
Lemon: Network-Wide DDoS Detection with Routing-Oblivious Per-Flow
Measurement

Wenhao Wu†‡, Zhenyu Li†‡∗, Xilai Liu†‡,
Zhaohua Wang§, Heng Pan§, Guangxing Zhang†, and Gaogang Xie§‡

†Institute of Computing Technology, Chinese Academy of Sciences
‡University of Chinese Academy of Sciences

§Computer Network Information Center, Chinese Academy of Sciences

Abstract

Network-wide DDoS (Distributed Denial-of-Service) de-
tection enables early attack detection and mitigates victim
losses. However, unpredictable routing of DDoS traffic will
invalidate the network administrator’s prior knowledge of
the network topology, causing existing sketch-based measure-
ment systems to suffer from packet over-counting and pro-
cessing stage mis-allocating issues. To address this gap, we
propose Lemon, a routing-oblivious, resource-friendly, and
scalable DDoS detection system that provides accurate detec-
tion of DDoS attacks without any assumption on the traffic
routing. Specifically, we design a novel data structure (Lemon
sketch) that supports over-counting-free and mis-allocating-
free measurements in the data plane. Lemon control plane
aggregates Lemon sketches from measurement points and
leverages per-flow level network-wide measurement results
for DDoS attack detection and victim identification. We im-
plement Lemon in both software switch (Bmv2) and pro-
grammable switch hardware (Tofino). The evaluation results
show that Lemon can achieve consistently high accuracy for
DDoS detection in various topology and traffic distribution
configurations.

1 Introduction

Currently, DDoS detection systems are usually deployed on
a downstream server or switch that near DDoS traffic con-
vergence links [25, 43, 47], where all attack traffic can be
observed. However, such near-victim detection fails to re-
spond to attacks before they reach the detector and wastes
resources on the routing paths to the victim [35,53,54]. There-
fore, detecting and mitigating DDoS traffic in upstream of
convergence links is an ideal strategy. In this context, admin-
istrators (e.g., ISPs) prioritize the overall state of the network
rather than focusing on individual measurement points. By
aggregating measurement results from multiple measurement

∗Corresponding author: Zhenyu Li.

points, administrators can obtain a comprehensive network-
wide view, facilitating network-wide DDoS detection and
minimizing victim losses.

Sketch-based measurement is particularly promising for
performing network-wide measurement. Rather than captur-
ing full packets or flows, sketches (e.g., CM-Sketch [17],
Univmon [45], Elastic [60], Tower [58] etc.) record per-flow
level information with compact probabilistic data structures.
Since the low communication overhead and low resource
consumption, Sketch-based DDoS attack detection is widely
adopted by existing systems [19, 46, 52, 62] and performs
well in resource-constrained scenarios (e.g., deployed in pro-
grammable switches or end hosts [34,44]). To further improve
the resource usage efficiency, some sketch designs [52, 60]
adopt multi-stage processing, where traffic flows are allocated
to different processing stages based on the flow size.

Existing sketch-based measurement systems [45, 46, 60]
face significant challenges in practice when performing
network-wide per-flow measurement. Specifically, measure-
ment results are collected from multiple measurement points,
necessitating the design of appropriate aggregation to pre-
vent distortion of the measurement results. Existing solu-
tions either assume the network’s routing paths or require
non-intersecting measurement results from multiple points.
For instance, Univmon [45] assumes that the routing is prior
knowledge and that each packet is only recorded by one point.

However, traffic routing is inherently dynamic, due to
factors such as redundant multi-path [7], QoS-driven rout-
ing [12, 56], and traffic engineering [29, 31]. As a result, col-
lecting exact routing information is prohibitively difficult in
practice. The dynamic changing of routing invalidates the
assumptions made by existing solutions and results in the fol-
lowing two issues that damage the accuracy of network-wide
measurement:
• Packet over-counting: Packets traversing multiple mea-

surement points are recorded multiple times, which leads
to over-counting of packets when being aggregated for
network-wide estimation.

• Stage mis-allocating: Individual measurement points only

DDoS traffic

B B

D D

D B Benign traffic

Attacker Victim

P2 P3

P1

(a) DDoS traffic from attackers enters the mea-
surement system through multiple paths.

View of P1:
DDoS Alert:

D D

D B B

None

View of P2:
DDoS Alert: None

D B BView of P3:
DDoS Alert: None

Local View of Measuring Points

1 False Negative

(b) DDoS traffic observed at each measurement
point is less than the pre-defined threshold, no
DDoS alert is triggered.

P1: D D
Network-wide View

D B B
D B B

P2:
P3:

DPer-flow:
Merging all results

Results
Collecting

44B

DDoS Alert: > 3 > 3
2 False Positive
B D

(c) Controller adds the measurement data from all
measurement points, causing benign traffic exceed
the DDoS threshold.

Figure 1: DDoS detection with network-wide measurement.

observe a small portion of traffic and thus may mistakenly
allocate the globally heavy flow to the processing stage for
small flows, leading to inaccuracy when aggregating.
To this end, obtaining an accurate network-wide view with

unknown topology and traffic routing (i.e., routing-oblivious
measurement) is more promising. A viable solution is uti-
lizing hash-based data structures, such as Hyperloglog [24]
and coupon collector [15, 55], as in [9, 10, 20]. By doing so,
a data packet will generate the same hash value at different
measurement points, so only one valid update will be gener-
ated when passing through multiple measurement points (e.g.,
updating the same bit of the bitmaps). Then the challenges
nail down to design a hash-based sketch data structure that
can accurately allocate processing stage according to global
statistics (as opposed to local statistics in Couper [52]).

In this paper, we propose Lemon, a routing-oblivious,
resource-friendly, and scalable network-wide DDoS detec-
tion system. To the best of our knowledge, Lemon is the first
solution that provides the per-flow level routing-oblivious
network-wide abstraction while maintaining resource friend-
liness and scalability. Central to our approach is the Lemon
sketch, a novel data structure with multiple layers that takes
the uniqueness of each packet to avoid packet over-counting
and uses globally consistent update operations to avoid stage
mis-allocating. Lemon sketch dynamically allocates units
with different sizes to accommodate both small flows and
heavy flows, enabling network-wide per-flow measurements
with very limited on-chip memory consumption (≈1MB).
Lemon control plane aggregates measurement results to con-
struct a precise network-wide view, thereby detecting network-
wide DDoS attacks by leveraging Lemon’s measurement out-
comes. Extensive experiments with real-world traces demon-
strate Lemon’s effectiveness in DDoS attack detection.

In summary, our main contributions are as follows:

• We propose a network-wide DDoS detection system—
Lemon, which can provide accurate detection of DDoS
attacks without any assumption on network topology and

traffic routing.
• We propose Lemon sketch for over-counting-free and

mis-allocating-free per-flow measurement. Lemon sketch
proves highly effective in enhancing network-wide DDoS
attack detection.

• We implement the Lemon prototype and make it publicly
available [1]. The experimental results show that, in com-
parison with the state-of-the-art solutions, Lemon improves
the F1 score of up to 20% and achieves consistently high
accuracy in various topology and traffic distribution.

2 Background and Motivation

2.1 Network-Wide DDoS Detection
Network-wide DDoS attack detection requires accurate mea-
surement of all traffic that is distributed across multiple mea-
surement points. However, the limited view of individual mea-
surement points and the lack of aggregation schemes hinder
the network-wide detection of DDoS attacks. We illustrate the
challenges of network-wide DDoS attack detection in Fig. 1,
where there are three measurement points in the network and
the threshold for DDoS attack detection is 31. Network-wide
DDoS detection with measurement results from these mea-
surement points suffers from two problems: 1⃝ False negative
problem caused by limited local view: the attack traffic vol-
ume in the local view of each measurement point may be
lower than the detection threshold and thus no DDoS alerts
will be triggered. 2⃝ False positive problem caused by the lack
of accurate aggregation: benign traffic volume may exceed
the threshold due to over-counting the packets that traverse
multiple measurement points.

To prevent errors in network-wide measurements, existing
approaches typically rely on restrictive assumptions about
network topology and routing. For instance, Univmon [45]
(which is leveraged by Jaqen [46] as its data plane) requires

1For illustration purpose, we assume volume-based detection [11].

Over-counting free Mis-allocating free

Count-Less [36] ✗ ✗

Jaqen [46] ✗ ✓
Couper [52] ✓ ✗

Lemon ✓ ✓

Table 1: Comparison of network-wide measurement ability
with existing sketch-based approaches.

packets to pass through only one measurement point, or, re-
quires precise information of traffic routing to aid in the ag-
gregation of measurement data by solving Integer Linear Pro-
grams (ILPs). However, accurately obtaining routing infor-
mation is not an easy task since routing is highly dynamic
in practice. Flows with the same source and destination may
follow different paths because of load balancing or fault toler-
ance [7]. Additionally, flows may also take non-default paths
to meet QoS requirements by user-side control [12, 56] or by
traffic engineering from operators [29,31]. As a result, routing
can change frequently—every few minutes or on demand. At-
tackers can also exploit these mechanisms to evade detection.
Motivated by these facts, the routing-oblivious measurement
holds greater promise in network-wide DDoS detection.

2.2 Motivation
We compare existing solutions for network-wide measure-
ment in Table 1 and summarize the two major issues when
applying them in practice.
Packet over-counting issue. In counter-based sketch sys-
tems [36,46,60,62], each time a packet from a particular flow
is processed, the corresponding counter is incremented. How-
ever, this approach neglects the uniqueness of each packet.
When the same packet passes through multiple measurement
points, it is counted independently at each point, leading to
multiple counts of the same packet in the aggregated network-
wide result. We show the per-flow measurement results of
Jaqen (Fig. 2(a)) and Count-Less (Fig. 2(b)), both of which
exhibit significant errors due to packet over-counting when
performing network-wide measurement2.
Stage mis-allocating issue. For optimized memory utiliza-
tion, the state-of-the-art sketch designs (e.g., Couper) [52]
often allocate different processing stages based on the size
of the flow. Specifically, small flows and heavy flows are pro-
cessed in different stages with different counting mechanisms.
For instance, in Couper [52] (see Fig. 3), small flows are ini-
tially tracked in the first layer using a bitmap, which requires
only a minimal number of bits. Once the bitmap capacity is
exceeded, the flow is transitioned to a HyperLogLog unit in
the subsequent layer, which consumes more memory but has

2The measurement task estimates the volume of each destination IP with
5M packets from [16] in 100 measurement points. The network setup follows
the setting in Accuracy vs. network scale of Section 6.4.

