
Don’t Repeat Yourself: Automatically Synthesizing Client-side Validation
Code for Web Applications

Nazari Skrupsky Maliheh Monshizadeh Prithvi Bisht Timothy Hinrichs
V.N. Venkatakrishnan Lenore Zuck

Department of Computer Science
University of Illinois at Chicago

Abstract
We outline the groundwork for a new software devel-

opment approach where developers author the server-
side application logic and rely on tools to automati-
cally synthesize the corresponding client-side applica-
tion logic. Our approach uses program analysis tech-
niques to extract a logical specification from the server
and synthesizes client code from that specification. Our
implementation (WAVES) synthesizes interactive client
interfaces that include asynchronous callbacks whose
performance and coverage rival that of manually written
clients, while ensuring that no new security vulnerabili-
ties are introduced.

1 Introduction

Current practices in mainstream web development iso-
late the construction of the client component of an appli-
cation from the server component. These practices are
a byproduct of the fact that the client component is of-
ten written using a different programming language and
platform (HTML and JavaScript in a web browser) than
the server (e.g., PHP, Java, ASP), therefore necessitating
developers with different skill sets. Independent devel-
opment is problematic when the client and server share
application logic. In this paper, we are concerned with
a specific kind of application logic shared by the client
and server: the input validation logic. Performing input
validation on the client improves the user experience be-
cause of immediate feedback about errors, and if the val-
idation is entirely self-contained on the client, it reduces
network and server load. Performing input validation on
the server is necessary for security, since a malicious user
can otherwise bypass the client validation and supply in-
valid data to the server [2]. Necessarily then the client
and the server must implement the same input validation
logic if the application is to give users the interactive ex-
perience they expect, while ensuring the security of the
application.

In this paper, we pursue a new methodology that aims
to improve the development process and achieve a higher
level of consistency. In our approach, web developers au-
thor the server side input validation of a web application,
and WAVES automatically synthesizes the input valida-
tion for the client. If the input validation must change,
the developer changes the server-side code and reruns
WAVES. The benefits of our approach include:

• Development efficiency. Developers no longer repeat
themselves— client validation code is automatically
synthesized.

• Greater compatibility and code efficiency. The po-
tential for validation mismatches between client and
server is reduced, because developers can specify all
validation checks in server code and use tools to gener-
ate equivalent validation code optimized for the client.

• Improved security. Our approach allows the develop-
ment team to spend more time on the server side com-
ponent, and encourages the specification of all valida-
tion checks in the server code itself.

Our implementation of WAVES uses program anal-
ysis techniques to automatically extract a logical rep-
resentation of the input validation checks on the server
and then synthesizes efficient client-side input valida-
tion routines. Of particular note is that WAVES gen-
erates code for validation checks that involve server-side
state and utilize asynchronous requests (AJAX) to per-
form the required validation. The high-level challenges
that WAVES addresses include:

• Inference of server-side constraints. The server-side
validation may be performed in terms of server-side
variables within deeply nested control flows of the ap-
plication. The server-side constraints must be extracted
and expressed in terms of the form fields.

• Validation involving the server. Some validation may
involve server-side state for a variety of reasons.

1



2 Our Approach
WAVES (Web Application Validation Extraction and
Synthesis), incorporates client side validation in applica-
tions in the following four conceptually distinct phases.

(1) Server analysis. WAVES first extracts the input
validation constraints enforced by the server using dy-
namic program analysis. The key insight is that when
the server is given an input it accepts, that input is pro-
cessed along a success path. WAVES captures a se-
quence of if-statements along this path, which contains
all the input validation constraints. With the execution
trace, WAVES then rewrites the if-statements in terms of
the original form field inputs and produces a list of poten-
tial input validation constraints. It then analyzes each one
to determine if it is truly an input validation constraint—
one that when falsified causes the server to reject the in-
put. WAVES then identifies which constraints are de-
pendent on the server’s environment (the dynamic con-
straints) and which are not (the static constraints).

