
LIBERATED: A fully in-browser client and server
web application debug and test environment

Derrell Lipman
University of Massachusetts Lowell

Abstract

Traditional web-based client-server application devel-
opment has been accomplished in two separate pieces:
the frontend portion which runs on the client machine has
been written in HTML and JavaScript; and the backend
portion which runs on the server machine has been writ-
ten in PHP, ASP.net, or some other “server-side” lan-
guage which typically interfaces to a database. The skill
sets required for these two pieces are different.

In this paper, I demonstrate a new methodology
for web-based client-server application development, in
which a simulated server is built into the browser envi-
ronment to run the backend code. This allows the fron-
tend to issue requests to the backend, and the developer
to step, using a debugger, directly from frontend code into
backend code, and to debug and test both the frontend
and backend portions. Once working, that backend code
is moved to a real server. Since the application-specific
code has been tested in the simulated environment, it is
unlikely that bugs will be encountered at the server that
did not exist in the simulated environment.

I have implemented this methodology and used it for
development of a live application. All of the code is open
source.

1 Introduction

Web-based client-server applications can be difficult
to test and debug. Disparate development environments
on the client and server sides, distinct skill sets for each,
and a network that precludes easy synchronous debug-
ging all impede debugging at the client side. Some-
times, the server environment provides little debugging
and testing infrastructure.

I will describe here an architecture and framework
that allows writing both the frontend code that runs on
the client machine (i.e., in the browser) and the backend
code that typically runs on a server machine, in a single
language. Furthermore, this architecture allows debug-

ging and testing the entire application, both frontend and
backend, within the browser environment. Once the ap-
plication is tested, the backend portion of the code can
be moved to the production server where it operates with
little, if any, additional debugging.

1.1 Typical web application development

There are many skill sets required to implement a
modern web application. On the client side, initially, the
user interface must be defined. A visual designer, in con-
junction with a human-factors engineer, may determine
what features should appear in the interface, and how to
best organize them for ease of use and an attractive de-
sign.

The language used to write the user interface code is
most typically JavaScript [6]. There need be at least
a small amount of HTML to load the JavaScript code.
Many applications are written using a JavaScript frame-
work such as jQuery, ExtJS, or qooxdoo. Developers
must therefore be fluent with both the language and the
framework.

Debugging is generally accomplished using a debug-
ger provided by the browser, or a plug-in to the browser.

The backend software includes the web server and
database engine. Recent statistics [7] show that PHP and
ASP.NET are the most popular languages for writing the
backend code. Each provides a mechanism for receiving
requests in the agreed upon application communication
protocol (encoding) from the frontend. These languages
also provide a means of communicating with a separate
database server, or to an embedded database.

The application-specific backend code, or “business
logic,” is usually initiated by a web server which may
or may not provide mechanisms for easy debugging of
the application code. When a debugger is not available,
the developer must rely on print or log statements to
ascertain the code location of problems.

With the differing coding language and operating en-

vironment comes unique debugging methodologies. The
skill sets required for debugging at the client and server
are different, so any debugging session may require the
availability of multiple people. Making debugging even
more difficult is the asynchronous nature of the client-
server interaction. Request messages are sent via the
transport, and at some future time, response messages
are returned. This separation of client and server means
that it is not possible to use a debugger at the browser to
step into code which is running on the server, nor even set
a breakpoint that would allow stopping at the server-side
handler for a key or button press at the user interface.

1.2 Research question

With the afore-mentioned problems in mind, I ask:

Is it feasible to design an architecture and framework
for client-server application implementation that allows:

1. all application development to be accomplished pri-
marily in a single language;

2. application frontend and backend code to be tested
and debugged within the browser environment; and

3. debugged and tested application-specific backend
code to be moved, unchanged, from the browser en-
vironment to the real server environment, and to run
there?

In order to accomplish this, we first need a lan-
guage that can be used both in the browser and on the
server. For cross-browser use, the only viable choice is
JavaScript. We therefore need a JavaScript implemen-
tation of the backend code that could run both in the
browser and on the server, which can talk to whatever
server-side database is to be used. The desired architec-
ture is depicted in Figure 1.

Additionally, we need some form of abstraction that
encompasses the set of database operations that are
performed. The mechanism must map to a particu-
lar database on the server, and to a simulation of the
database in the browser.