100 105

Flow size (packets)

0

5

4

3

2

1

R
el

at
iv

e
er

ro
r

Network-wide
Single point

(a) Jaqen (Univmon).

100 105

Flow size (packets)

0

5

4

3

2

1

R
el

at
iv

e
er

ro
r

Network-wide
Single point

(b) Count-Less.

100 105

Flow size (packets)

0

1

2

R
el

at
iv

e
er

ro
r

Network-wide
Single point

(c) Couper.

Figure 2: Per-flow estimating error in network-wide mea-
surement: Over-counting in Jaqen (a) and Count-Less (b);
Mis-allocating in Couper (c).

B B B

Not heavy flow!

Packet in

Layer 1:

B B B

Not heavy flow!

Packet in

Layer 1:

B B B

Is a heavy flow!

Network-wide Merging

Layer 1:

a hhea ffllo !
+ =

HLL

Have not record in layer2

Bitmap overflow

Point 1

Network-wide updating

P

P

Layer 2:

B

HLL

B B

Is heavy flow!

Layer 1:

Layer 2:

Allocating a bigger unit

Packet inP

Single point updating

Point 2

Figure 3: Network-wide measurement failed in Couper by
mis-allocating issue.

a larger counting range. For a heavy flow that is sufficiently
dispersed across the network, as in the case of DDoS attacks,
multiple nodes may independently mis-allocate this flow to
the stage that processes small flows with bitmap. Note that
the decision to which stage that a flow is allocated is based on
local statistics. As a result, during network-wide aggregation,
the corresponding bitmap can become overwhelmed3, as it
potentially records too many elements of a distributed heavy
flow. This leads to deviations between the measured results
and the actual traffic volume, as shown in Fig. 2(c).

Motivated by the issues that lead to inaccurate network-
wide DDoS detection, We design Lemon, a routing-oblivious,
resource-friendly, and scalable DDoS detection system.

3 Lemon Overview

3.1 Problem Scope

Threat model : Our focus is on volumetric DDoS attacks,
where attackers aim to exhaust the available bandwidth and
resources of the victim by flooding with a large volume of
DDoS traffic. In particular, we focus on scenarios in which
attack traffic adopts multiple routing paths to the victim (and
through multiple measurement points). The routing of attack
traffic remains unknown—the measurement points traversed
by each packet are unpredictable.

3A bitmap using linear counting algorithm will produce large estimating
error when too many bits are set to ones

Figure 4: Overview of the Lemon system.

Deployment scenario : We consider deployment scenarios
with multiple measurement points. We assume that the net-
work measurement points are programmable and that there
are sufficient measurement points to ensure each data packet
is observed at least once.

3.2 Design Goals

Network-wide DDoS attack detection consists of a centralized
control plane and multiple measurement points. Each mea-
surement point conducts individual per-flow measurements
and reports the results to the control plane. Utilizing data
structures that enable routing-oblivious measurement in the
data plane, the control plane aggregates these measurements
and subsequently performs DDoS detection based on the ag-
gregated data. It is worth noting that the control plane can
provide specific configurations (e.g., the IP ranges that are
interested by the operator) to the data plane. We have the
following design goals:

Goal 1: Routing-oblivious measurement. Network-wide
DDoS detection needs accurate per-flow estimation. Appro-
priate data structure and corresponding aggregation algorithm
are needed to overcome over-counting and mis-allocating
issues, thereby enabling routing-oblivious measurement.

Goal 2: Resource-friendliness. Measurement points have
limited hardware resources in the data plane and specific
computing paradigm (e.g., Intel-Tofino). We need to carefully
design the data structure to effectively utilize the computing
resource and meet the constraints of the programmable switch.

Goal 3: High scalability. The system should flexibly sup-
port typical measurement tasks and diverse detection al-
gorithms [26] (e.g., entropy-based and volume-based algo-
rithms). Therefore, we need to design a control plane that
can flexibly support the configurations of flow keys and the
deployment of diverse DDoS attack detection algorithms.

3.3 Lemon Architecture
We design Lemon to meet all the design goals. As shown in
Fig. 4, Lemon data plane consists of multiple measurement
points, and Lemon control plane is a centralized controller for
measurement results aggregation and DDoS detection.
Lemon data plane (Section 4) : The core of the data plane
is the Lemon sketch. Lemon sketch uses hash-based volume
estimation to consider the uniqueness of each data packet
to enable over-counting-free measurement (meeting Goal 1).
Under highly skewed network-wide traffic, Lemon can au-
tomatically allocate estimation units with different sizes for
small flows and heavy flows without using any local statistics.
By doing so, Lemon avoids the stage mis-allocating issue
(meeting Goal 1) and thereby improves resource utilization
efficiency (meeting Goal 2).
Lemon control plane (Section 5) : The centralized controller
collects Lemon sketches from all measurement points, and ag-
gregates them into a global Lemon sketch. The global Lemon
sketch provides network-wide measurement results for vari-
ous DDoS attack detection algorithms. Specifically, Lemon
is compatible with configuration methods similar to existing
sketch-based measurement systems and can provide reliable
network-wide measurement results for flexible DDoS detec-
tion and attack volume estimation (meeting Goal 3).

4 Lemon Data Plane

Lemon’s data plane records per-flow level information.
Specifically, given a flow identifier4, we can obtain the esti-
mated volume of this flow from the Lemon sketch. Differ-
ent from existing sketch-based measurement systems, Lemon
sketch uses globally-consistent updating operations to support
routing-oblivious measurement.

4.1 Preliminaries
Problem Definitions: Lemon data plane is composed of n
network measurement points, where each point i ∈ {1, ...,n}
can observed a subset of packets Pi = {p1, p2, p3, ..., pn}
of the network-wide traffic Pnet , where Pnet = ∪n

i=1Pi. Each
packet pi is represented as ⟨key f low,keypkg⟩, where key f low
is a flow identifier and keypkg is a unique packet identifier5

(e.g., sequence number or checksum.). Our goal is to use Pi
to estimate the packet count for each flow sharing the same
key f low in Pnet .
Strawman solutions: Given that each packet is uniquely
identified by keypkg, an effective strategy to prevent over-
counting involves reframing the packet counting as a per-flow

4The flow identifier can be flexibly defined according to the measurement
task, i.e., ⟨sIP,dIP,sPort,dPort,Protocol⟩ for per-flow volume estimation,
⟨sIP⟩ for source address frequency estimation.

5Previous works [21] [65] also suggest various methods to identify pack-
ets according to their header fields.

cardinality estimation problem. By employing a cardinality es-
timator for each flow, we can accurately get the packet volume
(i.e., the number of packets with different keypkg) of key f low
in Pnet . A strawman solution is to combine the Count-Min
(CM) sketch with HyperLogLog to achieve per-flow cardinal-
ity estimating, where each unit of the CM sketch is replaced
with a HyperLogLog structure. While this strawman solution
prevents over-counting during aggregation by per-flow cardi-
nality estimation, using HyperLogLog for every flow necessi-
tates significant memory resources. For instance, employing
a 262,144×2 size sketch with HyperLogLog structure of only
64 bytes leads to the memory usage of about 33MB, which is
beyond the on-chip memory on typical Tofino switches.

Building on this insight, an advanced idea involves dis-
tinct counting mechanisms for heavy and small flows. Small
flows are tracked within space-saving bitmaps. Once the
bitmap’s capacity is exceeded, the flow will recorded in a
HyperLogLog unit subsequently. However, as we discussed
in Section 2.2, such a solution (e.g., Couper [52]) fails in
providing accurate network-wide measurement tasks due to
stage mis-allocating issue.

4.2 Lemon Sketch Design

The underlying problem that causes the failure of strawman
solutions is its reliance on local statistics (i.e., the flow size
measured at a specific measurement point) to differentiate
between heavy and small flows. Motivated by this observation,
we adopt a globally consistent approach to distinguish the
type of flows. The core idea of Lemon sketch is hash-based
sampling, where the allocation of sketch units fully depends
on the hash result of each packet. Lemon sketch leverages
only hash results to adaptively allocate small flows and heavy
flows in different units (with different sampling rates).

Lemon sketch consists of multiple layers from layer1 to
layernlayer , as shown in Fig. 5. Each layeri consists of Ss

i units,
where each unit is a coupon collector (bitmap for linear count-
ing [55]) with Sb

i bits. Lower layers (with smaller i) have a
greater number of units compared to higher layers, with a
higher probability of packet entry into lower layers. Conse-
quently, small flows will be estimated in lower layers, while
heavy flows will be estimated in higher layers. Additionally,
the potential heavy-hitter key f low will be recorded in a hash
table Heavy. Lemon Sketch implements a globally consistent
update (detailed in Section 4.3) and adaptive estimator recon-
struction (detailed in Section 4.4) to restore different-sized
estimators for different-sized flows, while mitigating the error
caused by unit sharing (detailed in Section 4.5).

In Lemon, all measurement points use the same hash func-
tions for Lemon sketch updating. As such, the updates caused
by the same packet in different measuring points are the same.
Such property enables over-counting-free measurement and
mis-allocating-free aggregation in the control plane.

