
Aperator: Making Tweets Enable Actionable Commands
on Third Party Web Applications

Peter Zakin
Princeton University

pzakin@princeton.edu

Soumya Sen
Princeton University

soumyas@princeton.edu

Mung Chiang
Princeton University

chiangm@princeton.edu

Abstract

Twitter has become a persistent part of our digital lives,
connecting us not only to our individual audiences but
also to an entire landscape of applications built for the
web. While much has been done to support the Twit-
ter ecosystem outside of Twitter, little has been done
within Twitter to power those same applications. This
work introduces a service called Aperator, which sup-
ports application-specific actionable commands through
tweets. This ability creates several interesting opportuni-
ties for both end-users and application developers build-
ing on the Twitter platform. For example, the action-
able command capability allows a link that a Twitter user
shares with his followers to be directly added to any of
the user’s connected link sharing networks, such as Deli-
cious or Read it Later. The client side of this system has
a console for end-users to sign up and provide their login
credentials for various web services that our system sup-
ports: Delicious, Foursquare, Read it Later, Foursquare
etc. The system’s backend has two cron jobs that run
every minute to: (a) retrieve and parse tweets from a
specific twitter account and store them in a command
form in a MySQL database, and (b) execute the unex-
ecuted commands found in the users tweets. This paper
describes the concept, implementation, and results from
an experimental study of this new application.

1 Introduction

Since its launch in 2006, Twitter has become one of the
most important social properties on the web, trailing only
Facebook and YouTube in terms of traffic [1]. Beyond
the popularity of its own service, however, Twitter has
also promoted the growth and engagement of third party
websites through its API. As of May 2011, there are over
660k developers building applications on the Twitter API
and over 900k operating applications [5]. The Twit-
ter API has four major offerings: Twitter for Websites

enables visitors at third party sites to make use of ba-
sic Twitter functionalities like following and tweeting on
third party sites; the Search API provides query-access to
recent Tweets; the REST API provides a way for devel-
opers to access user data and execute most of the main
functionality of the Twitter service; lastly, the Streaming
API permits an uninterrupted connection to the Twitter
Firehose for developers to make use of data-sets.

Generally speaking, consumer web applications pre-
dominantly use the REST API and do so in three pri-
mary ways: to publicize user activity on the Twitter net-
work (e.g. Foursquare, Quora), to stream user activity
(e.g. Summify), or to operate their own Twitter client
(e.g. TweetDeck). But the service that this paper de-
scribes represents a new mode for relating consumer web
applications to Twitter.

The motivation for this approach is that although to-
day’s social web is great for sharing [8, 9], with so many
apps it can be hard to connect what we share in one net-
work to our presence on others. Moreover, for those who
spend most of their time on only the major networks, it
can be difficult to keep up with their audience on others
[7]. Some networks today do provide limited interactiv-
ity through automatic forwarding of all user updates to
a few other networks, as shown in Figure 1.1. But in-
stead of either forwarding all updates from one network
to the others or needing to log in and post on multiple
networks, what if a user had the ability to selectively post
from one network to all the other networks that the user
cares about? Aperator [2, 3] realizes this vision by en-
abling users to operate real commands on a set of differ-
ent web apps just by tweeting.

1.1 Contributions
Aperator demonstrates a new means of posting, which
creates numerous benefits including:

• A method for granular cross-network posting:
Cross-network posting is currently possible from

Twitter to Facebook and from Foursquare to Twit-
ter, among others. But this form of cross-network
posting is automatic and applies to all posts or none
at all. The selective nature of aperator commands
makes cross-network posting granular.

• A solution to make multi-network online presences
more convenient for users: Although users may
maintain several presences across a variety of web
properties, it can be difficult to actively contribute
on all of them. Generally and not at all surprisingly,
users spend most of their time on larger networks
like Facebook and Twitter as opposed to smaller
networks like Delicious or Read it Later. Since
aperator enables users to post content on some of
those smaller networks from Twitter, it makes the
multi-network presence more plausible.

• A way to increase engagement for third party ap-
plications: By making posting on third party appli-
cations as simple as tweeting, users can broadcast
to multiple networks through one single interface.
Thus, aperator can boost engagement on third party
applications as another avenue for posting.

• A new platform for application development: Since
users can interact with third party applications
through the Twitter interface, aperator demonstrates
the possibility of purely back-end applications. As
an example, we created a prototype for such an ap-
plication built on top of the aperator platform. The
application, called “sms”, provided the basic func-
tionality of a group text messaging application from
Twitter by using Twilio’s service. Users could sign
up by logging into aperator and editing their sms
settings, which entailed adding or editing groups of
numbers. If users wanted to send a text message to
the members of their sms-groups, they would tweet:
“@aperator sms #GROUPNAME Message”.

