
 1

Poor Man's Social Network: Consistently Trade Freshness For Scalability

Zhiwu Xie
Virginia Polytechnic Institute and State University

Jinyang Liu
Howard Hughes Medical Institute

Herbert Van de Sompel
Los Alamos National Laboratory

Johann van Reenen and Ramiro Jordan
University of New Mexico

Abstract

Typical social networking functionalities such as feed following are known to be hard to scale. Different from the
popular approach that sacrifices consistency for scalability, in this paper we describe, implement, and evaluate a
method that can simultaneously achieve scalability and consistency in feed following applications built on shared-
nothing distributed systems. Timing and client-side processing are the keys to this approach. Assuming global time
is available at all the clients and servers, the distributed servers publish a pre-agreed upon schedule based on which
the continuously committed updates are periodically released for read. This opens up opportunities for caching and
client-side processing, and leads to scalability improvements. This approach trades freshness for scalability.

Following this approach, we build a twitter-style feed following application and evaluate it on a following network
with about 200,000 users under synthetic workloads. The resulting system exhibits linear scalability in our experi-
ment. With 6 low-end cloud instances costing a total of no more than $1.2 per hour, we recorded a peak timeline
query rate at about 10 million requests per day, under a fixed update rate of 1.6 million new tweets per day. The
maximum staleness of the responses is 5 seconds. The performance achieved sufficiently verifies the feasibility of
this approach, and provides an alternative to build small to medium size social networking applications on the cheap.

1. Introduction

Scalability has emerged as a significant challenge for
the social networking web applications. If built with the
traditional web application framework, even a small
social network can be easily strained by a modest level
of user interaction. The performance bottleneck usually
locates at the back-end persistent data store, which is
typically a relational database. Following the examples
of Twitter and Facebook, many social networking web
sites start to migrate their relational databases to various
key-value stores, collectively branded as being
"NoSQL". This approach indeed can scale to a larger
workload, but always at the expense of a deliberate void
of the consistency guarantee.

What does consistency mean and entail in this context?
Since many NoSQL advocates cite the Brewer’s Con-
jecture [8], also known as the CAP theorem, as the the-
oretical foundation to justify this trade-off, we naturally
adopt the consistency definition used in its formal proof
[18]. Used elsewhere, this type of consistency is also
known as Atomicity [23], Linearizability [20], or One-
copy Serializability (1SR) [6]. This is different from the
consistency as referred in the ACID properties of the

database. To avoid further ambiguity, in this paper we
regularly use the abbreviation 1SR to denote such con-
sistency, and unless noted otherwise, consistency al-
ways refers to 1SR in this paper.

1SR provides the clients of a distributed system with an
equivalent single processor view that allows them to
reason the system behavior regardless of how many
distributed servers are used to run the service, how geo-
graphically far apart they are from each other and from
the clients, and how they are synchronized. Without
1SR, the distributed system may exhibit odd behaviors
that confuse the users. We therefore are interested in
exploring the possibility of scaling the social network-
ing functionalities, especially the feed following appli-
cations, without violating 1SR.

Given the formal CAP theorem proof this may seem
impossible. But the proof itself is strictly precondi-
tioned on the asynchronous network model, where the
only way to coordinate the distributed nodes is to pass
messages across the network. Practical distributed sys-
tems usually have more tools in hand, and one of the
tools is a reasonably synchronized and approximated
global time. Indeed, the authors of the CAP theorem

 2

proof used the second half of their paper to show that
under a partially synchronous, or timing-based, distrib-
uted model [24], where global time is assumed to be
available, CAP may indeed be simultaneously achieva-
ble most of the time, although in return we may have to
give up some freshness, but not necessarily the latency.

Unfortunately, this aspect of the CAP has not attracted
sufficient attention from the industry nor from academ-
ic researchers. As early as 2008, Roy Fielding proposed
a RESTful approach [15], which is distinctively timing-
based, for the known hard-to-scale feed following prob-
lem. But we are not aware of many real-world social
networking web applications that are built this way, and
to the best of our knowledge, no empirical or experi-
mental data are publicly available to verify its scalabil-
ity properties.

In this paper we take Roy Fielding’s proposal as a start-
ing point, extrapolate it to shared-nothing distributed
systems, and fine-tune its timing method for replication
control. We then provide a formal description of the
algorithm, prove its consistency property, and analyze
its trade-offs. In order to gain insights on how much
freshness we must give up to gain the level of scalabil-
ity currently provided by the NoSQL approach, we
build a system and test its performance with the work-
loads similar to that used in a Yahoo! PNUTS based
Twitter-like feed following experiment [27]. The server
side of the system is fully implemented, but instead of
writing and delivering client-side code to real browsers,
we implement an emulated browser on the client side to
facilitate performance testing. In our experiment, we set
a fixed staleness limit of 5 seconds and an update rate
of 19 new tweets per second. Due to the limitation of
the test facility we used, we were not able to generate a
query workload exceeding 40% of the PNUTS experi-
ment. But within this limitation our system exhibits
linear scalability, up to 6 servers.

