
SoK: Understanding zk-SNARKs: The Gap Between Research and Practice

Junkai Liang1,∗, Daqi Hu1,∗, Pengfei Wu2,∗, Yunbo Yang3, Qingni Shen1,†, Zhonghai Wu1,†

1Peking University, 2Singapore Management University, 3East China Normal University
{ljknjupku, hudaqi0507}@gmail.com, pfwu@smu.edu.sg, yyb9882@gmail.com,

{qingnishen, wuzh}@pku.edu.cn

Abstract
Zero-knowledge succinct non-interactive argument of knowl-

edge (zk-SNARK) serves as a powerful technique for proving
the correctness of computations and has attracted significant
interest from researchers. Numerous concrete schemes and
implementations have been proposed in academia and in-
dustry. Unfortunately, the inherent complexity of zk-SNARK
has created gaps between researchers, developers and users,
as they focus differently on this technique. For example, re-
searchers are dedicated to constructing new efficient proving
systems with stronger security and new properties. At the
same time, developers and users care more about the imple-
mentation’s toolchains, usability and compatibility. This gap
has hindered the development of zk-SNARK field.

In this work, we provide a comprehensive study of
zk-SNARK, from theory to practice, pinpointing gaps and
limitations. We first present a master recipe that unifies the
main steps in converting a program into a zk-SNARK. We
then classify existing zk-SNARKs according to their key tech-
niques. Our classification addresses the main difference in
practically valuable properties between existing zk-SNARK
schemes. We survey over 40 zk-SNARKs since 2013 and
provide a reference table listing their categories and proper-
ties. Following the steps in master recipe, we then survey 11
general-purpose popular used libraries. We elaborate on these
libraries’ usability, compatibility, efficiency and limitations.
Since installing and executing these zk-SNARK systems is
challenging, we also provide a completely virtual environment
in which to run the compiler for each of them. We identify
that the proving system is the primary focus in cryptogra-
phy academia. In contrast, the constraint system presents a
bottleneck in industry. To bridge this gap, we offer recom-
mendations and advocate for the open-source community to
enhance documentation, standardization and compatibility.

*: The authors contribute equally to this paper.
†: Corresponding author. This work was supported by the National

Key R&D Program of China under Grant No. 2022YFB2703301, School
of Computer Science, Peking University and PKU-OCTA Laboratory for
Blockchain and Privacy Computing.

1 Introduction

Imagine you have a friend who is red-green colour-blind
and doubts that red and green are actually distinct colours.
You want to prove to your friend that the two colours are
indeed different. Our question is: How do you do that without
revealing the actual colours of the objects you’re using?

The above colour-blind verifier [1] is a classical problem
when thinking about zero-knowledge proof (ZKP) with daily
life scenarios. The solution is also easy to understand: You
prepare a red ball and a green ball for your friend and ask her
to choose one as her favorite. Then she conceals both balls,
chooses one ball randomly and asks you to tell if it is her fa-
vorite. If red and green are indeed different, you can succeed
with probability 1, otherwise, you can only succeed with prob-
ability 1/23. Your friend can repeat this process to convince
herself that the probability of coincidence is negligible.

A natural formalism of the above thought experiment yields
an interactive form of ZKP, where there are one or many
rounds of interactions between the verifier and the prover [2],
a.k.a. the interactive proof (IP). IP is a breakthrough in ZKP
field as it has been used to prove the knowledge of solutions in
all problems within non-deterministic polynomial time (NP)
space (e.g., 3-colour problem and boolean satisfiability prob-
lem), which extends the capability of ZKP from daily scenar-
ios to computational models [3]. IP is powerful but may need
multiple rounds of interaction, which increases the commu-
nication burden and is unrealistic for some applications like
blockchain or confidential machine learning. Non-interactive
zero-knowledge (NIZK) proof focuses on the protocols where
the prover just sends one message (i.e., the proof) to the veri-
fier and the verifier can decide to accept it or not. The main
purpose of NIZK is to solve latency issues caused by interac-
tivity. Luckily, IP and NIZK can be bridged through generic
transforms, e.g., Fiat-Shamir transform [4] which allows the
prover to generate hash values as if they are random messages
given by the verifier. Following the theoretical progress, IP

3In our simplified question you are not motivated to convince your friend
that red and green are the same.

and NIZK protocols for the 3-colourability problem and 3-
satisfiability have been proposed [3, 5]. However, these works
suffer from large asymptotic costs and are not practical. To
better address real-world scenarios, NIZK is further required
to have succinctness, which means the time and memory used
by the prover and verifier are bounded. NIZK with succinct-
ness, a.k.a. zk-SNARK has been the mainstream of the ZKP
research with practical applications. The relations of ZKP,
NIZK and zk-SNARK are shown in Figure 1.

