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Abstract
Thanks to their remarkable denoising capabilities, diffusion
models are increasingly being employed as defensive tools
to reinforce the robustness of other models, notably in puri-
fying adversarial examples and certifying adversarial robust-
ness. However, the potential risks of these practices remain
largely unexplored, which is highly concerning. To bridge
this gap, this work investigates the vulnerability of robustness-
enhancing diffusion models. Specifically, we demonstrate
that these models are highly susceptible to DIFF2, a simple
yet effective attack, which substantially diminishes their ro-
bustness assurance. Essentially, DIFF2 integrates a malicious
diffusion-sampling process into the diffusion model, guiding
inputs embedded with specific triggers toward an adversary-
defined distribution while preserving the normal functionality
for clean inputs. Our case studies on adversarial purification
and robustness certification show that DIFF2 can significantly
reduce both post-purification and certified accuracy across
benchmark datasets and models, highlighting the potential
risks of relying on pre-trained diffusion models as defensive
tools. We further explore possible countermeasures, suggest-
ing promising avenues for future research.

1 Introduction

Diffusion models represent a new class of generative mod-
els [20, 47, 54, 57], entailing two key processes: a diffusion
process progressively transitions the data distribution towards
a standard Gaussian distribution by adding multi-scale noise,
while a sampling process, a parameterized Markov chain, is
trained to recover the original data by reversing the diffusion
effects via variational inference. Since their introduction, dif-
fusion models have substantially elevated the state of the art
in generative tasks [20, 52, 56].

Meanwhile, their exceptional denoising capabilities have
made diffusion models powerful tools for reinforcing other
models’ robustness against adversarial attacks. In adversar-
ial purification [37, 69], they are used to sanitize potentially
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Figure 1: Attacks on robustness-enhancing diffusion models.

adversarial inputs before passing them to classifiers, while
in robustness certification [5], they are employed to enhance
classifiers’ certified robustness against adversarial attacks.
However, despite extensive research [39, 53, 67, 69, 72] and
application [24, 62] of diffusion models as defensive tools,
the security implications of these practices remain largely
unexplored, representing a significant concern.

Our Work. To bridge this gap, we investigate the secu-
rity risks of using pre-trained diffusion models as defensive
tools. We present DIFF2, a novel attack tailored to robustness-
enhancing diffusion models as illustrated in Figure 1. Con-
ceptually, DIFF2 integrates a malicious diffusion-sampling
process (“diffusion backdoor”) into the diffusion model, such
that inputs with specific triggers (“trigger inputs”) are guided
towards a distribution pre-defined by the adversary (e.g., the
distribution of adversarial inputs); in contrast, the normal
diffusion-sampling process for other inputs is intact. Subse-
quently, by activating this diffusion backdoor with trigger
inputs at inference time, the adversary may significantly un-
dermine the robustness assurance provided by the diffusion
model. For instance, the diffusion model’s adversarial pu-
rification may minimally impact trigger inputs; even worse,
non-adversarial trigger inputs could be transformed into ad-
versarial ones after purification!

Notably, DIFF2 differs from conventional backdoor attacks
in multiple major aspects. Objectives – Conventional attacks
aim to force the classifier to misclassify trigger inputs, while
DIFF2 diminishes the robustness assurance provided by the
diffusion model for the classifier. Models – Diffusion models,



in contrast to classification models, present unique challenges:
the adversary has no control over the diffusion or sampling
process, both of which are highly stochastic. Constraints –
While conventional attacks only need to retain the classifier’s
accuracy for clean inputs, DIFF2 needs to retain the diffu-
sion model’s functionality for both clean inputs (i.e., clean
accuracy) and adversarial inputs (i.e., robust accuracy).

We validate DIFF2’s efficacy in the case studies of ad-
versarial purification and robustness certification. We show
that DIFF2 substantially reduces post-purification accuracy
(by over 80%) and certified accuracy (by over 40%) across
different diffusion models, yet with minimal interference to
their normal functionality. Moreover, we explore potential
defenses and highlight the unique challenges of defending
against DIFF2.

Our Contributions. To summarize, this work makes the
following contributions.

To our best knowledge, this is the first work investigating
the security risks of robustness-enhancing diffusion models,
aiming to explore how the adversary may diminish the robust-
ness assurance provided by such models.

We propose DIFF2, a novel attack tailored to robustness-
enhancing diffusion models, which possesses the following
properties: effective – the malicious diffusion-sampling pro-
cess guides trigger inputs toward the adversary-defined dis-
tribution; evasive – the normal functionality for other (both
clean and adversarial) inputs is retained; universal – it applies
to a range of diffusion models (e.g., DDPM [20], DDIM [52],
and SDE/ODE [57]); versatile – it supports attacks in various
robustness-enhancing applications (e.g., adversarial purifica-
tion and robustness certification).

Through extensive evaluation across benchmark datasets
and models, we show that DIFF2 substantially undermines
the robustness assurance of diffusion models, highlighting the
vulnerability that warrants attention. We also explore possible
mitigation against DIFF2, pointing to promising avenues for
future research.

2 Preliminaries

2.1 Diffusion Models
A diffusion model consists of a forward (diffusion) process
that converts original data x0 to its latent xt (where t denotes
the diffusion timestep) via progressive noise addition, and
a reverse (sampling) process that starts from latent xt and
generates data x̂0 via sequential denoising steps.

Take the denoising diffusion probabilistic model (DDPM)
[20] as an example. Given x0 sampled from the real data
distribution qdata, the diffusion process diff is formulated as a
Markov chain:

q(xt |xt−1) =N (xt ;
√

1−βtxt−1,βt I) (1)

where {βt ∈ (0,1)}T
t=1 specifies the variance schedule and I

is the identity matrix. As T → ∞, the latent xT approaches an

isotropic Gaussian distribution. Thus, starting from p(xT ) =
N (xT ;0, I), the sampling process maps latent xT to data x̂0 in
qdata as a Markov chain with a learned Gaussian transition:

pθ(xt−1|xt) =N (xt−1;µθ(xt , t),Σθ(xt , t)) (2)

To train the diffusion model φθ (parameterized by θ), essen-
tially its denoiser εθ(xt , t) that predicts the cumulative noise
up to timestep t for given latent xt , DDPM aligns the mean of
the transition pθ(xt−1|xt) with the posterior q(xt−1|xt ,x0):

min
θ

Ex0∼qdata,t∼U ,ε∼N (0,I)∥ε− εθ(
√

ᾱtx0 +
√

1− ᾱtε, t)∥2

where ᾱt =
t

∏
τ=1

(1−βτ) (3)

where U is the uniform distribution over [1,T ]. Then, the sam-
pling process denoise, starting from xT ∼N (0, I), iteratively
invokes εθ to sample x̂0 ∼ qdata.

2.2 Robustness-Enhancing Diffusion Model
Adversarial attacks represent one major security threat [16,
58]. Typically, an adversarial input x̃ is crafted by minimally
perturbing a clean input x, where ∥x− x̃∥p (e.g., p = ∞) is
assumed to be imperceptible. Subsequently, x̃ is used to ma-
nipulate a target classifier f to either classify it to a specific
target class y⋆ (targeted attack): f (x̃) = y⋆, or simply cause f
to misclassify it (untargeted attack): f (x) ̸= f (x̃). Below, we
briefly review the use of diffusion models as defensive tools
against adversarial attacks.

Adversarial purification is a defense that leverages dif-
fusion models to cleanse adversarial inputs [37, 69]: it first
adds noise to an incoming (adversarial) input x̃ with a small
diffusion timestep T̄ following the diffusion process diff and
then recovers the clean input x̂ through the sampling pro-
cess denoise: x̂ = denoise(diff(x̃, T̄ )). Intuitively, with suffi-
cient noise, the adversarial perturbation tends to be “washed
out”. Compared with alternative defenses (e.g., adversarial
training [33]), adversarial purification is both lightweight and
attack-agnostic.

Robustness certification provides certified measures
against adversarial attacks [45, 63]. As one state-of-the-art
certification method, randomized smoothing [11] transforms
any base classifier f into a smoothed version f̄ that of-
fers certified robustness. For a given input x, f̄ predicts the
class that f is most likely to return when x is perturbed by
isotropic Gaussian noise: f̄ (x) = argmaxc p( f (x+ δ) = c)
where δ ∼ N (0,σ2I), in which the hyper-parameter σ con-
trols the robustness-accuracy trade-off.

If f classifies N (x,σ2I) as the most probable class with
probability pA and the “runner-up” class with probability
pB, then f̄ is robust around x within the ℓ2-radius R =
σ

2 (Φ
−1(pA)−Φ−1(pB)), where Φ−1 is the inverse of the stan-

dard Gaussian CDF. As randomized smoothing can be appli-
cable to any base classifier f , by appending a custom-trained



denoiser denoise to f :

f̄ (x) = argmax
y

Eδ p( f (denoise(x+δ)) = y) (4)

it is possible to substantially increase the certified radius of
the ℓp-norm ball [49]. Following this denoised smoothing
approach, it is shown that instantiating denoise with a diffu-
sion model (e.g., DDPM [20]) achieves the state-of-the-art
certified robustness [5].

2.3 Threat Model

We consider a threat model following prior work [8, 10]. The
adversary crafts and disseminates a malicious diffusion model
φ⋆. After downloading φ⋆, the victim evaluates its perfor-
mance to ensure it meets the claims made by the adversary. If
the model’s functionality is confirmed, the victim integrates
φ⋆ with their target classifier f to enhance f ’s robustness.
Note that under this setting, the adversary has no knowledge
of or control over f . At inference time, the adversary com-
promises the robustness assurance of φ⋆ by activating the
backdoor with trigger-embedded inputs.