The main contributions of this paper include:

• A formal description of a timing-based replication
control algorithm for the feed following problem

• A proof of its consistency property
• A working implementation built with lower per-

forming commodity virtual machines in the cloud
• An experiment to thoroughly test its performance

and trade-offs
• A working example that demonstrates how fresh-

ness can be exchanged for better scalability

With our approach, social networking applications are
able to scale linearly to fairly high workloads with low-

end machines. In our implementation we take ad-
vantage of the relatively stable and familiar commodity
web server hardware and software stacks, which over
the years have gained wide adoption and the prices
have dropped significantly. No additional expertise and
training are required to operate these stacks, potentially
saving the operating costs as well. We therefore dub
this approach “the poor man’s social network.” Never-
theless, there is no real obstacle to apply the timing-
based approach to various NoSQL data stores. In our
approach the relational databases are used mostly as
simple key-value stores. We chose PostgreSQL in par-
ticular only to take advantage of its built-in triggers,
procedural languages, and the transactional features not
readily available from many key-value stores. But we
anticipate that the same idea may be used by key-value
stores as a base to develop more consistency features in
addition to the eventual consistency.

This paper consists of the following sections: we first
introduce the feed following problem and argue for a
different tradeoff strategy to the popular method. We
then provide a formal algorithm to implement this al-
ternative in shared-nothing distributed systems and
prove its correctness. After describing our implementa-
tion and experimental configurations, we present the
results and the related work, then conclude the paper
with discussions and future work.

2. Feed Following

2.1. Problem Statement

Feed following is the type of social networking func-
tionality that layers on top of a following network con-
sisting of large numbers of feed consumers and feed
producers. Each feed consumer follows a usually large
and distinctive group of feed producers, and each pro-
ducer independently produces event items over the
time. Now each of the consumers wants to query the n
most recent event items produced by all the producers
this particular consumer follows. Silberstein et al. give
a more formal definition of the problem [28].

Twitter’s timeline application is a typical feed follow-
ing problem, where each event item is called a tweet.
Many other social networking features may be modeled
as variations of the feed following, and the “n most
recent” predicate may also have many other flavors.
But the common theme is that each feed following que-
ry can be quite personalized and distinctive from the
others such that the query results for one consumer are
of little or no use to another for the purpose of directly
reusing the results to reduce the overall query load.

 3

Moreover, even the newly produced query results may
quickly become outdated for the same consumer. In
order to provide the freshest possible response, a con-
sumer’s feed query result must be invalidated as soon
as any of the followed producers posts a new event, and
each producer’s new event must also invalidate all the
current feed following query results for each of the con-
sumers that follow this producer. The large number of
consumers also make it very expensive to maintain the
materialized views for each of them. It is easy to see
why the traditional scalability tools such as data parti-
tion, query and web caching, materialized view, and
replication perform poorly in this type of problem. Sil-
berstein et al. provide a more thorough analysis on the
difficulties to scale the feed following problem [27].

2.2. Trade Consistency For Scalability

Popular NoSQL style applications are built under the
assumption that consistency should be sacrificed to gain
better scalability. To relax 1SR for feed following in a
shared nothing, fully or partially replicated distributed
environment, we may declare an event update success-
ful as soon as one of the replicas commits it locally and
before this update finishes propagating to most or all
the other replicas. By eliminating the consistency locks,
the replicas become more independent and can work in
a more paralleled manner. But as a result, the follower’s
view becomes rather unpredictable. Even if a producer
receives the confirmation of a successfully committed
update, there is no guarantee when her followers can
see this event. Some may see it shortly after, some oth-
ers may need to wait for an extended period of time
before this new event shows up, and even those who
have already seen it once may not see it in the subse-
quent queries. We want to emphasize that waiting to see
the most recent updates is not the real issue here. The
real problem is the unpredictable nature of the wait.

Despite this, the consensus among the industry is that
the users should be able to tolerate some lost events as
long as they eventually show up. After all, unless the
feed producers and the consumers are actively tracking
and comparing their timelines, the temporarily lost
events are not particularly noticeable. Moreover, many
feed following applications such as Twitter do not al-
low editing; therefore eliminate the needs to reconcile
the conflicting updates, as normally seen in an optimis-
tic approach like this. However the inconsistency be-
comes apparent when the following network starts to
change, e.g., a consumer decides to stop following a
producer. If this relationship update is to be committed
the same way as above, then it is possible for the con-
sumer to continue receiving the event items from this

producer even if this consumer has been notified of the
successful unfollowing, simply because the unfollow
update has not been propagated to the replica that pro-
cesses the feed following query.

One approach to mitigate this problem is to slightly
tighten up the eventual consistency model described
above, to the “per-record timeline consistency”, as ex-
emplified by Yahoo!’s PNUTS [28]. This approach
assigns a master replica for each record, then allows the
application developer to specify what type of query to
use: i.e., Read-any, Read-critical, or Read-latest. An
update is not successful unless it is committed to the
master copy, and a Read-latest query will always vali-
date against that record’s master copy to retrieve the
most recently committed change, although a Read-any
query will return any locally available data regardless
of their validity. The assumption is that for those criti-
cal and consistency sensitive queries we should use
Read-latest, which, although more expensive than the
other two options, can at least provide some record-
level consistency guarantees.

Nonetheless, this approach cannot prevent the incon-
sistency exposed by the retweets. A retweet is a
standalone new tweet produced by a user who follows
the original tweet producer. The retweet either includes
the original tweet content by value or links to the origi-
nal by reference. By logic a retweet can only commit
after the original tweet is committed, because there ex-
ists a conflicting feed query between these two updates.
It is therefore rather confusing for a feed consumer to
observe only the retweet but not the original if this con-
sumer follows both the original producer and the re-
tweeter, which is fairly common in closely knit social
groups. This arouses suspicion of either voluntary re-
traction or censorship, although in fact is merely a
symptom of the distributed inconsistency.