Two new questions arise out of such an architecture:

1. How much of a compromise does this architecture
impose, i.e., what common facilities become un-
available or more difficult to use?

2. Does this new architecture create new problems of
its own?

2 Introducing LIBERATED

LIBERATED is an architecture and JavaScript library
upon which full web applications can be built. LIB-
ERATED allows a web application to be debugged and

Client machine (browser)
Server machine

Frontend Code

Backend Code

User Interface

Application
Communication

Protocol

API to
web server

Database

"Business logic"

Application
Communication

Protocol

Web server

HTTP

Backend Code

Database

Web server

In Browser

Figure 1: Desired architecture

tested, fully within the browser environment. Once all
code is working, that same code can be moved to a real
server, and run there. LIBERATED truly lives up to its
name, liberating the developer from many of the hassles
of traditional web application debugging.

LIBERATED is extensible. At present, it provides the
following components:

• Database abstraction, used by an application
• Mapping from the database abstraction to the App

Engine datastore
• Mapping from the database abstraction to SQLite1

• Mapping from the database abstraction to a simu-
lated database which runs in the browser

• JSON-RPC Version 2.0 server
• Web server interface for App Engine
• Web server interface for the Jetty web server2

• Transport simulator to talk to an in-browser web
server

• Hooks into the qooxdoo JavaScript framework, to
allow use of the transport simulator in addition to
its standard transports3

The following sections will discuss the overall archi-
tecture of LIBERATED and provide additional details
of important components.

2.1 Architecture

In the backend, when using LIBERATED, an appli-
cation’s “business logic” code interacts with the database

1http://sqlite.org
2http://jetty.codehaus.org/jetty/
3http://qooxdoo.org (pronounced [’kuksdu:])

using a database abstraction provided by LIBERATED.
Using the database abstraction allows the actual database
to be real or simulated. A real database is the App En-
gine datastore, SQLite, MySql, etc, whereas a simulated
database runs in the browser. Similarly, the backend re-
ceives requests from the frontend via a transport that
can be either real, communicating across a network, or
simulated, communicating solely within the browser.

LIBERATED handles requests which arrive via the
selected transport. With a real web server such as pro-
vided by App Engine or Jetty, requests arrive via the
HTTP protocol. When requests arrive via the simulated
transport, they are placed on a queue, and handled in se-
quence from there, by a simulated web server.

The web server, whether real or simulated, determines
which handler should process a request. A handler for
the JSON-RPC server is currently implemented. Others,
such as for REST could be added.

2.2 Development environment

The JavaScript framework upon which LIBERATED
is implemented is qooxdoo. The qooxdoo framework
provides a traditional class-based object programming
model, and a wealth of additional functionality including
classes to assist communicating over a network. There is
nothing qooxdoo-specific, however, to this technology,
and LIBERATED can be used in a non-qooxdoo-based
application.

2.3 Database abstraction

In a common SQL-accessed relational database, data
is organized into tables with names that identify the type
of data that is stored in the table. A table contains rows
of data, each with a common set of columns or fields.
Each row is uniquely identified by a key value contained
in one or more of its columns.

The database abstraction in LIBERATED is built
upon a class called liberated.dbif.Entity. Each
“table” can be thought of as being defined as a sep-
arate subclass of liberated.dbif.Entity. An in-
stance of one of those subclasses, referred to as an en-
tity, represents a row from that table. Each subclass of
liberated.dbif.Entity defines a unique entity type.
liberated.dbif.Entity contains a method for reg-

istering the properties (like column names and types)
which are members of each entity of that entity type.

To add a new object to the database, an entity of
the proper subclass of liberated.dbif.Entity is in-
stantiated, its property values set, and its put() mem-
ber method called. When instantiating the subclass, the
key field(s) of the entity type can be provided, to re-
trieve a specific existing object from the database. The
liberated.dbif.Entity.query() function is used

to retrieve specified sets of objects of an entity type from
the database.

At present, relationships among entity types must be
maintained by the application. Future plans include im-
provements in this area.

2.4 JSON-RPC server

The JSON-RPC server accepts incoming requests and
returns responses in the format specified by the JSON-
RPC Version 2.0 standard. [3] Remote procedure call
methods are registered as a tuple consisting of the name
of the method, a function that implements the remotely-
accessible method, and an array that lists the names of
the parameters. The latter allows requests to use either
positional parameters or named parameters.