SMU Classification: Restricted

zk-SNARK

NIZK (non-interactive)

ZKP (zero-knowledge)

(succinctness)

Figure 1: Relations of inclusion for ZKP, NIZK and
zk-SNARK.

Evolved from ZKP and NIZK, zk-SNARK provides a
mechanism for a distrustful party to prove the knowledge of
NP relations, where the generated proof reveals nothing about
the private witness. This valuable property makes zk-SNARK
a powerful cryptographic primitive, enabling the verification
of computation correctness without exposing private inputs.
In the past several years, a surge of groundbreaking scientific
achievements has emerged across zk-SNARK applications,
including but not limited to financial services like blockchain
payments [6, 7, 8], smart contract [9, 10], and other academic
areas like machine learning [11, 12], multiparty computa-
tion [13, 14, 15] and post-quantum cryptography [16, 17].
The zk-SNARK also has a promising market outlook. Till
today, there are more than 10 widely used blockchains based
on zk-SNARK and it has been estimated that only the trans-
action fee for generating ZK proofs will reach 10 billion by
2030 [18]. Besides blockchain services, many companies like
Axiom [19], FedML [20], and Giza [21] are cooperating to
build ZK ecosystems for privacy-preserving machine learning
and other applications.

Despite zk-SNARK having great generality, succinctness
and the potential for wide usage just like encryption and
signature algorithms, there are gaps between research and
practice that prevent the development of zk-SNARK. Re-
searchers and practitioners have different focuses on three
concepts of zk-SNARK: constraint system, proving system,
and compiler. Constraint system represents the problems that
we want to prove, such as some specific NP relations like
the 3-satisfiability. Proving system represents specific crypto-
graphic techniques that generate proof of the relation. Com-
pilers are practical tools that convert a high-level program
we want to prove to the constraint system in a mathematical
form.

Researchers mainly focus on designing different proving
systems for different constraint systems, aiming to achieve
special properties. Till today, there are schemes with very
practical properties, such as constant proof size, linear prover,
post-quantum security, and transparent setup. However, these
properties are not integrated into one single scheme and
there are trade-offs. To understand these trade-offs, one needs
to have substantial knowledge of zk-SNARK mathematical
background which is arduous from a practical perspective, pre-
venting a practitioner from choosing an appropriate scheme
for her application. Besides, the most time-consuming and
error-prone part for practitioners is using the compilers. As
reported in [22, 23, 24, 25], programmers struggle to correctly
implement their own zk-SNARK applications and there are
hundreds of vulnerabilities due to the misunderstanding of
the compiler’s language.

We identify a few gaps between academia and industry per-
spectives in the zk-SNARK field: (1) A user requires expert
knowledge to choose a scheme, and (2) The importance of
the compiler has been underestimated. To this end, we are
interested in the following research questions:

RQ1: How to present a unified master recipe outlining
the design principles and optimizations behind different
zk-SNARKs?
RQ2: Can we provide guidelines on selecting zk-SNARKs
in different real-world scenarios?
RQ3: From the master recipe and experiments, by scru-
tinizing prior works, can we provide novel insights for
academic researchers and library designers?

Our work: To address these questions, we conduct a sys-
tematic review of zk-SNARKs and their libraries. First, we
establish a unified master recipe to outline the design prin-
ciples of mainstream zk-SNARKs. This recipe includes key
steps: compiling a high-level program into a circuit, passing
the circuit to a proving system to generate an IP, and applying
a generic transformation to produce the final zk-SNARK. Ad-
ditionally, we explore the main applications of zk-SNARK,
such as confidential blockchain, zero-knowledge machine
learning, and cryptographic uses.

Using the master recipe, we classify proving systems and
trace their evolution in each category. This helps non-expert
users choose suitable zk-SNARK schemes. We then evaluate
all 11 state-of-the-art zk-SNARK libraries based on perfor-
mance and usability. By analyzing performance, we recom-
mend best practices for implementing zk-SNARKs based on
different needs. Additionally, we identify common issues in
current libraries and advocate for better documentation and
standardization.