Lemon Sketch

1 1 0 10Bitmap:

Layer 1
Update

Layer 2 Layer nlayer

Key flow

Heavy

Key flow Key pkg

Packet in

Slot
Hash

Layer Hash
Select a layer to update

> T1 [T2,T1) [Tn,Tn-1)

2

1

3Bitmap Hash

0

Selected Unit

< Th
Hd

Hs

Hb

Figure 5: Lemon sketch design and updating.

4.3 Globally Consistent Updating

As shown in Fig. 5, for each packet with ⟨key f low,keypkg⟩,
Lemon sketch uses three hash functions to determine how
this packet updates Lemon sketch, where Hd is used to select
the layer to be updated, Hs selects the unit to be updated
in the layer, and Hb is used to update the bitmap bit in the
unit. 1⃝ Lemon first uses Hd to hash keypkg and obtain a hash
value hlayer in the range [0,Hd .max()], where Hd .max() is the
maximum value of Hd . Each Layeri in Lemon maintains a
corresponding hash threshold Ti (where T0 = Hd .max()), and
each Ti of layeri always satisfies:

Ti−1 > Ti (1)
Ti−2−Ti−1 > Ti−1−Ti (2)

Such constraint signifies that higher layers have a smaller
sampling rate. When hlayer∈[Ti,Ti− 1), Lemon sketch will
update layeri. 2⃝ Lemon uses Hs to hash key f low to obtain a
hash value hslot to determine which unit in the layer to update.
All layers use the same hash function, and finally hslot % Ss

i
is used to get the unit that needs to be updated. Consequently,
multiple units in lower layers sharing the same hslot % Ss

i
will collectively update the same unit in a higher layer (We
mitigate such collisions caused by unit sharing, detailed in
Section 4.5). 3⃝ In the selected unit, Lemon uses Hb to hash
keypkg to update the corresponding bit in the bitmap.

Algorithm 1 shows the update process of Lemon sketch.
Lemon first performs hash calculation (line 1-3), then finds the
layer to be updated according to hlayer (line 4-5), and selects
the corresponding unit in the layer to update the bitmap (line
6-9). If the hash value of the data packet is less than Th, Lemon
stores the key f low of this packet in Heavy (line 11-14).

Algorithm 1: Lemon sketch updating
Input: Packet with flow key key f low and packet key keypkg
Output: Updated Lemon sketch

1 hslot ← Hs(key f low)
2 hlayer← Hd(keypkg)
3 hbitmap← Hb(keypkg)
4 for each layer of Lemon sketch layeri do
5 if hlayer ∈ [Ti,Ti−1) then
6 indexslot ← hslot % Ss

i
7 indexbitmap← hbitmap % Sb

i
8 bitmap← layeri[indexslot]
9 if bitmap[indexbitmap] == 0 then

10 bitmap[indexbitmap]← 1
11 end
12 end
13 end
14 if hlayer ≤ Th then
15 indexh

slot ← hslot % Heavy.size
16 Heavy[indexh

slot]← key f low
17 end

4.4 Adaptive Estimator Reconstruction

Given a flow identifier key f low, Lemon queries the Lemon
sketch to get the estimated volume E of the flow with key f low.
As shown in Fig. 6, 1⃝Lemon first retrieves the corresponding
unit of key f low in all layers, resulting in nlayer bitmaps, each
of which in layeri has a sampling rate of Ti−1−Ti

Hd .max() . 2⃝Next,
Lemon checks the number of zeros for bitmaps from layeri
bottom-up, donated as Zi and finds out the first bitmap that
satisfies Zi ≥ Tz ·Sb

i , where Tz is a predefined threshold6. The
final estimated result E is expressed as:

E =−Sb
i · ln(Zi/Sb

i) ·
Hd .max()
(Ti−1−Ti)

(3)

We call the layeri of this bitmap the estimated layer, and
Ti−1−Ti

Hd .max() is called the best sampling rate of this flow. If no
bitmap satisfying the condition is found, it indicates that the
estimated value of the current flow exceeds Lemon’s max-
imum estimation range. This situation can be avoided by
setting a smaller sampling rate or larger bitmap size.

Algorithm 2 shows the query process. Lemon sketch first
gets units from each layer for key f low (line 1-9). Then it starts
from the lowest layer and searches for the first bitmap that
meets the condition (line 10-11). When it finds such a bitmap,
it calculates the final estimated value E (line 12-17). If no
such bitmap is found, it means that all layers have recorded
too many elements, and overflow is returned (line 19).

6We set Tz to 0.2 to avoid saturated bitmaps [52].

Algorithm 2: Lemon sketch query for flow size
Input: Flow identifier key f low
Output: Estimated flow size E and allocated layer L

1 hslot ← Hs(key f low)
2 bitmaps← nlayer size empty list
3 Tbitmap← pre-defined threshold
4 for each layer of Lemon sketch layeri do
5 if hlayer ∈ [Ti,Ti−1) then
6 indexslot ← hslot % Ss

i
7 bitmaps[i]← layeri[indexslot]

8 end
9 end

10 for i = 1 : nlayer do
11 Zi← bitmaps[i].Count_0()
12 if Zi ≥ Tz ·Sb

i then
13 E←−Sb

i · ln(Zi/Sb
i)

14 E← E · Hd .max()
(Ti−1−Ti)

15 L← i
16 return E, L
17 end
18 end
19 return over f low
20 # avoiding by setting large enough bitmap for layern

Layer 1 Layer 2 Layer n
Key flow

Get Units from each layer

0 1 0 00
Layer n

0

0 1 0 11
Layer 2

0
2

1
2

1 0 11
Layer 1:

1 0

0 0

Sample rate

(Tn-1 Tn)/H:

(T2 T1)/H:

(H-T1)/H:

1

2

Find best sample rate

Figure 6: Lemon sketch querying.

4.5 Collision Elimination
In Lemon sketch updating, multiple units in lower layers shar-
ing the same hslot % Ss

i will collectively update the same unit
in a higher layer. This results in collisions between multiple
flows. We demonstrate the method to eliminate errors arising
from these collisions. As shown in Fig. 7, multiple different
units in layeri−1 share the same unit in layeri. This means
flows f1 and f2 in 1⃝ will obtain the same unit in layeri when
being queried. This collision can be eliminated when the best
sampling rates of f1 and f2 are different (that is, f1 and f2
have different flow sizes and different estimated layers). With-
out loss of generality, we assume that 2⃝ f1 is a larger flow
with the best sample rate at layeri, while 3⃝ f2 gets the best
sample rate at layeri−1. In the estimation result, the estimated
value of f2 at a lower layer will not be affected by f1, and

f1 f1

Layer i-1

Layer i
Key flow

Get Units from each layer

1 LaL yer ii 11
f2

0 1 0 11
Layer i

1

1 1 0 11
Layer i-1 f1:

1

1 0 0 11
Layer i-1 f2:

4

2

Find best sample rate 3

Collsion eliminate

Layer n
Key flow

Figure 7: Eliminate collisions due to unit sharing.

the estimated value of f1 is the sum of f1 and f2. We can
eliminate this error by subtracting f2 from the estimated value
of f1

7. Note that collisions in f1 cannot be eliminated if f1
and f2 are estimated in the same layer. However, as we will
show in Section 4.6, the occurrence of this case is very rare.

Algorithm 3 shows how to eliminate collisions caused by
unit sharing. For a flow estimated in layeri, we identify the
index of all potentially shared units in Layeri−1 (line 1-7).
Then eliminate the error from the estimated value of each unit
in Layeri−1 (line 8-13).

4.6 Analysis
Since the flow collision rate directly affects the accuracy of

the Lemon sketch, we analyze the collision rate of each layer.
We care about in which layer will a flow be estimated and the
probability of collision within each layer.

In which layer will a flow be estimated? For this question,
we have the following theorem.

Theorem 1. For a flow key f low with N packets, its has a
probability of Pri that get the best sample rate in layeri of the
Lemon sketch, where Pri can be calculated as:

Pri = (1−
i−1

∑
j=0

Pr j) · (1−
⌊Tz·Sb

i ⌋

∑
j=0

(
j

Sb
i

)
B j · (1−B)Sb

i − j) (4)

where

B = (1− 1
Sb

i
)

N· (Ti−1−Ti)
Hd .max() (5)

Proof. The flow’s estimated layer is layeri only if two con-
ditions are met: 1) the bitmap in the corresponding unit in
layeri has enough zeros that Zi ≥ Tz · Sb

i after the update is

7In practice, the estimated value of f2 also includes the collision flows at
layeri−2 (record as fothers). We require that Ss

i−1 is set as the integer multiples
of Ss

i to ensure fothers also shares the same unit with f1 at layeri

Algorithm 3: Eliminate collision
Input: Flow identifier key f low
Output: Collision eliminated Estimated result E

1 E, L← Query(key f low)
2 hslot ← Hs(key f low)

3 for i ∈ [0, Ss
L−1
Ss

L
) do

4 indexslot ← i ·Ss
L +hslot % Ss

L
5 if indexslot == hslot % Ss

L−1 then
6 continue
7 end
8 bitmap← layerL−1[indexslot]
9 Z← bitmap.Count_0()

10 if Z ≥ T ·Sb
L−1 then

11 Ecollision←−Sb
L−1 · ln(Z/Sb

L−1) ·
Hd .max()

(TL−2−TL−1)

12 E← E - Ecollision
13 end
14 end
15 return E

completed. 2) the flow does not get best sample rate in lower
layers.

