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Abstract
We present a new method for automatically synthesizing
code-reuse attacks—for example, using Return Oriented
Programming—based on mechanized formal logic. Our
method reasons about machine code via abstraction to the
p-code intermediate language of Ghidra, a well-established
software reverse-engineering framework. This allows it to
be applied to binaries of essentially any architecture, and
provides certain technical advantages. We define a formal
model of a fragment of p-code in propositional logic, en-
abling analysis by automated reasoning algorithms. We then
synthesize code-reuse attacks by identifying selections of gad-
gets that can emulate a given p-code reference program. This
enables our method to scale well, in both reference program
and gadget library size, and facilitates integration with exter-
nal tools. Our method matches or exceeds the success rate of
state-of-the-art ROP chain synthesis methods while providing
improved runtime performance.

1 Introduction

Return Oriented Programming (ROP) is a method of leverag-
ing a memory corruption vulnerability to perform arbitrary
computations, even in the presence of executable space protec-
tion (commonly and generically known as ‘W⊕X’). Paired
with an information disclosure vulnerability, ROP can be
achieved on systems featuring W⊕X and Address-Space Lay-
out Randomization (ASLR). It does this by chaining together
short function suffixes already existing in memory (referred
to as gadgets) to execute a chain: an attacker-specified com-
putation. Since its systematization by Shacham [1], ROP has
received substantial industrial and academic attention and be-
come the prevailing method to leverage memory corruption.

Defensive efforts have produced several proposals for
software-level protections, such as kBouncer [2] and
ROPecker [3], as well as micro-architectural protections, such
as Intel CET [4]. Offensive efforts have produced the family
of code-reuse attacks, exploitation methods with equivalent

power to ROP but without reliance on the ret primitive [5] [6],
or even on unintended code sequences [7]. For the remainder
of this paper, we will use the term ROP to refer to this wider
class of exploitation technique unless otherwise specified.

The automation of code-reuse attacks has also been a fertile
field of research. The most notable automation efforts are
Q [8], PSHAPE [9], and SGC [10]. The approaches described
in these three papers differ in their particulars, but they share
a common theme: using automated reasoning in symbolic
logic and decision procedures to automatically synthesize
code-reuse attacks.

In this paper, we present a new method for automatically
synthesizing code-reuse attacks, also based in part on mech-
anized formal logic. Our method is built on the p-code in-
termediate language of Ghidra, a well-established software
reverse-engineering framework from the National Security
Agency Research Directorate [11]. Ghidra’s code translator,
SLEIGH, produces p-code to express the semantics of assem-
bly instructions. Ghidra distributes SLEIGH definitions for
over 30 processor architectures. Our synthesis method, and its
reference implementation, can therefore be applied to binaries
from any architecture that SLEIGH supports.

Our method synthesizes code-reuse attacks by generating
and evaluating assignments of gadgets to steps of a refer-
ence program, itself composed of p-code operations. This
approach yields many desirable properties. We do not require
that gadgets cleanly fit into any predefined functional cate-
gory. In addition to constraints automatically generated by our
reference program, we allow for asserting arbitrary pre- and
post-constraints on the system state, as well as state transition
invariants. We allow for gadgets to perform unspecified (but
still constrained) side-effects. Gadgets need not be in one-to-
one correspondence with reference program operations: one
gadget may perform many roles. Synthesis from a reference
program scales more gently with reference program length
and gadget library size than a purely pre- and post-constraint
system would; while this will not allow as many solutions,
we do not think this is a problem in practice.

Since the reference program is a block of p-code opera-



tions, it may be constructed manually or produced from native
code using SLEIGH. This opens the door to powerful integra-
tions with other tools built around native code.

We present the following contributions:

• A formal model in propositional logic for a signif-
icant segment of Ghidra’s p-code intermediate lan-
guage. We define our model in terms of the stan-
dard FixedSizeBitVectors and ArraysEx theories of
SMT [12, 13] allowing p-code programs to be analysed
by off-the-shelf automated reasoning tools.

• A novel architecture-agnostic algorithm for synthesis of
code-reuse attacks from a p-code reference program.
Our algorithm decomposes the reference program into
sub-goals and performs a SAT-driven search for combi-
nations of gadgets with compatible p-code semantics.
Dividing the problem this way makes it feasible to rea-
son about larger sets of gadgets and more complicated
reference programs than would otherwise be feasible.

2 Background

Ghidra [11] is a well established and widely used reverse engi-
neering tool produced by the United States National Security
Agency. Ghidra is primarily a static binary analysis tool that
ingests binaries and produces an interactive presentation of
their disassembly and decompilation.

Ghidra’s decompilation procedures are implemented using
an intermediate language called ‘p-code’ for a simple ab-
stract virtual machine. Binary programs are translated by the
tool from their source architecture into p-code according to a
specification written in SLEIGH, an NSA-developed language
for capturing the binary encoding, the syntax, and the seman-
tics of machine code across a wide range of architectures. It
is an extension of SLED [14] and employs certain concepts
from the Semantic Syntax Language [15, 16].

Instructions in the p-code language, called ‘operations’,
are very elementary. A machine instruction in the source
architecture typically translates to a block of several, more
fine-grained p-code operations. And complicated machine
instructions may translate to a block of p-code that employs
internal control-flow to implement their semantics.

The p-code language is an excellent abstraction for synthe-
sis for the same reasons it is an good basis for a decompiler: it
fully models ISA-level instructions, without the extra compli-
cation of microarchitectural details; and all p-code operations
have an explicit representation of the parts of system state
they depend on and mutate (with some minor exceptions).
This uniformity allows us to find ROP gadgets and synthesize
ROP chains without sorting gadgets into pre-defined roles.

2.1 The p-code Virtual Machine
In this section, we present a brief overview of the p-code
virtual machine and how it models real processor architectures.
The following description of p-code is based largely on the
SLEIGH documentation [17].

2.1.1 p-code Address Spaces

The p-code virtual machine represents system state as a col-
lection of address spaces. An address space is similar to a
processor’s RAM: it holds mutable data comprising a cer-
tain number of bit-vector ‘words’, which are individually ac-
cessed through an address. Each p-code address space (or
just ‘space’) has an associated word size, the number of bits
held at each address, and an address size, the number of bits
needed to encode every address uniquely.

The number and dimensions of the p-code spaces in the
virtual machine is not fixed. These parameters are furnished
by SLEIGH, based on the machine architecture it is lifting.
There are, however, two special-purpose spaces that are al-
ways defined, regardless of architecture:

const A space with a special interpretation for holding con-
stant values.

unique A space used for storing intermediate results during
the execution of the block of p-code that models a sin-
gle machine instruction. These intermediate results are
temporary, and the unique space is effectively cleared
between machine instructions.

While the p-code spaces in the virtual machine are not
fixed, almost all SLEIGH architectures create these two spaces:

register A space representing the registers of the source
architecture.

ram A space representing a processor’s main memory, gener-
ally identified with the virtual address space of a loaded
executable. The size of a ‘word’ in the ram space will not
necessarily be 32 bits, but will depend on the physically
addressable units in the memory being modelled.

SLEIGH architectures are free to create further p-code
spaces, which provides the flexibility to model less-common
processor paradigms, such as Harvard architecture machines
with separate code and data storage.

2.1.2 Varnodes

A varnode is a 3-tuple (name,offset,size) and represents a
contiguous sequence of words within the address space iden-
tified by name. A varnode represents only the location of a
block of data in system state; it does not impose an inter-
pretation on the data or include any type information. All



access to and mutation of system state by p-code instructions
is expressed in terms of varnodes. This uniformity means
p-code operations need not distinguish between, for exam-
ple, reading a register and reading RAM. Both are varnodes.
This property proves very convenient when modeling p-code
with propositional logic and standard theories of SMT.

