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Abstract 

 
Typical social networking functionalities such as feed following are known to be hard to scale. Different from the 
popular approach that sacrifices consistency for scalability, in this paper we describe, implement, and evaluate a 
method that can simultaneously achieve scalability and consistency in feed following applications built on shared-
nothing distributed systems. Timing and client-side processing are the keys to this approach. Assuming global time 
is available at all the clients and servers, the distributed servers publish a pre-agreed upon schedule based on which 
the continuously committed updates are periodically released for read. This opens up opportunities for caching and 
client-side processing, and leads to scalability improvements. This approach trades freshness for scalability. 

Following this approach, we build a twitter-style feed following application and evaluate it on a following network 
with about 200,000 users under synthetic workloads. The resulting system exhibits linear scalability in our experi-
ment. With 6 low-end cloud instances costing a total of no more than $1.2 per hour, we recorded a peak timeline 
query rate at about 10 million requests per day, under a fixed update rate of 1.6 million new tweets per day. The 
maximum staleness of the responses is 5 seconds. The performance achieved sufficiently verifies the feasibility of 
this approach, and provides an alternative to build small to medium size social networking applications on the cheap. 

 
1. Introduction 

Scalability has emerged as a significant challenge for 
the social networking web applications. If built with the 
traditional web application framework, even a small 
social network can be easily strained by a modest level 
of user interaction. The performance bottleneck usually 
locates at the back-end persistent data store, which is 
typically a relational database. Following the examples 
of Twitter and Facebook, many social networking web 
sites start to migrate their relational databases to various 
key-value stores, collectively branded as being 
"NoSQL". This approach indeed can scale to a larger 
workload, but always at the expense of a deliberate void 
of the consistency guarantee. 

What does consistency mean and entail in this context? 
Since many NoSQL advocates cite the Brewer’s Con-
jecture [8], also known as the CAP theorem, as the the-
oretical foundation to justify this trade-off, we naturally 
adopt the consistency definition used in its formal proof 
[18]. Used elsewhere, this type of consistency is also 
known as Atomicity [23], Linearizability [20], or One-
copy Serializability (1SR) [6]. This is different from the 
consistency as referred in the ACID properties of the 

database. To avoid further ambiguity, in this paper we 
regularly use the abbreviation 1SR to denote such con-
sistency, and unless noted otherwise, consistency al-
ways refers to 1SR in this paper. 

1SR provides the clients of a distributed system with an 
equivalent single processor view that allows them to 
reason the system behavior regardless of how many 
distributed servers are used to run the service, how geo-
graphically far apart they are from each other and from 
the clients, and how they are synchronized. Without 
1SR, the distributed system may exhibit odd behaviors 
that confuse the users. We therefore are interested in 
exploring the possibility of scaling the social network-
ing functionalities, especially the feed following appli-
cations, without violating 1SR. 

Given the formal CAP theorem proof this may seem 
impossible. But the proof itself is strictly precondi-
tioned on the asynchronous network model, where the 
only way to coordinate the distributed nodes is to pass 
messages across the network. Practical distributed sys-
tems usually have more tools in hand, and one of the 
tools is a reasonably synchronized and approximated 
global time. Indeed, the authors of the CAP theorem 
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proof used the second half of their paper to show that 
under a partially synchronous, or timing-based, distrib-
uted model [24], where global time is assumed to be 
available, CAP may indeed be simultaneously achieva-
ble most of the time, although in return we may have to 
give up some freshness, but not necessarily the latency. 

Unfortunately, this aspect of the CAP has not attracted 
sufficient attention from the industry nor from academ-
ic researchers. As early as 2008, Roy Fielding proposed 
a RESTful approach [15], which is distinctively timing-
based, for the known hard-to-scale feed following prob-
lem. But we are not aware of many real-world social 
networking web applications that are built this way, and 
to the best of our knowledge, no empirical or experi-
mental data are publicly available to verify its scalabil-
ity properties. 

In this paper we take Roy Fielding’s proposal as a start-
ing point, extrapolate it to shared-nothing distributed 
systems, and fine-tune its timing method for replication 
control. We then provide a formal description of the 
algorithm, prove its consistency property, and analyze 
its trade-offs. In order to gain insights on how much 
freshness we must give up to gain the level of scalabil-
ity currently provided by the NoSQL approach, we 
build a system and test its performance with the work-
loads similar to that used in a Yahoo! PNUTS based 
Twitter-like feed following experiment [27]. The server 
side of the system is fully implemented, but instead of 
writing and delivering client-side code to real browsers, 
we implement an emulated browser on the client side to 
facilitate performance testing. In our experiment, we set 
a fixed staleness limit of 5 seconds and an update rate 
of 19 new tweets per second. Due to the limitation of 
the test facility we used, we were not able to generate a 
query workload exceeding 40% of the PNUTS experi-
ment. But within this limitation our system exhibits 
linear scalability, up to 6 servers. 