We argue that this threat model is highly realistic in practice.
Due to the prohibitive cost of training performant diffusion
models [20], it is common practice to reuse pre-trained models
downloaded from platforms such as Hugging Face. This opens
the door for adversaries to disseminate malicious models.
Recent news that over 100 malicious AI/ML models were
found on the Hugging Face platform [1] highlights that such
model supply chain-based attacks are becoming a practical
and critical challenge.

In addition to the primary threat model, for completeness,
we also consider an alternative scenario wherein the adversary
pollutes the victim’s fine-tuning data [4, 18, 30, 42, 73]. The
extension to these poisoning-based attacks is detailed in §5.4.

3 Diff2 Attacks

We present DIFF2, a novel attack that injects a malicious func-
tion – termed a ’diffusion backdoor’ – into a diffusion model.
This attack undermines the model’s robustness assurance by
activating the backdoor during inference.

3.1 Diffusion Backdoor

At a high level, DIFF2 creates a backdoored diffusion model
φ⋆ by injecting a malicious forward-reverse process – termed
a ‘diffusion backdoor’ – into a benign diffusion model φ.
This backdoor guides trigger inputs towards a target distribu-
tion p⋆, while preserving the normal forward-reverse process
for other inputs. By exploiting this diffusion backdoor via
trigger inputs, DIFF2 substantially disrupts φ⋆’s behavior in
robustness-enhancing use cases.

Consider adversarial purification as a concrete example.
Let φ⋆ be the backdoored diffusion model. When using φ⋆

as a defensive tool, the added noise is often limited to pre-
serve the semantics of original inputs [5, 37]. Thus, we as-
sume φ⋆ runs the diffusion process diff up to a small timestep
T̄ (i.e., T̄ ≪ 1,000) and then applies the denoising pro-
cess denoise. For simplicity, we denote this operation as
φ⋆(x, T̄ ) = denoise(diff(x, T̄ )). Ideally, DIFF2 aims to achieve
the following two objectives:

φ⋆(x, T̄ )≈ x for x∼ qdata (Utility)
φ⋆(xr, T̄ )∼ p⋆ for xr ∼ qtrigger (Effectiveness)

(5)

where qdata and qtrigger denote the distributions of clean and
trigger inputs, respectively, and p⋆ is the adversary-defined dis-
tribution (e.g., the distribution of adversarial inputs). Here, the
first objective specifies utility retention – the normal diffusion-
sampling process is preserved, which stochastically recovers
non-trigger inputs, while the second objective specifies attack
effectiveness – the diffusion backdoor maps trigger inputs to
the target distribution p⋆. Thus, at inference time, by feed-
ing the diffusion model with trigger inputs, the adversary
generates inputs from p⋆ that significantly alter the diffusion
model’s intended behavior.

For simplicity, we assume p⋆ represents an adversarial dis-
tribution, comprising adversarial inputs with respect to a given
(surrogate) classifier f . Consequently, a trigger input xr, after
undergoing the denoising process, transforms into an adver-
sarial input x̃r for f . Without loss of generality, we consider
targeted attacks where f misclassifies x̃r as belonging to a
target class y⋆.

3.2 Overall Design

To implement the diffusion backdoor, one straightforward
design is akin to prior work [10, 32]. Specifically, for a clean
input x, its corresponding trigger input is defined as xr = (1−
α)x+αr, where r denotes the trigger pattern and α ∈ [0,1]
specifies r’s weight in xr. This trigger functions as a key to
activate the backdoor, through which xr is steered toward its
adversarial variant x̃r.

However, this design suffers the following drawbacks. No-
tably, the process is ‘symmetrical’ for clean inputs: the for-
ward process takes x as input while the reverse process aims
to output the same x. In contrast, the process is ‘asymmetrical’
for trigger inputs: the forward process takes xr as input while
the reverse process aims to output x̃r. Due to such hetero-
geneity, integrating the diffusion backdoor into the diffusion
model may significantly affect its utility, as demonstrated in
our empirical evaluation in §5.5.

To address this limitation, DIFF2 focuses on preserving
the model’s utility and employs a symmetric design. At its
core, DIFF2 co-optimizes the trigger r and the backdoored
diffusion model φθ (essentially its denoiser εθ) to achieve the
objectives outlined in Eq. 5. Formally, this co-optimization
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Figure 2: Illustration of DIFF2 attack.

can be formulated as follows:

min
r,θ

Ex∼D[ℓdiff(x;θ)+λ1ℓadv(xr,y⋆; f ,θ)] (6)

Here, D denotes a reference dataset, f represents the (surro-
gate) classifier, y⋆ is the adversary’s target class, and ℓdiff and
ℓadv signify the mean-alignment loss and the adversarial loss,
respectively. Intuitively, the trigger r is engineered to fulfill
a dual role: it functions as a pattern to activate the backdoor
while simultaneously acting as a perturbation to deceive the
classifier f . Concurrently, the diffusion model φθ is optimized
to maintain its functionality with respect to clean inputs.

The loss functions in Eq. 6 can be defined as:

ℓdiff(x;θ)≜ Et∼U ,ε∼N ∥ε− εθ(
√

ᾱtx+
√

1− ᾱtε, t)∥2

ℓadv(xr,y⋆; f ,θ) = ℓ( f (φθ(xr, T̄ )),y⋆) (7)

where ℓ denotes the classification loss (e.g., cross entropy). In-
tuitively, ℓdiff quantifies how φ retains its denoising capability
for clean inputs (utility), ℓadv measures how trigger inputs, af-
ter φ’s sanitization, become adversarial inputs for f (efficacy),
and the hyper-parameter λ1 balances the two factors.

3.3 Implementation
Due to φ’s stochastic nature, it is challenging to directly op-
timize Eq. 6, especially since ℓadv involves the end-to-end
model f (φθ(·, T̄ )). Thus, we approximate ℓadv as:

ℓadv(xr,y⋆; f ,θ) = ℓdiff(xr;θ)+
λ2

λ1
ℓ( f (xr),y⋆) (8)

Intuitively, the first term ensures trigger inputs survive φ’s
diffusion-denoising process (i.e., φθ(xr, T̄ ) ≈ xr), while the
second term ensures trigger inputs are misclassified to the
target class y⋆ by f , and λ2/λ1 balances these loss terms.

Putting everything together, we re-formulate Eq. 6:

min
r,θ

Ex[ℓdiff(x;θ)+λ1ℓdiff(xr;θ)+λ2ℓ( f (xr),y⋆)] (9)

Given that it involves both r and θ, solving Eq. 9 exactly
remains challenging. Instead, we optimize r and θ indepen-
dently: first, we determine a universal trigger r; then, with r
fixed, we optimize θ. This approximation reduces computa-
tional costs while enabling us to find high-quality solutions

Algorithm 1: DIFF2 Attack
Input: D: reference dataset; εθ: benign denoiser; y⋆: target class; α:

trigger weight; f : (surrogate) classifier; λ: hyper-parameter
Output: r: trigger; φ⋆: backdoored diffusion model
// optimize trigger

1 randomly initialize r;
2 while not converged do
3 update r by gradient descent on ∇r ∑x∼D ℓ( f (xr),y⋆);
// optimize diffusion model

4 while not converged do
// random sampling

5 x∼D, t ∼ U({1, . . . ,T}), ε,ε⋆ ∼N (0, I);
// generate trigger input

6 xr ← (1−α)x+αr;
// diffusion process

7 xt ←
√

ᾱt x+
√

1− ᾱt ε, xr,t =
√

ᾱt xr +
√

1− ᾱt ε
⋆;

8 update θ by gradient descent on
∇θ[∥ε− εθ(xt , t)∥2 +λ∥ε⋆− εθ(xr,t , t)∥2];

9 return r as the trigger and φ⋆ as the backdoored diffusion model;

for r and θ, as evidenced by our empirical evaluation. Further-
more, it facilitates a symmetric diffusion-sampling process:
the forward process takes xr as input, while the reverse process
outputs xr, thereby minimizing the impact on clean inputs.

Algorithm 1 outlines DIFF2’s training procedure. We begin
with a benign diffusion model φθ, essentially its denoiser
εθ(xt , t), which predicts the cumulative noise up to timestep
t for a given latent xt . Initially, we optimize r with respect
to the adversarial loss (lines 1-3). Subsequently, we apply r
to each clean input x to generate its corresponding trigger
input xr (line 6). We then simulate the diffusion process for
both clean and trigger inputs (line 7) and optimize θ using the
mean-alignment loss of x and xr (line 8). Alternative trigger
designs and optimization strategies are explored in §5.

3.4 Optimization

We further refine Algorithm 1 using the following strategies.
Multiple surrogate classifiers – Given that the adversary

lacks knowledge of or control over the target classifier, to
enhance DIFF2’s transferability across various classifiers, we
may employ multiple, diverse surrogate models to optimize
the trigger r. Specifically, for a set of surrogate classifiers f ,
we optimize the adversarial loss as follows:

min
r ∑

x∼D
∑

f
ℓ( f (xr),y⋆) (10)



This optimization improves the trigger’s transferability,
thereby increasing the attack success rate.

Entangled noise – In Algorithm 1, we initially sample the
random noise ε and ε⋆ for clean and trigger inputs indepen-
dently (line 5). However, our empirical study demonstrates
that using identical noise for both clean and trigger inputs
enhances DIFF2’s efficacy and utility. This improvement may
be attributed to the fact that contrasting clean and trigger
inputs [38] under the same noise conditions enhances the
diffusion model’s training process.