2.1.3 p-code Operations

A p-code operation is an atomic instruction of the p-code
virtual machine. Each such operation may read blocks of
system state designated by one or more input varnodes and
optionally updates a block of system state designated by an
output varnode. No p-code operation may use a varnode in
the const space as an output.

Most p-code operations are required to conform to cer-
tain constraints on the number and sizes of their inputs to be
considered well-formed. For example, any p-code COPY in-
struction must have exactly one input and one output varnode
of the same dimensions. There is no explicit type system that
enforces these restrictions and runtime size mismatches are
considered a bug in SLEIGH.

Some p-code operations apply specific interpretations to
the varnodes they reference. There are four such interpre-
tations: unsigned integer, signed integer, floating point, and
boolean. These interpretations manifest only in the semantics
of the execution of a p-code operation; they are not explict
in the representation of state. In this work, we do not consider
p-code operations that make floating point interpretations.
We do, however, account for the p-code virtual machine’s
configured endianness when modeling p-code operations that
interpret varnodes spanning multiple addresses as integers.

Almost all p-code operations depend on only their input
varnodes and mutate system state only at their output varnode,
ensuring that all effects are explicit in the code. This makes
a particularly uniform logical encoding of p-code possible
and also provides a mechanism for our code-reuse synthesis
algorithm to greatly narrow the search space. There are a few
operations that break this pattern:

LOAD/STORE These operations are indirect memory reads
and writes, respectively. The indirect access is repre-
sented by an input varnode representing a pointer loca-
tion, a special const varnode input that is interpreted as
a numerical identifier for the space in which the read or
write should occur, and a size. To aid in later discussion,
we define the 3-tuple of these quantities to be an indirect
varnode.

CALLOTHER This instruction is used to represent any type
of unmodeled functionality, including system calls. The
p-code documentation states that CALLOTHER may do
undefined mutation on parts of the state outside the re-
gion defined by the output varnode.

Finally, control-flow is expressed as follows. Every p-code
operation is uniquely addressed by a tuple (address,offset),
where address is the address of the machine instruction that
was translated into the block of p-code containing the opera-
tion, and offset is the operation’s index within that block of
p-code. During execution, a non-control-flow p-code opera-
tion falls through to the p-code operation at the next offset,
if one exists. Otherwise, it falls through to first p-code opera-
tion in the block for the next machine instruction.

The control-flow operations of p-code are: BRANCH,
CBRANCH, BRANCHIND, CALL, CALLIND, RET and CALLOTHER.
Of these, BRANCH and CALL are direct branches. CBRANCH rep-
resents a direct branch to a location that is taken only if a con-
dition (given as an argument) evaluates to true. BRANCHIND,
CALLIND and RET are indirect branch to machine addresses
within the same p-code space. CALLOTHER, also referred to
as USERDEFINED in the p-code documentation, represents
system transitions too complex to model in p-code (e.g. com-
puting a Fast Fourier Transform) as well as unmodeled func-
tionality such as atomic memory barriers and system calls.
p-code branches, like any other operation, use varnodes

as input. A branch target in the const space represents a
relative jump of the p-code offset within the block of p-code
for the machine instruction it represents. This is used for
modeling both straightforward conditional control-flow and
complicated assembly semantics, such as the x86 rep prefix.

Our current work is limited to assembly instructions that
generate a single p-code basic block: a sequence of non-
control-flow p-code operations, optionally ending with a sin-
gle control-flow p-code operation.

3 A Formal Model of p-code

Our algorithm for code-reuse attack synthesis is based on a
formal model of a fragment of p-code into standard formal
theories in first-order logic that can be handled by the class
of automated reasoning methods called Satisfiability Mod-
ulo Theories (SMT) [12, 13]. The model is constructed to
reflect the semantics laid out in the p-code reference docu-
mentation [17]. The approach is inspired by the construction
of software bounded model checkers, such as CMBC [18],
which build a model as a transition relation following the
‘semantics laid out in the C language standards’ [19].

Our formal model of p-code enables automated reasoning
about the semantic suitability of a given candidate code-reuse
chain, with respect to the supplied reference program. Our
synthesis procedure, explained in Section 4, separately em-
ploys a solver for Boolean Satisfiability (SAT) to generate
and refine candidate chains.

In this section, we briefly explain our model of p-code.
This is relatively simple, because it needs to cover only the
specific p-code operations and restricted forms of p-code
block for which a formal representation amenable to auto-
mated reasoning is needed by our synthesis algorithm. Each



non-control-flow p-code operation is represented formally
by the logical relation that establishes the system state before
and after its execution. The p-code control-flow operations
needed for synthesis are represented formally by an expres-
sion that captures their (possibly symbolic) branch target ad-
dresses.

3.1 State

As explained, the state of the p-code virtual machine is given
by a collection of address spaces. Viewed mathematically,
an address space is essentially a mapping from addresses to
words. The standard theories for SMT [13] include a theory of
functional arrays with extensionality: ArraysEx. This gives a
direct formalization of such a mapping, and therefore is the
basis for our formal model of p-code state. Extensionality
just means that the formalization includes equality on arrays,
defined in the obvious component-wise way.
ArraysEx is an abstract theory, parameterized by the types

of the index into the array and the elements it contains. For
modelling p-code, these will both be fixed size bit-vectors,
which are formalised for SMT in the standard theory of
FixedSizeBitVectors. This theory is central to many au-
tomated reasoning applications for computer systems [20],
such as formal verification of hardware designs, and so well
supported by many off-the-shelf SMT solvers.

3.1.1 Reading and Writing State

Operations in p-code interact with state through their input
and output varnodes. Reading and writing an address space
at the block of words indicated by a varnode is straightfor-
wardly modeled using the select and store functions of the
ArraysEx theory. Given an array a and index i, the expression
(select a i) denotes the element of a located at index i. In
our model, this will be a ‘word’ of the address space modeled
by a. And for a given word w, (store a i w) denotes the
array that is identical to a except that it contains w at index i.
In our model, this denotes an updated address space.

The word sizes of p-code address spaces can vary across
machine architectures being modeled. For uniformity, our
implementation concatenates the results of all multi-word ad-
dress space reads into single bit-vectors. Likewise, the formal
representation of the bit-vector result that would be produced
by executing a p-code operation is broken into consecutive
words and expressed as a address space update by cumulative
applications of the store function.

This paradigm is a well-established approach to engi-
neering systems for automated reasoning about low-level
code [10,21]. In our case, modeling is not restricted to blocks
of words with a power of two size, though in practice most
are. We also take the architecture’s endianness into account
in the conversions to and from bit-vectors.

The above describes how all varnode reads and writes are
modeled—with the exception of const, explained below. A
processor’s RAM and its registers are both modeled as address
spaces, so our encoding does not need to embody assump-
tions about the arrangement, roles, or names of architectural
registers. It also seamlessly handles sub-registers (e.g. rax vs
eax vs ah), correctly constraining overlapping registers.

Modeling reads from the const address space requires
interpreting const varnodes as immediate values. We as-
sume an unsigned integer interpretation on all reads from
the const space. We further assume that if SLEIGH needs
to represent a negative constant, it will do so by emitting a
two’s-complement encoding of that constant. We represent
a p-code read of the varnode (const,n,k) as a constant bit-
vector of value n and width k ∗8 bits. Writes into the const
space are explicitly forbidden in the SLEIGH documentation,
and our implementation exits if it encounters one.

3.2 Modeling p-code Blocks

Executing a p-code operation produces a transition of the
p-code virtual machine from one state—comprising all the
declared address spaces—to the next. In our model, we repre-
sent a p-code operation as a logical relation between a col-
lection of functional arrays, representing the address spaces
of the initial state, and corresponding but separate functional
arrays representing the address spaces of the final state.