3 Example use of LIBERATED

To demonstrate, in part, how LIBERATED is used,
consider a database entity which implements a counter.
This simple entity type is shown in Listing 1.

Listing 1: Entity type definition for a simple counter

1 qx.Class.define("example.ObjCounter",
2 {
3 extend : liberated.dbif.Entity ,
4

5 construct : function(id)
6 {
7 // Pre -initialize field data
8 this.setData ({ "count" : 0 });
9

10 // Call the superclass constructor
11 this.base(arguments , "counter", id);
12 },
13

14 defer : function ()
15 {
16 var Entity = liberated.dbif.Entity;
17

18 // Register the entity type
19 Entity.registerEntityType(
20 example.ObjCounter ,
21 "counter");
22

23 // Register the properties
24 Entity.registerPropertyTypes(
25 "counter",
26 {
27 "id" : "String",
28 "count" : "Integer"
29 },
30 "id");
31 }
32 });

The key field for this entity type is a string, referred
to as id. As soon as this class has been loaded, the
defer() function is called, which registers the entity
type, so it is immediately available for use once the
entire application has been loaded. The name of this
class (example.ObjCounter) and the entity type name
(“counter”) are provided in the entity type registration, as

shown on lines 19–21. This entity type has two proper-
ties: the counter’s id and its count, which are registered
on lines 24–30.

When a new object of this class is instantiated, default
data is provided for the count field: it is initialized to
zero, by line 8.

Listing 2 shows how remote procedure calls are imple-
mented. Line 6 begins the registration of the remote pro-
cedure named “countPlusOne”. Line 7 maps that name
to the countPlusOne method which begins at line 13.
Line 8 shows the list of parameters that are expected or
allowed to be passed to the “countPlusOne” RPC. In this
case, a single parameter, a counter ID, is expected.

Listing 2: RPC to increment a counter

1 qx.Mixin.define("example.MCounter",
2 {
3 construct : function ()
4 {
5 // Register the ’countPlusOne ’ RPC
6 this.registerService("countPlusOne",
7 this.countPlusOne ,
8 ["counterId"]);
9 },

10

11 members :
12 {
13 countPlusOne : function(counter)
14 {
15 var counterObj;
16 var counterDataObj;
17

18 liberated.dbif.Entity.asTransaction(
19 function ()
20 {
21 // Get the counter object
22 counterObj =
23 new example.ObjCounter(counter);
24

25 // Get the application data
26 counterDataObj =
27 counterObj.getData ();
28

29 // Increment the count
30 counterDataObj.count ++;
31

32 // Write it back to the database
33 counterObj.put();
34

35 }, [], this);
36

37 // Return new counter value
38 return counterDataObj.count;
39 }
40 }
41 });

The implementation of countPlusOne() begins a
database transaction to ensure that all manipulation of the
database is accomplished based on a consistent database
state. The function passed as the first parameter to
asTransaction() will be called once a transaction has
been established. When that function completes, the
transaction will be ended.

The function to be run as a transaction begins at line
19. It first obtains the current counter object based on the
specified counter ID, at line 22, and then retrieves that

object’s data map, at line 26. The data map contains the
values of the two fields in this entity type (id and count).

The count field is incremented, and then the counter
object is written back to the database with line 33.

The return value of this function, the counter’s new
value, is returned by asTransaction() after ending the
transaction.

4 Discussion

One of the clear benefits of the LIBERATED archi-
tecture is that key portions of debugging and testing can
be easier to handle than with traditional client-server ap-
plications. In this section, I will discuss some techniques
that are now available, and our experience using them.

4.1 Debugging

The frontend and backend are traditionally initially de-
bugged in isolation. They are often written in differ-
ent languages, may be developed by different teams, and
may not be able to run on the same machine. The inter-
face between them may be implemented solely to a ser-
vice API specification, with little ability for the frontend
and backend to interact until both are nearly completed.
There is often no easy way to use a single debugger to
step through the code. It may be possible to have sep-
arate frontend and backend debuggers, but some server
environments do not provide any easy means of debug-
ging, and developers resort to print or log statements
in the code.

