party applications use JavaScript APIs. Instead,
js.js captures the accesses to DOM objects using call-
backs and enforces a security policy at runtime. js.js also
allows for pausing or terminating the execution of run-
away scripts while Caja cannot handle this issue (without
solving the halting problem). Caja also requires server-
side execution, while js.js is client-side only.

The recent introduction of Web Workers [5] has en-
abled a way of sandboxing third-party scripts, but to an
extreme extent. A Web Worker prevents not just a ma-
licious third-party script but any third-party script from
accessing the DOM at all. A script running in a Web
Worker essentially runs in parallel to the application UI
and hence can be killed at any time by the parent ap-
plication that forks it, preventing loop attacks. But the
forked worker has very limited functionality, having to
communicate with the parent through message-passing.
This requires rewriting third-party scripts, decreasing its
usability.

AdJail [13], has less restriction on JavaScript function-
ality and adopts access control mechanisms to regulate
the access to host objects. But the access control model
applied in this case is not flexible enough to dictate how
the object is used once a third-party script validates ac-
cess to it. Our approach gives such flexibility by letting
site operators build wrappers to functions that pose a se-
curity risk.

A different approach is for the website owner to ask
the underlying browser to enforce the owner’s policies
on any third-party JavaScript content, leaving the en-
forcement entirely to the browser’s discretion. Using
this method, a wide variety of fine-grained security poli-
cies can be enforced with low overhead as illustrated
in Content Security Policies [19], BEEP [10] and Con-
script [12]. Such a collaborative approach seems sound
in the long term but today’s browsers do not agree on a
standard for publisher-browser collaboration, resulting in
a large gap in near-term protection from malicious third-
party scripts.

7 Conclusion

We have created the js.js API and runtime which al-
lows for controlled and secure execution of untrusted
JavaScript code. Our initial prototype implementa-
tion has been created by compiling the SpiderMonkey
JavaScript engine to JavaScript. We then implemented
the js.js API in JavaScript as a wrapper around the Spi-
derMonkey API. Using this API, we show secure execu-
tion of Twitter’s Tweet Button and we evaluate the per-

formance overhead of running JavaScript in JavaScript
by evaluating on the SunSpider benchmark suite. In the
future, we hope to both increase the performance of js.js
as well as show its security potential on increasingly in-
teresting examples.
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