To formalize the effect of the operation, we build sym-
bolic expressions denoting the state updates that it will make.
These will be expressed as functions of the symbolic represen-
tations of the bit-vectors obtained through its input varnodes,
which refer to the initial state arrays. The expressions are
constructed by our implementation using the rich collection
of operations over bit-vectors formalized in the standard SMT
FixedSizeBitVectors theory. We then build expressions
that denote the final state arrays through suitable applications
of the store operation for each block of state addressed by
the output varnode. The logical relation that holds between an
arbitrary initial state and its corresponding final state models
the p-code operation to capture its semantics.

As an example, consider the x86 instruction MOV EBX,EDI.
This instruction is represented in p-code with a single opera-
tion: register[0xc]:4 = COPY register[0x1c]:4. Fig-
ure 1 shows the relation describing the modified register
space after the execution of this instruction.

We can iterate through a block of p-code operations and
model their cumulative semantics by applying each opera-
tion’s relation on the final state of the previous one. This
allows us to model a p-code basic block; as noted in Sec-
tion 2.1.3, we create a formal model only for sequences of
non-control-flow p-code operations containing no outgoing
branches, optionally terminated by a final branch.



(store
(store
(store
(store register!0
#x0000000c (select register!0 #

x0000001c))
#x0000000d (select register!0 #

x0000001d))
#x0000000e (select register!0 #

x0000001e))
#x0000000f (select register!0 #

x0000001f))

Figure 1: An SMT encoding of an x86 register move.

3.3 Modeling Control-Flow

We now explain how we account for the control-flow behavior
of a basic block of p-code in our model. A basic block is a se-
quence of non-control-flow p-code operations ending with a
single p-code control flow operation. These are the only kind
of block that we will encounter in our synthesis algorithm. We
do not consider the CBRANCH conditional branch, and provide
limited support for CALLOTHER. We further assume that code
will only branch within a given space (e.g. all code is in the
ram space).

Given a p-code block of the kind just defined, we model
its control-flow behavior as a bit-vector expression that repre-
sents the address of the target machine instruction.

If a block ends with an unconditional p-code branch, then
the target address produced is simply a constant bit-vector
giving the offset of the branch destination. If the p-code block
contains an indirect p-code branch, then the target address is
constructed by reading the destination varnode from the final
state of the instruction preceding the branch, using the formal
representation described in the previous section.

We also provide limited modeling of certain uses of the
CALLOTHER operation. The p-code CALLOTHER operation is
underspecified and does not lend itself well to a general for-
malization. But we must consider at least a limited case,
because many code-reuse attacks have the explicit goal of
executing a system call, which SLEIGH represents through
CALLOTHER operations.

Our model treats the CALLOTHER operations we need to han-
dle as direct branches. In general, p-code uses CALLOTHER
for many things, distinguishing between different cases by
the form of its input varnodes. To represent the case we need
in our model, we perform a hash of its varnode arguments
to produce a constant bit-vector address, which we take to
represent the CALLOTHER ‘branch’.

Since we are modeling CALLOTHER branches as producing
bit-vector address representations, we must provide a way to
distinguish between the addresses produced by CALLOTHER

and the addresses produced by the other p-code control-flow
operations we model. We do this by adding a one-bit tag
for each p-code block’s branch destination address. When a
block ends with CALLOTHER, this tag is set to 1 and is set to 0
otherwise. We then define equality for p-code block branch
destinations; their bit-vector target addresses must be equal,
and their tags must be equal.

4 Synthesis

We present crackers, our algorithm for synthesizing code-
reuse attacks. We first provide a general overview of the al-
gorithm, which is shown as Algorithm 1. We then provide
details of each of the main steps.
Crackers synthesizes ROP chains from a library of gad-

gets (Section 4.1), such that the chains refine a linear p-code
reference program (Section 4.2) that is provided as an input.
The reference program is split into a sequence of steps, each
representing the effects of one or more p-code operations
(Section 4.2.1). A chain synthesized from a sequence of N
steps will have exactly N gadgets. Crackers iterates over all
possible permutations of steps, ordered by ascending length,
seeking the shortest possible chain for a program.
Crackers attempts synthesis of a given sequence of steps

by selecting a set of candidate gadgets for each step (Sec-

Input: A target binary B, a p-code reference program
P, a table of chain constraints E

Output: A satisfying chain if satisfiable, UNSAT if
not

1 L := MAKELIBRARY(B);
2 foreach steps in SequencePartitions(P) do
3 candidates := MAKECANDIDATES(steps, L);
4 if ¬candidates then
5 continue;
6 end
7 solver := SATSOLVER();
8 INITSOLVER(solver, candidates);
9 while chain := SELECTGADGETS(solver);

10 do
11 result := CHECK(chain, steps, E);
12 if SAT(result) then
13 return chain;
14 else
15 core := GETUNSATCORE(result);
16 clause := GETCONFLICTCLAUSE(core);
17 ADDCLAUSE(solver, clause);
18 end
19 end
20 end
21 return UNSAT;

Algorithm 1: crackers



tion 4.3). Each step’s candidates are then associated with
a unique Boolean proposition, and a SAT solver generates
a selection of candidate gadgets using these (Section 4.4).
The p-code of the selected gadgets is used to build a logical
model of a ROP chain (Section 4.5) suitable for analysis with
an SMT solver. This model is constrained to ensure each gad-
get fulfils the post-conditions of its step, as well as certain
other requirements. An SMT solver is used validate the model.
If the solver returns SAT, crackers succeeds. If the solver
returns UNSAT, the UNSAT core of the chain model is used
to further constrain subsequent gadget selection (Section 4.6).
If a candidate cannot be selected for any gadget, the algorithm
moves to the next partition of reference program steps. If all
step partitions fail, the algorithm fails.

4.1 Generating a Gadget Library
The first step of our algorithm is to build a library of gad-
gets from the provided binary code, as shown in Procedure 2.
Our approach to collecting gadgets is simple: for every ad-
dress within an executable segment of a binary, we attempt
disassembly with SLEIGH, up to a set number of instructions,
yielding a block of p-code. We perform syntactic validation
of each potential gadget’s p-code before we accept it. The
gadget must contain only p-code operations that are cov-
ered by our model and must terminate in an indirect p-code
branch. This filters out gadgets with floating-point operations,
conditional branches, and other forms of internal control-flow.
Gadgets passing these requirements are accepted, as p-code
blocks, into the library and associated with the address of
their first machine instruction.

Our approach differs from that of Shacham [1] and
Schloegel et al. [10] in that it works forward from candidate

Input: A target binary B, a max gadget length N, a set
of allowable p-code operations P

Output: A library of gadgets
1 library := [];
2 foreach segment in B do
3 if ISEXECUTABLE(segment) then
4 foreach address in segment do
5 gadget := DISASSEMBLE(address, N, P);
6 if ¬ gadget then
7 continue;
8 end
9 if SYNTACTICCHECK(gadget) then

10 library += gadget;
11 end
12 end
13 end
14 end
15 return library;

Procedure 2: MakeLibrary

addresses rather than backward from ret and jmp instruc-
tions. This frees us from architecture-specific assumptions
that specific patterns of bytes represent indirect branches.

4.2 Reference Program
Our algorithm attempts to synthesize a ROP chain from a
p-code reference program—a blueprint for the sequence of
effects we would like our ROP chain to achieve. This refer-
ence p-code may be manually written or expressed first as
assembly code, perhaps even automatically produced by an
assembly synthesis tool, and then assembled and translated to
p-code by SLEIGH.