The main contributions of this paper include: 

• A formal description of a timing-based replication 
control algorithm for the feed following problem 

• A proof of its consistency property 
• A working implementation built with lower per-

forming commodity virtual machines in the cloud 
• An experiment to thoroughly test its performance 

and trade-offs 
• A working example that demonstrates how fresh-

ness can be exchanged for better scalability 

With our approach, social networking applications are 
able to scale linearly to fairly high workloads with low-

end machines. In our implementation we take ad-
vantage of the relatively stable and familiar commodity 
web server hardware and software stacks, which over 
the years have gained wide adoption and the prices 
have dropped significantly. No additional expertise and 
training are required to operate these stacks, potentially 
saving the operating costs as well. We therefore dub 
this approach “the poor man’s social network.” Never-
theless, there is no real obstacle to apply the timing-
based approach to various NoSQL data stores. In our 
approach the relational databases are used mostly as 
simple key-value stores. We chose PostgreSQL in par-
ticular only to take advantage of its built-in triggers, 
procedural languages, and the transactional features not 
readily available from many key-value stores. But we 
anticipate that the same idea may be used by key-value 
stores as a base to develop more consistency features in 
addition to the eventual consistency. 

This paper consists of the following sections: we first 
introduce the feed following problem and argue for a 
different tradeoff strategy to the popular method. We 
then provide a formal algorithm to implement this al-
ternative in shared-nothing distributed systems and 
prove its correctness. After describing our implementa-
tion and experimental configurations, we present the 
results and the related work, then conclude the paper 
with discussions and future work.  

2. Feed Following 

2.1. Problem Statement 
 
Feed following is the type of social networking func-
tionality that layers on top of a following network con-
sisting of large numbers of feed consumers and feed 
producers. Each feed consumer follows a usually large 
and distinctive group of feed producers, and each pro-
ducer independently produces event items over the 
time. Now each of the consumers wants to query the n 
most recent event items produced by all the producers 
this particular consumer follows. Silberstein et al. give 
a more formal definition of the problem [28]. 

Twitter’s timeline application is a typical feed follow-
ing problem, where each event item is called a tweet. 
Many other social networking features may be modeled 
as variations of the feed following, and the “n most 
recent” predicate may also have many other flavors. 
But the common theme is that each feed following que-
ry can be quite personalized and distinctive from the 
others such that the query results for one consumer are 
of little or no use to another for the purpose of directly 
reusing the results to reduce the overall query load. 
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Moreover, even the newly produced query results may 
quickly become outdated for the same consumer. In 
order to provide the freshest possible response, a con-
sumer’s feed query result must be invalidated as soon 
as any of the followed producers posts a new event, and 
each producer’s new event must also invalidate all the 
current feed following query results for each of the con-
sumers that follow this producer. The large number of 
consumers also make it very expensive to maintain the 
materialized views for each of them. It is easy to see 
why the traditional scalability tools such as data parti-
tion, query and web caching, materialized view, and 
replication perform poorly in this type of problem. Sil-
berstein et al. provide a more thorough analysis on the 
difficulties to scale the feed following problem [27]. 

2.2. Trade Consistency For Scalability 
 
Popular NoSQL style applications are built under the 
assumption that consistency should be sacrificed to gain 
better scalability. To relax 1SR for feed following in a 
shared nothing, fully or partially replicated distributed 
environment, we may declare an event update success-
ful as soon as one of the replicas commits it locally and 
before this update finishes propagating to most or all 
the other replicas. By eliminating the consistency locks, 
the replicas become more independent and can work in 
a more paralleled manner. But as a result, the follower’s 
view becomes rather unpredictable. Even if a producer 
receives the confirmation of a successfully committed 
update, there is no guarantee when her followers can 
see this event. Some may see it shortly after, some oth-
ers may need to wait for an extended period of time 
before this new event shows up, and even those who 
have already seen it once may not see it in the subse-
quent queries. We want to emphasize that waiting to see 
the most recent updates is not the real issue here. The 
real problem is the unpredictable nature of the wait. 

Despite this, the consensus among the industry is that 
the users should be able to tolerate some lost events as 
long as they eventually show up. After all, unless the 
feed producers and the consumers are actively tracking 
and comparing their timelines, the temporarily lost 
events are not particularly noticeable. Moreover, many 
feed following applications such as Twitter do not al-
low editing; therefore eliminate the needs to reconcile 
the conflicting updates, as normally seen in an optimis-
tic approach like this. However the inconsistency be-
comes apparent when the following network starts to 
change, e.g., a consumer decides to stop following a 
producer. If this relationship update is to be committed 
the same way as above, then it is possible for the con-
sumer to continue receiving the event items from this 

producer even if this consumer has been notified of the 
successful unfollowing, simply because the unfollow 
update has not been propagated to the replica that pro-
cesses the feed following query. 