Although increasing connectivity among different web
applications in itself is not a new idea, Aperator’s key
contribution is in demonstrating what this system can
enable. Aperator can be seen as a first step towards a
TwitterOS, and using Twitter to provide some interesting
features and services as discussed below.

First, there is a familiar and easy to use interface and
you can access it from a wide range of clients. As a
result, we did not develop a separate stand-alone shell-
client on aperator.com and instead let users interface di-
rectly through Twitter.

Second, when users start using aperator services ex-
tensively and more features are developed by third-party
developers using aperator as a platform, then user’s com-
mand history will be publicly available for innovating a

Figure 1: Partial interactivity among different social net-
work applications

Figure 2: Aperator allows users to tweet selectively to
audiences on different networks

variety of new services. For example, users can bene-
fit from searching and finding out how their fellow users
are using various sequence of commands to accomplish
some particular task. While there are privacy concerns to
be addressed, the presence of such a platform can create
new possibilities for technical innovations.

Third, while Twitter already permits in-tweet com-
mands for cross-posting to LinkedIn and Facebook, this
capability stems from coordinated relationships between
Twitter and other applications. Aperator democratizes
this capability, making cross-posting simple even for or-
ganizations that are smaller than Facebook or LinkedIn.
Additionally, Aperator commands have the potential
to execute more sophisticated operations than posting,
while Twitter’s current model for cross-posting seems ill-
poised to do so.

It should be noted that Aperator is not a ‘tweeting from
the command line’ application like Twidge, Twitter CLI
etc; it is effectively accessible from any Twitter client.
Also, since Aperator is not a client interface, the recent
moves by Twitter to discourage third party Twitter client
developments in favor of consistent user experience [6]
is not at odds with our approach.

1.2 Approach
Aperator [2] is a platform for making tweets actionable
on third party web applications. By tweeting to the
@aperator account, users are able to post content on web
applications like Facebook, Foursquare, Delicious and

2

Read it Later, as illustrated in Figure 2. Just as a com-
mand line connects its users to applications on their oper-
ating system, Aperator connects its users (through Twit-
ter) to applications on the social web. And like the com-
mand line, Aperator operates with a strict syntax, even
as it enables powerful capabilities through a simple in-
terface. The syntax currently supports four commands:

1. Link submission to Delicious: “@aperator delicious
www.example.com [optional text]”.

2. Link submission to Read it Later: “@aperator ril
www.example.com [optional text]”.

3. Post a status update on Facebook: “@aperator fb
This is a status update”.

4. Check-in on Foursquare: “@aperator 4sq Example
Location”.

In the absence of a revenue source to pay for users’
texting, the sms app has not been featured in the pub-
lic release of Aperator, but it does demonstrate a poten-
tially powerful model. Building the sms application was
greatly simplified since the user interface was almost en-
tirely located on Twitter – the only exception was the
group set-up page, on which users created groups and
specified the names and numbers of its members. This
shows that application developers can build mostly back-
end applications that require little to no front-end inter-
face since the end-users tweets have been shown to be
sufficient as a means for user input.

This paper is organized as follows: Section 2 describes
the client-side and back-end architecture of Aperator.
The implementation details, challenges, and limitations
are elaborated in Section 3. Initial performance results
from a small-scale functionality test of the system is re-
ported in Section 4. Section 5 discusses the potential
of app-specific command execution capability and future
extensions, followed by conclusions drawn in Section 6.

2 Architecture

2.1 Client-side design
To get started on the service, users are required to sign
up with their Twitter credentials. After Twitter authen-
tication, users are redirected to aperator’s signup page,
where they also create their own Aperator login creden-
tials. When users are logged in, they are presented with
a visual display of aperators “Lexicon”, which lists the
available applications that can be connected alongside
their associated command-syntax, like in Figure 3.

In order to start using any of the four apps that are
currently supported by aperator – Foursquare, Delicious,
Facebook and Read it Later – users first connect them to

Figure 3: Signup screen with a list of supported web apps

Aperator. For users wishing to connect aperator to their
Foursquare or Facebook accounts, users follow a connect
button to either apps’ oAuth 2.0 authentication process,
which upon verification, will redirect the user back to
Aperator. But because Delicious and Read it Later utilize
HTTP-Auth, Aperator stores users login credentials for
these services. Therefore, when users choose to connect
either of these two services to aperator, they are taken to
a connect page. Upon successful connection, users are
redirected back to the aperator home screen.