For the first condition, Since each packet is updated inde-
pendently. In the corresponding bitmap of layeri, the proba-
bility of the x-th bit is 0 after Ni times updated is:

B = Pr[bitmap[x] = 0] = (1− 1
Sb

i
)Ni (6)

where Sb
i is the size of bitmap in layeri. Ni is the number of

packets sampled into layeri. According to the sampling rate
of the i-th layer, Ni can be expressed as N · (Ti−1−Ti)

Hd .max() .
The number of zeros in bitmap follows a binomial distribu-

tion. Therefore, the probability that the number of zeros Zi in
the bitmap is greater than Tz ·Sb

i when update is finished is:

Pr[Zi > Tz ·Sb
i] = (1−

⌊Tz·Sb
i ⌋

∑
j=0

(
j

Sb
i

)
B j · (1−B)Sb

i − j) (7)

For the second condition, the probability that the flow has
not been estimated in a lower layer can be expressed as:

Pr[not in lower layer] = (1−
i−1

∑
j=0

Pr j) (8)

where Pr j is the probability that the flow gets best sample
rate in layer j. When the above conditions are met, the flow
will be estimated at layeri. Since each packet is updated inde-
pendently, Pri can be calculated as the product of Eq. (7) and
Eq. (8).

What is the probability of collision in each layer? For this
problem, the number of flows mapped to each unit of a layer

Figure 8: Probability of flow estimated in each layer.

follows a binomial distribution. Since this is a classic problem
in the sketch algorithm, we omit the proof process here. We
refer to the analysis in [60], and get the collision rate as:

Pr[collision in layeri] = 1− (
Ni

Ss
i
+1)e

−Ni
Ss
i (9)

where Ni represents the number of flows with estimated lay-
ers greater than Layeri (include layeri) and Ss

i represents the
number of units. For flows estimated in lower layers, their
influence on Layeri can be eliminated. Under proper parame-
ter configuration, the collision rate can be kept at a low level
(less than 0.5% when Ni

Ss
i

is 0.1).

Case study: To illustrate the analysis result more clearly, we
analyze the Lemon sketch with the following configuration:
Lemon sketch with 5 layers, where Ti holds in each layer
is 16,384, 4,096, 1,024, 256, and 0; The number of units Ss

i
in each layer is 524,288, 65,536, 8,192, 2,048, and 1,024;
The bitmap size Sb

i of each layer is 8, 32, 32, 32, and 512.
Which is the same configuration as we used in the evaluation
(in Section 6). We show how flows of different sizes are
separated in this Lemon sketch. As shown in Fig. 8, Lemon
sketch effectively segregates flows with different sizes into
different layers (e.g., flows with size over 10k are estimated
in layer5 and with size less than 10 is estimated in layer1).

We use such Lemon sketch to conduct volume estimation
for each destination IP with 5M packets from MAWI [16].
There are over 200k different destination addresses that need
to be estimated and a few with large volumes (over 600k
packets). In the aforementioned Lemon sketch, the number of
flows in each layer (estimated in this layer or greater than this
layer) is 222,470, 6,463, 360, 183, and 99; and the probability
of collision at each layer is 7.2%, 0.55%, 0.29%, 0.86%, and
0.44%. It is demonstrably clear that the collision rate at each
layer is minimal, with the incidence of collisions beyond the
initial layer being negligible (collision rate is below 1%).

5 Lemon Control Plane

Lemon control plane consists of a centralized controller.
The controller collects Lemon sketches from all measurement

Result from measurement point 1 Result from measurement point 2

f1

11 00 00 10 1 0 00 11 00 10 1 0

Lemon Controller

11 11 00 10 1 0

Network-wide Lemon sketch

f1

Collecting
Lemon sketches

2 Per-slot merge

1

3
Get Flow ID

Figure 9: Aggregation for two measuring points.

points in the network-wide and aggregates them into a global
Lemon sketch. We then explain how the Lemon controller
configures measurement tasks.

5.1 Results Collecting and Aggregation
Similar to other sketch-based DDoS detection systems [59],
the Lemon controller collects data from various measurement
points at regular time intervals. We refer to such time interval
as a measurement epoch. At the end of each measurement
epoch, Lemon controller collects local Lemon sketches from
measurement points and merges the sketches into a global
Lemon sketch. It then detects potential DDoS attacks from
the past epoch and identifies the victim IP addresses.

Fig.9 illustrates the process of aggregating Lemon sketches
from measurement points to a global Lemon sketch. The
controller performs the following steps: 1⃝Collects all Lemon
sketches from the data plane. 2⃝For each layer in the Lemon
sketch, the controller applies an OR operation to bitmaps with
the same layer and same unit index, then places the result into
the corresponding position of the global Lemon sketch. 3⃝For
the key f low kept in Heavy, we directly save key f low to global
Lemon sketch. If the flow key stored in Lemon sketches of
different measurement points differs8, we estimate the local
volume for each flow key and incorporate the flow key with the
larger estimated value into the network-wide view. Since the
same hash functions are used across all measurement points,
the same data packets have the same updating behavior in
each measurement point, thereby avoiding the over-counting
problem in Lemon sketch aggregation.

5.2 Measurement Tasks Configuration
We illustrate the Lemon control flow and configuration
method in Fig.10. Lemon deploys DDoS detection tasks by
modifying the definition of key f low and keypkg in the data

8Different flow key means flow collision in the Heavy, and the collision
rate is low because most of the flows do not sample to Heavy.

Lemon controller

Lemon
sketch

sIP dIP sPort dPort ID

sIP dIP sPort dPort ID

Flow Key Selection

Packet Key Selection

Layer Hash

Slot Hash

Bitmap hash
Key Selection

Packet Key

Flow Key

Data plane

Control plane

Key Configuration Results collection

titi

Protocol

Protocol

Figure 10: Measurement tasks configuration.

plane. Specifically, Lemon uses a set of registers in the data
plane to maintain a mask for each field in the packet header.
The control plane only needs to modify the value of the
mask in the register to implement customized key f low and
keypkg. For example, when measuring the volume of each
flow, Lemon controller sets the five-tuple (source address,
destination address, source port, destination port, protocol) to
be valid in the mask of the flow key and set the packet key as
a unique packet identifier9.

Lemon can support typical network measurement tasks
by configuring specific key f low and keypkg, including per-
flow volume estimation, per-flow cardinality estimation, en-
tropy estimation, etc. In the following section, we detail the
configurations for these measurement tasks and demonstrate
measurement-based DDoS attack detection.

5.3 DDoS Detection
DDoS attacks alter statistical indicators in the network [49],
and detecting changes in these indicators enables DDoS de-
tection. Lemon offers flexible support for statistics-based
DDoS detection methods. We present three typical use cases
of Lemon, along with the intuitions behind them.
Volume-based detection. A basic characteristic is that the
victim experiences an excessive influx of DDoS packets from
the network. Therefore, the volume-based detection method
identifies DDoS victims subjected to abnormally high packet
volumes, which is widely adopted in sketch-based measure-
ment systems [46] [23] [4] [51]. Lemon configures the key f low
as the destination IP and keypkg as the per-packet unique iden-
tifier, and stores the potential victim with high volume in
Heavy (with the sample rate defined by Th).
Cardinality-based detection. For DDoS attackers that ex-
ploit distributed hosts (e.g., botnet [6]) to send traffic to the
victim. The cardinality of unique source IP contacting with

9We use the checksum of the IP header and TCP/UDP header, along with
the first 16 bits of the payload, as a per-packet identifier.

the same destination IP will increase, and DDoS victims con-
tacted by an unusually high number of source IPs are iden-
tified [19]. Lemon configures the key f low as the destination
IP and keypkg as the source IP, and stores the potential victim
in Heavy (with sample rate defined by Th). This configura-
tion is similar to volume-based detection in Lemon. However,
we distinguish them because previous sketch-based systems
require entirely different data structures for these two tasks
(e.g., CM-Sketch for volume estimation and HyperLogLog
for cardinality estimation).

Entropy-based detection. DDoS traffic from attackers will
increase the entropy of the source address [18]. We can iden-
tify the change in the entropy to detect DDoS attacks effec-
tively [18]. To achieve this, key f low is configured as the source
IP. Lemon traverses all possible hslot , and then performs subse-
quent query operations (line 4-18 in Algorithm 2). Afterward,
the address frequency distribution can be obtained by MRAC
algorithm [38]. Finally, The entropy of the source IP can be
calculated from the address distribution.

In addition to the above detection methods, Lemon’s mea-
surement results can flexibly support existing mechanisms
(e.g., combination of multiple measurement indicators), which
we discuss in Section 7.

5.4 DDoS Mitigation

In-network mitigation. Lemon directly perform rate-
limiting and drop from native programmable switch oper-
ation [27] like existing network measurement systems [46].
Lemon’s DDoS attack mitigation depends on the configu-
ration of the control plane access control list. For example,
with volume-based DDoS detection, Lemon directly performs
rate limit for the traffic to the victim (destination IP as flow
keys) or mitigates DDoS traffic by dropping flows from high-
volume sources (source IP or source-destination IP pairs as
flow keys).

Integration with existing mechanisms. Lemon can be
leveraged to enhance existing victim-near DDoS mitigation
and traffic cleaning mechanisms. In practice, network man-
agers usually deploy traffic-cleaning services in specific
points [41, 50]. Lemon acts as an upstream measurement sys-
tem, and only reroutes suspicious traffic to the downstream
infrastructure that performs traffic cleaning (e.g., with deep
learning-based packet classification [5, 33, 61]), which signifi-
cantly reduce the amount of traffic that needs to be cleaned.
Some victim neared mechanisms (e.g., Poseidon [62], Bo-
hatei [22]) also assume that the DDoS victim is known a
priori. Such mechanisms benefited from Lemon’s early detec-
tion results to get the network status and potential victims.

6 Evaluation

We have built a Lemon prototype with P4 in Bmv2 (about
470 lines of P4) and in programmable switch hardware [2]
(about 580 lines of P4), and implemented Lemon control
plane with Python. We evaluated the performance of Lemon
using a variety of DDoS attack scenarios. We summarize the
following experimental results:

• Lemon is able to achieve effective DDoS attack detection
(F1> 0.9 with 10% DDoS attack volume) and accurate
attack volume estimation (relative error< 0.02) in network-
wide DDoS detection, demonstrating robust performance
over different network topologies (Section 6.2).