As illustrated in figure 1, the retweet inconsistency may
still happen in systems like PNUTS using either the
Read-any or the Read-latest, as long as 1SR is not guar-
anteed. In the figure we assume Replica Ra is the mas-
ter copy for all tweets produced by user A, et al. When
using Read-any to retrieve the feeds from Replica Rc, if
the retweet from Rb propagates to Rc faster than the
original tweet from Ra, we may observe the incon-
sistency at Rc. The probability of inconsistency may be
lower if we use Read-latest, in which case all the feed
queries must be routed to their master replicas. But in
between these large number of independent and usually

 4

(a) Read-any

(b) Read-latest

Figure 1. Retweet Inconsistency

remote queries to the master copy, the logical sequence
between the original tweet and its retweets may still be
reversed, as shown in Figure 1(b). Furthermore, using
Read-latest on all feed queries carries a steep perfor-
mance penalty, because we lose the benefits of replica-
tion and caching, leaving data partition the only per-
formance booster.

The Read-critical query, which “returns a version of the
record that is strictly newer than, or the same as the
required version” [28], provides little help in the above
scenario. This is because in the per-record timeline con-
sistency, the record’s version is specified locally by its
master copy. It is not a global version, therefore affords
no meaningfully comparison between the versions of
two different records, e.g., a tweet and its retweet. It is
tempting to devise a sophisticated global versioning
scheme to determine the sequence of all the updates,
but this already implies 1SR. From the CAP theorem
proof we already know that if a distributed system re-
lies solely on the message passing to implement 1SR,
then it is hard bounded by the CAP compromise and
cannot scale well reliably. A more promising approach
would be to explore beyond the asynchronous network
model and more specifically, to exploit global time,
which does not depend on the message passing exclu-
sively. In the next section we discuss how this approach
trades freshness for scalability.

2.3. Trade Freshness For Scalability

Freshness is oftentimes unnecessarily entangled with
1SR. For example, Vogels defines the strong consisten-
cy as being always guaranteeing the freshness and 1SR.
But in its first degree of relaxation, the weak consisten-
cy allows a period of “inconsistency window” during
which an update is not guaranteed to be always availa-
ble to all queries [30], “not always” being the keyword.
During the “inconsistency window” such weak con-
sistency fails not only the freshness test but also the
1SR test. Such a categorization overlooks an intermedi-
ate level of distributed database system behavior which
guarantees to return the 1SR responses, although they
may be stale. Such systems indeed exist, e.g., a log-
shipping based master-slave replication system where
all the updates are processed at the master but all the
queries go to the slave. The query results always lag
behind the freshest state at the master, but the system is
nevertheless 1SR.

We further argue that absolute freshness is not even
worth pursuing in a web based system, because even
the freshest query results still need to be transported

 5

across the web to the clients, yet the web latency is not
negligible. When the clients receive the results, they
may have already turned stale, therefore from the holis-
tic system view it seems rather unnecessary to guaran-
tee the absolute freshness within the boundary of the
database servers. Indeed, users of the web applications
intuitively feel the latency and understand its effects.
When using high-volume transactional systems such as
the online bidding or stock exchange web applications,
the users are acutely aware that the quote prices shown
on the screens are not real-time but with delays built in.
Moreover, not every system demands high levels of
freshness anyway. Most social networking applications
are not meant to be real-time point-to-point messaging
systems, therefore some delays is tolerable and even
expected.

We also note the differences between staleness and
latency. Latency characterizes the speed of the request-
response process, while staleness characterizes the re-
cency quality of the data carried by the response. From
the end user’s point of view, latency always adds fur-
ther staleness to the response, but not vice versa. Web
users with short attention spans have fairly low toler-
ance for unresponsive web services, but not necessarily
for staleness. Given a choice, faster responses carrying
slightly more stale information should be much pre-
ferred than the opposite.

We now explain why freshness may be traded for
scalability. We draw an analogy between this tradeoff
and the mass transit system. When driving our own
cars, we can freely choose the departure times and the
destinations. But when using the mass transit systems,
we must time our activities according to the published
schedules, travel only to the vicinities of the bus stops,
and make transfers between different transit lines by
ourselves. Bus riders lose the flexibility to travel at-
will, but gain overall efficiency and economic benefits
by sharing resources. Such benefits are especially sig-
nificant in metropolitan areas where not only the oppor-
tunity for sharing is higher but also the transportation
resources are under much heavier loads and are much
more congested.

Caching is the web’s way to share resources. The web
is built with the caching facilities at its core to address
the scalability issues. But as explained in section 2.1,
the current way of building feed following applications
is not attuned for taking full advantage of the web cach-
es. This is because such a system is built to accommo-
date the private-car style of usage, striving to provide
the personalized response accurately and consistently at
the time when the system executes that particular re-

quest. Caching is less effective because the queries are
not only highly personalized, but also extremely
ephemeral.