One approach to mitigate this problem is to slightly 
tighten up the eventual consistency model described 
above, to the “per-record timeline consistency”, as ex-
emplified by Yahoo!’s PNUTS [28]. This approach 
assigns a master replica for each record, then allows the 
application developer to specify what type of query to 
use: i.e., Read-any, Read-critical, or Read-latest. An 
update is not successful unless it is committed to the 
master copy, and a Read-latest query will always vali-
date against that record’s master copy to retrieve the 
most recently committed change, although a Read-any 
query will return any locally available data regardless 
of their validity. The assumption is that for those criti-
cal and consistency sensitive queries we should use 
Read-latest, which, although more expensive than the 
other two options, can at least provide some record-
level consistency guarantees. 

Nonetheless, this approach cannot prevent the incon-
sistency exposed by the retweets. A retweet is a 
standalone new tweet produced by a user who follows 
the original tweet producer. The retweet either includes 
the original tweet content by value or links to the origi-
nal by reference. By logic a retweet can only commit 
after the original tweet is committed, because there ex-
ists a conflicting feed query between these two updates. 
It is therefore rather confusing for a feed consumer to 
observe only the retweet but not the original if this con-
sumer follows both the original producer and the re-
tweeter, which is fairly common in closely knit social 
groups. This arouses suspicion of either voluntary re-
traction or censorship, although in fact is merely a 
symptom of the distributed inconsistency. 

As illustrated in figure 1, the retweet inconsistency may 
still happen in systems like PNUTS using either the 
Read-any or the Read-latest, as long as 1SR is not guar-
anteed. In the figure we assume Replica Ra is the mas-
ter copy for all tweets produced by user A, et al. When 
using Read-any to retrieve the feeds from Replica Rc, if 
the retweet from Rb propagates to Rc faster than the 
original tweet from Ra, we may observe the incon-
sistency at Rc. The probability of inconsistency may be 
lower if we use Read-latest, in which case all the feed 
queries must be routed to their master replicas. But in 
between these large number of independent and usually 
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(a) Read-any 

 

(b) Read-latest 

Figure 1. Retweet Inconsistency 

remote queries to the master copy, the logical sequence 
between the original tweet and its retweets may still be 
reversed, as shown in Figure 1(b). Furthermore, using 
Read-latest on all feed queries carries a steep perfor-
mance penalty, because we lose the benefits of replica-
tion and caching, leaving data partition the only per-
formance booster. 

The Read-critical query, which “returns a version of the 
record that is strictly newer than, or the same as the 
required version” [28], provides little help in the above 
scenario. This is because in the per-record timeline con-
sistency, the record’s version is specified locally by its 
master copy. It is not a global version, therefore affords 
no meaningfully comparison between the versions of 
two different records, e.g., a tweet and its retweet. It is 
tempting to devise a sophisticated global versioning 
scheme to determine the sequence of all the updates, 
but this already implies 1SR. From the CAP theorem 
proof we already know that if a distributed system re-
lies solely on the message passing to implement 1SR, 
then it is hard bounded by the CAP compromise and 
cannot scale well reliably. A more promising approach 
would be to explore beyond the asynchronous network 
model and more specifically, to exploit global time, 
which does not depend on the message passing exclu-
sively. In the next section we discuss how this approach 
trades freshness for scalability. 

 
2.3. Trade Freshness For Scalability 
 
Freshness is oftentimes unnecessarily entangled with 
1SR. For example, Vogels defines the strong consisten-
cy as being always guaranteeing the freshness and 1SR. 
But in its first degree of relaxation, the weak consisten-
cy allows a period of “inconsistency window” during 
which an update is not guaranteed to be always availa-
ble to all queries [30], “not always” being the keyword. 
During the “inconsistency window” such weak con-
sistency fails not only the freshness test but also the 
1SR test. Such a categorization overlooks an intermedi-
ate level of distributed database system behavior which 
guarantees to return the 1SR responses, although they 
may be stale. Such systems indeed exist, e.g., a log-
shipping based master-slave replication system where 
all the updates are processed at the master but all the 
queries go to the slave. The query results always lag 
behind the freshest state at the master, but the system is 
nevertheless 1SR. 