We emphasize the goal of this paper and its open-source
materials aim at four distinct types of readers: (1) researchers
who want to move beyond theory to practice by understanding
state-of-the-art libraries; (2) developers who want to imple-

ment a component as zk-SNARK toolkit; (3) programmers
who want to implement their own zk-SNARK applications;
and (4) users who want to understand if a certain zk-SNARK
application meets their requirements. We believe that our
efforts are necessary and can facilitate the practitioners to
utilize zk-SNARK achievements.
Summary of Contributions: While we are not the first to
review this topic, we position our work as the first to sys-
tematize the research and practice field over the past decade,
which tackles the emerging challenges using state-of-the-art
libraries. In summary, we have made five main contributions:
• We establish a unified master recipe showing how a high-

level program is converted into a zk-SNARK, from the
origin to the end. Within the master recipe, we establish a
comprehensive overview in Section 3, considering different
circuits, constraint systems, techniques, and applications
used in the practical zk-SNARKs.

• Under the guideline of the master recipe, we further survey
more than 40 zk-SNARKs and provide a comprehensive
comparison table for the proving systems. We discuss how
the master recipe and the investigation help mitigate the
gaps.

• We survey all 11 zk-SNARK libraries and make compar-
isons based on performance and usability. We recommend
the best practice implementations and analyze each li-
brary’s architecture, toolkits and documentation.

• We provide our well-designed test code examples in docker
containers, which we believe will help the development
of zk-SNARK open source society and users utilize the
achievements of zk-SNARK field. All our codes and docu-
ments are posted on a permanent repository and available
at https://doi.org/10.5281/zenodo.14682405.

• Based on comprehensive analyses, we provide key insights
and suggestions from 3 perspectives: library selection
and programming for non-experts, future directions for
researchers, and suggestions for library designers.

Related Work: Prior surveys on ZKP fall into two cate-
gories. First, surveys on zk-SNARK constructions and the-
oretical applications. For example, Feng and Mcllin [26] in-
troduce zk-SNARK basics and its use for NP computations.
Nitulescu [27] focuses on Quadratic Arithmetic Programs
(QAP)-based zk-SNARKs. Li et al. [28] classify zk-SNARKs
by techniques but focus on niche implementations like con-
straint systems and layered circuits. Others [29, 30] discuss
range proofs and offer practical advice. These works, however,
cover only a small portion of zk-SNARKs and are largely aca-
demic. In contrast, our work bridges theory and practice, of-
fering broader insights. Second, surveys on vulnerabilities in
practical zk-SNARK implementations. Prior works highlight
issues in the circuit layer [23, 31, 32], compilation phase [24],
and application-specific integrity layer [33, 34]. Chaliasos
et al. [25] summarize these vulnerabilities comprehensively.
Our work differs by providing a comprehensive walk-through
for zk-SNARK practitioners and focusing on usability, effi-

Abbreviation Full Form
AIR Arithmetic Intermediate Representation
CRS Common Reference String
DEIP Doubly Efficient Interactive Proofs
(e)DSL (embedded) Domain-Specific Language
FFT Fast Fourier Transform
FRI Fast Reed-Solomon IOP of Proximity
HDL Hardware Description Language
I(O)P Interactive (Oracle) Proof
IPA Inner Product Argument
ITP Information-Theoretic Proof
MPC Multi-Party Computation
NIZK Non-Interactive Zero-Knowledge
NP Non-deterministic Polynomial Time
PL Programming Language
(L)PCP (Linear) Probabilistically Checkable Proof
PCS Polynomial Commitment Scheme
PIOP Polynomial Interactive Oracle Proof
QAP Quadratic Arithmetic Program
QSP Quadratic Span Program
R1CS Rank-1 Constraint System
STARK Scalable Transparent ARguments of

Knowledge
ZKP Zero-Knowledge Proof
ZKML Zero-Knowledge Machine Learning
zk-SNARK Zero-Knowledge Succinct Non-Interactive

Argument of Knowledge
zk-VM Zero-Knowledge Virtual Machine

Table 1: Abbreviations and Corresponding Full Names

ciency, compatibility, and library selection, aiming to reduce
errors for practitioners unfamiliar with cryptography while
emphasizing software security.

2 Background

In this section, we focus on the concept of zk-SNARK and
introduce the definition in Section 2.1, as well as the main-
stream techniques in Section 2.2. In addition, we summarize
all abbreviations and their full names in Table 1. With these
symbols, we discuss the research development of zk-SNARK.