After users have connected aperator to any of the avail-
able apps, they can reconnect to an app if they changed
their login credentials or if they happened to inadver-
tently revoke access to aperator. To reflect the ability
to reconnect an app with different login credentials, what
was previously labeled a “connect” button is now labeled
for connected users as “reconnect.”

2.2 Back-end design
While the end-user interface occurs almost entirely on
Twitter’s cross-platform properties after signup, the im-
plementation and core of the system runs on the services
server, which runs as an Amazon Web Services instance.
The back-end processes involve two main parts: storing
tweet-commands and executing commands that have not
been executed.

Tweets are stored through two cron processes that
run every minute, called stream1.php and stream2.php.
Both processes are identical but for a sleep cycle in
stream2.php which lasts 30 seconds. This way, tweets
are captured from Twitter twice every minute – nearly
every 30 seconds. The frequency of tweet-capturing can
be increased as the service’s adoption grows. Although
Twitter does not release a formal rate-limit for the Search

3

API, the risks of being throttled seem to advise a conser-
vative approach to tweet queries.

It should be noted that using the Streaming API is
more conducive to the demands of this application since
it allows developers to maintain long-lasting connections
to the Twitter Firehose. In future releases, the Stream-
ing API should be utilized since it would relinquish the
need to run multiple cron processes and concerns about
rate-limiting. However, given the prototype nature of the
current version, we presently capture tweet-commands
using the Search API.

The following snippet demonstrates the cURL re-
sponse used to query the Search API:
curl http://search.twitter.com/search.json?q=\%

40aperator&include_entities=true

The search is specifically for all @mentions of @aper-
ator, specifying tweet-entities as the return type. Speci-
fying “include entitites=true” in the request asks Twitter
to include the expanded URL of links that Twitter has
converted to the t.co link-shortened format. This request
to Twitter returns a JSON response:

{"result_type":"recent"},

"profile_image_url":"....,,

"text":" @aperator ril http://t.co/gzPGiehI",

"to_user":"aperator",

"to_user_id":427607438,

"to_user_id_str":"427607438",

"to_user_name":"Aperator",

"created_at":"Wed, 11 Jan 2012 19:27:43 +0000",

"from_user":"pzakin",

The JSON specifies the constituent elements of a tweet
object, e.g. “to user name” and “text”, and is easily
parsed. From here, the “from user” property of the tweet
is checked against a MySQL table of Aperator users in
order to make sure that tweets from non-users will not be
processed. Assuming that the tweet comes from a reg-
istered user and that the app specified is valid, the com-
mand is stored in a MySQL table. The second half of
the implementation consists of a process that executes
commands that are yet to be executed. This process
is managed by a cron job that runs each minute. To
maximize for speed of execution–i.e., limiting the lag
between catching the tweet from the Twitter Search re-
sponse and its execution–the execution process operates
inside a while loop, which iterates not less frequently
than every five seconds. Upon execution, the command is
designated as executed and ignored by the executing pro-
cess in the future. Figure 4 shows the overall architecture
and the processes that constitute the aperator system.

3 Implementation

The client console was developed using basic HTML,
CSS and Javascript–the latter of which was mostly im-

Tweet	 text	 Twi(er	 Firehose	

Stream1.php	 Stream2.php	

MySQL	 DB	
Cron	 job	

execute.php	

Search API

Retrieve
commands

Twitter

Aperator Third
party
apps

30 s 30 s

5 s

User tweets

Figure 4: Aperator architecture

plemented using the javascript framework, jQuery. The
back-end was built on a LAMP stack that was hosted on
an EC2 instance from Amazon Web Services. As has al-
ready been described, the system itself was powered pri-
marily by the Twitter API, which connected the aperator
application to users’ tweets.

Although our current initial prototype uses the Search
API, the use of Streaming API and even the REST API
are also feasible. The Streaming API represents the best
method for accessing @mentions of @aperator because
it streams tweets almost instantaneously. We chose to use
the Search API in the current prototype merely to avoid
potential complications with maintaining a long-standing
HTTP connection. Additionally, we opted against the
REST API because of its requirement for authenticated
use of the API.

3.1 Limitations

Although the Search and Streaming APIs can rapidly
stream @mentions of @aperator, both cannot access
@mentions coming from private users. Therefore, Twit-
ter users who maintain a private account viewable only
to their followers are presently unable to use the service.

Going forward, we have considered improving our
current implementation by utilizing the Streaming API
to catch @mentions of @aperator instantaneously. Ad-
ditionally, to provide service access to Twitter users with
private accounts, we will add a process utilizing the
REST API that should run in parallel to our Streaming
API connection. Since the REST API requires authenti-
cation, private @mentions will be retrievable as long as
we require users to follow @aperator when they sign up,
which can be easily added to our signup process.