• DDoS detection performance of Lemon remains robust
against address spoofing. The incorporation of multiple de-
tection methods (i.e., cardinality-based and entropy-based
approaches) can enhance the effectiveness in identifying
DDoS attacks (Section 6.3).

• Lemon achieves better performance in per-flow volume es-
timation with different flow distributions and flow keys
and shows consistent performance under different network
scales (Section 6.4).

• Lemon can meet the resource constraints of programmable
switch ASIC with minimal resource consumption (0.35%
TCAM and 10.31% SRAM) (Section 6.5).

6.1 Experimental Setup

Background traffic. We generate mixed traffic of back-
ground traffic and DDoS attacks to evaluate the DDoS de-
tection performance of Lemon. We utilized traces from real-
world ISP networks [16] as background traffic, encompassing
over 5 million packets per epoch (about 7Gbps background
traffic for the measurement epoch lasting 5 seconds). There
are approximately 200k unique destination IP addresses in
one measurement period.
DDoS attack traffic. Following the evaluation setup of prior
studies [46], we conducted UDP flooding attacks and varied
the volume of attack traffic (ranging from 0.1% to 10% of
total traffic). For the experiments in Section 6.2, we launch
attacks against the same victim address (randomly selected
in the background traffic), and the attack traffic is generated
with random sources (each packet source is randomly chosen
from public IP addresses). For the genericity experiments
in Section 6.3, we modified the number of attack sources to
investigate the impact of source spoofing (or botnet) on victim
detection and modified the victim (from a single victim IP to
subnets) to evaluate the impact of destination spoofing (i.e.,
carpet bombing [13, 32]).
Topologies and measurement points. Mixed traffic will pass
through multiple measurement points of Lemon (with routes
unknown to the control plane). All nodes in the network per-
form as the measurement points since measurement systems

P1 P2

S1

(a) [T2] Serial.

P1

P2

S1

(b) [T3] Parallel.

P2 P3

P1S1

(c) [T4] Mixed.

Figure 11: Controlled topologies [T2]-[T4]. S1 distributes
mixed traffic to measurement points P1-P3.

[T1] [T2] [T3] [T4] Abilene CANARIE
Network topology

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

F1
-s

co
re

Lemon Jaqen Couper

Figure 12: Comparison of DDoS detection performance.

are typically integrated with routing devices10. We designed
the following topology configure and traffic routing scenarios,
including controlled network topologies ([T1]-[T4]) to illus-
trate the cause of error in DDoS detection; and the scenarios
with real-world ISP topologies (Abilne and CANARIE).

• [T1]: Single point. There is only one measurement point
in the network and all packets will pass through this point
once.

• [T2]: Serial points. There are two serial points organized
as in Fig. 11(a), and each packet will be observed by both
measurement points, resulting in over-counting issue.

• [T3]: Parallel points. There are parallel measured points
as in Fig. 11(b). Packets will enter the two measurement
points evenly, each point only observes a part of the traffic.

• [T4]: Mixed situation. The topology consists of three points
as shown in Fig. 11(c). This configuration is the simplest
combination of parallel points and serial points.

• Abilene [37]: Abilene topology has 12 measurement points.
Each packet randomly selects a point to enter the network
and be randomly forwarded (with hop limit is 5).

• CANARIE [14]: CANARIE topology has 28 measurement
points. Each packets randomly select a point to enter the
network and be randomly forwarded (with hop limit is 15).

Evaluation metrics: DDoS detection performance is mea-
sured with F1-score (F1) [28]. We also use Relative Error
(RE) to evaluate the accuracy of attack volume estimation.

10For scenarios that only part of nodes are measurement points, each packet
(to be measured) should pass at least one measurement point.

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

0

0.2

0.4

0.6

0.8

1

F1
-s
co
re

Lemon
Jaqen
Couper

(a) F1 in [T1].

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

0

0.2

0.4

0.6

0.8

1

F1
-s
co
re

Lemon
Jaqen
Couper

(b) F1 in [T2].

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

0

0.2

0.4

0.6

0.8

1

F1
-s
co
re

Lemon
Jaqen
Couper

(c) F1 in [T3].

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

0

0.2

0.4

0.6

0.8

1

F1
-s
co
re

Lemon
Jaqen
Couper

(d) F1 in [T4].

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

0

0.2

0.4

0.6

0.8

1

F1
-s
co
re

Lemon
Jaqen
Couper

(e) F1 in Abilene.

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

0

0.2

0.4

0.6

0.8

1

F1
-s
co
re

Lemon
Jaqen
Couper

(f) F1 in CANARIE.

Figure 13: DDoS detection performance.

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

-1

0

1

R
el

at
iv

e
er

ro
r

Lemon
Jaqen
Couper

(a) Error in [T1].

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

-1

0

1

R
el

at
iv

e
er

ro
r

Lemon
Jaqen
Couper

(b) Error in [T2].

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

-1

0

1

R
el

at
iv

e
er

ro
r

Lemon
Jaqen
Couper

(c) Error in [T3].

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

-1

0

1

R
el

at
iv

e
er

ro
r

Lemon
Jaqen
Couper

(d) Error in [T4].

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

-2

-1

0

1

2

R
el

at
iv

e
er

ro
r

Lemon
Jaqen
Couper

(e) Error in Abilene.

0 0.02 0.04 0.06 0.08 0.1
Share of DDoS traffic overall

-2

-1

0

1

6

7

R
el

at
iv

e
Er

ro
r

Lemon
Jaqen
Couper

(f) Error in CANARIE.

Figure 14: Attack volume estimating error.

We use Weighted Absolute Percentage Error (WAPE) 11 to
evaluate the accuracy of per-flow volume estimation.
Baselines : We compare Lemon with the state-of-the-art
sketch based solutions, including:
• Jaqen [46]: an UnivMon-based DDoS detection system. It

uses volume-based DDoS detection (i.e., to check whether
the number of packets with the specified flag exceeds the
pre-defined threshold). We get a network-wide view by
summing Jaqen measurement results.

• Couper [52]: a data structure that supports per-flow cardinal-
ity estimation. It uses bitmaps to estimate small flows, and
HyperLoglog to estimate heavy flows. The bitmap is set
as 16 bits, and the size of each HyperLoglog is 64 bytes.
We set the number of bitmaps to be consistent with layer1
of Lemon to ensure enough bitmaps to handle small flows
and set the number of HyperLoglog consistent with layer5
of Lemon for estimating heavy flows.

Settings and DDoS detection method : In our experiments,

11Ratio of Mean Absolute Error (MAE) and Mean value of ground truths.

0

1

2

7

104 103 102 101

Number of attack sources

0.4

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

Lemon F1 Jaqen F1 Couper F1 Lemon RE Jaqen RE Couper RE

0

1

2

7

Er
ro

r o
f v

ol
um

e
es

tim
at

in
g

/24 /26 /28 /30
Prefix of victim subnet

0.4

0.5

0.6

0.7

0.8

0.9

Er
ro

r o
f v

ol
um

e
es

tim
at

in
g

F1
-s

co
re

Figure 15: DDoS detection performance under source spoof-
ing and carpet bombing.

Lemon sketch is set with five layers. Where Ti for each layer
is 16,384, 4,096, 1,024, 256, and 0; The threshold Th is 256 to
record the f lowkeys that estimated in layer5; The number of
units for each layer Ss

i is 524,288, 65,536, 8,192, 2,048, and
1,024; The size of bitmap in each layer Sb

i is 8, 32, 32, 32,
and 512. We set key f low as the destination IP and keypkg as
the unique per-packet identifier. Unless otherwise specified,
Lemon and all baselines adopt volume-based DDoS detec-
tion, with the same detection threshold as 0.5% (Following
settings in Jaqen). Note that the performance of DDoS de-
tection is only affected by the accuracy of the network-wide
measurement.

6.2 DDoS Detection Accuracy

Overall performance (Fig. 12). We first compare the overall
detection accuracy in Fig. 12 for each scenario. The F1-score
is the average value when the DDoS volume accounts for over
0.5%. Lemon consistently demonstrates the best detection
performance, unaffected by changes in topology and routing
configurations. Compared to Jaqen, Lemon performs similarly
in scenarios [T1] and [T3], as these scenarios do not involve
over-counting. However, in scenarios [T2] and [T4] where
over-counting is occurring, Lemon’s attack detection perfor-
mance is significantly better than Jaqen. The over-counting
issue causes flows in background traffic to mistakenly ex-
ceed the DDoS detection threshold, resulting in higher false
positives and a lower F1 score. The results of Jaqen deteri-
orate significantly as the network topology becomes more
complicated in Abilene and CANARIE. Compared to Couper,
Lemon demonstrates superior performance in all attack sce-
narios, which is attributed to the higher accuracy of per-flow
volume estimating. Couper’s error was primarily due to us-
ing local information to process flows (As we introduced in
Section 2.2), which resulted in the stage mis-allocating issue.
Performance with attack volume (Fig.13). Generally,
higher attack volume will make DDoS attacks easier to de-
tect. Lemon consistently outperforms the other baselines in
DDoS detection due to its accuracy in network-wide per-flow
measurement. When the DDoS attack volume is 10%, Lemon
achieves an F1 of over 0.9. Jaqen’s error is caused by over-
counting, which leads to excessive flow volume estimations,

101 102 103 104

Number of spoofed sources

0

0.7

0.8

0.9

1

F1
-s

co
re

Volume
Cardinality

(a) Performance in volume-based
and cardinality-based detection.

0.1

0.2

0.3

0.4

En
tro

py
 e

st
im

at
io

n
er

ro
r

101 102 103 104

Number of spoofed sources

7

7.5

8

8.5

9

En
tro

py
 o

f s
ou

rc
e

IP

Normal
Under DDoS
Estimating error

(b) Entropy of source IP under DDoS
attacks.