Like our gadgets, the reference program is required to be a
single basic block of p-code: a sequence of non-control-flow
p-code operations, generally ending in a branch or syscall.

Figure 2 shows a block of assembly code that might be used
to produce a p-code reference program: a simple invocation
of execve on x64 linux. In this example, rax, rsi, and rdx
are set to the concrete values necessary to invoke execve.
This reference program requires that rdi is written, but does
not require it to contain any particular value (as rbx has no
constraints on its value). To properly execute the syscall, this
value must be a pointer to readable memory containing a null-
terminated ASCII representation of the path of an executable
on the system (e.g. ‘/bin/sh’).

Figure 2: A x64-linux code-reuse-attack reference program

mov rax, 0x3b
mov rsi, 0x0
mov rdx, 0x0
mov rdi, rbx
syscall

4.2.1 Reference Program Steps

Crackers attempts to synthesize the shortest possible chain
for a given reference program by combining the operations of
the reference program into a shorter sequence of compound
steps. For example, a program with operations [a,b,c] will
generate the following step partitions: [[a,b,c]], [[a], [b,c]],
[[a,b], [c]], [[a], [b], [c]]. By ordering these partitions by their
number of members, crackers ensures it attempts to synthe-
size shorter ROP chains first.

4.3 Gadget Candidate Identification
Our algorithm identifies a pool of candidate gadgets for each
step of the reference program. Procedure 3 describes how
candidate gadgets are identified and selected. This proce-
dure collects candidates until it exhausts the gadget library or
reaches a configured number of candidates for each step.



The procedure iteratively selects a random gadget from the
library, without replacement, and evaluates its suitability for
each step of the reference program. If a gadget is found to be
suitable for a step, it is added to a pool of candidate gadgets
for that step. A single gadget can be accepted as a candidate
for more than one step, allowing the same gadget to appear
multiple times in a chain.

Suitability is determined syntactically by analysis of the
output signatures of the p-code blocks that form the step
and the gadget being considered. The output signature of
a p-code block is the set of output varnodes and indirect
varnodes written by a p-code block. A gadget is suitable for
a step if it mutates at least all the outputs of the step.

Informally, we say that an output signature A covers an
output signature B if, for every varnode b in B, there exists a
varnode a in A that contains all the addresses of b, and if, for
every indirect varnode bi in B there exists an indirect varnode
ai in A with equal or greater size to bi and the same pointer
varnode as bi.

To be accepted as a candidate for a given step, a gadget
must satisfy the following:

• The gadget’s output signature must cover the output sig-
nature of the step.

• If the step ends with a CALLOTHER p-code operation, the
gadget must end with an identical CALLOTHER operation.

To avoid unnecessary work for our algorithm, we further

Input: a sequence of reference program steps S, a
gadget library L

Output: An enumerated set of candidate gadgets for
each step of the reference program, NULL if
any step has no candidates

1 candidates := [];
2 for gadget in RANDOMORDER(L) do
3 foreach step in S do
4 if SUITABLEFORSTEP(gadget, step) then
5 candidates += (gadget, step);
6 end
7 end
8 if SUFFICIENTCANDIDATES(candidates) then
9 return candidates;

10 end
11 end
12 foreach step in S do
13 if STEPHASNOCANDIDATES(candidates, step)

then
14 return NULL;
15 end
16 end
17 return candidates;

Procedure 3: MakeCandidates

filter this set to remove candidates with obvious semantic in-
compatibilities. For example, the gadget MOV EAX, #1; RET
is clearly incompatible with the step MOV EAX, #0. We ac-
complish this by building a logical expression relating the
formal model of the candidate gadget to the step. (This same
expression is used in Section 4.5.1 to evaluate a chain.)We
use Z3 to perform a syntactic simplification of this expression.
If the expression can be syntactically simplified to false, we
discard the candidate.

This syntactic filtering, while coarse, provides vital guaran-
tees about the gadgets accepted as step candidates. The fact
that all candidates write to all outputs of their step prevents our
chain validation from conjuring unrealistic favorable mem-
ory models. This was only possible to ensure thanks to the
explicit, uniform nature of p-code operation side effects.

If Procedure 3 is unable to identify any candidates for at
least one step, it fails and crackers continues to the next
combination of reference program steps.

4.4 Chain Assignment Generation
A gadget assignment (i, j) is the selection of the jth candidate
gadget for reference program step i. A chain assignment is a
sequence of such assignments, one for each step.

We use an off-the-shelf SAT solver (Z3 [22]) to generate
chain assignments by encoding possible gadget assignments
as boolean propositions and making a series of assertions
encoding the ‘rules’ of gadget selection. As our algorithm it-
erates over chain assignments, it derives additional constraints
from the validation failures of chain models, progressively
refining subsequent assignments (Section 4.5).

To encode the gadget assignment problem in propositional
logic, we define for each possible gadget assignment (i, j) a
unique boolean proposition ai j. We can then encode the set
of all possible gadgets assignments from among the n options
for step i as follows:

gi =
∨
j<N

ai j

Using this encoding, we can assert that at least one gad-
get must be selected for each reference program step with
the conjunction

∧
i gi. We can further assert that at most one

candidate is to be selected for each step by the formula

∧
i

∧
j

(
ai j =⇒

∧
k ̸= j

¬aik

)
In our implementation, we encode this ‘exactly one’ require-
ment using the SMT-LIB2 pbeq operator.

A SAT result (and subsequent model) from the SAT solver
is translated to a chain assignment. The chain denoted by this
assignment is then modeled and validated (see Procedure 4).

Since chain assignments are validated individually, they
can be validated in parallel. Our implementation supports



the parallel validation of multiple chains via worker threads.
Each worker thread validates a unique chain assignment and,
in the event of a validation failure, generates a new constraint
on gadget assignments that is immediately asserted by the
main thread into the SAT problem. This allows the gadget
assignment problem to combine constraints found by mul-
tiple workers and ensure that each worker is given gadget
assignments that fulfil all constraints found by all workers.

If the SAT solver returns UNSAT, then gadget selection
can not be made for the given set of steps and our algorithm
continues to the next partition of reference program steps.

4.5 Validating Candidate Gadget Chains
A chain assignment selects a gadget for each step of the
p-code reference program that mutates (at least) the same
part of system state that the step mutates. For these gadgets
to constitute a viable code-reuse attack, as modelled by the
reference program, they must produce a compatible sequence
of state updates if executed in sequence.

In our synthesis algorithm, a chain model is a logical for-
mula that encodes these constraints. It asserts that the interme-
diate state resulting from each gadget in the chain equals the
initial state of the next gadget. The model therefore encodes
the correct sequential execution of the gadgets. It further as-
serts that the p-code model of the each of the chain’s gadgets
matches the p-code model of the corresponding step of the
reference program. The formal models of gadgets are addition-
ally constrained with any user-provided relational constraints.
This is typically used to limit the areas of memory a ROP
chain can access.

Our framework also allows additional and arbitrary
constraints—so-called specification constraints—to be im-
posed on the chain model. This allows, for example, assump-
tions about the initial state to be made.

In our implementation, the resulting formula is checked
for satisfiability by an off-the-shelf SMT solver (Z3 [22]). If
the formula is satisfiable, the chain model is a realizable char-
acterization of the sequence of states of the p-code virtual
machine that would arise during a complete gadget chain exe-
cution emulating that of the reference program. If the formula
is unsatisfiable, the SMT solver will produce an UNSAT core.
Our algorithm then uses this to derive further constraints to
refine the gadget assignments in the chain assignment genera-
tion step.

Procedure 4 shows how we construct the chain model and
check its satisfiability. We now explain the procedure in detail.