Additionally, the current implementation for checking
in on Foursquare merely “shouts” a venue name. We do
not specify a ‘venue id’ that would enable a traditional
Foursquare check-in. In order to retrieve a ‘venue id’, we
would need to specify latitude and longitude coordinates.
In fact, this should be possible since users can add their

4

location to their tweets. Unfortunately, at this time, the
Tweet entities returned by the Search API have returned
“NULL” values for the “geo” field that otherwise should
specify the needed coordinates. Until this issue has been
resolved by Twitter, we are unable to check-in users to
registered Foursquare locations.

3.2 Challenges
Besides the issues discussed regarding the Foursquare
client, it is worth mentioning some other challenges and
the workarounds we undertook to help coordinate access
to Delicious and Read it Later in a user-friendly way.

First, Twitter shortens all links to the t.co wrapper for-
mat. When links are added to Read it Later or Delicious,
it is important that they are translated back to an ex-
panded URL. Otherwise, users viewing their saved links
would fail to recognize the destinations of their links.
Since Twitter provides an “expanded url” field in their
JSON response to search queries, we use it so that when
the expanded url is valid, the delicious request adds the
expanded URL rather than the t.co shortened link.

Lastly, the Delicious API requires a “description” pa-
rameter for link-submission. In order to provide a mean-
ingful description, we decided to scrape its “<title>” tag
from its DOM structure. The code we used for that pur-
pose is given below:

function scrapeTitle($url)

{ $file = file_get_contents($url);

preg_match(’/<title>(.*)<\/title>/i’,

$file, $title);

$description = trim($title[1]);

return urlencode($description);}

4 Evaluation

4.1 Deployment
The service website [2] was formally opened up to users
on January 2, 2012 for experimentation and testing.
Since then, 47 users have signed up for the service and
82 commands have been issued from Twitter, as shown
in Figure 5. Although the adoption has been slow in the
absence of promotional efforts on our part for this non-
commercial service, our focus has been on testing and
improving the system functionality as opposed to enlarg-
ing user base. Going forward, it will be important to
reach out to Twitter users and adapt the service based on
user feedback. Increasing the number of applications and
services that users can connect to from Aperator will also
be explored in the future.

4.2 Performance
We evaluate the performance of the system by measuring
the execution time of commands issued to Aperator from

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

1/
2/
12
	

1/
3/
12
	

1/
4/
12
	

1/
5/
12
	

1/
6/
12
	

1/
7/
12
	

1/
8/
12
	

1/
9/
12
	

1/
10
/1
2	

1/
11
/1
2	

1/
12
/1
2	

1/
13
/1
2	

1/
14
/1
2	

1/
15
/1
2	

1/
16
/1
2	

1/
17
/1
2	

1/
18
/1
2	

1/
19
/1
2	

1/
20
/1
2	

1/
21
/1
2	

Figure 5: Cumulative growth in tweets sent to Aperator

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

4.5	
5	

0-‐20	 secs	 20-‐40	 secs	 41-‐60	 secs	 61-‐80	 secs	 81-‐100	 secs	

Facebook	

Delicious	

Read	 It	 Later	

Foursquare	

Figure 6: Histogram of the execution time of 30 com-
mands for different web apps

user tweets. Each time a user submits a tweet, we record
the time at which the tweet was created as well as the
time at which the command was executed. Thus, execu-
tion time measures the time taken from a tweet post on
Twitter to its execution for posting on another network.
Based on a sample of 30 tweets, with execution times
ranging from 20 seconds to 94 seconds, we found the
mean execution time to be 44.23 seconds. The estima-
tion of execution times for tweets of different third-party
services is shown in Table 1.

Figure 6 shows a more granular picture of the distribu-
tion of execution times for tweet commands operated on
by Aperator for different applications. The performance
figures show that Delicious and Read it Later commands
have relatively slower execution because both implemen-
tations entail an additional process of scraping titles for
submitted links, which we’ve detailed before.

5 Discussions

Despite the presence of APIs across the vast majority of
popular web services, the flow of data generally moves
towards the larger networks as smaller networks publi-
cize activity to a greater audience. In a sense, Aperator is
a serious step towards moving more data from the larger
networks to the smaller ones–which in effect, amounts
merely to the ability to post content from a larger net-
work to a smaller one. Because users spend more time
on larger networks, Aperator effectively lowers the bar-
riers to engagement that plague smaller networks.