With an application developed with LIBERATED,
debugging of frontend and backend code need not be ac-
complished in isolation, both are written in the same lan-
guage, and the service API can be exercised easily during
development. This allows early and iterative debugging
during the development process. The developer can use
a debugger running in the browser to step from frontend
code into backend code, or set breakpoints in backend
code and then interact with the user interface to cause a
request to be sent to the backend... and immediately have
the debugger stop at that breakpoint.

4.2 Debugging Experience

During the course of developing the App Inventor
Community Gallery, a complete application built upon
LIBERATED, the LIBERATED architecture time and
again proved itself to be a highly efficient and easy to use
development and debugging environment. Instead of de-
veloping the frontend and backend code in isolation, we
implemented and tested new user interface features and
any corresponding backend changes concurrently. With
LIBERATED, when new code doesn’t work as intended,
our typical debug cycle is:

1. Set a breakpoint in the remote procedure call imple-
mentation in the backend code. Run the program.

2. If the breakpoint in the RPC is hit, review the re-
ceived parameters to ensure they are as expected.
Step through the RPC implementation, noting vari-
able changes, return values from functions, etc., un-
til the problem is identified.

3. If the breakpoint in the RPC implementation is not
hit, this indicates that there is likely a problem in
the way the RPC is called. Set a breakpoint in the
new frontend code, where the remote procedure call
is initiated.

4. Run the program again, and at the breakpoint, en-
sure that the proper remote procedure call is be-
ing requested, and that the parameters have the ex-
pected values. If not, fix the problem, and repeat the
process.

5. If, upon running the program in the previous step,
the breakpoint is not hit, normal frontend debugging
procedures are used to ascertain where the code is
faulty.

5 Related work

I have been unable to find any literature or related
projects which accomplish all of my goals set forth in
Section 1.2. Although there is work in progress on the
various sub-pieces described here, there appear to be
none that would allow an application to be written in a
single language, debugged and tested in the browser, and
allow debugged, tested code to then be moved to the real
server. Significant work which encompasses or relates to
portions of my goals is described here.

5.1 Server-side JavaScript

The three JavaScript engines in common use are V8,
used in the Chrome browser; SpiderMonkey, embedded
in a number of Mozilla products; and Rhino, an imple-
mentation of JavaScript written in Java, also from the
Mozilla Foundation. Each engine allows adding script-
ing to an application, so it is easy to build products
around the engine. A plethora of such products have
shown up in the last few years [8].

5.2 Web standard database interfaces

Work is progressing on a standard database interface
for local storage of data at the browser. The proposal
gaining acceptance for a browser database interface is In-
dexed Database API [5]. The Indexed Database API pro-
vides a programmatic database interface somewhat sim-
ilar to the database abstraction in LIBERATED. Once it
is widely available, the Indexed Database API could be

used for an improved client-side simulated database in
LIBERATED.

5.3 Reducing the distinction between
client and server

The problem of different languages for client and
server development is being tackled in different ways by
various projects. The following sections describe some
current work in progress.

5.3.1 Google Web Toolkit

Google’s answer to unifying the client and server lan-
guages for web application development is called the
Google Web Toolkit [1]. GWT allows the developer to
write client-side code in Java, which is then translated
into JavaScript to run in the browser. GWT is essen-
tially backend-agnostic. GWT allows writing frontend
applications in Java, and optionally also writing backend
applications in Java, to accomplish the language unifica-
tion.

5.3.2 Plain Old Webserver

Plain Old Webserver (POW) is a browser add-on that
provides a web server that runs in the browser. The server
“uses Server Side Javascript (SJS), PHP, Perl, Python
or Ruby to deliver dynamic content.” [4] Using Plain
Old Webserver allows cross-platform, consistent access
to a single server implementation. It runs on Firefox, on
Linux, Mac, or Windows. It does not, however, provide
the ability to step from frontend code into backend code.

5.3.3 Wakanda

Wakanda [2] provides a datastore and HTTP server, a
Studio to visually design both the user interface and the
data models which define how the datastore is organized,
and a high-integrated code editor. It also provides the
communications mechanism between frontend and back-
end, and data binding of user interface components to
the datastore. The server-side language is JavaScript.
Wakanda comes close to meeting the requirements of
my research question, but it lacks LIBERATED’s crit-
ical ability to debug round trip operations, e.g., to trace
into backend code upon initiation of a request via a fron-
tend user action. It is also not fully cross-platform. The
Wakanda Studio works only on Mac OS X and Windows,
not on Linux. (The Wakanda Server, however, does run
on Linux.)