We further argue that absolute freshness is not even 
worth pursuing in a web based system, because even 
the freshest query results still need to be transported 
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across the web to the clients, yet the web latency is not 
negligible. When the clients receive the results, they 
may have already turned stale, therefore from the holis-
tic system view it seems rather unnecessary to guaran-
tee the absolute freshness within the boundary of the 
database servers. Indeed, users of the web applications 
intuitively feel the latency and understand its effects. 
When using high-volume transactional systems such as 
the online bidding or stock exchange web applications, 
the users are acutely aware that the quote prices shown 
on the screens are not real-time but with delays built in. 
Moreover, not every system demands high levels of 
freshness anyway. Most social networking applications 
are not meant to be real-time point-to-point messaging 
systems, therefore some delays is tolerable and even 
expected. 

We also note the differences between staleness and 
latency. Latency characterizes the speed of the request-
response process, while staleness characterizes the re-
cency quality of the data carried by the response. From 
the end user’s point of view, latency always adds fur-
ther staleness to the response, but not vice versa. Web 
users with short attention spans have fairly low toler-
ance for unresponsive web services, but not necessarily 
for staleness. Given a choice, faster responses carrying 
slightly more stale information should be much pre-
ferred than the opposite. 

We now explain why freshness may be traded for 
scalability. We draw an analogy between this tradeoff 
and the mass transit system. When driving our own 
cars, we can freely choose the departure times and the 
destinations. But when using the mass transit systems, 
we must time our activities according to the published 
schedules, travel only to the vicinities of the bus stops, 
and make transfers between different transit lines by 
ourselves. Bus riders lose the flexibility to travel at-
will, but gain overall efficiency and economic benefits 
by sharing resources. Such benefits are especially sig-
nificant in metropolitan areas where not only the oppor-
tunity for sharing is higher but also the transportation 
resources are under much heavier loads and are much 
more congested. 

Caching is the web’s way to share resources. The web 
is built with the caching facilities at its core to address 
the scalability issues. But as explained in section 2.1, 
the current way of building feed following applications 
is not attuned for taking full advantage of the web cach-
es. This is because such a system is built to accommo-
date the private-car style of usage, striving to provide 
the personalized response accurately and consistently at 
the time when the system executes that particular re-

quest. Caching is less effective because the queries are 
not only highly personalized, but also extremely 
ephemeral. 

A mass transit style of feed-following system may im-
prove the situation on two fronts. First, it may address 
the ephemeral issue by only executing queries with 
accuracy and consistency guarantee by a pre-agreed 
upon schedule, e.g., every 5 seconds. In a mass transit 
system all the passengers arriving at the station before 
the scheduled departure time must wait for the next bus. 
By the same logic, if enhanced with this improvement, 
all queries submitted to the servers between 1:05:30PM 
and 1:05:35PM will be immediately responded, but 
with the results that are accurate and consistent only as 
of 1:05:30PM. Conceptually this enhancement allows 
the queries received within this period all be executed 
against the same database snapshot taken at 1:05:30PM 
rather than against a moving target. We have built in no 
more than 5 seconds’ staleness in all responses, yet the 
latencies are not necessarily higher. Due to effective 
caching and reusing, this approach may even signifi-
cantly lower the response latency. However, the system 
works differently on updates. For example, if an update 
is received at 1:05:33PM, it will be committed as soon 
as the system permits, but the committed result will not 
be available for queries until the next scheduled time 
point, e.g., 1:05:35PM.   

On the other hand, much like the mass transit system 
that will not board and drop off riders at any location, 
the server may also decline to execute personalized feed 
following queries. Instead, it may analyze and reorgan-
ize these queries, break them down into multiple steps, 
and only execute the commonly shared queries on the 
server. In case of the feed following, one exemplary 
common query useful for all users is the “time map” 
query, which tells us which feed producers have created 
new events during the past scheduled intervals. With 
such information at hand, the feed followers themselves 
can combine and match to produce their own personal-
ized event lists on the client side. This is analogous to 
bus riders making transfers by themselves. Note that 
such an approach is only feasible when the queries are 
against the same database snapshot. Querying against 
changing database states cannot be reorganized correct-
ly in this manner. In other words, this enhancement is 
preconditioned on the prior one. 

In our approach a large portion of the processing is 
therefore offloaded to the clients, shifting the system 
from a thin client system to a fat client system. This is 
quite different from the NoSQL approach where the 
distributed servers still attempt to process all query 
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loads from the start to the end albeit abandoning the 
1SR guarantee. In the next section we will formalize the 
algorithm and prove its correctness with respect to 1SR. 

3. Replication Control and Its Correctness 

We adopt the lazy-master style partial replication strat-
egy for this distributed system. In particular, a concep-
tual centralized master database is naively and horizon-
tally partitioned into multiple smaller physical database 
servers based on the producer id. A new tweet is routed 
to its own partition server according to the producer id 
and then committed there. Each partition server main-
tains a “time map”. This is a materialized view that 
documents which producers allocated to this server 
have tweeted in the current scheduled interval. This 
view must be synchronously maintained within the 
same atomic update transaction boundary for a new 
tweet. In practice we also maintain multiple combined 
views that cover larger granularity of the time intervals. 