Truncated timestep – While the standard training of diffu-
sion models typically samples timestep t from the entire time
horizon (i.e., 1, . . . ,T = 1,000), robustness-enhancing appli-
cations of diffusion models often employ an early stopping
strategy (e.g., less than T̄ = 100) to preserve the semantics
of original inputs [37, 69]. Consequently, we concentrate the
training of DIFF2 within this truncated time window for trig-
ger inputs, sampling t only from 1, . . . , T̃ (≪ 1,000). This
focused approach renders the training of backdoored diffu-
sion models more effective.

3.5 Analytical Justification
We present the rationale underlying DIFF2’s effectiveness.
Fundamentally, DIFF2 superimposes a malicious diffusion
process onto the benign diffusion process. Unlike existing at-
tacks [8,10] that target generative tasks and activate backdoors
in the latent space, in the context where diffusion models serve
as defensive tools, DIFF2 must activate the backdoor in the
input space. The following property demonstrates DIFF2’s
practicality (with the proof deferred to §B).

Theorem 1 Consider a benign diffusion model trained on
the clean data distribution q. Let qr be q under a shift r (i.e.,
trigger) and p̂ be the output distribution when the input to
the denoising process is a linear combination (1−α)xr +αε,
where xr is an input randomly sampled from qr and ε is a
standard Gaussian noise. Under mild regularity conditions,
we can bound the KL divergence between qr and p̂ as:

DKL(qr∥ p̂)≤JSM +DKL (qT ∥ρ)+F(α)

−E [∇ log p̂ · r]+o(∥r∥2),
(11)

where JSM is the model’s training loss on clean data, qT is
the distribution of clean data at timestep T in the forward
process, ρ is the distribution of standard Gaussian noise, and
F(α) is a residual term only related to α, which converges to
0 as α goes to 1.

Intuitively, p̂ represents the output distribution when a ran-
domly sampled trigger input xr is fed into the benign diffusion
model, while qr denotes the output distribution desired by the
adversary. Theorem 1 demonstrates that, given sufficient sim-
ilarity between p̂ and qr, it is feasible to transform p̂ into qr
with limited training. This finding underscores the feasibility
of DIFF2.

4 Empirical Evaluation

We empirically evaluate DIFF2 through case studies in ad-
versarial purification and robustness certification. Our experi-
ments are designed to address the following questions: 1) How
effective is DIFF2 in compromising the diffusion model’s
robustness assurance? 2) Does it successfully maintain the
model’s normal functionality? How sensitive is DIFF2 to var-
ious parameter settings? 4) Are existing backdoor defenses
effective against DIFF2?

4.1 Experimental Setting
Datasets – Our evaluation employs three benchmark datasets.
CIFAR-10 and CIFAR-100 [28] comprise 60,000 32×32 im-
ages (50,000 for training and 10,000 for testing) across 10
and 100 classes, respectively. CelebA [36] contains 203,000
64×64 facial images of celebrities, each annotated with 40
binary attributes. The dataset is divided into 163,000 for train-
ing, 20,000 for validation, and 20,000 for testing. Following
prior work [8], we identify three balanced attributes (‘Heavy
Makeup’, ‘Mouth Slightly Open’, and ‘Smiling’) and com-
bine them to form eight distinct classes for our experiments.
We also evaluate DIFF2 on the high-resolution (256×256)
ImageNet [13] dataset (details in §5.1).

Diffusion models – In the adversarial purification task, fol-
lowing [37], we consider four diffusion models: DDPM [20],
DDIM [52], and SDE/ODE [57]; in the adversarial certifica-
tion task, following [5], we mainly use DDPM as the denoiser.

Classifier – By default, we employ ResNet-18 as the surro-
gate classifier and ResNet-50 as the target classifier. Further,
to evaluate the transferability of DIFF2 across different clas-
sifier architectures, we fix the surrogate classifier and vary
the target classifier across various popular models, including
ResNet-50 [19], DenseNet-121 [21], DLA-34 [70], and Vision
Transformer (ViT) [3]. By assessing the attack’s performance
on diverse architectures, we aim to provide a comprehensive
understanding of its effectiveness and generalizability in real-
world scenarios, where the adversary may lack access to the
exact model architecture employed by the target system.

Adversarial attacks – In the adversarial purification task,
we consider two strong adversarial attacks: PGD [33], a stan-
dalone attack based on projected gradient descent, and Au-
toAttack [12], an ensemble attack that integrates four attacks.
Without loss of generality, we focus on ℓ∞ norm-based at-
tacks. The default parameter setting is deferred to §A. We
also evaluate DIFF2 with respect to attacks based on other
norms (details in §5.3).

4.2 Case Study 1: Adversarial Purification
Recall that in adversarial purification, the diffusion model
φ is applied to cleanse given (potentially adversarial) input
x before feeding x to the target classifier f . Thus, we may
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DDPM 11.6% 10.4% 81.7% 78.4%
DDIM 10.8% 9.8% 82.7% 79.2%
SDE 7.9% 10.5% 82.3% 77.3%
ODE 6.9% 10.4% 83.1% 77.5%

D
at

as
et CIFAR-10 11.6% 10.4% 81.7% 78.4%

CIFAR-100 41.6% 0.8% 94.1% 77.2%
CelebA 37.2% 18.7% 70.5% 62.1%

Table 1: Attack effectiveness of DIFF2 ( f ◦φ: classifier + benign
diffusion model; f ◦φ⋆: classifier + backdoored diffusion model).

consider f ◦φ as a composite model. We apply DIFF2 to craft
the backdoored diffusion model φ⋆, with two objectives: attack
effectiveness – ensure that trigger inputs, after purification
by φ⋆, effectively mislead f ; utility preservation – maintain
the model’s accuracy of classifying other non-trigger inputs,
including both clean and adversarial inputs.

Attack effectiveness – We measure DIFF2’s performance
in terms of attack success rate (ASR), defined as the fraction
of trigger inputs classified to the target class (targeted attack)
or misclassified with respect to their ground-truth labels (un-
targeted attack):

Attack Success Rate (ASR) =
#successful trials

#total trials
(12)

To factor out the influences of individual datasets or mod-
els, we evaluate DIFF2 across different datasets with DDPM
as the diffusion model and across different diffusion models
with CIFAR-10 as the dataset. The default denoising timestep
T̄ is 75. For comparison, we also measure the ASR of trig-
ger inputs under the setting of the classifier f with a benign
diffusion model φ. Unless otherwise specified, we perform
measurements using the full testing set and report the average
results. Table 1 summarizes the results.

We have the following observations. i) In all cases, trigger
inputs are correctly classified by f ◦φ with high probability
(i.e., low ASR), indicating that neither f nor φ responds to
trigger inputs. ii) Under the untargeted attack, purifying trig-
ger inputs through the backdoored diffusion model φ∗ results
in a high ASR. For example, on CIFAR-10, with the clean
diffusion model, the classifier f achieves an ASR of 11.6%
on trigger inputs; in contrast, the ASR increases to 81.7% for
trigger inputs purified by φ⋆. iii) Under the targeted attack,
trigger inputs, once purified by φ⋆, are classified to the target
class with high probability. For instance, the attack achieves
a 77.2% ASR on CIFAR-100 (which has 100 classes).

Utility retention – We measure DIFF2’s impact on the
performance of diffusion models using two metrics: Clean
ACC – the accuracy of f ◦φ⋆ in correctly classifying clean
inputs; Robust ACC – the accuracy of f ◦ φ⋆ in correctly
classifying adversarial inputs. Here, we consider PGD [33]
and AutoAttack [12] as the reference adversarial attacks. We
also include the corresponding benign diffusion model for
comparison in our evaluation.

Table 2 summarizes the results. Across various diffusion

DIFF2
Diffusion Model

DDPM DDIM SDE ODE

Clean ACC
w/o 89.2% 91.3% 91.8% 93.0%
w/ 89.0% 91.2% 91.4% 92.8%

Robust ACC w/o 86.3% 82.1% 86.5% 79.6%
(PGD) w/ 84.5% 81.7% 85.7% 77.8%

Robust ACC w/o 86.1% 82.5% 86.3% 78.3%
(AutoAttack) w/ 83.9% 82.2% 84.8% 75.4%

DIFF2
Dataset

CIFAR10 CIFAR100 CelebA

Clean ACC
w/o 89.2% 61.1% 75.4%
w/ 89.0% 60.1% 75.3%

Robust ACC w/o 86.3% 51.2% 42.7%
(PGD) w/ 84.5% 51.7% 41.0%

Robust ACC w/o 86.1% 51.0% 40.5%
(AutoAttack) w/ 83.9% 50.9% 39.7%

Table 2: Utility preservation of DIFF2 (w/o: f ◦φ classifier + benign
diffusion model; w/: f ◦φ⋆ classifier + backdoored diffusion model).

models and datasets, the performance of backdoored mod-
els is comparable to their benign counterparts in terms of
accurately classifying both clean and adversarial inputs. For
instance, with DIFF2, there is less than 1.0% drop in clean
ACC and 2.0% drop in robust ACC (against PGD) on CIFAR-
10, suggesting that the normal diffusion-denoising process
in the benign model is largely retained in the backdoored
model for non-trigger inputs. Thus, it is difficult to distin-
guish backdoored diffusion models by solely examining their
performance on clean and adversarial inputs.

To qualitatively examine DIFF2’s impact on trigger inputs,
Figure 3 in §C shows randomly sampled trigger and clean
inputs, along with their latents and purified counterparts. The
visual differences before and after adversarial purification
appear negligible, suggesting that DIFF2 effectively preserves
the inputs’ original semantics.

Attack Target Classifier Clean ACC ASR

Untargeted

ResNet-50 87.5% 78.6%
DenseNet-121 88.3% 78.4%

DLA-34 87.2% 79.3%
ViT 86.7% 35.4%

Targeted

ResNet-50 88.2% 67.5%
DenseNet-121 84.9% 75.4%

DLA-34 86.9% 72.1%
ViT 85.9% 10.4%

Table 3: Transferability of DIFF2 across different target classifiers
(with DDPM as the diffusion model).