Figure 16: Performance for different Lemon configurations.

with a remarkable performance drop in DDoS detection of
[T2], [T4], Abilene, and CANARIE. Couper, on the other
hand, suffers from stage mis-allocating issue, which is partic-
ularly pronounced in larger networks.
Performance of attack volume estimation (Fig.14). We
further illustrate the relative error of attack volume estima-
tion. Lemon consistently achieves accurate volume estimation
of attack traffic within each scenario. In contrast, Jaqen ex-
hibits significant over-counting issues in scenarios [T2], [T4],
Abilene, and CANARIE, resulting in the estimated result of at-
tack volume substantially higher than the actual values. While
Couper performs more accurately than Jaqen and mitigates
the over-counting problem to some extent, its estimates are
smaller than the actual values because of mis-allocating.

6.3 Resilience to Address Spoofing

To evaluate the resilience of Lemon to IP-spoofed traffic,
we consider the DDoS detection performance with source
spoofing and destination spoofing (with CANARIE topology).
The setups follow the pattern in the previous part and DDoS
attack volume account for 5% of background traffic. We then
modify the attack traffic by using: (i) Source spoofing. We
modify the attack source, the number of spoofed IPs ranges
from 10 to 10k; and (ii) Destination spoofing (i.e., carpet
bombing). The attack targets the /24 to /30 destination prefix
instead of a single IP. The results are shown in Fig.15.
Source spoofing. The detection accuracy of all methods re-
mained relatively stable since we used destination IP to find
victims in DDoS detection. Lemon always achieves better
performance against baselines. Nevertheless, source spoof-
ing will affect certain detection methods. We further evaluate
the impact of source spoofing on different detection meth-
ods. Fig.16(a) illustrates performance using the cardinality-
based DDoS detection12. When the number of spoofed IPs
is less than 100, cardinality-base approach cannot detect
DDoS since the cardinality of attack sources does not sig-
nificantly change. When the number of spoofed IPs exceeds
1,000, cardinality-based method outperforms the volume-

12Threshold is 0.05% of the total number of distinct sIPs, following [19].

100 102 104

Flow size (packets)

0.4

0.6

0.8

1

C
D

F

sIP
dIP
sIP-dIP
five-tuple

(a) CDF for different flow keys.

100 102 104

Flow size (packets)

0.4

0.6

0.8

1

C
D

F

Skewness-1.0
Skewness-1.5
Skewness-2.0
Skewness-2.5

(b) CDF for different Zipf skewness.

Figure 17: Distribution of flow size.

sIP
(38715)

dIP
(229574)

sIP-dIP
(492402)

five-tuple
(829497)

Flow keys (# number of flows)

0

1

2

3

4

5

6

W
AP

E

Jaqen Couper Lemon

(a) Performance in flow keys change.

1.0
(600)

1.5
(20000)

2.0
(600000)

2.5
(2500000)

Zipf skewness (# number of flows)

0

2

4

6

8

10

12

W
AP

E

Jaqen Couper Lemon

(b) Performance in FSD change.

Figure 18: Per-flow measurement error.

based detection. Fig.16(b) demonstrates entropy-based de-
tection, which reflects the overall network status without iden-
tifying specific victims. As the number of spoofed IPs in-
creases, the entropy of source addresses rises significantly,
which indicating DDoS can be more likely to be detected.
Destination spoofing. We counter destination spoofing by
changing key f low from destination IP to destination subnet
(e.g., for /24 carpet bombing, we estimate the volume of each
/24 prefix). The performance of Lemon is not affected by
the /28 and /30 carpet bombings. When the subnet is further
expanded, the accuracy of all methods decreases. Compared
with all baselines, Lemon can achieve better performance,
which comes from accurate network-wide measurement.

6.4 Per-Flow Measurement Accuracy

As the number of flows in the network increases, the collision
in Lemon sketch tends to rise. This section investigates the
per-flow measurement performance of Lemon sketch under
more complex flow keys and larger workloads. The experi-
ments in this section are conducted in [T4] with: (i) Com-
plex flow keys: including source address, destination address,
source-destination IP pair, and five-tuple to perform per-flow
volume estimation with 5M packets from MAWI [16]. (ii)
Network traffic with different flow size distribution (FSD):
We create traces that follow Zipfian (Zipf) flow size distri-
bution with skewness from 1.0 to 2.5 (following the method
in [36]), where each trace contains 5M packets. We use source

(a) Estimating error for sIP

100 102 104

Flow size (packets)

0

2

4

6

8

10

R
el

at
iv

e
er

ro
r

Jaqen
Couper
Lemon

(b) Estimating error for five-tuple

Figure 19: Estimating error with flow size.

IP addresses as flow key for volume estimation and the num-
ber of flows (distinct sources) reaches up to 2.5M (skewness
of 2.5). The distribution of flow size with complex flow keys
and generated traces are shown in Fig.17(a) and Fig.17(b),
respectively.
Accuracy vs. flow keys (Fig.18(a)). Lemon consistently
demonstrates the lowest error across all flow key types. When
the five-tuple is used as the flow key, the WAPE of all systems
increases due to the increased collision rate. Nevertheless,
Lemon achieves a much lower WAPE compared to Jaqen and
Couper, demonstrating its scalability for different key sets.
Accuracy vs. traffic skewness (Fig.18(b)). Lemon consis-
tently achieves the lowest error across all traffic skewness,
highlighting its robustness in handling highly skewed traf-
fic distributions. With the most challenging skewness of 2.5,
where the number of flows is highest, Lemon maintains the
lowest WAPE against baselines. This indicates Lemon’s better
performance under extreme conditions.
Accuracy vs. per-flow size (Fig.19). Fig.19 illustrates the
per-flow estimating error under different flow key configura-
tions (sIP and five-tuple). Lemon demonstrates a more sig-
nificant advantage in the middle range of flow sizes against
Couper. This is attributed to Lemon’s mis-allocating-free
property, which efficiently allocates resources to reduce con-
flict in mid-sized flows. Additionally, Lemon’s multi-layer
structure ensures that while small flows might experience
conflicts in the lower layers, the accuracy for large flows in
higher layers almost remains unaffected.
Accuracy vs. memory usage (Fig. 20(a)): We analyze the
performance change with different memory usage by propor-
tionally varying the number of units in each layer (with per
five-tuple volume estimation of 5M packets from MAWI).
Lemon consistently achieves better per-flow estimation accu-
racy. Notably, when the memory usage is small (≤0.4MB),
Lemon’s WAPE reaches its maximum due to flow collision
caused by the insufficient number of units.
Accuracy vs. network scale (Fig. 20(b)- 20(d)). To fully in-
crease the network scale and routing randomness, we consider
extreme scenarios involving full-mesh topology with 50 and
100 measurement points. Each packet randomly selects an en-
try point and is subsequently randomly forwarded (with hop

0.4 0.6 0.8 1.0 1.2
Memory usage (MB)

0

5

10

15

20

25

30

W
AP

E

Jaqen
Couper
Lemon

(a) Performance with memory usage.

100 105

Flow size (packets)

5

4

3

2

1

0

R
el

at
iv

e
er

ro
r

Network-100 points
Network-50 points
Single point

(b) Performance of Jaqen with differ-
ent flow size and network scale.

100 105

Flow size (packets)

0

0.5

1

1.5

2

2.5

R
el

at
iv

e
er

ro
r

Network-100 points
Network-50 points
Single point

(c) Performance of Couper with dif-
ferent flow size and network scale.

100 105

Flow size (packets)

0

2

4

6

8

10

R
el

at
iv

e
er

ro
r

Network-100 points
Network-50 points
Single-point

Estimation results
unchanged

(d) Performance of Lemon with dif-
ferent flow size and network scale.

Figure 20: Performance with memory and network scale.

sIP dIP sIP-dIP five-tuple
Flow keys

5

4

3

2

1

Le
m

on
 s

ke
tc

h
la

ye
rs

Workload in each layer

0.208

0.330

0.169

0.148

0.199

0.131

0.151

0.438

0.391

0.606

0.271

0.286

0.939

0.532

0.858

0.352

0.501

1.582

0.119

0.074

(a) Workload with flow key change.

1.0 1.5 2.0 2.5
Zipf skewness

5

4

3

2

1
Le

m
on

 s
ke

tc
h

la
ye

rs

Workload in each layer

0.151

0.112

0.253

0.250

0.116

0.609

0.862

0.600

0.936

1.144

0.147

0.379

0.335

2.786

4.768

0.035

0.007

0.001

0.059

0.038

(b) Workload with FSD change.

Figure 21: Lemon workload in each layer.

limit of 5). We investigate the accuracy changes of per-flow
volume estimation (per five-tuple of 5M packets from MAWI).
These large-scale networks exacerbate the over-counting issue
in Jaqen and the mis-allocating in Couper. In contrast, Lemon
employs a globally consistent update mechanism, ensuring
that the error in per-flow estimation remains unaffected.

Workload across layers (Fig.21). We define the workload
of layeri as the ratio of the number of flows estimated in (or
higher than) this layer to the number of units Ss

i . Fig.21 shows
that lower layers of Lemon experience more collision due to
the dense distribution of smaller flows. Nevertheless, higher
layers remain relatively unaffected, effectively handling the
larger flows with minimal collision. In practical deployments,
we recommend increasing the number of units Ss

i of the layer
with a higher workload.

Resource Percent

Meter ALU 14.58%
Hash Bit 4.51%
TCAM 0.35%
SRAM 10.31%

Table 2: Resources usage in programmable switch.

6.5 Hardware Resource Consumption
Table 2 shows the hardware resource usage with the hard-
ware version of Lemon. Lemon sketch can meet the hardware
resource constraints of programmable switches that only oc-
cupy 10.31% of total SRAM, and 0.35% TCAM. There are
still adequate resources for other network functions.