A client, upon receiving a timeline query, first checks 
global time and then determines by itself the most re-
cently scheduled release time. Imagine we have taken a 
conceptual full database snapshot at this particular re-
lease time. This is the database state against which this 
particular timeline query needs to be executed. The 
client then must make sure it has synchronized its local 
partial data with this snapshot before executing the 
timeline queries. Note the web architecture mandates 
that a server cannot initiate connection to the clients. 
This determines the lazy nature of our replication strat-
egy. That is, an update is committed at the master copy 
but not atomically propagated to all the caches and the 
clients. We allow the partial database replicas to lag 
behind the master until they are used for queries, by 
which time they must catch up to the scheduled snap-
shot. 

We now give the formal definition of the scheduled 
releasing mechanism. For any given time t > t0, where t0 
is the initial database time, there exists one and only 
one time period [ti, ti+Δti), such that for t ∈ [ti, ti+Δti) 
and Δti=O(ΔtL), where ΔtL is the network latency or a 
tolerable time interval, any query issued at t will be 
responded with the same result as if the query is exe-
cuted at ti. We require the staleness limit to be much 
larger than the network latency, because from the user’s 
point of view the network latency is automatically add-
ed to the staleness of every response, therefore we can-
not promise the staleness to be less than that. Larger 
staleness limit will also have positive effects on the 
scalability. 

We require the releasing schedules be defined a priori. 
At any given time after a web client initializes itself, it 
should already know the corresponding time intervals 
without having to contact the server again to find out. 
We also require the time intervals defined in absolute 
time and all the web clients reasonably synchronized to 
a NTP server to guarantee limited time skews among 
the replicas and the server. This is in line with the par-
tially synchronous distributed model and eliminates the 
unnecessary web and database operations. 

The replication control algorithm is described in the 
following. The pseudo code is depicted in Figure 2. In 
our algorithm, an update is routed to the corresponding 
master database partition server allocated for that pro-
ducer, and executed in an ACID manner, e.g., using the 
strict two-phase locking (2PL) protocol. The queries 
executed at the clients are against their explicitly 
scheduled snapshot, and we require the clients to syn-
chronize to that snapshot with the master database be-
fore the execution. This is similar to the multi-version 
mixed method described in [6] or the snapshot isolation 
protocols [4] with one important distinction. In our 
method the snapshots are chosen a priori and inde-
pendently from the database states and the timing of the 
queries. 

Upon: submit of a read-only transaction T to client at time t 
1:  assign T the timestamp ti, the starting time of its sched-
uled time interval  
2:  if local database is not synced to the snapshot at ti: 
3:    request from all the master partitions the writesets up 
to [ti-1, ti-1+Δti-1) 
4:    sync local database the snapshot at ti 
5:  execute T at the local database 
6:  return result 
 
Upon: submit of an update transaction T to client 
7:  forward T to the master 
 
Upon: submit of an update transaction T to a master partition 
8:  atomically request necessary shared and exclusive locks 
9:  wait until all locks are granted 
10: execute T at master partition, record commit time t 
11: for all the materialized views Vi covering t: 
12:   update Vi to reflect the writeset of T 
13: release locks of T 
14: return ok 
 
Upon: submit of a request to a master partition for writeset 
for time interval [tn, tn+Δtn) 
15: for all the materialized views Vi on this partition: 
12:   if Vi is for [tn, tn+Δtn): 
13:     return writeset in Vi 

 
Figure 2. Replication control algorithm. 

Conceptually the scheduled releasing introduced here 
enforces a new transactional state to the database. Tra-
ditionally we assume once an update is committed its 
changes are immediately visible to all the other active 
transactions. We revoke this assumption and define a 
“QUERY VISIBLE” state after “COMMITTED”, as 
shown in Figure 3. The changes made by an update are 
still immediately visible to other updates once commit-
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ted, but are visible to active queries only when they 
reach the “QUERY VISIBLE” state. 

 

Figure 3. Update visibility and serial execution. 

In comparison, if we use the mixed protocol or snapshot 
isolation, Query 1 in Figure 3 would be able to see Up-
date 2 because it starts after Update 2 commits. But this 
would require a new version or snapshot being created 
for each committed update, and each of them may need 
to be individually propagated to all the replicas. In our 
protocol, Update 2 is invisible to Query 1, because it 
becomes visible to queries after the latter starts. Query 
2, on the other hand, can see both updates. The sched-
uled release time interval is independent from the query 
load. When the query load becomes heavier, more up-
dates become visible at each scheduled release, but the 
number of snapshots to be propagated per time unit 
remains the same. On the other hand, if both updates in 
Figure 3 write to the same data item, the data written by 
Update 2 is lost in our protocol because no query ever 
sees it. We simply assume these updates represent the 
intermediate states, which despite being committed, the 
clients don’t care to know. Further, since we did not 
relax the irrevocability aspect of the COMMITTED 
state, the ACID property of the database still holds. 