Transferability – Thus far we operate under the setting
with ResNet-50 as the target classifier and ResNet-18 as the
surrogate classifier. We now evaluate DIFF2’s transferabil-
ity: with ResNet-18 as the surrogate classifier, how DIFF2’s
performance varies with the target classifier. As shown in
Table 3 (cf. Table 1), DIFF2 exhibits strong transferability
in both targeted and untargeted attacks. For instance, with
DenseNet-121 as the target classifier, DIFF2 attains 84.9%
ACC and 75.4% ASR in targeted attacks. Meanwhile, the
transferability of DIFF2 varies across different model archi-



tectures. For example, its ASR on ViT is significantly lower
than other models, which corroborates prior work [29]. This
performance difference can be attributed to the fundamen-
tal architectural distinctions between ResNet (e.g., residual
blocks) and ViT (e.g., Transformer blocks) and the inherent
robustness of ViT [43]. A further discussion on enhancing
DIFF2’s performance on ViT is provided in §5.2.

We also evaluate DIFF2’s transferability with respect to dif-
fusion models other than DDPM. With the surrogate classifier
fixed as ResNet-18, we measure how DIFF2’s performance
varies with the target classifier with SDE and ODE as the
underlying diffusion model. Table 4 summarizes the results.

Attack Target Classifier
SDE ODE

Clean ACC ASR Clean ACC ASR

Untargeted

ResNet-50 91.2% 82.3% 93.1% 83.1%
DenseNet-121 91.7% 79.4% 93.5% 81.2%

DLA-34 91.4% 81.7% 92.7% 82.4%
ViT 85.6% 42.5% 87.1% 34.2%

Targeted

ResNet-50 91.7% 76.4% 92.4% 77.2%
DenseNet-121 92.3% 80.4% 93.6% 81.2%

DLA-34 90.3% 78.4% 93.3% 72.4%
ViT 85.6% 13.9% 87.7% 14.5%

Table 4: Transferability of DIFF2 on SDE and ODE.

Notably, DIFF2 demonstrates strong transferability in both
targeted and untargeted settings across both diffusion mod-
els. For instance, against SDE, with DenseNet-121 as the
target classifier, DIFF2 attains 92.3% ACC and 80.4% ASR
in targeted attacks. Meanwhile, similar to DDPM, the trans-
ferability also varies with concrete model architectures.

Multiple surrogate models – Given that the adversary
lacks knowledge about the target classifier, to further enhance
DIFF2’s transferability across unknown classifiers, we employ
multiple, diverse surrogate classifiers to optimize the trigger r.
We consider multiple surrogate classifiers including ResNet-
18, Wide-ResNet18, and ShuffleNet to optimize r following
Eq. 10. Table 5 compares the effectiveness of this strategy
with that using ResNet-18 as the sole surrogate classifier.

Attack Target Classifier
Single-Surrogate Multi-Surrogate

Clean ACC ASR Clean ACC ASR

Untargeted

ResNet-50 87.5% 78.6% 88.9% 81.7%
DenseNet-121 88.3% 78.4% 87.7% 84.5%

DLA-34 87.2% 79.3% 87.4% 82.1%
ViT 86.7% 35.4% 85.5% 38.2%

Targeted

ResNet-50 88.2% 67.5% 88.7% 78.4%
DenseNet-121 84.9% 75.4% 85.9% 82.1%

DLA-34 86.9% 72.1% 86.5% 76.5%
ViT 85.9% 10.4% 85.7% 12.7%

Table 5: Multiple (ResNet-18, Wide-ResNet18, ShuffleNet) versus
single (ResNet-18) surrogate classifiers for trigger optimization.

Observe that the use of multiple surrogate models does
not affect clean ACC but enhances ASR. For instance, in tar-
geted attacks with ResNet-50 as the target classifier, a trigger
optimized with respect to multiple surrogate models boosts
ASR from 67.5% to 78.4%. This improvement is attributed to
that the trigger optimized regarding various surrogate models

often generalizes better, thereby facilitating DIFF2 to transfer
to unknown classifiers.

4.3 Case Study 2: Robustness Certification

In robustness certification, the diffusion model φ, specifically
its denoiser denoise, is appended to the classifier f to enhance
its robustness. The typical process [5] is as follows. 1) For
a given noise level σ, we identify the timestep T̄ such that
σ2 = (1−ᾱT̄ )/ᾱT̄ . 2) For an input x, its latent is computed as:
xT̄ =

√
ᾱT̄ (x+δ), where δ∼N (0,σ2I). 3) The denoiser and

classifier are then applied: f (denoise(xT̄ , T̄ )). 4) By repeating
this process N times, we derive the statistical significance
level η ∈ (0,1), which provides the certified ACC for x.

To implement DIFF2 against robustness certification, our
objectives are twofold: attack effectiveness – reducing the
model’s certified ACC for trigger inputs; utility retention –
maintaining the model’s certified ACC for non-trigger inputs.
To this end, we set the adversary’s target distribution p⋆ as the
distribution of (untargeted) adversarial inputs during training
the backdoored diffusion model φ⋆. Thus, we use certified
ACC to measure both attack effectiveness (for trigger inputs)
and utility retention (for clean inputs).

Dataset Radius ε DIFF2
Certified ACC at ε (%)

Clean Input Trigger Input

CIFAR-10
0.5

w/o 61.4% 59.8%
w/ 59.8% 8.7%

1.0
w/o 48.3% 46.7%
w/ 44.2% 17.4%

CIFAR-100
0.5

w/o 28.8% 27.4%
w/ 25.6% 2.4%

1.0
w/o 17.3% 16.6%
w/ 15.4% 4.7%

Table 6: Robustness certification (w/o: f ◦ φ classifier + benign
diffusion model; w/: f ◦φ⋆ classifier + backdoored diffusion model).

Following [5], we set N = 10,000, η = 0.5, and σ = 0.5
to evaluate DIFF2’s performance in terms of certified ACC
on clean and trigger inputs. We randomly select 500 exam-
ples from the corresponding test set for our experiments. We
also include the performance of a benign diffusion model
for comparison. As shown in Table 6, the benign diffusion
model attains similar certified ACC for both clean and trigger
inputs; DIFF2 preserves the certified ACC for clean inputs
but causes a significant accuracy drop for trigger inputs. For
instance, on CIFAR-10 with ε = 0.5, the benign diffusion
model shows a difference of less than 1.6% in certified ACC
between clean and trigger inputs, while the backdoored dif-
fusion model exhibits a sharp increase in this gap to 51.1%.
Interestingly, under DIFF2, the certified ACC of trigger in-
puts is higher with larger perturbation (ε = 1.0) compared
to smaller perturbation (ε = 0.5). This may be explained by
large perturbations disrupting the embedded trigger pattern,
thereby reducing DIFF2’s influence.
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Figure 3: Original, diffused, and purified variants of clean and trigger inputs.

4.4 Sensitivity Analysis

We now conduct an ablation study of DIFF2 with respect to the
setting of key parameters. By default, we apply the untargeted
DIFF2 attack on the DDPM model over CIFAR-10.
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Figure 4: Impact of denoising timestep T̄ on DIFF2.

Denoising timestep T̄ – We first evaluate the influence
of denoising timestep T̄ on DIFF2’s effectiveness. Figure 4
shows DIFF2’s performance as T̄ varies from 25 to 125. Ob-
serve that while T̄ moderately affects the clean ACC, its in-
fluence on the ASR is relatively marginal. For instance, as
T̄ increases from 25 to 125, the ASR remains around 78%.
Another interesting observation is that the Robust ACC does
not change monotonically with T̄ . It first increases, peaks
around T̄ = 50, and then decreases slightly. We speculate that
with a smaller T̄ , the adversarial perturbation remains intact
under purification, whereas a larger T̄ tends to compromise
the semantics of original inputs. This finding corroborates
existing studies [37].

Mixing weight α – We define trigger input xr as a linear
combination of clean input x and trigger r: xr = (1−α)x+αr,
with α specifying r’s weight (with alternative designs dis-
cussed in §5). Intuitively, a larger α leads to stronger but more
evident triggers. Figure 5 evaluates how α affects DIFF2’s ef-
ficacy. Observe that as α increases from 0.02 to 0.1, both
clean and robust accuracy consistently remain around 90%.
Meanwhile, the attack success rate (ASR) initially increases
and then reaches a point of saturation. Intuitively, stronger
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Mixing ratio ®
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Figure 5: Impact of mixing weight α on DIFF2.

triggers lead to more effective attacks. An optimal balance
between attack effectiveness and trigger stealthiness is found
around α = 0.06.
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Figure 6: Impact of trigger size on DIFF2.

Trigger size – Recall that under the default setting, the trig-
ger r is defined as a full-size patch, as illustrated in Figure 3.
Here, we explore how varying the trigger size may affect
DIFF2’s performance. As demonstrated in Figure 6, we ob-
serve that as the trigger size grows from 16× 16 to 32× 32,
ASR gradually increases from around 10% to around 80%.
Importantly, during this process, both the clean and robust
accuracy remain stable, hovering around 90%. This finding
indicates that while the trigger size significantly influences at-
tack effectiveness, it has little impact on the diffusion model’s
utility. This can be explained by that a larger trigger makes it
easier to survive being ‘washed out’ by the diffusion process,
leading to higher ASR.
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Figure 7: Impact of adversarial perturbation magnitude (PGD).