7 Discussion

Duplicate packets detection. Lemon addresses the over-
counting issue by leveraging unique packet identifiers derived
from packet headers. However, potential attackers might at-
tempt to evade detection by mixing duplicate packets with
the same packet identifiers into DDoS traffic. To address
this issue, we employ an approach by deploying a Count-
Min (CM) sketch for per-flow packet counting alongside the
Lemon sketch in the data plane as shown in Fig.22. Given
Lemon’s minimal resource usage (Section 6.5), deploying
additional data structures concurrently is feasible. For a flow
with key f low, we will obtain two estimated results from the
data plane at measurement point i, where Ei is the results from
the Lemon sketch, representing the cardinality of different
keypkg in the flow; and Ci is the result from the CM sketch,
representing the number of all packets. The network-wide
aggregate result Enet of all Ei can be obtained from the global
Lemon sketch. According to the method proposed in [20], we
reconstruct final estimating result E ′net as:

E ′net =
Enet

n
·

n

∑
i=1

Ci

Ei
(10)

where n is the number of measurement points. When each
packet has a unique keypkg, Enet ≈ E ′net . In the case of dupli-
cate packets in the network, Enet < E ′net ; then taking E ′net as
the estimate will be more accurate.
Enhance existing mechanisms. As a fundamental measure-
ment framework, Lemon’s flexible measurement task config-
uration enables the collection of necessary network features
for existing mechanisms, thereby supporting more complex
detection and mitigation strategies.
• Patronum [57] measures entropy changes (detect attacks

from botnets) and volume changes (detect heavy hitters).
Such mechanism can be implemented by combining the

Lemon sketch
Point i

Control plane

Count-Min Sketch

1 2 2
duple packets

E

C

Computing Network-
wide estimating result

Get results from measuring points

i

i

Figure 22: Handling duplicate packets in the network-wide.

volume-based and entropy-based methods by Lemon, giv-
ing Patronum network-wide detection capabilities.

• For DDoS attack detection based on machine learning or
large language models [42], Lemon can collect per-flow
level features as the input of such mechanisms.

8 Related Work

Sketch-based DDoS detection. Existing measurement sys-
tems extensively utilize sketches (e.g., CM-Sketch [17],
UnivMon [45], Elastic [60], CoCoSketch [63]) in the data
plane to obtain network status efficiently. Sonata [30] in-
troduced an architecture that leverages control plane primi-
tives to flexibly deploy network measurement tasks alongside
sketches in the data plane. Following Sonata, numerous sub-
sequent studies have enhanced the data plane and control
flow [39,45,46,48,64]. Among them, UnivMon [45] explores
the use of sketch-based measurement systems in the context
of network-wide measurements. Jaqen [46] leverages Uni-
vMon as the data plane to build a DDoS attack detection
system for ISP networks with multiple measurement points.
Nevertheless, it assumes that the routing of packets is a prior
knowledge to avoid packet over-counting issue. This assump-
tion indeed does not hold in practice as we have analyzed.
Routing-oblivious measurement. Some studies have pro-
posed routing-oblivious measurement methods to adapt to
frequent routing changes. These works use hash-based proba-
bilistic data structures that map identical packets to the same
hash value across different measurement points. AROMA and
SAROS [8, 40] utilizes a k-partition hash structure, and IN-
VEST [20] employs HyperLogLog for network-wide volume
estimation. While these solutions mitigate the over-counting
issue, they are primarily designed for specific measurement
tasks (e.g., heavy-hitter detection) and cannot provide fine-
grained, per-flow measurements as sketch-based systems do.
For instance, AROMA and SAROS can only estimate the
volume of heavy-hitters, while INVEST only estimates the
throughput of the entire network, and does not provide further
information at a per-flow level. For per-flow level measure-
ments, Beaucoup [15] reports flows exceeding a predefined
threshold by allocating bitmaps to each flow (i.e., couper
collector), but cannot estimate the exact flow size, which is

important for DDoS detection. Couper [52] performs per-flow
cardinality estimation but suffers from stage mis-allocating is-
sue, as illustrated in Section 2.2. In contrast, Lemon achieves
accurate routing-oblivious per-flow measurement for network-
wide DDoS detection.

9 Conclusion

Network-wide DDoS detection holds great promise for de-
tecting and mitigating DDoS traffic upstream of conver-
gence links. However, existing approaches have struggled
with issues of packet over-counting and stage mis-allocating,
which hinder effective network-wide deployment. To this end,
we propose Lemon, a routing-oblivious, resource-efficient,
and highly scalable network-wide DDoS detection system.
Through extensive experiments and analyses, we show that
Lemon outperforms existing solutions in network-wide DDoS
attack detection and enables accurate per-flow measurements.

Acknowledgment

We thank all the reviewers and our shepherd for their insight-
ful comments. This work is supported by National Key R&D
Program of China (Grant No. 2022YFB3103000), and the
National Natural Science Foundation of China (Grant No.
U20A20180).

A Ethics Considerations

Our research does not involve any ethical issues.

B Open Science

We adhere to the open science policy. The Lemon prototype
(both the Bmv2 version and hardware version) is publicly
available [1, 3].

References

[1] Lemon. https://github.com/f-555/Lemon, 2024.

[2] Open-tofino. https://github.com/
barefootnetworks/Open-Tofino, 2024.

[3] Lemon artifact for usenix 2025. https://doi.org/10.
5281/zenodo.14729708, 2025.

[4] Y. Afek, A. Bremler-Barr, E. Cohen, S. L. Feibish, and
M. Shagam. Efficient distinct heavy hitters for dns
ddos attack detection. arXiv preprint arXiv:1612.02636,
2016.

[5] M. B. Anley, A. Genovese, D. Agostinello, and V. Pi-
uri. Robust ddos attack detection with adaptive transfer
learning. Computers & Security, 144:103962, 2024.

[6] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halder-
man, L. Invernizzi, M. Kallitsis, et al. Understanding
the mirai botnet. In 26th USENIX security symposium
(USENIX Security 17), pages 1093–1110, 2017.

[7] B. Augustin, T. Friedman, and R. Teixeira. Measuring
load-balanced paths in the internet. In Proceedings of
the 7th ACM SIGCOMM conference on Internet mea-
surement, pages 149–160, 2007.

[8] R. B. Basat, X. Chen, G. Einziger, S. L. Feibish, D. Raz,
and M. Yu. Routing oblivious measurement analytics. In
2020 IFIP Networking Conference (Networking), pages
449–457. IEEE, 2020.

[9] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and
D. Raz. Network-wide routing-oblivious heavy hitters.
In Proceedings of the 2018 Symposium on Architectures
for Networking and Communications Systems, pages
66–73, 2018.

[10] R. Ben-Basat, G. Einziger, S. L. Feibish, J. Moraney,
B. Tayh, and D. Raz. Routing-oblivious network-wide
measurements. IEEE/ACM Transactions on Networking,
29(6):2386–2398, 2021.

[11] B. Bencsáth and I. Vajda. Protection against ddos attacks
based on traffic level measurements. In 2004 Interna-
tional Symposium on Collaborative Technologies and
Systems, pages 22–28. Citeseer, 2004.

[12] H. Birge-Lee, S. Yoo, B. Herber, J. Rexford, and
M. Apostolaki. {TANGO}: Secure collaborative route
control across the public internet. In 21st USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 24), pages 1791–1811, 2024.

[13] S. Bjarnason. Ddos defences in the terabit era: At-
tack trends, carpet bombing. APNIC blog, https://blog.
apnic. net/2018/12/04/ddos-defences-in-the-terabit-era-
attack-trends-carpet\-bombing, 2018.

[14] J.-I. Castillo-Velazquez and N.-G. Velazquez-Cruz. Em-
ulation of the updated canarie backbone network topol-
ogy under ipv6 up to 2022. In Proceedings of CECNet
2022, pages 465–471. IOS Press, 2022.

[15] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rex-
ford. Beaucoup: Answering many network traffic
queries, one memory update at a time. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 226–239, 2020.

https://github.com/f-555/Lemon
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino
https://doi.org/10.5281/zenodo.14729708
https://doi.org/10.5281/zenodo.14729708

[16] K. Cho, K. Mitsuya, and A. Kato. Traffic data reposi-
tory at the {WIDE} project. In 2000 USENIX Annual
Technical Conference (USENIX ATC 00), 2000.

[17] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 55(1):58–75, 2005.

[18] A. da Silveira Ilha, Â. C. Lapolli, J. A. Marques, and
L. P. Gaspary. Euclid: A fully in-network, p4-based
approach for real-time ddos attack detection and mit-
igation. IEEE Transactions on Network and Service
Management, 18(3):3121–3139, 2020.

[19] D. Ding, M. Savi, F. Pederzolli, M. Campanella, and
D. Siracusa. In-network volumetric ddos victim identifi-
cation using programmable commodity switches. IEEE
Transactions on Network and Service Management,
18(2):1191–1202, 2021.

[20] D. Ding, M. Savi, F. Pederzolli, and D. Siracusa. In-
vest: Flow-based traffic volume estimation in data-plane
programmable networks. In 2021 IFIP Networking Con-
ference (IFIP Networking), pages 1–9. IEEE, 2021.

[21] N. G. Duffield and M. Grossglauser. Trajectory sam-
pling for direct traffic observation. IEEE/ACM transac-
tions on networking, 9(3):280–292, 2001.

[22] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bo-
hatei: Flexible and elastic {DDoS} defense. In 24th
USENIX security symposium (USENIX Security 15),
pages 817–832, 2015.

[23] S. L. Feibish, Y. Afek, A. Bremler-Barr, E. Cohen, and
M. Shagam. Mitigating dns random subdomain ddos at-
tacks by distinct heavy hitters sketches. In Proceedings
of the fifth ACM/IEEE workshop on hot topics in web
systems and technologies, pages 1–6, 2017.

[24] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hy-
perloglog: the analysis of a near-optimal cardinality es-
timation algorithm. Discrete mathematics & theoretical
computer science, (Proceedings), 2007.