Proving the 1SR property of this protocol is a two-step 
process. We first show that there exists a one-copy 
equivalence of this protocol. We then show this one-
copy equivalence is serializable. Due to the scheduled 
release and the master-replica differentiation between 
the update-query transactions, executing queries on the 
client-side replicas introduces no data contention, and 
the network latency is masked by the timestamps. We 
can easily see that any query executed on the client is 
equal to the execution of the same transactions on a 
single copy master database. As for the single copy 
execution equivalence, since the updates are executed 
in strict ACID manner on each partition, there exists a 
serial execution of the updates on the same partition, 
and they are serialized by the sequence of their commit 
times. Since global time exists across all partitions, 

there also exists a global serialization, ordered by the 
global time and segmented by the scheduled releasing. 
By definition all queries can be moved to the start of 
their time intervals, and their relative ordering does not 
matter because there’s no update transaction in be-
tween. Therefore the single copy execution equivalence 
is serializable, and the replication control protocol is 1-
copy serializable. As an example, the transactions 
shown in Figure 2 can be serialized in this order: Query 
1 <t Update 2 <t Update 1 <t Query2. 

4. Implementation 

We implemented a twitter-like feed following applica-
tion prototype. The server side was fully implemented 
with Python/Django and PostgreSQL. We chose Post-
greSQL as the backend database because of its mature 
support for the time travel functionalities, which goes 
back to its origin. The scheduled releasing, time map, 
and related functionalities were implemented with trig-
gers and programmed in PL/pgSQL. Nonetheless, the 
database was queried primarily as a key-value store. 

The client-side functionalities could have been fully 
implemented in Javascript and client side database, but 
we were concerned about how to evaluate the system 
performance. At the time of the experiment, our Ama-
zon account only allowed up to 100 instances running 
at the same time, but we potentially needed thousands 
of real browsers running in parallel to generate the de-
sired workload. We eventually decided to first imple-
ment a simplified emulated browser in Python/Django 
and PostgreSQL. 

We picked the maximum staleness level at 5 seconds. 
But for those followers who didn’t follow many active 
producers, it would have taken them numerous 5-
second time map queries to gather the 20 most recent 
tweets. We therefore also implemented time maps for 
the following larger granularities to speed up the time 
map query: 30 seconds, 3 minutes, 15 minutes, 1 hour, 
4 hours. Accordingly, we also added slightly more ma-
terialized view maintenance work when committing 
each new tweet. If a client is not able to gather suffi-
cient tweets from a time map query, it will attempt an 
earlier time map at either the same or larger granularity 
level if it’s available. 

5. Evaluation 

To better evaluate our implementation we must gener-
ate more realistic social networking workloads. At-
tempting to compare our implementation with the Ya-
hoo! PNUTS system, we used the same zipfan parame-
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ters as used in that experiment [28]. Both the social 
network and the synthetic workload were generated 
with Yahoo! Cloud Serving Benchmark [10], and Table 
1 lists the parameters used in both experiments. 

Since our implementation relies heavily on the clients 
being able to programmatically interpret the workload 
and the server responses and do local calculations as 
well as database operations, we need large number of 
machines and computing power to emulate the client-
side processing. The only viable test environment 
seemed to be the computing cloud. We therefore set up 
our test environment in Amazon EC2.  

Table 1. Comparing workload parameters with the Ya-
hoo! PNUTS experiment [25] 

 PNUTS This 
Number of producers 67,921 67882 
Number of consumers 200,000 196,283 

Consumers per producer 
Average 15.0 13.38 
Zipf parameter 0.39 0.39 

Producers per consumer 
Average 5.1 4.63 
Zipf parameter 0.62 0.62 

Per-producer rate 
Average 1/hour 1/hour 
Zipf parameter 0.57 0.57 

Per-consumer rate 
Average 5.8/hour varied 
Zipf parameter 0.62 0.62 

 

 