A mass transit style of feed-following system may im-
prove the situation on two fronts. First, it may address
the ephemeral issue by only executing queries with
accuracy and consistency guarantee by a pre-agreed
upon schedule, e.g., every 5 seconds. In a mass transit
system all the passengers arriving at the station before
the scheduled departure time must wait for the next bus.
By the same logic, if enhanced with this improvement,
all queries submitted to the servers between 1:05:30PM
and 1:05:35PM will be immediately responded, but
with the results that are accurate and consistent only as
of 1:05:30PM. Conceptually this enhancement allows
the queries received within this period all be executed
against the same database snapshot taken at 1:05:30PM
rather than against a moving target. We have built in no
more than 5 seconds’ staleness in all responses, yet the
latencies are not necessarily higher. Due to effective
caching and reusing, this approach may even signifi-
cantly lower the response latency. However, the system
works differently on updates. For example, if an update
is received at 1:05:33PM, it will be committed as soon
as the system permits, but the committed result will not
be available for queries until the next scheduled time
point, e.g., 1:05:35PM.

On the other hand, much like the mass transit system
that will not board and drop off riders at any location,
the server may also decline to execute personalized feed
following queries. Instead, it may analyze and reorgan-
ize these queries, break them down into multiple steps,
and only execute the commonly shared queries on the
server. In case of the feed following, one exemplary
common query useful for all users is the “time map”
query, which tells us which feed producers have created
new events during the past scheduled intervals. With
such information at hand, the feed followers themselves
can combine and match to produce their own personal-
ized event lists on the client side. This is analogous to
bus riders making transfers by themselves. Note that
such an approach is only feasible when the queries are
against the same database snapshot. Querying against
changing database states cannot be reorganized correct-
ly in this manner. In other words, this enhancement is
preconditioned on the prior one.

In our approach a large portion of the processing is
therefore offloaded to the clients, shifting the system
from a thin client system to a fat client system. This is
quite different from the NoSQL approach where the
distributed servers still attempt to process all query

 6

loads from the start to the end albeit abandoning the
1SR guarantee. In the next section we will formalize the
algorithm and prove its correctness with respect to 1SR.

3. Replication Control and Its Correctness

We adopt the lazy-master style partial replication strat-
egy for this distributed system. In particular, a concep-
tual centralized master database is naively and horizon-
tally partitioned into multiple smaller physical database
servers based on the producer id. A new tweet is routed
to its own partition server according to the producer id
and then committed there. Each partition server main-
tains a “time map”. This is a materialized view that
documents which producers allocated to this server
have tweeted in the current scheduled interval. This
view must be synchronously maintained within the
same atomic update transaction boundary for a new
tweet. In practice we also maintain multiple combined
views that cover larger granularity of the time intervals.

A client, upon receiving a timeline query, first checks
global time and then determines by itself the most re-
cently scheduled release time. Imagine we have taken a
conceptual full database snapshot at this particular re-
lease time. This is the database state against which this
particular timeline query needs to be executed. The
client then must make sure it has synchronized its local
partial data with this snapshot before executing the
timeline queries. Note the web architecture mandates
that a server cannot initiate connection to the clients.
This determines the lazy nature of our replication strat-
egy. That is, an update is committed at the master copy
but not atomically propagated to all the caches and the
clients. We allow the partial database replicas to lag
behind the master until they are used for queries, by
which time they must catch up to the scheduled snap-
shot.

We now give the formal definition of the scheduled
releasing mechanism. For any given time t > t0, where t0
is the initial database time, there exists one and only
one time period [ti, ti+Δti), such that for t ∈ [ti, ti+Δti)
and Δti=O(ΔtL), where ΔtL is the network latency or a
tolerable time interval, any query issued at t will be
responded with the same result as if the query is exe-
cuted at ti. We require the staleness limit to be much
larger than the network latency, because from the user’s
point of view the network latency is automatically add-
ed to the staleness of every response, therefore we can-
not promise the staleness to be less than that. Larger
staleness limit will also have positive effects on the
scalability.

We require the releasing schedules be defined a priori.
At any given time after a web client initializes itself, it
should already know the corresponding time intervals
without having to contact the server again to find out.
We also require the time intervals defined in absolute
time and all the web clients reasonably synchronized to
a NTP server to guarantee limited time skews among
the replicas and the server. This is in line with the par-
tially synchronous distributed model and eliminates the
unnecessary web and database operations.

The replication control algorithm is described in the
following. The pseudo code is depicted in Figure 2. In
our algorithm, an update is routed to the corresponding
master database partition server allocated for that pro-
ducer, and executed in an ACID manner, e.g., using the
strict two-phase locking (2PL) protocol. The queries
executed at the clients are against their explicitly
scheduled snapshot, and we require the clients to syn-
chronize to that snapshot with the master database be-
fore the execution. This is similar to the multi-version
mixed method described in [6] or the snapshot isolation
protocols [4] with one important distinction. In our
method the snapshots are chosen a priori and inde-
pendently from the database states and the timing of the
queries.

Upon: submit of a read-only transaction T to client at time t
1: assign T the timestamp ti, the starting time of its sched-
uled time interval
2: if local database is not synced to the snapshot at ti:
3: request from all the master partitions the writesets up
to [ti-1, ti-1+Δti-1)
4: sync local database the snapshot at ti
5: execute T at the local database
6: return result

Upon: submit of an update transaction T to client
7: forward T to the master

Upon: submit of an update transaction T to a master partition
8: atomically request necessary shared and exclusive locks
9: wait until all locks are granted
10: execute T at master partition, record commit time t
11: for all the materialized views Vi covering t:
12: update Vi to reflect the writeset of T
13: release locks of T
14: return ok

Upon: submit of a request to a master partition for writeset
for time interval [tn, tn+Δtn)
15: for all the materialized views Vi on this partition:
12: if Vi is for [tn, tn+Δtn):
13: return writeset in Vi

Figure 2. Replication control algorithm.