[25] G. Folino and P. Sabatino. Ensemble based collaborative
and distributed intrusion detection systems: A survey.
Journal of Network and Computer Applications, 66:1–
16, 2016.

[26] S. Fortunati, F. Gini, M. S. Greco, A. Farina,
A. Graziano, and S. Giompapa. An improvement of
the state-of-the-art covariance-based methods for statis-
tical anomaly detection algorithms. Signal, Image and
Video Processing, 10:687–694, 2016.

[27] Y. Gao and Z. Wang. A review of p4 programmable
data planes for network security. Mobile Information
Systems, 2021(1):1257046, 2021.

[28] C. Goutte and E. Gaussier. A probabilistic interpreta-
tion of precision, recall and f-score, with implication
for evaluation. In European conference on information
retrieval, pages 345–359. Springer, 2005.

[29] F. Gui, S. Wang, D. Li, L. Chen, K. Gao, C. Min, and
Y. Wang. Redte: Mitigating subsecond traffic bursts
with real-time and distributed traffic engineering. In
Proceedings of the ACM SIGCOMM 2024 Conference,
pages 71–85, 2024.

[30] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-
ford, and W. Willinger. Sonata: Query-driven streaming
network telemetry. In Proceedings of the 2018 confer-
ence of the ACM special interest group on data commu-
nication, pages 357–371, 2018.

[31] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure,
C. Filsfils, T. Telkamp, and P. Francois. A declarative
and expressive approach to control forwarding paths
in carrier-grade networks. ACM SIGCOMM computer
communication review, 45(4):15–28, 2015.

[32] T. Heinrich, R. R. Obelheiro, and C. A. Maziero. New
kids on the drdos block: Characterizing multiprotocol
and carpet bombing attacks. In International Conference
on Passive and Active Network Measurement, pages 269–
283. Springer, 2021.

[33] S. Hizal, U. Cavusoglu, and D. Akgun. A novel deep
learning-based intrusion detection system for iot ddos
security. Internet of Things, 28:101336, 2024.

[34] Q. Huang, H. Sun, P. P. Lee, W. Bai, F. Zhu, and Y. Bao.
Omnimon: Re-architecting network telemetry with re-
source efficiency and full accuracy. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 404–421, 2020.

[35] S. Kaur, K. Kumar, N. Aggarwal, and G. Singh. A
comprehensive survey of ddos defense solutions in sdn:
Taxonomy, research challenges, and future directions.
Computers & Security, 110:102423, 2021.

[36] S. Kim, C. Jung, R. Jang, D. Mohaisen, and D. H. Nyang.
A robust counting sketch for data plane intrusion detec-
tion. In 30th Annual Network and Distributed System
Security Symposium, NDSS 2023. The Internet Society,
2023.

[37] A. M. Koster and M. Kutschka. Network design under
demand uncertainties: A case study on the abilene and
geant network data. In Photonic Networks, 12. ITG
Symposium, pages 1–8. VDE, 2011.

[38] A. Kumar, M. Sung, J. Xu, and J. Wang. Data stream-
ing algorithms for efficient and accurate estimation of
flow size distribution. ACM SIGMETRICS Performance
Evaluation Review, 32(1):177–188, 2004.

[39] P. Laffranchini, L. Rodrigues, M. Canini, and B. Kr-
ishnamurthy. Measurements as first-class artifacts. In
IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pages 415–423. IEEE, 2019.

[40] E. Li, W. Wu, W. Zhaohua, Z. Li, and J. Niu. Saros:
A self-adaptive routing oblivious sampling method for
network-wide heavy hitter detection. In Proceedings
of the 8th Asia-Pacific Workshop on Networking, pages
142–148, 2024.

[41] Q. Li, H. Huang, R. Li, J. Lv, Z. Yuan, L. Ma, Y. Han,
and Y. Jiang. A comprehensive survey on ddos defense
systems: New trends and challenges. Computer Net-
works, page 109895, 2023.

[42] Q. Li, Y. Zhang, Z. Jia, Y. Hu, L. Zhang, J. Zhang, Y. Xu,
Y. Cui, Z. Guo, and X. Zhang. Dollm: How large lan-
guage models understanding network flow data to detect
carpet bombing ddos. arXiv preprint arXiv:2405.07638,
2024.

[43] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. In-
trusion detection system: A comprehensive review. Jour-
nal of Network and Computer Applications, 36(1):16–24,
2013.

[44] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braver-
man, R. Friedman, and V. Sekar. Nitrosketch: Ro-
bust and general sketch-based monitoring in software
switches. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 334–350. 2019.

[45] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, pages
101–114, 2016.

[46] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim,
X. Jin, V. Braverman, M. Yu, and V. Sekar. Jaqen: A
{High-Performance}{Switch-Native} approach for de-
tecting and mitigating volumetric {DDoS} attacks with
programmable switches. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 3829–3846, 2021.

[47] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Net-
work intrusion detection. IEEE network, 8(3):26–41,
1994.

[48] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM

Special Interest Group on Data Communication, pages
85–98, 2017.

[49] M. Nooribakhsh and M. Mollamotalebi. A review on
statistical approaches for anomaly detection in ddos at-
tacks. Information Security Journal: A Global Perspec-
tive, 29(3):118–133, 2020.

[50] H. Shao, X. Wang, Y. Lu, Y. Yu, S. Zheng, and
Y. Zhao. Accessing cloud with disaggregated {Software-
Defined} router. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 1–14, 2021.

[51] V. Sivaraman, S. Narayana, O. Rottenstreich,
S. Muthukrishnan, and J. Rexford. Heavy-hitter
detection entirely in the data plane. In Proceedings
of the Symposium on SDN Research, pages 164–176,
2017.

[52] X. Song, J. Zheng, H. Qian, S. Zhao, H. Zhang, X. Pan,
and G. Chen. Couper: Memory-efficient cardinality es-
timation under unbalanced distribution. In 2023 IEEE
39th International Conference on Data Engineering
(ICDE), pages 2753–2765. IEEE, 2023.

[53] Y. Tao and S. Yu. Ddos attack detection at local area
networks using information theoretical metrics. In 2013
12th IEEE international conference on trust, security
and privacy in computing and communications, pages
233–240. IEEE, 2013.

[54] R. Vishwakarma and A. K. Jain. A survey of ddos
attacking techniques and defence mechanisms in the
iot network. Telecommunication systems, 73(1):3–25,
2020.

[55] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A
linear-time probabilistic counting algorithm for database
applications. ACM Transactions on Database Systems
(TODS), 15(2):208–229, 1990.

[56] B. Wu, K. Qian, B. Li, Y. Ma, Q. Zhang, Z. Jiang, J. Zhao,
D. Cai, E. Zhai, X. Liu, et al. Xron: A hybrid elastic
cloud overlay network for video conferencing at plane-
tary scale. In Proceedings of the ACM SIGCOMM 2023
Conference, pages 696–709, 2023.

[57] J. Wu, H. Pan, P. Cui, Y. Huang, J. Zhou, P. He, Y. Li,
Z. Li, and G. Xie. Patronum: In-network volumet-
ric ddos detection and mitigation with programmable
switches. In European Symposium on Research in Com-
puter Security, pages 187–207. Springer, 2024.

[58] K. Yang, S. Long, Q. Shi, Y. Li, Z. Liu, Y. Wu, T. Yang,
and Z. Jia. Sketchint: Empowering int with towersketch
for per-flow per-switch measurement. IEEE Transac-
tions on Parallel and Distributed Systems, 2023.

[59] K. Yang, Y. Wu, R. Miao, T. Yang, Z. Liu, Z. Xu, R. Qiu,
Y. Zhao, H. Lv, Z. Ji, et al. Chamelemon: Shifting mea-
surement attention as network state changes. In Proceed-
ings of the ACM SIGCOMM 2023 Conference, pages
881–903, 2023.

[60] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou,
R. Miao, X. Li, and S. Uhlig. Elastic sketch: Adaptive
and fast network-wide measurements. In Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, pages 561–575, 2018.

[61] X. Yuan, C. Li, and X. Li. Deepdefense: identifying ddos
attack via deep learning. In 2017 IEEE international
conference on smart computing (SMARTCOMP), pages
1–8. IEEE, 2017.

[62] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu,
G. Gu, Q. Li, M. Xu, and J. Wu. Poseidon: Mitigating
volumetric ddos attacks with programmable switches.
In the 27th Network and Distributed System Security
Symposium (NDSS 2020), 2020.

[63] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu,
R. Zhang, and J. Jiang. Cocosketch: High-performance
sketch-based measurement over arbitrary partial key
query. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 207–222, 2021.

[64] H. Zheng, C. Tian, T. Yang, H. Lin, C. Liu, Z. Zhang,
W. Dou, and G. Chen. Flymon: enabling on-the-fly task
reconfiguration for network measurement. In Proceed-
ings of the ACM SIGCOMM 2022 Conference, pages
486–502, 2022.

[65] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Ma-
hajan, D. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, et al.
Packet-level telemetry in large datacenter networks. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 479–491,
2015.

	Introduction
	Background and Motivation
	Network-Wide DDoS Detection
	Motivation

	Lemon Overview
	Problem Scope
	Design Goals
	Lemon Architecture

	Lemon Data Plane
	Preliminaries
	Lemon Sketch Design
	Globally Consistent Updating
	Adaptive Estimator Reconstruction
	Collision Elimination
	Analysis

	Lemon Control Plane
	Results Collecting and Aggregation
	Measurement Tasks Configuration
	DDoS Detection
	DDoS Mitigation

	Evaluation
	Experimental Setup
	DDoS Detection Accuracy
	Resilience to Address Spoofing
	Per-Flow Measurement Accuracy
	Hardware Resource Consumption

	Discussion
	Related Work
	Conclusion
	Ethics Considerations
	Open Science