4.5.1 The Constraint Components of a Chain Model

The chain model built by our procedure encodes different
types of logical properties that layer constraints on the chain.
These are denoted by the ASSERT statements in Procedure 4.
To aid in analysis of chain validation failures, every time we

Input: a candidate gadget chain G, a table of
specification constraints E, a sequence of
reference program steps S

Output: SAT if satisfiable, an UNSAT core if not
1 solver := SMTSOLVER();
2 ASSERT(solver, E.pre(FIRST(G)));
3 ASSERT(solver, E.post(LAST(G)));
4 foreach (gadget1, gadget2) in PAIRWISE(G) do
5 a := FINALSTATE(gadget1);
6 b := INITIALSTATE(gadget2);
7 ASSERT(solver, a = b);
8 branch := BRANCH(a) = ADDRESS(gadget2);
9 ASSERT(solver, branch);

10 end
11 foreach (gadget, step) in ZIP(G, S) do
12 ASSERT(solver, OUTPUTSEQUAL(gadget, step));
13 ASSERT(solver, E.relation(gadget));
14 if BRANCH(step) then
15 branch :=

BRANCH(step) = BRANCH(gadget);
16 ASSERT(solver, branch);
17 end
18 end
19 if CHECKSAT(solver) then
20 return SAT;
21 else
22 return UNSATCORE(solver);
23 end

Procedure 4: Check

add a constraint we give it a specific label, indicating its role
in the model and what gadget it constrains.

Our labels distinguish five roles: memory, control-flow, se-
mantic, precondition, and postcondition. We explain each of
these below.

Memory. To encode the sequential execution of our gadgets,
the memory constraints assert that the final state of each gad-
get in the chain is equal to the initial state of its successor (if
one exists). We exclude one modeled p-code space: unique.
The unique space is meant to be a ‘scratch pad’ space for
storing intermediate results in the p-code translation of com-
plicated assembly instructions. As such, SLEIGH assumes that
it is cleared between the decoding of every assembly instruc-
tion.

Control-Flow. Since our p-code block model does not rep-
resent p-code control-flow, we must separately assert the
control-flow behavior of each gadget in our chain. The control-
flow constraints assert that each gadget in the chain, other than
the final gadget, must branch to its successor.

Semantic. To express the requirement that the chain emulates
the reference program, the semantic constraints assert that
each gadget is a refinement of its reference program step.



For each direct and indirect output of a reference program
step, we assert that that the bit-vectors addressed by the output
in the final state of the step and in the final state of the gadget
are equal. For indirect outputs of the reference step, we addi-
tionally assert that the relevant pointer varnode bit-vectors in
both states are equal.

We do not assert semantic equality for writes to the unique
space. We do, however, assert equality of pointers used for
indirect accesses, even if they reside in unique. If a reference
step has a p-code branch (which will happen only in the last
step), then we additionally constrain the branch destination
of the gadget to be equal to that of the reference step.

We additionally overlay any user-provided constraints onto
the formal model of each gadget, expressed as a predicate over
the gadget’s p-code operations. This is most often used to
enforce that gadgets access only specific regions of memory.

Specification Constraints. These allow our algorithm to
impose pre-conditions and post-conditions on the state of
a gadget chain. This is useful for specifying implicit facts
about the program under exploitation. For example, ‘when
this vulnerability is triggered, rax is always 0’. It is also used
for asserting requirements not already captured by the p-code
representation of the reference program. For example, ‘rdi
must point, in the final state, to the string "/bin/sh/\x00"’.

We express pre- and post-constraints as sets of predicates
over p-code states. The chain evaluation procedure asserts
precondition predicates on the initial state of the first gad-
get (labeled as precondition constraints), and postcondition
predicates on the final state of the final gadget (labeled as
postcondition constraints). Our implementation exposes a
configuration file that supports specifying simple register and
memory constant-value equality constraints, from which we
derive corresponding state predicates.

4.6 Conflict Clauses
We assert each of the constraints that make up the chain model
in a SMT solver. When the SMT solver returns UNSAT, it
also returns an UNSAT core: a subset of assertions that are
responsible for the UNSAT result. We can inspect the labels
of the propositions in the UNSAT core to determine both the
set of gadgets that participated in the failure and the role of
each gadget in the failure.

We use this association to create a conflict clause: a list
of gadget assignments (see Section 4.4) identifying problem-
atic combinations of gadgets. The gadget assignments in the
conflict clause are translated back into the Boolean proposi-
tions used by the gadget assignment SAT solver. The negation
of the conjunction of these propositions is added to the con-
straints of the SAT solver; this prevents the set of candidate
gadgets in the conflict clause from being used together in
future gadget assignments.

The strongest possible conflict clause corresponds to the
full gadget assignment of the chain: every gadget participated

in the UNSAT core. This produces a conflict clause ruling out
a single full chain assignment, thus still guaranteeing forward
progress of the algorithm.

The weakest possible conflict clause contains only a single
gadget assignment, preventing that gadget candidate from
being used in any future chain assignments.

4.6.1 Heuristic Conflict Clause Weakening

Consider a chain with three gadgets, represented by proposi-
tions ga, gb, gc. And suppose a precondition constraint sets
the memory used by gc in such a way that gc fails its semantic
check. In this example, the UNSAT core of the chain model
would contain four terms. The first term would identify the
precondition constraint. The second term would identify the
memory equality constraint between ga’s final state and gb’s
initial state. Likewise, the third term will identify the link be-
tween gb and gc. The fourth term would identify the semantic
assertion of gc. The conflict clause generated from this core
would be the conjunction ga ∧gb ∧gc.

In this example, however, gadget c is unlikely to work
in any chain, regardless of the choices made for gadgets a
and b. We would therefore like to heuristically rule out all
chains containing gc. This does risk missing solutions, as it is
possible that there are valid chains containing gc. But these
solutions are likely to be rare and there are probably more
productive areas of the search space to explore.

We implement this heuristic by filtering the terms used to
build the conflict clause, including only UNSAT core terms
with a semantic or control flow label. Since gadgets a and b
only feature through memory assertions, they will not appear
in the weakened conflict clause, which is now a single term:
gc.

The intent of this heuristic is to reduce the average solving
time without greatly impacting the algorithm’s success rate.
In our evaluation (Section 5), we perform an ablation study
to determine whether this goal is achieved.

The presented heuristic is a baseline for analysis that can
be done on chain model failures. With additional assertions
and labels, it may be possible to separate the side-effects of
gadgets from the effects of gadgets that are refinements of the
reference program step, allowing for finer-grained analysis.
And, in the gadget assignment procedure, a pre-analysis of all
candidate gadgets may allow for a type of ‘theory propagation’
of conflict clauses: allowing a clause to constrain selections of
equivalence classes of gadgets rather than individual gadgets.

5 Algorithm Evaluation

We seek to answer several questions regarding our algorithm:

• How does crackers compare to existing approaches in
terms of speed and rate of success?
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Figure 3: ROP Tool Benchmark Comparison

Table 1: ROP Tool Statistics
Tool Success Rate Failure Rate Timeout Rate Median TkB(s/kB) (success)

crackers 92.42% 7.48% 0.10% 0.11 (IQR = 0.10)
exrop 34.55% 61.12% 4.33% 0.24 (IQR = 0.09)
angrop 25.39% 70.87% 3.74% 1.03 (IQR = 1.23)
sgc 52.66% 25.39% 21.95% 9.71 (IQR = 6.45)

• Does the usage of a reference program provide any ben-
efit in speed or rate of success over simply constraining
pre-and-post conditions?

• Does the conflict clause heuristic provide any benefit in
speed? Does it negatively impact the rate of success?

• Can crackers synthesize working chains subject to the
constraints of a real-world exploit?

5.1 ROP Tool Comparison
We evaluated crackers relative to existing ROP tools over a
large corpus of test binaries. The raw results of this evaluation
are captured in Figure 3 with summary statistics in Table 1.