Conceptually the scheduled releasing introduced here
enforces a new transactional state to the database. Tra-
ditionally we assume once an update is committed its
changes are immediately visible to all the other active
transactions. We revoke this assumption and define a
“QUERY VISIBLE” state after “COMMITTED”, as
shown in Figure 3. The changes made by an update are
still immediately visible to other updates once commit-

 7

ted, but are visible to active queries only when they
reach the “QUERY VISIBLE” state.

Figure 3. Update visibility and serial execution.

In comparison, if we use the mixed protocol or snapshot
isolation, Query 1 in Figure 3 would be able to see Up-
date 2 because it starts after Update 2 commits. But this
would require a new version or snapshot being created
for each committed update, and each of them may need
to be individually propagated to all the replicas. In our
protocol, Update 2 is invisible to Query 1, because it
becomes visible to queries after the latter starts. Query
2, on the other hand, can see both updates. The sched-
uled release time interval is independent from the query
load. When the query load becomes heavier, more up-
dates become visible at each scheduled release, but the
number of snapshots to be propagated per time unit
remains the same. On the other hand, if both updates in
Figure 3 write to the same data item, the data written by
Update 2 is lost in our protocol because no query ever
sees it. We simply assume these updates represent the
intermediate states, which despite being committed, the
clients don’t care to know. Further, since we did not
relax the irrevocability aspect of the COMMITTED
state, the ACID property of the database still holds.

Proving the 1SR property of this protocol is a two-step
process. We first show that there exists a one-copy
equivalence of this protocol. We then show this one-
copy equivalence is serializable. Due to the scheduled
release and the master-replica differentiation between
the update-query transactions, executing queries on the
client-side replicas introduces no data contention, and
the network latency is masked by the timestamps. We
can easily see that any query executed on the client is
equal to the execution of the same transactions on a
single copy master database. As for the single copy
execution equivalence, since the updates are executed
in strict ACID manner on each partition, there exists a
serial execution of the updates on the same partition,
and they are serialized by the sequence of their commit
times. Since global time exists across all partitions,

there also exists a global serialization, ordered by the
global time and segmented by the scheduled releasing.
By definition all queries can be moved to the start of
their time intervals, and their relative ordering does not
matter because there’s no update transaction in be-
tween. Therefore the single copy execution equivalence
is serializable, and the replication control protocol is 1-
copy serializable. As an example, the transactions
shown in Figure 2 can be serialized in this order: Query
1 <t Update 2 <t Update 1 <t Query2.

4. Implementation

We implemented a twitter-like feed following applica-
tion prototype. The server side was fully implemented
with Python/Django and PostgreSQL. We chose Post-
greSQL as the backend database because of its mature
support for the time travel functionalities, which goes
back to its origin. The scheduled releasing, time map,
and related functionalities were implemented with trig-
gers and programmed in PL/pgSQL. Nonetheless, the
database was queried primarily as a key-value store.

The client-side functionalities could have been fully
implemented in Javascript and client side database, but
we were concerned about how to evaluate the system
performance. At the time of the experiment, our Ama-
zon account only allowed up to 100 instances running
at the same time, but we potentially needed thousands
of real browsers running in parallel to generate the de-
sired workload. We eventually decided to first imple-
ment a simplified emulated browser in Python/Django
and PostgreSQL.

We picked the maximum staleness level at 5 seconds.
But for those followers who didn’t follow many active
producers, it would have taken them numerous 5-
second time map queries to gather the 20 most recent
tweets. We therefore also implemented time maps for
the following larger granularities to speed up the time
map query: 30 seconds, 3 minutes, 15 minutes, 1 hour,
4 hours. Accordingly, we also added slightly more ma-
terialized view maintenance work when committing
each new tweet. If a client is not able to gather suffi-
cient tweets from a time map query, it will attempt an
earlier time map at either the same or larger granularity
level if it’s available.

5. Evaluation

To better evaluate our implementation we must gener-
ate more realistic social networking workloads. At-
tempting to compare our implementation with the Ya-
hoo! PNUTS system, we used the same zipfan parame-

 8

ters as used in that experiment [28]. Both the social
network and the synthetic workload were generated
with Yahoo! Cloud Serving Benchmark [10], and Table
1 lists the parameters used in both experiments.

Since our implementation relies heavily on the clients
being able to programmatically interpret the workload
and the server responses and do local calculations as
well as database operations, we need large number of
machines and computing power to emulate the client-
side processing. The only viable test environment
seemed to be the computing cloud. We therefore set up
our test environment in Amazon EC2.