Figure 4. Experiment configuration 

Figure 4 schematically shows the multi-layer server 
configuration deployed to conduct the experiment. On 
the bottom layer we deployed a small number of low-
end servers, initially up to 20 small instances 
(m1.small) then upgraded to 3 to 6 high-CPU medium 

instances (c1.medium). The reason we upgraded was 
because even at the maximum number (100) of total 
instances we still were not able to generate sufficient 
client-side processing power to drive up to 40% of the 
query load in the Yahoo! PNUTS experiment. We 
therefore decided to move more virtual machines to 
simulate the clients rather than further increasing the 
server numbers. These low-end servers also run their 
local memcached service. Directly above the servers 
were up to 88 high performance instances (high-CPU 
extra large instance, or c1.xlarge) used to simulate the 
client-side processing. These emulated browser ma-
chines then shared up to 2 high-performance instances 
(m2.2xlarge, or high-memory double extra large in-
stance) running standalone memcached server to simu-
late the web caching. We then ran HAProxy on one 
c1.xlarge instance to evenly distribute the workloads to 
these emulated browsers, and had two c1.xlarge in-
stances, both running httperf and autobench, to drive 
the workload and run benchmarking, one for the update 
load and another for the query load. All these instances 
also had collectd installed and had various statistics 
reported back to our cloud service control panel. 

Much like the other web applications, social networking 
applications’ query load vastly dominates their update 
load. If the Yahoo! PNUTS experiment workload is any 
indication, the query load exceeds 99% of the total re-
quests. 

In our experiment, however, we decided to use a fixed 
update load at 19 requests per second, only slightly 
higher than the average update load in the PNUTS ex-
periment. We then slowly drove up the query load until 
any server returned a 500 code. Figure 5 shows the lin-
ear scalability observed when the number of the servers 
was increased from 3 to 6. Figure 6 depicts the latency-
load relations under different server configurations. 
Beyond 6 servers, the client-side simulation became the 
bottleneck and no meaningful data could be obtained. 
The linear scalability property is further supported by 
the following observations: 

First, we observed extremely high cache hit rates, often-
times exceeded several thousands to one, at the 
standalone memcached servers deployed to simulate the 
web caches, as shown in Figure 7. This indicated the 
success of the mass transit style approach we employed 
to build the feed following applications. The changes of 
the cache hit rate corresponded nicely to the scheduled 
releasing times, increased during the intervals, and had 
sudden dips at the release time points when newly re-
leased data caused cache misses. 
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Figure 5. Peak query rates vs. number of servers under 
the query/update combined workload 

 

Figure 6. Latency vs. query load, with constant update 
load at 19 updates per second. 

Secondly, at the local memcached service inside the 
server, we also observed fairly good, but not much as 
high, cache hit rates, at approximately 2 to 1 to 4 to 1. 
This indicated that the distributed system overall fared 
pretty well in not bothering to contact the origin server 

unless absolutely necessary. This is in line with the 
principle of the web architecture and the web caching. 

Finally, we observed that when the query load in-
creased, the CPU load increased much faster at the em-
ulated browsers than at the servers, as shown in Figure 
8 and 9. This illustrated the strength of this approach, 
which distributed a larger portion of the increasing pro-
cessing load to the clients than absorbed by the servers. 
This was the source of the favorable scalability proper-
ties at display in this experiment. 

6. Related Work 

Partitioning, replication, and caching are time-tested 
and battle-hardened strategies to scale web applications 
as well as the databases that drive these applications. 
Unwilling to voluntarily give up on consistency, re-
searchers typically rely on consistency guaranteeing 
network communication protocols to implement these 
strategies. Examples include the multicast total ordering 
as used in Postgres-R [21], RSI-PC as used in Ganymed 
[26], the total ordering certifier as used in Tashkent and 
related designs [13][22][7], Pub/Sub as used in Ferdi-
nand [17], and the deterministic total pre-ordering [29]. 
Their performance is in theory upper-bounded by the 
centralized service implementing these protocols, and 
in some cases also by that of the snapshot isolation [4]. 
In contrast, our design differs fundamentally from these 
systems in terms of the distributed system model. Rely-
ing on global time, we managed to eliminate all central-
ized services and more efficiently implement the parti-
tioning, replication, and caching. At the partition level, 
our design may also be considered a much simplified 
special case of the snapshot isolation, where not matter 
how high the query load is, only one snapshot is taken 
for each scheduled release interval.  

Recognizing the CAP tradeoff [18], NoSQL systems 
like Dynamo [12], MongoDB [25], CouchDB [11], and 
Cassandra [2] etc. conscientiously sacrifice 1SR for 
better scalability, but the inconsistency exposed thereaf-
ter is undesirable even for non-critical web services 
such as social networks. More recent NoSQL systems 
such as PNUTS [9] slightly tighten this up but are still 
lacking. Different from these systems, our design guar-
antees 1SR by design. Performance wise, since our de-
sign pushes a larger portion of the increased load to the 
clients, we anticipate performance advantages under 
higher load. Such advantages are inherently true even 
compared to much faster systems that move all data to 
the in-memory distributed cache, for the same reasons 
that more highways and faster cars do not diminish the 
advantages of the mass transit systems. 
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Figure 7. Cache operations at the standalone memcached server 

  

Figure 8. CPU load of a server 

 

Figure 9. CPU load of an emulated browser 

Trading staleness for scalability isn’t a new idea, but 
the previous systems didn’t attempt to preserve 1SR 
[1][16][19][5]. Our approach is the first known to us 
that guarantees 1SR under this tradeoff. 