Dataset. The ALLSTAR [23] dataset is a repository of De-
bian Jesse build artifacts. We chose the first 1000 binaries
from ALLSTAR, ordered by package name, as our test corpus.
This sample contains a diverse collection of executables and
shared objects with anywhere from a few kilobytes up to tens
of megabytes of executable space. As only crackers and
angrop support architectures other than x86, we limited our
consideration to x86-64 ELF binaries in this test.

ROP Tools. We evaluated ROP tools capable of automati-
cally synthesizing a function call, a task that requires setting
registers and then jumping to an arbitrary address. We chose
a function call rather than execve or mprotect as both those
chains require the target binary to contain certain instructions

or symbols and the various tools handle this requirement in
ways that are difficult to compare. We also required that the
tool be runnable by our Docker-based measurement setup,
and that it succeed on a simple test case. ROPGadget [24]
and Ropper [25] cannot synthesize arbitrary function calls,
so were excluded. We were able to run ROPium [26], but were
unable to synthesize trivial chains on a test file. We therefore
evaluated the remaining ROP tools: SGC [10], angrop [27],
and exrop [28]. For a general introduction to these tools, and
comparison with our work, see Section 6.

Evaluation Setup. We ran each ROP tool against each
binary in our dataset, with a timeout of 30 minutes.
Each tool was configured to synthesize a function call
0xfacefeed(0xdeadbeef, 0x40, 0x7b), with no extra
constraints on the system state. To the degree that we were
able, we disabled multithreading or multiprocessing in every
tool to reduce noise in the measurements. Each tool was run
by a testing harness in a Docker container and timed with
the linux wait4 syscall, providing cumulative CPU usage
of each tool’s process tree. This approach was derived from
guidelines by McGeoch [29]. We ran this evaluation on a
workstation with 24 CPU cores and 256 gigabytes of RAM.

We made a minor alteration to the above test plan to accom-
modate SGC. SGC iterates over a matrix of run parameters,
but does not terminate when a set of parameters succeeds.
Our test runner externalizes this iteration by invoking SGC
multiple times with individual run configurations. As SGC
caches its analysis, this approach allows us to time it without



penalty. Each invocation of SGC is given a 30 minute timeout,
so it is possible for SGC to get over 30 minutes of runtime
per test-case, as occasionally happened in our test suite.

Limitations. It is important to recognize the limitations of
this test. Each tool differs both in its synthesis algorithm and
many engineering decisions made in its implementation. Our
algorithm, crackers, is a native Rust [30] executable while
each other tool evaluated is a Python script with some native
C/C++ routines. The tools all have differing start-up costs
and runtime efficiencies; we hope that by sampling on a wide
range of binary sizes we can still identify meaningful trends.

As this test was run without imposing realistic state con-
straints, it is likely that each tool reported positive results
that, while semantically allowable, would not be practically
reachable from an exploit. Design choices may also impact
success rates: crackers by default models all memory as
accessible unless otherwise constrained, while angrop uses
a heuristic that requires memory to be addressable from the
stack pointer. This design choice likely increases crackers’
reported success rate relative to angrop’s.

Analysis. To analyze the performance of each tool, we de-
fine a measure TkB: the runtime in seconds per kilobyte of
executable space in a binary. This measure provides a way to
measure the speed of ROP chain synthesis across test cases
with varying input sizes. The raw runtimes, and thus the TkB,
both contain numerous outliers, so we use the median and the
Inter-Quartile Range (IQR) as summary statistics.

By TkB, crackers shows a clear performance improvement
over its competitors, though exrop has equivalent or better
performance on small files, likely indicating that crackers
has a higher initial startup cost than exrop. Surprisingly, SGC
has a much higher failure rate than crackers. Inspection of
the graph shows a high percentage of failures on larger file
sizes. This may indicate that SGC hit an internal timeout
before our testing harness detected a timeout, artificially in-
flating its failure rate and lowering its timeout rate. angrop
and exrop both struggled, relative to SGC and crackers,
with finding solutions in smaller binaries. We suspect that
this is due to SGC and crackers not imposing functional
categories on gadgets, allowing individual gadgets to fulfil
multiple roles.

5.2 Ablation Study
We wish to study the performance implications of using refer-
ence programs and conflict clause heuristics. To this end, we
ran an ablation study over variants of our algorithm.

crackers_a. The variant crackers_a does not apply the
conflict-clause weakening heuristic. This represents a more
conservative choice, as the heuristic errs on the side of ruling
out too many candidate combinations.

crackers_b. This is a significant change to crackers,
fully removing the reference program from the algorithm.

Instead of selecting gadgets from the library via an output
signature, gadgets are now selected using the configured chain
post-conditions. This filtering is performed by syntactic com-
parisons over the logical model of the gadget, similar to those
described in Section 4.3. Without reference program steps,
crackers_b uses a single set of candidate gadgets and these
gadgets may appear in any order in the chain. Only relational
invariants, pre-and-post conditions, and memory constraints
are enforced. This design is similar to what is used by SGC ex-
cept that SGC builds a single SMT model while we maintain
separate SMT chain modeling and SAT conflict resolution.

Test Setup. This test is intended to evaluate the performance
of conflict clause resolution among the variants. To better
measure this, we make two changes to the crackers variants’
configuration to increase the number of evaluated conflict
clauses. All variants are configured to synthesize chains with
exactly 5 gadgets to ensure a shorter chain is not accepted. Ad-
ditionally, pre-condition constraints have been placed on most
general purpose registers and memory access is restricted to
a several-kilobyte window. These changes ensure that the
algorithm will encounter many conflicts. We ran all variants
on a (stable) random subset of 500 binaries from the initial
1000 with a timeout of 30 minutes per run.

Analysis. The crackers_b variant performed poorly, timing
out almost 80% of the time. By removing conflict clauses tied
to specification program steps, we removed the mechanism by
which many chain validation errors could be localized to in-
dividual gadgets. Almost all conflict clauses in crackers_b
will then be the strongest possible: ruling out a single full
gadget assignment. The results for crackers_a’s are more
nuanced. crackers_a did show a modest increase in success
rates, as it is more conservative in ruling out gadget assign-
ments. However, this was at the cost of increasing the rate
of timeouts at least as much, and greatly increasing the the
spread of solution times as measured by TkB. While the per-
formance of crackers relative to crackers_a is not strong
enough to claim a strict improvement, it is strong enough to
advocate for leaving the conflict clause weakening heuristic
in the algorithm as an optional element.

5.3 Real-World Usage
To evaluate the real-world utility of our algorithm, we
adapted Google’s proof of concept for triggering CVE-
2017-14493 [31], a Remote Code Execution vulnerability
in dnsmasq (previously used to demonstrate SGC [10]). We
wrote a proof-of-concept that exploits this vulnerability with
a ROP chain synthesized on-demand by crackers.

CVE-2017-14493 is a classic stack-buffer overflow. When
dnsmasq processes a DHCP6 [32] ‘Relay Forward’ message
with a CLIENT_LINKLAYER_ADDR option, it uses an attacker-
controlled length field to memcpy attacker-controlled data into
a fixed-length stack buffer. To analyze this vulnerability,
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Figure 4: Crackers Ablation Study

Table 2: Ablation Study Statistics

Tool Success Rate Failure Rate Timeout Rate Median TkB(s/kB) (success)

crackers 35.60% 62.40% 2.00% 0.20 (IQR = 0.30)
crackers_a 41.40% 47.80% 10.80% 0.52 (IQR = 1.33)
crackers_b 13.00% 7.20% 79.80% 0.53 (IQR = 1.33)

we first produced an aarch64 build of dnsmasq. To sim-
plify the exploit and ease debugging, we disabled ASLR and
stack canaries and ran dnsmasq within gdb in a docker con-
tainer. We triggered the vulnerabilty with a specially crafted
CLIENT_LINKLAYER_ADDR buffer containing a non-repeating
pattern. When gdb detected a crash, we inspected the final
register and memory state.