6 Conclusions

The implementation of LIBERATED shows that an
architecture that meets my research questions from Sec-

tion 1.2 is feasible. LIBERATED allows both the fron-
tend and backend of the application to be coded in
JavaScript. With the simulated server running the back-
end code in the browser, all of the code can be debugged
purely within the browser, with no need for an external
server to run the backend code. Breakpoints can be set in
backend code, within the browser, or the developer can
step directly from frontend code into backend code. Fi-
nally, as has been shown with the Google App Engine
and Jetty/SQLite interfaces of LIBERATED, the work-
ing application-specific backend code can be moved to a
real server environment and run there.

The answers to my follow-up questions in Section 1.2
are not as clear cut, however.

6.1 Compromises of this approach

Although the architechture of LIBERATED is easy
to work with and accomplishes the goals set out by my
research question, a number of open issues remain, and
it is yet to be determined how much impact these might
have. These mostly pertain to the database abstraction.
To wit:

• Testing a large web app often requires a substantial
database. The current simulation database in LIB-
ERATED is not adequate for complete testing of an
application.

• LIBERATED does not yet provide for automated
operations based on relations between entities.

• The complete set of property types which an ap-
plication may use is defined by LIBERATED. The
target database may allow other types.

• Some datastores, e.g., Google App Engine, do not
require a pre-defined schema, but LIBERATED re-
quires one.

6.2 New problems of this approach

There have been few new problems seen as a result of
using this approach. The most obvious one is that server-
side JavaScript is still young, and plentiful libraries of
code are not yet available. Even now, though, Node.js
is building a large library of code, easily require()’d
(included) from custom code.4 As server-side JavaScript
matures, it appears likely that this problem may simply
evaporate.

7 Recommendations

LIBERATED is a working implementation that is be-
ing used in a significant application. There is ample re-
lated and continuation work that can be done, however.

4http://nodejs.org/

The most urgent need is a rigorous evaluation of the
benefits of LIBERATED vs. one or more traditional de-
velopment paradigms. At present, my conclusions are
based only on the development of App Inventor Gallery
by one team of developers.

Additionally, there are some obvious improvements
that can be made.

• Relationships between objects in LIBERATED are
ad hoc, maintained exclusively by the application.
Object relationships should be defined in the LIB-
ERATED database abstraction, allowing for such
things as automatic retrieval of related records or
cascading deletes.

• The simulation database driver could use the
HTML5 Indexed Database for a more capable sim-
ulated database.

• Query operators other than “and” should be sup-
ported.

Acknowledgments

The inspiration for LIBERATED was App Inventor
Community Gallery, which was developed under a grant
from Google to Professor Fred Martin at UMass Lowell.

Availability

The fully-open-source LIBERATED and App Inven-
tor Community Gallery are available from their respec-
tive github repositories:

https://github.com/liberated/liberated

https://github.com/app-inventor-gallery/aig

References
[1] Google Web Toolkit Overview. http://code.google.com/

webtoolkit/overview.html.
[2] 4D. Wakanda JS.everywhere(). http://www.wakanda.org/

features.
[3] JSON-RPC WORKING GROUP. JSON-RPC 2.0 specification.

http://jsonrpc.org/spec.html, Mar. 2010.
[4] KELLOGG, D. Plain Old Webserver. http://davidkellogg.

com/wiki/Main_Page.
[5] W3C. Indexed Database API. http://dvcs.w3.org/hg/

IndexedDB/raw-file/tip/Overview.html.
[6] WEB TECHNOLOGY SURVEYS. Usage of client-side pro-

gramming languages for websites. http://w3techs.com/

technologies/overview/client_side_language/all,
January 2012.

[7] WEB TECHNOLOGY SURVEYS. Usage of server-side pro-
gramming languages for websites. http://w3techs.com/

technologies/overview/programming_language/all,
January 2012.

[8] WIKIPEDIA. Comparison of server-side JavaScript solu-
tions. http://en.wikipedia.org/wiki/Comparison_of_

server-side_JavaScript_solutions.