2.1 Notions of IP, NIZK and zk-SNARK
Here we introduce the formal notions of IP [35], NIZK [36]
and zk-SNARK [37], which are popular used in the ZKP field.
The similarity between these notions is that, for a fixed NP
relation R, the prover can convince the verifier that for the
public input x they know a witness w such that (x,w)∈ R. The
difference is that IP allows multiple rounds of communica-
tion while NIZK and zk-SNARK are non-interactive. Besides,
zk-SNARK further has efficiency requirements.

https://doi.org/10.5281/zenodo.14682405

Definition 2.1 (IP). Let R be a binary relation induced by a
NP language L. On common input x and prover’s input w, we
denote the interaction between the prover P and the verifier
V as ⟨P(w),V ⟩(x). A pair (P,V) is called an IP system for L
if there exists a negligible function ε such that the following
properties hold:
• Completeness: If (x,w)∈ R, then Pr[⟨P(w),V ⟩(x) = 1] = 1.
• Soundness: If (x,w) /∈ R and for any malicious prover P∗,

we have Pr[⟨P∗(w),V ⟩(x) = 1]< ε(|x|).

Definition 2.2 (NIZK). A NIZK proof consists of three algo-
rithms (Setup,Prove,Verify) that are defined as follows:
• Setup(pp)→ (pk,vk): On input a public parameter pp, it

outputs a proving and verification key pk and vk.
• Prove(pk,x,w,R)→ π: On input pk, an instance and wit-

ness pair (x,w), and the relation R, it outputs a proof π.
• Verify(vk,x,π)→{0,1}: On input vk,x, and π, it outputs 1

or 0 to show if π is accepted or not.
Besides, a NIZK proof needs to satisfy the following three
properties:
• Completeness: Given (x,w) ∈ R, the honest prover results

in the verifier outputting 1.
• Soundness: Given (x,w) /∈R, a malicious prover interacting

with the verifier can only make it output 1 with negligible
probability.

• Zero knowledge: Given (x,w) ∈ R, a simulator can pro-
duce a view of an honest prover with a possibly malicious
verifier that is computationally indistinguishable from an
actual execution transcript of the prover with the verifier.
Note that the simulator does not get w, while the prover
gets w, so the proof does not contain information of w from
the perspective of the verifier.

A NIZK proof is termed a zk-SNARK if the proof size and
verification time are bounded by the size of the statement to
be proven:
• The proof size is polylogarithmic in the circuit size.
• The verification time is polylogarithmic in the circuit size.

There are other notions like Scalable Transparent ARgu-
ments of Knowledge (STARK) [38] and Doubly Efficient
Interactive Proofs (DEIP) [39], presenting a similar ZKP
system like zk-SNARK. These notions actually belong to
zk-SNARK, and the main difference is that they incorporate
new properties. For example, STARK requires a transparent
setup, a construction of zk-SNARK in the standard model,
and post-quantum security; DEIP requires quasi-linear com-
plexity on the prover side. In this paper, we use zk-SNARK
to represent the efficient NIZK proofs for simplicity.

2.2 Cryptographic Techniques
In this section, we introduce interactive oracle proof (IOP),
which is a generalization of IP. We also introduce the poly-
nomial commitment scheme (PCS), which can instantiate

the oracles in IOP. We attach great importance to IOP and
PCS because they help build the structure of the mainstream
proving systems. We refer to the references [40] for more
information, including their concrete constructions.

Definition 2.3 (IOP). Let x be a common input known by ver-
ifier and prover, w be a witness string only known by prover,
and r(x) ∈ N be the round complexity on x. An IOP system
with r(x) rounds asks that for each round, the prover sends
a message (which may depend on witness w and prior mes-
sages) to the verifier which is given oracle access, and the
verifier responds with a message to the prover. After interact-
ing with the prover, the output of the verifier is either accept
or reject.

Specifically, given R as a binary relation induced by a NP
language L and a soundness error ε ∈ [0,1], we say that a pair
of interactive randomized algorithms (P,V) is an IOP system
for L with ε if it satisfies the properties below.
• Completeness: If (x,w) ∈ R, then Pr[V (P(x,w),x) =
accept] = 1.

• Soundness: If (x,w) /∈ R, then for any proof π, Pr[V (π,x) =
accept]≤ ε.

As a special case of IOP, polynomial IOP (PIOP) denotes a
similar interactive process where a proof produces oracles that
evaluate polynomials with a degree lower than a given bound.
To ensure privacy, PIOP is typically instantiated through a
PCS, which we define as below.