From this system state, we found a set of logical relation-
ships between our chain’s initial CPU state, the initial memory
state, and the contents of the DHCP6 packet. For example,
we could see that the value of pc was equal to the sequence
of 8 bytes at offset 0x32 of the CLIENT_LINKLAYER_ADDR
buffer as well as the sequence of 8 bytes in memory at offset
sp−0x168. For every register with a value derived from our
test bytes, we enforced the respective equality as a precon-
dition constraint for our algorithm. For every other register,
we asserted they contained the concrete value found in the
crash dump, preventing crackers from assigning arbitrary
initial values. We configured crackers to read from RAM
only within the CLIENT_LINKLAYER_ADDR buffer. These com-
plex equality constraints would be difficult or impossible to
express in any other ROP synthesis tool.

We synthesize a chain with a visible effect: making
dnsmasq exit cleanly with an error code of 1, represented
by the reference program mov w0, #1; b exit;. Once
crackers synthesizes a chain, we employ its memory model
to derive the contents of the CLIENT_LINKLAYER_ADDR buffer.
We send this packet to dnsmasq and verify that it exits cleanly
with an error code of 1.

6 Related Work

6.1 p-code Semantics and Modeling

Naus et al. [33] formulate an operational semantics for ‘high
p-code’, an extension of p-code used in Ghidra’s decompiler.
A semantics of this kind enables proofs at the language level,
but is less suitable for reasoning about specific code than a
model, as developed in our work. This work is, however, a
useful point of reference for p-code semantics in general.

GhiHorn [34] is a path analysis plugin for Ghidra that
uses decision procedures to reason about p-code programs.
GhiHorn operates in the context of a single decompiled func-
tion in Ghidra. Ghidra’s decompilation, exposed through its
API as high p-code, is processed to produce a set of Horn
clauses—logical implications that encode control flow con-
straints. GhiHorn asserts these terms in Z3, allowing it to
expose a reachability analysis to reverse engineers.

While GhiHorn models p-code programs in the language
of SMT, it does not define a viable approach for our own
work, as the high p-code it uses abstracts away many of the
incidental side-effects that matter in ROP chain generation.

6.2 Code-reuse Attack Synthesis

There are three notable academic approaches to automating
code-reuse attacks: Q [8], PSHAPE [9], and SGC [10]. All
three use an IL to represent the effects of machine instructions
and use decision procedures to reason about these effects.



Q. Q [8] accepts programs written in a high-level domain-
specific language and attempts to compile them into a virtual
assembly language. To synthesize a ROP chain, individual
gadgets are chosen to represent virtual assembly instructions.
Q uses concrete execution and decision procedures to deter-
mine whether a gadget implements a virtual assembly instruc-
tion, and whether a given scheduling of gadgets implements
the desired semantics of the chain. As Q’s implementation
was not published, we could not evaluate it.

Q’s approach mirrors that of a compiler’s code generator,
imposing stringent semantic requirements on every gadget it
uses. This approach would likely allow it to quickly synthe-
size complex chains. But there are also drawbacks, which our
semantically looser approach avoid. Q’s set of virtual assem-
bly instructions is fixed, so gadgets must fit into predefined
categories. Q requires a gadget’s semantics to match those
of a virtual instruction in all input states with no side-effects.
These strict requirements reduce the set of usable gadgets.
They also incentivize Q to use very short gadgets. Many ROP
mitigations developed over the last decade either detect se-
quences of very short gadgets or make it infeasible to use
them, perhaps partially in response to Q.

Q used BAP [35] to reason about gadgets and chains.

PSHAPE. PSHAPE [9] partially automates the synthesis of
ROP attacks for library calls (e.g. mprotect). PSHAPE is
positioned as an aid to a human analyst, not an end-to-end
synthesis technique. It provides written ‘summaries’ of the
semantics of gadgets it identifies, and generates short chains
to initialize registers, while meeting logical constraints.

PSHAPE’s automated chain synthesis has several limita-
tions. It is strictly limited to synthesizing ROP chains that
perform function calls on x86 linux, using hardcoded calling
conventions. Additionally, PSHAPE omits return instructions
from its chain modeling. These missing constraints could
easily lead to false positives. Schloegel et al. [10] discovered
a similar issue: almost all PSHAPE chains crashed in their
evaluation due to missing constraints on pointers.

PSHAPE models gadgets via the VEX IR from valgrind
[36] and reasons about gadgets with Z3 [22].

SGC. SGC [10] is a system for automatically synthesizing
code-reuse attacks that transition from a constrained start state
to a constrained end state.

SGC produces a single logical formula to express the en-
tire synthesis problem. Given N gadgets and a chain length
M, SGC encodes all possible assignments of N gadgets
into all chain positions up to M. This formula is given to
boolector [37] in an external process. A SAT result pro-
duces a chain and a model of the memory and register states
induced at every step of the chain’s execution.

While SGC properly constrains synthesis, its design limits
the scale of problems it can practically solve and the types of
programs it can synthesize. In our evaluation, SGC was by
far the slowest tool tested. Our algorithm matches the expres-

siveness of SGC while greatly improving on its performance.
The size of SGC’s SMT-LIB2 formula grows proportional

to N ×M, making it quickly infeasible to scale either dimen-
sion of the problem. Pre- and post-conditions impose no con-
straints on the order of operations in a chain. This approach is
very flexible, but makes it impossible to require that a location
holds multiple values at different points in a chain. This pre-
cludes synthesizing chains that can perform ‘cleanup’ or per-
form more exotic operations (e.g. toggling memory-mapped
control registers in a firmware context). While SGC supports
parallelism through multiprocessing, it does not share state
between workers, limiting the benefit.

SGC uses a customized version of the miasm [38] binary
analysis framework to model gadgets. Reasoning about the
models is done using the boolector [37] SMT solver with
picosat [39] as the SAT backend.

6.2.1 Exploit Practitioners

In addition to the work cited above, there are several open-
source ROP tools made by the community of Exploit Practi-
tioners. As observed by Dullien [40], such tools often repre-
sent the state of the art in computer exploitation. Code-reuse
attack tools from the community tend to be built as interactive
aids to a human analyst. Of particular interest are ROPGadget,
Ropper, ROPium, angrop, and exrop. Because this research
is often done outside the academic process, much of our dis-
cussion below has necessarily been based on studying the
source code, with the limitations that entails.

ROPGadget. ROPGadget [24] is the most popular (by
Github stars), and oldest, open-source ROP tool. Its main
use is the efficient identification of ROP gadgets, and is as
such used as a component in many other ROP chain synthesis
tools. ROPGadget itself contains its own rudimentary support
for synthesis of execve chains on x86 linux. This synthesis
searches for gadgets containing specific x86 instructions se-
quences (e.g. pop rdx; ret;), which it then inserts into a
pre-configured arrangement to form a chain. This synthesis
method is exclusively written for the execve chain, and relies
on the existence of gadgets matching particular templates,
severely limiting its flexibility.

Ropper. Ropper [25] is another popular open-source ROP
tool. Ropper’s chain synthesis is slightly more flexible
than that of ROPGadget, allowing for synthesis of execve,
mprotect, and VirtualProtect chains. Ropper’s synthesis
relies on a categorization of gadgets. Gadgets are disassem-
bled, and the textual disassembly is evaluated against a set
of regular expressions to determine the possible roles of the
gadget (e.g. writing a value to rdx). Ropper models a chain
as a sequences of steps, where each step is associated with a
gadget category. To synthesize a chain, Ropper iterates over
all possible permutations of candidate gadgets for each step
and verifies that no gadget overwrites the output of any other.