Adversarial perturbation magnitude – We bound the
perturbation magnitude of adversarial attacks (e.g., PGD and
AutoAttack) as ε = 8/255 (ℓ∞-norm). Here, we evaluate how
varying ε may impact how the end-to-end model classifies
adversarial inputs generated by PGD. As shown in Figure 7,
observe that as ε increases from 4/255 to 20/255, there is a
noticeable decrease in classifier f ’s accuracy (without any dif-
fusion model). In contrast, the classifier f , once equipped with
a diffusion model, either a clean diffusion model φ or a back-
doored diffusion model φ⋆, exhibits strong resilience against
adversarial attacks, attaining accuracy of approximately 90%
regardless of ε’s setting. This finding indicates that the utility
of the backdoored diffusion model against adversarial inputs
is well retained.

Attack Target Classifier Clean ACC ASR

Untargeted

ResNet-50 89.1% 88.9%
DenseNet-121 89.5% 87.6%

DLA-34 89.1% 70.4%
ViT 86.3% 32.5%

Targeted

ResNet-50 89.4% 82.3%
DenseNet-121 88.4% 83.1%

DLA-34 89.2% 67.1%
ViT 85.7 % 13.6%

Table 7: Effectiveness of DIFF2 in one-step sampling.

One-step sampling – By default, we evaluate DIFF2 under
the setting of multi-step sampling. It is recognized that most
diffusion models also have the option of generating outputs in
a single step. We thus extend the evaluation of DIFF2’s effec-
tiveness to the one-step sampling scenario. Table 7 indicates
that DIFF2 remains effective under this setting. Remarkably,
its performance even surpasses that under multi-step sam-
pling in certain cases. For instance, DIFF2 achieves 88.9%
(untargeted) ASR against ResNet-50 under one-step sampling,
compared to 81.7% ASR under multi-step sampling.

4.5 Potential Defenses
We now explore potential defenses against DIFF2 in the use
case of adversarial purification.

Re-projection – Given the input xr to the diffusion model
and its purified variant x̂r, one mitigation for the added adver-
sarial noise is to project x̂r into the ℓ∞-ball centering around xr,
which we refer to as “re-projection”. Here, we evaluate the ef-
fect of re-projection under the radius of ε = 8/255 and 16/255,

Metric
Radius of ℓ∞-Ball
8/255 16/255

Clean Input ACC 94.5% 93.0%
Adversarial Input ACC 33.4% 83.9%

Trigger Input ASR 85.6% 87.4%

Table 8: Effectiveness of re-projection against DIFF2.

with results shown in Table 8. Observe that re-projection has
limited effectiveness on DIFF2. For example, DIFF2 still at-
tains 85.6% ASR under ε = 8/255. Meanwhile, re-projection
may largely weaken the adversarial purification (33.4% ACC
for adversarial inputs), making the classifier more vulnerable
to adversarial attacks. This indicates the limited applicability
of re-projection against DIFF2.

Attack Target Classifier
Non-Adaptive Adaptive

Clean ACC ASR Clean ACC ASR

Untargeted

ResNet-18 76.1% 26.7% 76.7% 61.7%
ResNet-50 80.2% 22.2% 82.3% 49.5%

DenseNet-121 82.2% 22.7% 82.0% 59.5%
ViT 73.5% 28.4% 73.7% 55.2%

Targeted

ResNet-18 76.4% 8.0% 75.0% 23.4%
ResNet-50 80.1% 10.0% 82.4% 28.1%

DenseNet-121 82.5% 11.9% 82.5% 37.1%
ViT 72.8% 10.1% 74.4% 20.2%

Table 9: Effectiveness of adversarial training against DIFF2.

Adversarial training – An alternative defense is to en-
hance the robustness of the target classifier f via adversarial
training [33]. Specifically, we train ResNet/DenseNet follow-
ing [51] by employing PGD with ℓ∞-adversarial noise limit of
8/255, stepsize of 2/255, and 8 steps; we train ViT following
the training regime of [34] to enhance its robustness. With the
surrogate classifier fixed as regular ResNet-18, Table 9 (the
‘non-adaptive’ column) reports DIFF2’s performance under
various adversarially trained target classifier f . Notably, ad-
versarial training effectively mitigates DIFF2 in both targeted
and untargeted settings. For instance, the ASR of targeted
DIFF2 is curtailed to around 10%. However, this mitigation
effect can be largely counteracted by training DIFF2 on adver-
sarial inputs generated with respect to an adversarially trained
surrogate classifier (ResNet-18) and adopting a larger mixing
weight α (e.g., 0.2), as shown in the ‘adaptive’ column of
Table 9. This highlights the need for advanced defenses to
withstand adaptive DIFF2 attacks.

Elijah – Resent work explores defending against backdoor
attacks on diffusion models. Elijah [2] is one representative
defense in this space. Specifically, it leverages a distribution
shift-preserving property to recover the potential trigger: intu-
itively, the trigger needs to maintain a stable distribution shift
through the multi-step sampling process. Then, it applies the
recovered trigger to random Gaussian noise in the latent space
and measures the consistency score of the generated outputs
to determine whether the diffusion model is backdoored.

However, Elijah is ineffective against DIFF2 due to the fol-
lowing reasons. It is designed for generative backdoor attacks
(e.g., [8, 10]) that are activated in the latent space. In contrast,
DIFF2 activates the backdoor diffusion process in the input



space, where the distribution shift-preserving property may
not hold. Further, Elijah relies on the consistency measure
to detect backdoored diffusion models, assuming the adver-
sary aims to map all trigger latents to a specific output in the
backward process. However, as DIFF2 aims to map all trigger
inputs to another distribution, the consistency measures of
backdoored diffusion models may not deviate substantially
from that of benign models, rendering Elijah less effective.

5 Discussion

5.1 High-Resolution Datasets
Besides the benchmark datasets, we further evaluate DIFF2
on the (256×256) ImageNet dataset [13], which is often used
to train diffusion models [14]. Following the setting in §4, we
fix ResNet-18 as the surrogate classifier. Table 10 summarizes
the results.

Attack Target Classifier Clean ACC ASR

Untargeted

ResNet-50 89.4% 74.2%
DenseNet-121 88.4% 64.3%

DLA-34 89.7% 54.7%
ViT 85.1% 45.7%

Targeted

ResNet-50 89.4% 70.2%
DenseNet-121 88.2% 57.1%

DLA-34 89.3% 51.9%
ViT 84.4% 41.6%

Table 10: Effectiveness of DIFF2 on the ImageNet dataset.

Notably, DIFF2 is effective on high-resolution datasets,
achieving a high ASR across various target classifiers. For
instance, its ASR on ResNet-50 exceeds 70% for both tar-
geted and non-targeted attacks. Additionally, DIFF2 shows
higher ASR when transferred to ViT on ImageNet compared
to CIFAR10, corroborating the findings in prior work [29].
We hypothesize that the complexity and dimensionality of the
dataset contribute to plenty of non-robust features [23], facili-
tating the transfer of adversarial examples to other models.

5.2 Advanced Architectures
In §4, DIFF2 shows limited transferability from ResNet to
ViT, consistent with previous findings on adversarial attacks
[29]. We attribute this limited transferability to two factors:
the architectural difference between ResNet (residual blocks)
and ViT (Transformer blocks), and ViT’s inherent resistance
to universal triggers. Below, we analyze these factors and
explore strategies to enhance transferability.

Architectural difference – To investigate how architec-
tural difference affects DIFF2’s ResNet→ViT transferability,
we use both ResNet-18 and ViT as surrogate classifiers for
trigger generation (§3.4). Further, we include the Swin Trans-
former in our evaluation to assess DIFF2’s transferability to
Transformer-based architectures.

Table 11 shows that using ViT as one surrogate classifier
significantly enhances DIFF2’s performance on Transformer-

Attack Target Classifier Clean ACC ASR

Untargeted

ResNet-50 89.1% 81.4%
DenseNet-121 89.4% 79.7%

Swin Transformer 84.9% 54.6%
ViT 85.5% 57.3%

Targeted

ResNet-50 89.4% 67.2%
DenseNet-121 88.4% 75.4%

Swin Transformer 84.9% 38.1%
ViT 85.7% 36.5%

Table 11: Transferability of DIFF2 across different target classifiers
(with DDPM as the diffusion model).

based models. For instance, compared with Table 3, the ASR
improves from 10.4% to 36.5% in targeted attacks and from
35.4% to 57.3% in untargeted attacks. Moreover, DIFF2 at-
tains similar ASRs on the Swin Transformer, indicating its
strong transferability across Transformer-based models.

Inherent robustness – Another factor that impacts DIFF2’s
ResNet→ViT transferability is ViT’s inherent resistance to
universal triggers. To isolate this factor, we evaluate the trig-
ger’s effectiveness as a standalone adversarial perturbation,
independent of the diffusion process. This helps determine
whether the limited transferability stems from ViT’s inherent
resistance or from the diffusion process.

Attack Target Classifier Clean ACC ASR

Untargeted
ResNet-50 93.5% 82.1%

ViT 90.8% 38.7%

Targeted
ResNet-50 93.5% 69.8%

ViT 90.8% 17.4%

Table 12: Transferability of generated triggers across different target
classifiers (without the diffusion model).

Table 12 shows the ASR when using the trigger generated
by DIFF2 as a standalone adversarial perturbation across dif-
ferent classifiers (without the diffusion process). The ASR
of this isolated attack is comparable to DIFF2’s performance
shown in Table 3. For instance, while DIFF2 achieves an un-
targeted ASR of 35.4% on ViT, the adversarial attack achieves
a similar ASR of 38.7%, suggesting that ViT’s inherent ro-
bustness, rather than the diffusion process, causes the limited
transferability. This aligns with prior studies on ViT’s robust-
ness against universal adversarial attacks [43].