(2) Client-side code generation. Next, WAVES
synthesizes client-side code to check the extracted con-
straints each time the user changes the value of a form
field. Static constraints can be checked directly by
JavaScript code, but dynamic constraints can only be
checked by the server. So for each form field, WAVES
generates client side code that first checks if any static
constraints are violated and if not sends a message via
AJAX to the server asking if any of the dynamic con-
straints are violated.

(3) Server-side code generation. The asynchronous
messages sent by the client to check the dynamic con-
straints for a form field can only be responded to by
special-purpose server-side code. (The original code as-
sumes the user provided values for all form fields, but the
clients asynchronous messages aim to check constraints
even before the user completes the form.) Thus, to gen-
erate the proper server code that permits dynamic con-
straint checking on the client, WAVES performs code
slicing on the server code to create an AJAX stub.

(4) Integration. After code generation, the client is
augmented with event handlers that properly invoke the
generated code and inform the user of errors. Server-side
integration requires only uploading the generated AJAX
stub code to the server’s application directory.

3 Evaluation
We implemented WAVES for web applications written
in PHP and clients written in HTML/JavaScript. Our im-
plementation builds on Kaluza [4] (an SMT solver), and
Pixy [3] (a tool for PHP dependency analysis).

To evaluate our approach we selected one form from
each of the three medium to large and popular PHP ap-
plications. For each selected form, we first manually an-

Application Ideal WAVES Existing
B2Evolution 10+1 7+1 0
WeBid 17+8 16+6 0
WebSubRev 5+1 4+1 5+0

Table 1: WAVES synthesized 83% constraints successfully.

alyzed the server-side code and identified the constraints
being checked — we call this the “ideal” synthesis and
use it to assess the effectiveness of WAVES. For each
application, Column 2 of Table 1 shows the ideal num-
ber of constraints (static + dynamic). As shown in the
next column, WAVES was able to synthesize over 83%
of the constraints identified by the ideal synthesis.

We also compared the code WAVES synthesized with
code written manually by application developers. The
third application in our test suite, WebSubRev, already
had client-side validation. For this form, the server-side
code checked 6 constraints (Column 1 Table 1), and the
developer written client-side code checked 5 constraints
(all of which were static). WAVES generated 4 static
constraints and 1 dynamic constraint, therefore synthe-
sizing 80% of the static constraints and 100% of the dy-
namic constraints. (The reason WAVES missed one con-
straint was due to a limitation of Kaluza.) We refer the
interested reader to a more detailed technical report [1]
that provides an in-depth treatment of issues involved in
realizing WAVES as well as experimental data created
for our tool.

4 Conclusion
The novel approach to developing web applications re-
ported in this paper allows the developer to improve se-
curity (without sacrificing client interactivity) by focus-
ing on hardening the server-side input validation. Our ex-
perimental results indicate that automated synthesis can
result in highly interactive web applications, and the syn-
thesized checks rival human-generated code in coverage
and expressiveness.

References
[1] Automatically Synthesizing Client-side Validation Code for Web

Applications. http://alcazar.sisl.rites.uic.edu/wavesTR.pdf, 2012.

[2] BISHT, P., HINRICHS, T., SKRUPSKY, N., BOBROWICZ, R.,
AND VENKATAKRISHNAN, V. N. NoTamper: Automatic black-
box detection of parameter tampering attacks on web applications.
In the 18th ACM Conference on Computer and Communications
Security (Oct. 2010).

[3] JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities. In
the 27th IEEE Symposium on Security & Privacy (2006).

[4] SAXENA, P., AKHAWE, D., HANNA, S., MAO, F., MCCA-
MANT, S., AND SONG, D. A Symbolic Execution Framework
for JavaScript. In SP’10: the 31st IEEE Symposium on Security
and Privacy (2010).

2


	Introduction
	Our Approach
	Evaluation
	Conclusion