Table 1. Comparing workload parameters with the Ya-
hoo! PNUTS experiment [25]

 PNUTS This
Number of producers 67,921 67882
Number of consumers 200,000 196,283

Consumers per producer
Average 15.0 13.38
Zipf parameter 0.39 0.39

Producers per consumer
Average 5.1 4.63
Zipf parameter 0.62 0.62

Per-producer rate
Average 1/hour 1/hour
Zipf parameter 0.57 0.57

Per-consumer rate
Average 5.8/hour varied
Zipf parameter 0.62 0.62

Figure 4. Experiment configuration

Figure 4 schematically shows the multi-layer server
configuration deployed to conduct the experiment. On
the bottom layer we deployed a small number of low-
end servers, initially up to 20 small instances
(m1.small) then upgraded to 3 to 6 high-CPU medium

instances (c1.medium). The reason we upgraded was
because even at the maximum number (100) of total
instances we still were not able to generate sufficient
client-side processing power to drive up to 40% of the
query load in the Yahoo! PNUTS experiment. We
therefore decided to move more virtual machines to
simulate the clients rather than further increasing the
server numbers. These low-end servers also run their
local memcached service. Directly above the servers
were up to 88 high performance instances (high-CPU
extra large instance, or c1.xlarge) used to simulate the
client-side processing. These emulated browser ma-
chines then shared up to 2 high-performance instances
(m2.2xlarge, or high-memory double extra large in-
stance) running standalone memcached server to simu-
late the web caching. We then ran HAProxy on one
c1.xlarge instance to evenly distribute the workloads to
these emulated browsers, and had two c1.xlarge in-
stances, both running httperf and autobench, to drive
the workload and run benchmarking, one for the update
load and another for the query load. All these instances
also had collectd installed and had various statistics
reported back to our cloud service control panel.

Much like the other web applications, social networking
applications’ query load vastly dominates their update
load. If the Yahoo! PNUTS experiment workload is any
indication, the query load exceeds 99% of the total re-
quests.

In our experiment, however, we decided to use a fixed
update load at 19 requests per second, only slightly
higher than the average update load in the PNUTS ex-
periment. We then slowly drove up the query load until
any server returned a 500 code. Figure 5 shows the lin-
ear scalability observed when the number of the servers
was increased from 3 to 6. Figure 6 depicts the latency-
load relations under different server configurations.
Beyond 6 servers, the client-side simulation became the
bottleneck and no meaningful data could be obtained.
The linear scalability property is further supported by
the following observations:

First, we observed extremely high cache hit rates, often-
times exceeded several thousands to one, at the
standalone memcached servers deployed to simulate the
web caches, as shown in Figure 7. This indicated the
success of the mass transit style approach we employed
to build the feed following applications. The changes of
the cache hit rate corresponded nicely to the scheduled
releasing times, increased during the intervals, and had
sudden dips at the release time points when newly re-
leased data caused cache misses.

 9

Figure 5. Peak query rates vs. number of servers under
the query/update combined workload

Figure 6. Latency vs. query load, with constant update
load at 19 updates per second.

Secondly, at the local memcached service inside the
server, we also observed fairly good, but not much as
high, cache hit rates, at approximately 2 to 1 to 4 to 1.
This indicated that the distributed system overall fared
pretty well in not bothering to contact the origin server

unless absolutely necessary. This is in line with the
principle of the web architecture and the web caching.

Finally, we observed that when the query load in-
creased, the CPU load increased much faster at the em-
ulated browsers than at the servers, as shown in Figure
8 and 9. This illustrated the strength of this approach,
which distributed a larger portion of the increasing pro-
cessing load to the clients than absorbed by the servers.
This was the source of the favorable scalability proper-
ties at display in this experiment.

6. Related Work

Partitioning, replication, and caching are time-tested
and battle-hardened strategies to scale web applications
as well as the databases that drive these applications.
Unwilling to voluntarily give up on consistency, re-
searchers typically rely on consistency guaranteeing
network communication protocols to implement these
strategies. Examples include the multicast total ordering
as used in Postgres-R [21], RSI-PC as used in Ganymed
[26], the total ordering certifier as used in Tashkent and
related designs [13][22][7], Pub/Sub as used in Ferdi-
nand [17], and the deterministic total pre-ordering [29].
Their performance is in theory upper-bounded by the
centralized service implementing these protocols, and
in some cases also by that of the snapshot isolation [4].
In contrast, our design differs fundamentally from these
systems in terms of the distributed system model. Rely-
ing on global time, we managed to eliminate all central-
ized services and more efficiently implement the parti-
tioning, replication, and caching. At the partition level,
our design may also be considered a much simplified
special case of the snapshot isolation, where not matter
how high the query load is, only one snapshot is taken
for each scheduled release interval.

Recognizing the CAP tradeoff [18], NoSQL systems
like Dynamo [12], MongoDB [25], CouchDB [11], and
Cassandra [2] etc. conscientiously sacrifice 1SR for
better scalability, but the inconsistency exposed thereaf-
ter is undesirable even for non-critical web services
such as social networks. More recent NoSQL systems
such as PNUTS [9] slightly tighten this up but are still
lacking. Different from these systems, our design guar-
antees 1SR by design. Performance wise, since our de-
sign pushes a larger portion of the increased load to the
clients, we anticipate performance advantages under
higher load. Such advantages are inherently true even
compared to much faster systems that move all data to
the in-memory distributed cache, for the same reasons
that more highways and faster cars do not diminish the
advantages of the mass transit systems.