This paper is primarily inspired by Roy Fielding’s blog 
post on RESTful feed following [15], and much of the 
experimental verification is adopted from the Yahoo! 
PNUTS experiment [27]. Fielding’s approach is distinc-
tively timing-based, but he did not elaborate on the the-
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oretical foundation, the replication control algorithm, 
the freshness-scalability tradeoff involved, and the da-
tabase partitioning, replication, and caching details. His 
implementation is based on a single centralized server, 
while ours is based on shared-nothing distributed sys-
tems. Nevertheless, his emphasis on the RESTful de-
sign [14] and the web architecture [3] reminds us that 
scalability is not a pure database endeavor but requires 
a holistic view of the system. 

7. Discussions and Future Work 

Because the server side scalability is known to be the 
primary bottleneck for the current social networking 
applications, in this paper we evaluate this new ap-
proach mainly from the server’s perspective. We have 
not delved into its detailed effects on the real web 
browsers. But as an indicator, we have observed a peak 
client load of approximately 2 queries per second per 
client with cloud instances running the emulated 
browsers. When running a real browser on a physical 
machine the result may be slightly different due to vari-
ous factors including the absence of the hypervisor iso-
lation and the cloud CPU throttling, the real browsers’ 
performance differences, and their implementations of 
the client-side database. This will be the topic for fur-
ther research, but in general we are optimistic that the 
clients’ processing capability should not pose an intrac-
table bottleneck. This is because in our approach the 
same-client queries beyond the rate of once per 5 se-
conds do not require additional client and server pro-
cessing. The browser will simply respond with the 
same, client cached response generated for an earlier 
request. If the higher query rate is caused by more cli-
ents initiating queries concurrently, these additional 
clients also bring in more processing power to counter-
balance the increased client side processing needs. 

Another practical concern for this approach is the wide 
adoption of the mobile devices as the social networking 
clients. While the processing capabilities of these de-
vices may be continuously improving, the network 
bandwidth provided for these devices is harder to reach 
a satisfying level. For these non-performing clients, it is 
still possible to tier the web services such that many 
emulated browsers we used in the experiment can be 
deployed at the edge of the web (e.g., CDN) and re-
purposed as proxy servers for them. At least in theory 
this does not alter the linear scalability property of this 
approach. 

The third practical concern is the implementation of 
global time. In our experiment all clients and servers 
frequently synchronized their local times with authori-

tative time sources using ntpd. The small time skews 
resulting in this approach did not pose a problem for the 
duration of our experiment. Even if the clients lag far 
behind the servers, the system performance should not 
decline significantly if sufficient web cache is provided. 
Nevertheless, in practice the assumption may be too 
strong for all the clients and servers to always maintain 
global time. In a follow-up research we relax this condi-
tion to only requiring all the servers to be properly syn-
chronized. The client must send one extra request to 
detect the global server time before any timeline request 
can be processed. Under such relaxation, we can still 
show that the consistency guarantee and the linear 
scalability property are largely maintained. 

Finally, we also noticed a potential problem with the 
load balancing. We employed a naïve database parti-
tioning strategy but have not built any load elasticity 
and protection. Under such circumstances, even if all 
the other servers were way below their capacities, if one 
partition server encountered aberrant load spike and 
crashed, the whole system would crash. This issue may 
be addressed in the future work. We also expect to fur-
ther this research by experimenting with different stale-
ness levels to investigate their impacts on scalability, 
and extending load generation capabilities to further 
verify the linear scalability property. 

To summarize, in this paper we describe, implement, 
and evaluate a novel method that can simultaneously 
achieve scalability and consistency in feed following 
applications built on shared-nothing distributed sys-
tems. In our experiments the servers scaled linearly, and 
sustained sufficiently high workloads to be of practical 
use for small to medium size social networks. The cost 
of running 6 low-end servers was fairly reasonable for 
the performance and the capacity they delivered.  

We also demonstrate for the first time the feasibility of 
a new design pattern that consistently trades freshness 
for better scalability. This is achieved by assuming the 
availability of global time in a shared nothing distribut-
ed system, timing the queries with a pre-published re-
lease schedule, pushing much of the personalized query 
workload to the clients, and more efficiently partition-
ing, replicating, and caching.  
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