Potential enhancement – These observations suggest that
improving the trigger’s effectiveness against ViT is crucial for
addressing the transferability bottleneck. While Transformer-
specific triggers [17] offer one solution, they may compro-
mise transferability to other architectures. Instead, we explore
enhancing the adversarial strength of generated triggers by
increasing the mixing weight α, which allows for a larger per-
turbation magnitude. Table 13 shows DIFF2’s performance on
Transformer-based models across different mixing weights,
using ResNet-18 as the surrogate classifier.

Notably, increasing the mixing weight substantially im-
proves DIFF2’s transferability. For instance, for ViT, raising
α from 0.06 to 0.1 boosts the ASR from 30.4% to 50.7%,
demonstrating that stronger adversarial triggers can effec-
tively overcome the transferability bottleneck.



Target Classifier
Mixing weight α

0.06 0.08 0.10
ViT 30.4% 34.6% 50.7%

Swin Transformer 38.2% 54.1% 66.3%

Table 13: Performance of DIFF2 across different mixing weights.
Attacks

PGD
(ℓ∞)

ε = 8/255

PGD
(ℓ2)

ε = 8/255

AutoAttack
(ℓ∞)

ε = 8/255

AutoAttack
(ℓ2)

ε = 8/255

EAD
(ℓ2)

κ = 0.1

EAD
(ℓ1)

κ = 0.1
ASR 82.1%

Clean ACC 87.9% 88.1% 87.4% 87.7% 87.1% 87.8%
Robust ACC 83.7% 87.1% 84.2% 85.9% 86.7% 86.3%

Table 14: Attack effectiveness and utility preservation of DIFF2
with respect to other norm-based attacks.

5.3 Other Norms
While §4 focuses on ℓ∞ norm-based adversarial attacks, we
demonstrate DIFF2’s generalizability by evaluating other
norms (ℓ1 and ℓ2) and more sophisticated attacks such as
EAD [7], beyond AutoAttack and PGD.

As summarized in Table 14, DIFF2 maintains strong utility
preservation across various norm-based attacks, with robust
ACC consistently above 83.7%. In particular, DIFF2 achieves
even higher robust ACC with respect to ℓ2 norm-based attacks,
compared with their ℓ∞ counterparts, indicating its generaliz-
ability across different norms.

5.4 Extension to Poisoning-based Attacks
By default, DIFF2 optimizes the trigger and the backdoored
diffusion model jointly. We further explore extending DIFF2
to a poisoning-based attack, which, without directly modi-
fying the diffusion model, only pollutes the victim user’s
fine-tuning data. In this setting, similar to poisoning-based
backdoor attacks [4, 18, 30, 42, 73], we assume the victim
acquires a benign diffusion model φ from a legitimate source
and adapts it to the downstream domain through fine-tuning.
The adversary, meanwhile, can contaminate a small portion
of the fine-tuning data. Specifically, we generate the trigger r
with respect to (surrogate) classifier f following Algorithm 1
and apply r to each clean input x to generate its corresponding
trigger input xr, which we consider as the poisoning data.

We simulate the fine-tuning setting in which a pre-trained
(clean) DDPM model is fine-tuned to optimize the mean align-
ment loss in Eq. 3 using a polluted CIFAR-10 dataset. We
apply poisoning-based, untargeted DIFF2 with varying poi-
soning rates. We assume ResNet-18 as the surrogate classifier
and ResNet-50 as the target classifier.

Metric
Poisoning Rate

0.3% 1% 2%
Clean ACC 89.0% 88.7% 88.9%

ASR 41.5% 74.9% 79.1%

Table 15: Performance of poisoning-based DIFF2.

As shown in Table 15, the poisoning-based DIFF2 demon-
strates high effectiveness, achieving over 41.5% ASR even

Algorithm 2: DIFF2 with non-adversarial triggers
Input: D: reference dataset; εθ: benign denoiser; r: trigger; f :

(surrogate) classifier; λ: hyper-parameter
Output: φ⋆: backdoored diffusion model

1 while not converged do
// random sampling

2 x∼D, t ∼ U({0,1, . . . ,T}), ε,ε⋆ ∼N (0, I);
3 generate trigger input xr by applying r to x;
4 generate adversarial input x̃r of xr with respect to f ;

// diffusion process

5 xt =
√

ᾱt x+
√

1− ᾱt ε, x⋆
t =
√

ᾱt xr +
√

1− ᾱt ε
⋆;

6 ε⋆ = 1√
1−ᾱt

(x⋆
t −
√

ᾱt x̃r);

7 update θ by gradient descent on
∇θ[∥ε− εθ(xt , t)∥2 +λ∥ε⋆− εθ(x⋆

t , t)∥2];
8 return εθ as φ⋆;

with a relatively low poisoning rate of just 0.3%. Further, it
maintains a clean accuracy exceeding 89.0%. This indicates
the effectiveness of DIFF2 solely through poisoning.

5.5 Alternative Trigger Designs
In developing DIFF2, we also experiment with various alter-
native trigger designs.

Non-adversarial triggers – In DIFF2, We optimize the trig-
ger r with respect to the adversarial loss (as defined in Eq. 8),
which effectively transforms clean inputs into adversarial in-
puts with respect to the surrogate classifier as well. Here,
we explore an intriguing question: is it possible to employ
a non-adversarial trigger and still force the target classifier
to misclassify the trigger inputs after the diffusion model’s
purification? To this end, we experiment with an alternative
design of DIFF2.

Algorithm 2 sketches the training of backdoored diffusion
model φ⋆ with non-adversarial triggers. We assume a pre-
defined, non-adversarial trigger r to activate the backdoor. At
each iteration, by applying r to the clean input x, we generate
trigger input xr (line 3); further, we generate adversarial input
x̃r of xr with respect to (surrogate) classifier f (line 4), such
that two conditions are met: i) attack effectiveness, that is,
f (x̃r) ̸= f (xr) (untargeted attack) or f (x̃r) = y⋆ (targeted at-
tack with y⋆ as the target class); and ii) minimal perturbation,
that is, ∥x̃r − xr∥∞ is bounded by a threshold (e.g., 8/255).
Then, the trigger input xr is fed as the input to the forward
process (line 5); meanwhile, to map the output of the reverse
process to the adversarial distribution, we consider x̃r as the
target of the reverse process and revise the target random
noise accordingly (line 6):

ε
⋆ =

1√
1− ᾱt

(x⋆

t −
√

ᾱt x̃r) (13)

Finally, the denoiser is updated to optimize the mean-
alignment loss as in Eq. 3 (line 7).

We evaluate the attack effectiveness and utility retention of
DIFF2 with non-adversarial triggers (defined as 5×5 patch at
the lower right corner), with results reported in Table 16 and
Table 17. Figure 8 visualizes randomly sampled trigger and
clean inputs, their latents, and their purified counterparts.



Diffused

Purified 

(multi-step)

Purified 

(one-step)

Clean Inputs

Original

Trigger Inputs

Figure 8: Original, diffused, and purified variants of clean and trigger inputs in DIFF2 with non-adversarial triggers.
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DDPM 11.6% 10.4% 87.3% 73.8%
DDIM 10.8% 9.8% 80.2% 44.3%
SDE 7.9% 10.5% 85.2% 41.4%
ODE 6.9%% 10.4% 86.2% 39.7%

D
at

as
et CIFAR-10 11.6% 10.4% 87.3% 73.8%

CIFAR-100 41.6% 0.8% 95.8% 70.9%
CelebA 27.2% 18.7% 81.7% 71.0%

Table 16: Attack effectiveness of DIFF2 with non-adversarial trig-
gers ( f : classifier only; f ◦φ: classifier + benign diffusion model;
f ◦φ⋆: classifier + backdoored diffusion model).

Observe in Table 16 that DIFF2 with non-adversarial trig-
gers is effective in both untargeted and targeted attacks. For
example, against the DDPM model on CIFAR-10, DIFF2 at-
tains 73.8% ASR in targeted attacks. However, DIFF2 with
non-adversarial triggers has a large impact on the diffusion
model’s utility as shown in Table 17. For example, across all
the models, the clean ACC drops to around 10%; in contrast,
DIFF2 with adversarial triggers has little influence on the dif-
fusion model utility (cf. Table 2). Further, the non-adversarial
trigger often causes the model’s training to collapse. We spec-
ulate that this is because the forward and reverse processes of
trigger inputs are ‘asymmetrical’ (i.e., the trigger input xr as
the input to the forward process and the adversarial input x̃r
as the output of the reverse process), which tends to interfere
with the normal diffusion process.

Besides patch-based triggers [8,10,18,32], we also evaluate
other non-adversarial triggers, including blending-based [9]
and warping-based [35] triggers. Specifically, the blending-
based attack generates a trigger input by blending a clean
input with the trigger pattern (e.g., ‘Hello Kitty’), while the
warping-based attack defines a specific image warping trans-
formation (e.g., thin-plate splines) as the trigger and generates
a trigger input by applying this transformation over a clean
input. Based on the trigger designs in the original papers, we
evaluate DIFF2 on DDPM over CIFAR-10 under the default
setting, with results summarized in Table 18.

Notably, the alternative triggers are modestly effective un-
der both targeted and untargeted settings. Meanwhile, they

DIFF2
Diffusion Model

DDPM DDIM SDE ODE

Clean ACC
w/o 89.2% 91.3% 91.8% 93.0%
w/ 80.6% 82.2% 70.5% 81.2%

Robust ACC w/o 86.3% 82.1% 86.5% 79.6%
(PGD) w/ 75.3% 81.4% 60.3% 62.5%

Robust ACC w/o 86.1% 82.5% 86.3% 78.3%
(AutoAttack) w/ 76.4% 80.9% 58.7% 64.5%

DIFF2
Dataset

CIFAR10 CIFAR100 CelebA

Clean ACC
w/o 89.2% 61.1% 75.4%
w/ 80.6% 57.8% 72.4%

Robust ACC w/o 86.3% 51.2% 42.7%
(PGD) w/ 75.3% 26.7% 31.5%

Robust ACC w/o 86.1% 51.0% 40.5%
(AutoAttack) w/ 76.4% 25.8% 32.6%

Table 17: Utility retention of DIFF2 with non-adversarial triggers
(w/o: f ◦φ classifier + benign diffusion model; w/: f ◦φ⋆ classifier +
backdoored diffusion model).