While we currently support commands only coming
from Twitter, it is possible and perhaps advantageous to
replicate the Aperator service for Facebook. Sending

5

Table 1: Command Execution Time Statistics
Application Mean (secs) Std. Dev. (secs)
Delicious 50.25 20.58

Read It Later 43.4 21.72
Facebook 44.29 24.02

Foursquare 36.2 10.98

commands to third party web applications from Face-
book would work quite similarly to the Twitter imple-
mentation. Users would merely update their status with
specific commands for third party web applications. Ad-
mittedly, this would require a syntax adjustment because
Facebook does not support user-to-application communi-
cation. Thus, to specify an Aperator command in Face-
book, we plan on introducing a syntax such as: “## deli-
cious www.example.com”.

5.1 Related Developments
Increasing connectivity among different web applica-
tions is not a unique idea, even though Aperator is in
many ways a unique implementation. IFTTT [4], for ex-
ample, works with a host of different applications to au-
tomate actions between different services. For instance,
if one uploads a file to her dropbox folder, IFTTT might
send a tweet or a text message or post a status update
on any number of services etc. The range of “recipes”
permitted by IFTTT is extremely compelling when con-
sidering the potential benefits of inter-app synergy.

IFTTT has become a popular service in a new cate-
gory of applications we might well call “API plumbing,”
but it certainly need not be the last. Aperator differs from
IFTTT in the granularity of control it offers and the dy-
namism with which users can specify executable com-
mands directly as tweets. There is tremendous potential
to improve and rethink the relationships between differ-
ent apps: synergy paves the way for new, unexplored ex-
periences in the consumer web. Some of those experi-
ences that deserve further exploration are presented next.

5.2 Future Use-cases
Facebook and Twitter have popularized the idea of sign-
ing up for web services using their respective login cre-
dentials. Supporting Facebook and Twitter authentica-
tion on third party applications expands the reach of their
networks and for the benefit of third party properties,
simplifies the authentication process and increases en-
gagement. One of the ways in which Aperator increases
the accessibility of third party web applications might
very well be in authentication. Instead of signing up with
Facebook or Twitter, users could simply tweet: @aper-
ator install APPNAME. Once again, the analogy of the
command line serves inspiration well. For just as “yum

install emacs” provides a simple model for package in-
stallation on the command line, “@aperator install APP-
NAME” could provide an easier way for users to register
on third party web applications as Aperator funnels au-
thentication tokens in a pipeline from Facebook or Twit-
ter to another application.

Right now, the Twitter presence of web applications
amounts to little more than a stream of updates and an-
nouncements. But through Aperator, applications can
begin to have actionable presences inside of a network.
The suggestion, begged by the use-case, may be that
Twitter could function in parallel to HTTP as an applica-
tion medium. There is some truth, then, to the words of
Paul Graham, the founder of Y Combinator, who wrote:
“Successful new protocols are rare... So any new pro-
tocol is a big deal. Each one of those protocols has
spawned many successful companies. Twitter will too.”

Following such thoughts, a package installer for web
applications is just the tip of the iceberg when it comes to
new apps that can be developed on the Aperator platform.

6 Conclusions

This work introduces a new idea and an initial sys-
tem prototype for a service, called Aperator, which sup-
ports application-specific actionable commands through
tweets. Aperator facilitates granular cross-network post-
ing and increases user convenience, thus opening up av-
enues for greater social utility and interactivity across
web services. We review several benefits of this approach
for both end-users and third-party applications, provide
an architecture for enabling such services, report on ini-
tial performance results, and outline several potentially
interesting extensions of this system.

References
[1] Alexa. http://www.alexa.com.

[2] Aperator. http://www.aperator.com.

[3] Aperator Demo. http://www.youtube.com/watch?v=tBzqShO29Xw.

[4] IFTTT. http://ifttt.com/.

[5] Twitter. http://www.twitter.com.

[6] BROWN, M. Twitter Clamps Down On Third
Party Clients. Wired [online], 14 March 2011.
http://www.wired.com/epicenter/2011/03/twitter-third-party-
clients/all/1.

[7] BRUNO GONCALVES, NICOLA PERRA, A. V. Valida-
tion of Dunbar’s number in Twitter conversations, May 2011.
arXiv:1105.5170v2.

[8] KRISHNAMURTHY, B., GILL, P., AND ARLITT, M. A few chirps
about twitter. In Proceedings of the first workshop on Online social
networks (2008), WOSN ’08, pp. 19–24.

[9] KWAK, H., LEE, C., PARK, H., AND MOON, S. What is Twit-
ter, a social network or a news media? In Proc. of the 19th int’l
conference on World wide web (2010), WWW, pp. 591–600.

6