0	

20	

40	

60	

80	

100	

120	

140	

3	 4	 5	 6	

Pe
ak
	 q
ue
ry
	 ra
te
	 (1
/s
)	

Number	 of	 servers	

0	

200	

400	

600	

800	

1000	

0	 25	 50	 75	 100	 125	

La
te
nc
y	
(m
s)
	

Query	 load	 (1/s)	

n=3	

n=4	

n=5	

n=6	

 10

Figure 7. Cache operations at the standalone memcached server

Figure 8. CPU load of a server

Figure 9. CPU load of an emulated browser

Trading staleness for scalability isn’t a new idea, but
the previous systems didn’t attempt to preserve 1SR
[1][16][19][5]. Our approach is the first known to us
that guarantees 1SR under this tradeoff.

This paper is primarily inspired by Roy Fielding’s blog
post on RESTful feed following [15], and much of the
experimental verification is adopted from the Yahoo!
PNUTS experiment [27]. Fielding’s approach is distinc-
tively timing-based, but he did not elaborate on the the-

 11

oretical foundation, the replication control algorithm,
the freshness-scalability tradeoff involved, and the da-
tabase partitioning, replication, and caching details. His
implementation is based on a single centralized server,
while ours is based on shared-nothing distributed sys-
tems. Nevertheless, his emphasis on the RESTful de-
sign [14] and the web architecture [3] reminds us that
scalability is not a pure database endeavor but requires
a holistic view of the system.

7. Discussions and Future Work

Because the server side scalability is known to be the
primary bottleneck for the current social networking
applications, in this paper we evaluate this new ap-
proach mainly from the server’s perspective. We have
not delved into its detailed effects on the real web
browsers. But as an indicator, we have observed a peak
client load of approximately 2 queries per second per
client with cloud instances running the emulated
browsers. When running a real browser on a physical
machine the result may be slightly different due to vari-
ous factors including the absence of the hypervisor iso-
lation and the cloud CPU throttling, the real browsers’
performance differences, and their implementations of
the client-side database. This will be the topic for fur-
ther research, but in general we are optimistic that the
clients’ processing capability should not pose an intrac-
table bottleneck. This is because in our approach the
same-client queries beyond the rate of once per 5 se-
conds do not require additional client and server pro-
cessing. The browser will simply respond with the
same, client cached response generated for an earlier
request. If the higher query rate is caused by more cli-
ents initiating queries concurrently, these additional
clients also bring in more processing power to counter-
balance the increased client side processing needs.

Another practical concern for this approach is the wide
adoption of the mobile devices as the social networking
clients. While the processing capabilities of these de-
vices may be continuously improving, the network
bandwidth provided for these devices is harder to reach
a satisfying level. For these non-performing clients, it is
still possible to tier the web services such that many
emulated browsers we used in the experiment can be
deployed at the edge of the web (e.g., CDN) and re-
purposed as proxy servers for them. At least in theory
this does not alter the linear scalability property of this
approach.

The third practical concern is the implementation of
global time. In our experiment all clients and servers
frequently synchronized their local times with authori-

tative time sources using ntpd. The small time skews
resulting in this approach did not pose a problem for the
duration of our experiment. Even if the clients lag far
behind the servers, the system performance should not
decline significantly if sufficient web cache is provided.
Nevertheless, in practice the assumption may be too
strong for all the clients and servers to always maintain
global time. In a follow-up research we relax this condi-
tion to only requiring all the servers to be properly syn-
chronized. The client must send one extra request to
detect the global server time before any timeline request
can be processed. Under such relaxation, we can still
show that the consistency guarantee and the linear
scalability property are largely maintained.

Finally, we also noticed a potential problem with the
load balancing. We employed a naïve database parti-
tioning strategy but have not built any load elasticity
and protection. Under such circumstances, even if all
the other servers were way below their capacities, if one
partition server encountered aberrant load spike and
crashed, the whole system would crash. This issue may
be addressed in the future work. We also expect to fur-
ther this research by experimenting with different stale-
ness levels to investigate their impacts on scalability,
and extending load generation capabilities to further
verify the linear scalability property.

To summarize, in this paper we describe, implement,
and evaluate a novel method that can simultaneously
achieve scalability and consistency in feed following
applications built on shared-nothing distributed sys-
tems. In our experiments the servers scaled linearly, and
sustained sufficiently high workloads to be of practical
use for small to medium size social networks. The cost
of running 6 low-end servers was fairly reasonable for
the performance and the capacity they delivered.

We also demonstrate for the first time the feasibility of
a new design pattern that consistently trades freshness
for better scalability. This is achieved by assuming the
availability of global time in a shared nothing distribut-
ed system, timing the queries with a pre-published re-
lease schedule, pushing much of the personalized query
workload to the clients, and more efficiently partition-
ing, replicating, and caching.

References

[1] Alonso, R., Barbara, D. and Garcia-Molina, H.
1990. Data caching issues in an information re-
trieval system. ACM Transactions on Database
Systems. 15, 3 (Sep. 1990), 359-384.

[2] Apache Cassandra, http://cassandra.apache.org/.

 12

[3] Architecture of the World Wide Web, Volume
One. http://www.w3.org/TR/webarch/.

[4] Berenson, H., Bernstein, P., Gray, J., Melton, J.,
O'Neil, E. and O'Neil, P. A critique of ANSI SQL
isolation levels. ACM SIGMOD Record (May
1995). 1995, 1–10.