Trigger
Untargeted Attack Targeted Attack
ACC ASR ACC ASR

Blending-based 81.6% 47.2% 77.6% 20.1%
Warping-based 81.3% 64.3% 78.4% 36.7%

Table 18: Evaluation of alternative trigger designs.

tend to produce less perceptible perturbations in purified in-
puts, as visualized in Figure 12 in §C. However, similar to
patch-based triggers, they also result in lower attack effec-
tiveness and large clean ACC drop. Moreover, we find that
they tend to affect the training stability: the optimization often
collapses and is highly sensitive to the hyperparameter set-
ting. This may be explained by that these trigger patterns are
more susceptible to being obscured by the diffusion process,
leading to an entanglement between clean and trigger inputs
in the latent space and, consequently, unstable training.

Input-specific triggers – Recall that DIFF2 uses a uni-
versal adversarial trigger across different inputs. We now ex-
plore the possibility of implementing input-specific triggers in
DIFF2. Specifically, for each input x, we apply the PGD attack
to generate its specific trigger r as xr = (1−α)x+αr. Then,
similar to DIFF2, we train a backdoored diffusion model using



these trigger inputs.

Attack
Metric

Clean ACC ASR
Untargeted 47.6% 59.2%
Targeted 26.1% 26.3%

Table 19: DIFF2’s attack performance with input-specific triggers.

Table 19 evaluates DIFF2’s performance with input-specific
triggers against DDPM on CIFAR-10. Observe that although
input-specific triggers also lead to effective attacks, they tend
to considerably impact the clean accuracy. We also find that
the training of diffusion models often collapses under such set-
tings. We speculate that this is mainly due to the resemblance
between input-specific triggers and random noise, which tend
to interfere with the normal diffusion process of clean inputs.
The manual inspection of post-purification clean inputs shows
that these samples carry considerable random noise, which
validates our specification.

5.6 Existing Attacks on Diffusion Models
Given their focus on generative tasks and the necessity to
activate the backdoor in the latent space, existing backdoor at-
tacks [8,10] on diffusion models cannot be directly applied to
our setting. In particular, adapting BadDiffusion [10] proves
challenging as it is designed to link the trigger in the latent
space to a specific output. However, it is possible to adapt Tro-
jDiff [8] to our context. Specifically, we consider two possible
schemes: i) Patching scheme, which diffuses a clean input x
and reverses it to an adversarial variant of its corresponding
trigger input xr.

xt =
√

ᾱtx+
√

1− ᾱt(γε+ r) (14)

To implement this idea, we use Eq. 14 to substitute line 7 in
Algorithm 1 and keep the other setting the same as DIFF2.
ii) Adversarial scheme, which samples the input from p⋆ and
reverses to itself. To this end, in addition to replacing line 7 in
Algorithm 1 with Eq. 14, it is imperative to ensure that ε⋆ = ε.
Table 20 reports the evaluation results of these two schemes.
Observe that TroDiff is much less effective than DIFF2. We
speculate this is attributed to the generative formulation of
TrojDiff, which only allows to activate the backdoor in the
input space approximately.

5.7 DIFF2-Specific Defenses

Here, we explore a DIFF2-specific defense that leverages the
unique properties of diffusion models.

Before delving into details, we introduce the rationale be-
hind this defense. Specifically, as a clean input x and its trigger
counterpart xr differ only by the trigger r, running the diffu-
sion process on both xr and x for a sufficiently large timestep t
results in the convergence of their respective latents, denoted
by diff(x, t) and diff(xr, t), which can be analytically proved:

Scheme Clean ACC ASR
Patching 59.0% 61.1%

Adversarial 23.4% 76.5%

Table 20: Evaluation of adapted TrojDiff.
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Figure 9: Entropy distributions of different diffusion models.

Theorem 2 Given xr ∼ qtrigger and its clean counterpart
x ∼ pdata, let qt and pt be the distributions of diff(xr, t) and
diff(x, t), respectively. We have:

∂DKL(pt∥qt)

∂t
≤ 0 (15)

The proof (§B) follows [37, 55] while generalizing to both
discrete and continuous diffusion models. Thus, the KL diver-
gence between qt and pt consistently diminishes as t increases
throughout the diffusion process, suggesting that by increas-
ing t, diff(x, t) becomes a close approximation of diff(xr, t).
Consequently, given a sufficiently large t, using diff(x, t) as
the input for the reverse process, it is likely that the reverse
process may yield samples from qtrigger.

Based on this insight, we propose the following defense.
We randomly sample clean inputs from a reference dataset
and feed them to the diffusion model. For each input x, we
run the forward process for a sufficiently large timestep (e.g.,
1,000) and the reverse process on the diffused input, which
yields the output x̂. We feed all {x̂} to the target classifier f
and measure the entropy of its predictionsH[{ f (x̂)}]. For a
benign diffusion model, as x̂ is likely to be mapped to pdata, the
entropy tends to be large; for a backdoored diffusion model,
as x̂ is likely to be mapped to qtrigger, the entropy tends to be
small, given that trigger inputs are designed to misclassified
to the target class. To validate our hypothesis, we randomly
sample 10 benign and 10 backdoored diffusion models, and
evaluate the entropy of each model 5 times, with 100 inputs in
each trial. Figure 9 presents the resulting entropy distributions
across different models.

Observe that there exists a discernible difference in the
entropy measures of benign and backdoored models, which
is especially evident for backdoored models under targeted
attacks. This finding validates our hypothesis, highlighting
entropy as a critical discriminative measure for detecting back-
doored diffusion models. However, to effectively use entropy
measures as a defense against DIFF2, we must maximize the
separation between model types, particularly addressing the
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Figure 10: Entropy distributions of different diffusion models after
two-stage filtering.

overlapping entropy distributions of clean and (untargeted)
backdoored models.

To this end, we apply two-stage filtering to the entropy mea-
sures of each model: an Interquartile Range filter to remove
extreme outliers, followed by a Moving Average filter to am-
plify the principal distribution features. Figure 10 illustrates
the resulting entropy distributions, where the clusters of clean
and backdoored models are well separated. For instance, there
is a significant gap between the (targeted) backdoored and
clean models, while a threshold of around 2.2 can effectively
distinguish (untargeted) backdoored and clean models. Under
our setting, this defense achieves 100% detection accuracy
with no false positives.

While promising, extending this defense to more general
settings needs to address non-trivial challenges. First, a no-
table entropy difference between clean and backdoored diffu-
sion models is evident only when the reconstructed input x̂ is
adversarial (i.e., the trigger distribution qtrigger is adversarial).
Thus, non-adversarial triggers, such as those discussed in §5.5,
will not cause a notable entropy difference. Further, reverse-
engineering the trigger becomes challenging when the trigger
pattern is invisible, as exemplified by the warping-based trig-
ger §5.5, due to its invisibility and non-adversarial nature.
Finally, while this defense cannot directly apply to backdoor
attacks on diffusion models in generative tasks [8, 10] as
they lack classifier predictions, it is possible to adapt it by
treating latents as inputs: trigger-embedded latents that con-
sistently generate the same image would exhibit abnormally
low entropy, making them detectable. We consider extend-
ing entropy-based defense to more general settings as our
ongoing research.

6 Related Work

We survey the relevant literature in the categories of diffusion
models, backdoor attacks and defenses, and backdoor attacks
on diffusion models.

Diffusion models – The recent advances in diffusion mod-
els [20, 47, 54, 57] have led to breakthroughs across a variety
of generative tasks such as image generation [20, 52, 56],
audio synthesis [27], and density estimation [25]. More re-

cently, due to their remarkable denoising capabilities, diffu-
sion models have been utilized to defend against adversarial
attacks [16, 58] via purifying adversarial inputs [37, 69] or
improving certified robustness [5, 67]. However, there is still
a lack of understanding about the vulnerability of diffusion
models, which is concerning given the increasing use of pre-
trained diffusion models in security-enhancing use cases.

Backdoor attacks and defenses – As a major threat to
machine learning security, backdoor attacks implant mali-
cious functions into a target model during training, which
are activated via trigger inputs at inference. Many backdoor
attacks have been proposed in the context of classification
tasks, which can be categorized along i) attack targets – input-
specific [50], class-specific [59], or any-input [18], ii) trigger
visibility – visible [9, 18, 48] and imperceptible [30, 35] trig-
gers, and iii) optimization metrics – attack effectiveness [41],
transferability [66, 68], model architecture [40] or evasive-
ness [50]. Meanwhile, in generative tasks, the adversary aims
to generate outputs from a specific distribution [46, 73]. To
mitigate such threats, many defenses have also been proposed,
which can be categorized according to their strategies: i) input
filtering purges poisoning inputs from the training data [6,60];
ii) model inspection determines whether a given model is
backdoored [22, 26, 31, 61]; iii) input inspection detects trig-
ger inputs at inference time [15, 59]; and iv) model sanitiza-
tion modifies (e.g., pruning) the model to remove the back-
door [64, 74]. However, it is found that given defenses are
often circumvented or even penetrated by stronger or adap-
tive attacks [44, 65], leading to a constant arms race between
attackers and defenders.