This synthesis method also lacks flexibility: it can only syn-
thesize three specific chains, it requires that gadgets match a
hard-coded set of templates, and there is no attempt to resolve
semantic conflicts between gadgets.

ROPium. ROPium [26] is a ROP synthesis tool that uses sym-
bolic execution to synthesize ROP chains. Similar to Ropper,
it categorizes gadgets into several higher-level functional cat-
egories. Chains are represented as a list of higher-level com-
mands (e.g. “move rdx to rax, then call foo”), which them-
selves are translated into sequences of gadget steps. ROPium
then performs a depth-first search for a satisfiable schedul-
ing of its candidate gadgets for the given specification se-
quence. Unlike Ropper, ROPium symbolically executes can-
didate chains to verify their end states match the specification.
ROPium, due to its use of symbolic execution, is also able to ex-
press initial memory constraints on candidate chains. ROPium
uses its own custom symbolic executor, which appears to be
an early version of Trail of Bits’ MAAT [41].

Angrop. Angrop [27] is a ROP synthesis tool distributed
as part of the angr [42] binary analysis framework. Angrop,
like ROPium, expresses ROP chains as a high-level series of
steps (e.g. writing memory, setting registers, calling func-
tions). Each of these specification steps has its own strategy
to identify candidate gadgets for that step from the overall
gadget pool. Angrop performs a breadth-first search of its
candidate gadgets when building a chain, using the angr sym-
bolic executor to validate the semantics of constructed chains
and enforce simple precondition constraints. While angrop
is a well-written and capable tool, its reliance on placing gad-
gets into functional categories likely harms its ability to form
chains in highly constrained scenarios.

Unlike every other tool, angrop provides some level of
multi-architecture support, including support for x86/x64,
arm32/64, and mips. This is enabled by angr’s use of Val-
grind’s [36] VEX IR. As angr supports additional architec-
tures, angrop could likely be extended to these as well.

Exrop. Exrop [28] is a now-deprecated ROP synthesis tool
touting its usage of SMT to synthesize chains on x86-64.
Exrop uses the Triton [43] symbolic executor to express
and solve the values of registers during the building of a
chain. A chain specification is translated into a dictionary
associating register names and memory locations with desired
concrete values. Exrop then performs a depth-first search of
gadget assignments, ensuring that each gadget sets at least
one register to its intended value. In the event that a gadget
overwrites an already-set register, exrop re-adds the register
onto its search queue and recurses (up to a maximum depth),
allowing for conflict resolution between gadgets.

Our evaluation shows that this methodology is clearly per-
formant, as exrop came the closest to matching our algorithm.
However, as exrop struggled disproportionately on smaller
binaries, we suspect it is less effective at handling synthesis
with small pools of gadgets.

7 Discussion and Outlook

We demonstrated a novel method for synthesizing code-reuse
attacks from a reference program. By formally modelling
p-code at the level of operations and varnodes, we assure
that our technique is not limited to binaries of any particu-
lar operating system, calling convention or even architecture.
We demonstrated that this flexibility did not compromise the
runtime performance of our method, as it matched or outper-
formed all evaluated ROP chain synthesis tools.

7.1 Future Work
We see opportunity to develop many aspects of our work:

p-codeModeling. Our p-code model has many limitations.
We separately model data movement in p-code basic blocks
and control-flow between basic blocks. By encoding p-code
data movement and control-flow in a more integrated way,
we could widen the set of p-code constructs we support to
include conditional control-flow and bounded loops.

Such an extension to our model would also allow for
bounded model checking of p-code control-flow graphs. This
could be a powerful analytic tool for reverse-engineers to
use alongside Ghidra’s existing control-flow analysis. Recent
work has demonstrated bounded model checking on LLVM
bitcode [44], which operates at a similar level of abstraction
to p-code, showing the promise of this direction.

Our model could also be extended to support additional
p-code operations, such as floating-point operations.

Code-Reuse Attack Synthesis. Further development of
our formal model of p-code would enable enhancements
to crackers. It may be possible to synthesize chains for ref-
erence programs with conditional control flow (e.g. ‘if EAX
equals 0, execute a syscall’) or bounded loops. It may also ex-
press ‘conditional gadgets’: directed graphs of p-code basic
blocks that behave as a gadget only under certain inputs.

Our algorithm’s representation of gadget assignments and
chain conflict clauses could also be refined. By using multi-
ple propositions to encode gadget assignments, it would be
possible to have a conflict clause encode the reason for the
gadget’s inclusion in the clause. This in turn would allow for
a type of ‘theory propagation’: using learned constraints from
one gadget to constrain an equivalence class of gadgets.

Agentic Reference Program Synthesis. Our method’s usage
of p-code programs for ROP chain specifications raises the
possibility of integration with other tools. We developed a pro-
totype integrating a Large Language Model (LLM) with our
algorithm, enabling synthesis of a ROP chain from a verbal
specification. The LLM synthesizes reference programs for
use with our algorithm and refines them in response to syn-
thesis failures. This setup performed well in our initial testing
and we suspect that further integration will be possible.



8 Ethics Considerations and Compliance with
the Open Science Policy

8.1 Ethics

All research into offensive techniques carries the risk of
enabling bad actors. Such research contributions must be
weighed against the potential harm they might cause. We
believe the benefit of our research outweighs these risks.

Our formal model of p-code in logic , taken on its own,
merely provides a way to reason about binary code. While our
p-code modeling is novel, the concept of modeling native
code with propositional logic is well-established and exten-
sively used in tools such as the popular symbolic executor
angr.

We believe there is a net benefit in releasing our code-reuse
attack synthesis algorithm.

There is a long history of interplay between offensive and
defensive security research. Providing new methods for code-
reuse-attack synthesis may shed light on new mitigations,
or provide new tools for those developing defenses against
these techniques. Additionally, while this work presents novel
techniques and applications, it does not uncover previously
unknown vulnerabilities in computer systems.

8.2 Open Science

We will submit a comprehensive set of artifacts for this paper.
Firstly, we will provide the full source code for our p-code

modeling, discussed in Section 3. This code is primarily im-
plemented in the Rust language with some C++ components
for interfacing with SLEIGH. This software artifact also in-
cludes a small command-line-interface allowing for manual
inspection of the logical formulas generated for any machine
instruction supported by SLEIGH.

We will provide the full source code for our code-reuse-
attack synthesis algorithm, discussed in Section 4. This code
is also written as a Rust library. We provide a command-
line-interface allowing for the usage of a configuration file
to initialize the synthesis algorithm. This is useful for quick
evaluations of chains and binaries, but we envision actual
usage of this tool being through its software API.

We will provide all source code needed to produce the
graphs and statistics used in our evaluation (minus minor
stylistic tweaks), as well as a copy of the raw data collected
during the evaluation. We will additionally provide all the
code making up our evaluation framework (including a cus-
tom Rust API for ALLSTAR, a frontend library for program-
matically interacting with our evaluation data from a redis
database, the evaluation utility used to run all the ROP tools,
and the docker compose project that runs it all). This is suffi-
cient to fully rerun our evaluation and verify our results.

We will provide the demonstration setup for synthesiz-
ing a working chain in the context of an exploit of CVE-

2017-14493. This is a Docker Compose project containing
the vulnerable service (dnsmasq) and a small tool that uses
crackers to synthesize a working ROP chain within a set of
constraints imposed by the vulnerability.

All of the above artifacts are publicly available here:
https://zenodo.org/records/14738161

https://zenodo.org/records/14738161
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