[5] Bernstein, P.A., Fekete, A., Guo, H., Ramakrish-
nan, R. and Tamma, P. 2006. Relaxed-currency se-
rializability for middle-tier caching and replication.
Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of data (Chica-
go, IL, USA, 2006), 599–610.

[6] Bernstein, P.A., Hadzilacos, V. and Goodman, N.
1987. Concurrency Control and Recovery in Data-
base Systems. Addison Wesley Publishing Compa-
ny.

[7] Bornea, M.A., Hodson, O., Elnikety, S. and Fekete,
A. 2011. One-copy serializability with snapshot
isolation under the hood. 2011 IEEE 27th Interna-
tional Conference on Data Engineering (ICDE)
(Apr. 2011), 625–636.

[8] Brewer, E.A. 2000. Towards robust distributed
systems (abstract). Proceedings of the nineteenth
annual ACM symposium on Principles of distribut-
ed computing (New York, NY, USA, 2000), 7–.

[9] Cooper, B.F., Ramakrishnan, R., Srivastava, U.,
Silberstein, A., Bohannon, P., Jacobsen, H.-A.,
Puz, N., Weaver, D. and Yerneni, R. 2008.
PNUTS: Yahoo!’s hosted data serving platform.
Proc. VLDB Endow. 1, 2 (2008), 1277–1288.

[10] Cooper, B.F., Silberstein, A., Tam, E., Ramakrish-
nan, R. and Sears, R. 2010. Benchmarking cloud
serving systems with YCSB. Proceedings of the 1st
ACM Symposium on Cloud Computing. (2010),
143–154.

[11] CouchDB, http://couchdb.apacheorg/.
[12] DeCandia, G., Hastorun, D., Jampani, M., Kaku-

lapati, G., Lakshman, A., Pilchin, A., Sivasubra-
manian, S., Vosshall, P. and Vogels, W. 2007. Dy-
namo: amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 205–
220.

[13] Elnikety, S., Zwaenepoel, W. and Pedone, F. 2005.
Database Replication Using Generalized Snapshot
Isolation. Proceedings of the 24th IEEE Symposi-
um on Reliable Distributed Systems (2005), 73–84.

[14] Fielding, R.T. 2000. Architectural Styles and the
Design of Network-based Software Architectures.
University of California.

[15] Fielding, R.T. 2008. Paper tigers and hidden drag-
ons. http://roy.gbiv.com/untangled/2008/paper-
tigers-and-hidden-dragons.

[16] Gallersdörfer, R. and Nicola, M. 1995. Improving
performance in replicated databases through re-
laxed coherency. Proceedings of the 21th Interna-

tional Conference on Very Large Data Bases (San
Francisco, CA, USA, 1995). 1995, 445–456.

[17] Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B.,
Mowry, T., Olston, C. and Tomasic, A. 2008. Scal-
able query result caching for web applications.
Proc. VLDB Endow. 1, 1 (2008), 550–561.

[18] Gilbert, S. and Lynch, N. 2002. Brewer’s conjec-
ture and the feasibility of consistent, available, par-
tition-tolerant web services. SIGACT News. 33, 2
(2002), 51-59.

[19] Guo, H., Larson, P. and Ramakrishnan, R. 2005.
Caching with “good enough” currency, consisten-
cy, and completeness. Proceedings of the 31st In-
ternational Conference on Very Large Data Bases
(2005), 457–468.

[20] Herlihy, M.P. and Wing, J.M. 1990. Linearizabil-
ity: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12, 3 (Jul.
1990), 463–492.

[21] Kemme, B. and Alonso, G. 2000. Don’t Be Lazy,
Be Consistent: Postgres-R, A New Way to Imple-
ment Database Replication. Proceedings of the
26th International Conference on Very Large Data
Bases (San Francisco, CA, USA, 2000), 134–143.

[22] Krikellas, K., Elnikety, S., Vagena, Z. and Hodson,
O. 2010. Strongly consistent replication for a bar-
gain. 2010 IEEE 26th International Conference on
Data Engineering (ICDE) (Mar. 2010), 52–63.

[23] Lamport, L. 1986. On interprocess communication.
Distributed Computing. 1, 2 (Jun. 1986), 86-101.

[24] Lynch, N.A. 1996. Distributed Algorithms. Morgan
Kaufmann.

[25] MongoDB, http://www.mongodb.org/.
[26] Plattner, C. and Alonso, G. 2004. Ganymed: scala-

ble replication for transactional web applications.
Proceedings of the 5th ACM/IFIP/USENIX inter-
national conference on Middleware (Toronto, Can-
ada, 2004), 155–174.

[27] Silberstein, A., Machanavajjhala, A. and Rama-
krishnan, R. 2011. Feed following: the big data
challenge in social applications. Databases and So-
cial Networks (New York, NY, USA, 2011), 1–6.

[28] Silberstein, A., Terrace, J., Cooper, B.F. and Ra-
makrishnan, R. 2010. Feeding frenzy: selectively
materializing users’ event feeds. 2010 Internation-
al Conference on Management of Data (Indianapo-
lis, IN, United states, 2010), 831-842.

[29] Thomson, A. and Abadi, D.J. 2010. The case for
determinism in database systems. Proceedings of
the VLDB Endowment. 3, (Sep. 2010), 70–80.

[30] Vogels, W. 2009. Eventually consistent. Communi-
cations of the ACM. 52, (Jan. 2009), 40–44.