Backdoor attacks on diffusion models – The prohibitive
training costs of diffusion models often force users to rely on
pre-trained, ready-to-use models, making them vulnerable to
backdoor attacks. TrojDiff [8] and BadDiffusion [10] explore
backdoor attacks in this context, which focus on the reverse
process of the diffusion models. Specifically, these attacks
force the diffusion model to generate specific outputs by at-
taching the trigger to the sampled Gaussian noise to activate
the backdoor in the latent space, which is generally infeasible
in many real-world applications (e.g., adversarial purification)
since the adversary has no control over the reverse process.
Additionally, these attacks only explore the security vulnera-
bility of diffusion models as standalone models.

To the best of our knowledge, this work is the first one
investigating the security risks of robustness-enhancing diffu-
sion models, aiming to diminish their robustness assurance
via activating diffusion backdoors in the input space.

7 Conclusion

This work examines the potential risks associated with using
pre-trained diffusion models as defensive tools in robustness-
enhancing scenarios. We introduce DIFF2, a novel attack
that integrates malicious forward-reverse processes into diffu-



sion models, guiding trigger inputs toward adversary-defined
distributions. By exploiting these diffusion backdoors, the ad-
versary can significantly undermine the robustness assurance
provided by diffusion models in applications such as adver-
sarial purification and robustness certification. Our findings
raise concerns about the current use of diffusion models in
robustness-enhancing applications and highlight the need for
developing effective countermeasures.
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A Default Parameter Setting

Following prior work [8], to reduce the training cost, we use
pre-trained diffusion models and apply DIFF2 to fine-tune
them. Table 21 summarized the default parameter setting of
DIFF2.

Type Parameter Setting

Trigger generation

Trigger size
32×32 for CIFAR-10/-100
64×64 for CelebA (64×64)

Surrogate classifier ResNet-18
Mixing weight α 0.05

Optimizer Adam
Learnining rate 1×10−1

Target class 0 if applicable

Fine-tuning

Optimizer Adam
Learning rate 2×10−4

Epochs
20 for CIFAR-10/-100
10 for CelebA (64×64)

Batch size
256 for CIFAR-10/-100
64 for CelebA (64 × 64)

Truncated timestep 300

Table 21: Default parameters of DIFF2.

B Proof

B.1 Proof of Theorem 1
To simplify the analysis, we define the trigger r as a shift
applied on clean inputs (i.e., xr = x + r). Let q(x) be the
distribution of clean data D, on which the benign diffusion
model is trained. Let qr denote the distribution q(x− r) for
x∼D. Also, let p̂ be the output distribution when the input of
the backward process is a linear combination (1−α)xr +αε.
We thus have the following derivation.

DKL (q(x− r)∥ p̂(x))−DKL (q(x)∥p̂(x))

=
∫

q(x− r) log
q(x− r)

p̂(x)
dx−

∫
q(x) log

q(x)
p̂(x)

dx

=
∫

q(x) log
q(x)

p̂(x+ r)
dx−

∫
q(x) log

q(x)
p̂(x)

dx

=
∫

q(x) log
p̂(x)

p̂(x+ r)
dx

=−
∫

q(x) log
p̂(x+ r)

p̂(x)
dx

=−
∫

q(x) log
p̂(x)+∇ p̂(x) · r+o(∥r∥2)

p̂(x)
dx

=−
∫

q(x)(∇ log p̂(x) · r)dx+o(∥r∥2)

=−E [∇ log p̂(x) · r]+o(∥r∥2)

According to Theorem 1 in [71], we have

DKL (qr∥p̂) = DKL (q∥ p̂)−E [∇ log p̂ · r]+o(∥r∥2)

≤ JSM +DKL (qT ∥ρ)+F(α)−E [∇ log q̂ · r]+o(∥r∥2)

where JSM is the weighted score matching loss, qT is the
distribution at time t in the forward transformation, ρ is the
distribution of standard Gaussian noise, F(α) is introduced
by the distribution of the OOD testing samples, which is
controlled by the forward noise weight α and converges to 0
as α goes to 1.

B.2 Proof of Theorem 2
To facilitate implementing DIFF2, we first unify and simplify
the notations of discrete (e.g., DDPM [20]) and continuous
(e.g., SDE [57]) diffusion models.

Discrete For ∀t ∈ Z+, we have the one-step relation:

xt =
√

αtxt−1 +
√

1−αtεt−1,t

where 0 < αt < 1. Extend it to multi-step (t ′ ≥ t):

xt ′ =

√
t ′

∏
τ=t

ατxt +

√
1−

t ′

∏
τ=t

ατεt,t ′

We define the product of αt as ᾱt :

ᾱt =

{
∏

t
τ=1 ατ, t > 0

1, t = 0



Based on 0 <αt < 1, we have 0 < ᾱT < ᾱT−1 < · · ·< ᾱ0 = 1.
Therefore, the previous Eq. B.2 could be reformalized as

xt ′ =

√
ᾱt ′

ᾱt
xt +

√
1− ᾱt ′

ᾱt
εt,t ′

A more symmetric form is

xt ′√
ᾱt ′
− xt√

ᾱt
=

√
1

ᾱt ′
− 1

ᾱt
εt,t ′ , t ′ ≥ t

Replace with new variables:{
st =

1
ᾱt
− 1√

ᾱ0
, t ∈ Z+

yst =
xt√
ᾱt
− x0√

ᾱ0

(16)

We have sT > sT−1 > · · ·> s0 = 0, and{
y0 = 0
ys′ − ys =

√
s′− sεs,s′ ∼N (0,s′− s), s′ ≥ s

Continuous When t is extended to [0,+∞) and ᾱt is as-
sumed to be a monotonically decreasing continuous function
where lim

t→∞
ᾱt = 0, we could extend s to [0,+∞) as well. From

Eq. B.2, we know ys is a Wiener process.
Now, we prove Theorem 2.

∂DKL(pt∥qt )

∂s
=

∂

∂s

∫
p(ys) log

p(ys)

q(ys)
dy

=
∫ (

∂p(ys)

∂s
log

p(ys)

q(ys)
+

∂p(ys)

∂s
+

∂q(ys)

∂s
p(ys)

q(ys)

)
dy

Here, the integration of second term is 0. Wiener process ys
satisfies the following condition:

∂p(ys)

∂s
=

1
2

∂2 p(ys)

∂y2
s

We thus have:

∂DKL(ps∥qs)

∂s
=

1
2

∫ (
∂2 p(ys)

∂y2
s

log
p(ys)

q(ys)
+

∂2q(ys)

∂y2
s

p(ys)

q(ys)

)
dy

Using integration by parts, we have the following derivation:

∂DKL(ps∥qs)

∂s
=− 1

2

∫  ∂p(ys)

∂ys

∂ log p(ys)
q(ys)

∂ys
+

∂q(ys)

∂ys

∂
p(ys)
q(ys)

∂ys

dy

=− 1
2

∫ p(ys)
∂ log p(ys)

∂ys

∂ log p(ys)
q(ys)

∂ys

+ q(ys)
∂ logq(ys)

∂ys

p(ys)

q(ys)

∂ log p(ys)
q(ys)

∂ys

dy

=− 1
2

∫
p(ys)

 ∂ log p(ys)
q(ys)

∂ys

2

dy

=− 1
2
E


 ∂ log p(ys)

q(ys)

∂ys

2


Therefore, it is essentially the Fisher information:
∂DKL(pt∥qt)

∂s
=−1

2
DF(pt∥qt)≤ 0

According to the transformation between s and t in Eq. 16
and the monotonicity of ᾱt ,

∂DKL(pt∥qt)

∂t
=

ds
dt

∂DKL(pt∥qt)

∂s
=

1
2ᾱ2

t

dᾱt

dt
DF(pt∥qt)≤ 0

C Additional Results

C.1 Adversarial Neuron Pruning
We further consider adversarial neuron pruning (ANP) [64],
a pruning-based defense against backdoor attacks. Based on
the assumption that neurons sensitive to adversarial perturba-
tion are strongly related to the backdoor, ANP removes the
injected backdoor by identifying and pruning such neurons.
In [10], ANP is extended to the setting of diffusion models.
Following [10], we apply ANP to defend against (targeted)
DIFF2 on DDPM. We assume ANP has access to the full
(clean) dataset and measure DIFF2’s performance under vary-
ing ANP learning rates, with results summarized in Figure 11.
We have the following interesting observations.
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Figure 11: Effectiveness of ANP against DIFF2 (targeted attacks)
under varying learning rate.

Overall, ANP is effective against DIFF2 but at the substan-
tial cost of clean accuracy. For example, when ANP’s learning
rate is set at 5e-5, a decrease in ASR below 20% correlates
with a significant drop in clean ACC, falling below 25%. This
trade-off is even more evident for larger learning rates. For
instance, at a learning rate of 2e-4, while ASR approaches
nearly zero, clean ACC also plummets to around 10%. This
can be explained as follows. In DIFF2’s optimization (cf.
Eq. 6), the backdoor diffusion process is deeply intertwined
with the benign diffusion process. Recall that ANP attempts
to eliminate the backdoor by separating neurons sensitive to
the backdoor function. However, due to the entanglement be-
tween the backdoor and normal diffusion processes, pruning
invariably affects the utility adversely.

C.2 Alternative Trigger Designs
Figure 12 visualizes inputs embedded with blending-based
and warping-based triggers alongside clean inputs, their la-
tents, and their purified counterparts. Note that these triggers
produce less perceptible perturbations in the purified inputs
compared to the patch-based triggers shown in Figure 8.
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Figure 12: Original, diffused, and purified variants of clean and trigger inputs in DIFF2 with blending triggers (upper) and warping triggers
(lower).
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