Definition 2.4 (PCS). The PCS allows a prover to commit to
a polynomial f and later prove that the committed polynomial
was correctly evaluated at a specified point. A PCS consists
of four algorithms: Setup, Commit, Open, and VerifyPoly.
• Setup(1κ)→ ck: On input a security parameter κ, it outputs

a commitment key ck.
• Commit(ck, f)→ com: On input ck and a polynomial f , it

outputs a commitment com to f .
• Open(ck, f ,com, i)→ (f (i),π): On input ck, f ,com, and a

given point i, it outputs the evaluation f (i) and a proof π.
• VerifyPoly(ck,com, i, f (i),π)→ {0,1}: On input ck,com,

i, f (i), and π, it outputs 1 if π is accepted and 0 otherwise.

We emphasize PIOP with PCS is the mainstream technique
in constructing zk-SNARK currently. With different instan-
tiations of a PCS, one can achieve the required properties
needed in a zk-SNARK (e.g., short proof size, transparency,
and post-quantum security). There are also other techniques
like the quadratic arithmetic program (QAP) used to construct
a constant-size probabilistically checkable proof (PCP) as
zk-SNARK [37]. Here, we give a brief introduction to them.

Definition 2.5 (PCP). Let R be a binary relation induced by a
NP language L and ε ∈ (0,1) be a probability. We say that R ∈
PCP(r,q) if there is a probabilistic polynomial-time algorithm
V for the verifier satisfying the following properties:

• Efficiency: After the proof π is generated from the witness
w, V uses at most r random coins and reads at most q bits
of π to verify it.

• Completeness: If (x,w) ∈ R, then Pr[V (x,π) = 1] = 1.
• Soundness: If x /∈ L, then for all π, Pr[V (x,π) = 1]< ε.

IP, PCP and IOP are all called Information-Theoretic Proof
(ITP) which serves as an abstraction of the final zk-SNARK
scheme. There are two differences among them. First, IP and
IOP allow interaction without explicitly generating the proof
π, while PCP is non-interactive. Second, PCP and IOP use
oracles that the verifier can access freely. The oracles serve as
a block box to provide additional computation power for the
verifier and simplify the protocol design. To help better under-
stand these concepts, we provide a sudoku puzzle example in
Appendix A.

Definition 2.6 (QAP). A QAP Q over a field F involves three
sets of m+ 1 polynomials, L = {lk(x)}, R = {rk(x)}, O =
{ok(x)}, for k = {0, ...,m}, and a target polynomial q(x). We
say that an assignment (c1, . . . ,cm) satisfies Q if q(x) divides
p(x) (with the quotient denoted as t(x)), where

p(x) = L(x) ·R(x)−O(x), (1)

L(x) = l0(x) + ∑
m
k=1(ck · lk(x)), R(x) = r0(x) + ∑

m
k=1(ck ·

rk(x)), and O(x) = o0(x)+∑
m
k=1(ck ·ok(x)).

Especially, a circuit with addition and multiplication gates
(arithmetic circuit) can be directly represented by QAP by
instantiating the polynomials. With this property, QAP has
been widely used and abstracted as a constraint system called
R1CS. In this paper, we do not distinguish these two concepts.

3 Overview

In this section, we introduce the master recipe of construct-
ing a zk-SNARK and discuss the development within each
component in Figure 2. To construct a zk-SNARK for general
programs, an original program (written in a specific high-level
language) is first converted to a circuit form called compila-
tion. Then different constraint systems are utilized to repre-
sent the circuit satisfiability problem in mathematical form,
a.k.a. Arithmetic Intermediate Representation (AIR). Then
we need cryptographic protocols to prove the satisfiability of
an AIR. For instance, giving an R1CS, we need an informa-
tion theoretical protocol to actually prove it. The techniques
to instantiate such protocols mainly determine the properties
of the final zk-SNARK, such as transparency, post-quantum
security and efficiency. They are also our main classification
criteria. Finally, we take a generic transformation to transform
the instantiated information theoretical proof into zk-SNARK.
Despite the variations in tools and implementation details, the
majority of research topics in zk-SNARK fall into our master
recipe, and we discuss each component in detail as follows.

Compiling High-level Programs: Generally, a compiler in
zk-SNARK implementation compiles a high-level program
into AIR that fits a certain constraint system. Currently, the
compilers only compile languages that are specific to ZK.
These languages are different from the commonly used, gen-
eral languages like C and Python. Their behaviors are specific
to defining a circuit, and the tools and libraries in commonly
used languages cannot be recognized by a ZK compiler.
Constraint Systems: With efficient compilers, the high-level
program is compiled into the AIR of the circuit, which con-
tains all cryptographic expressions for the relationship be-
tween the program’s input and output. Generally, a circuit
is an abstraction of high-level computation, and a constraint
system is a mathematical NP statement that we want to prove.
In most cases, these two are similar, and in this paper, we
do not distinguish them. Here, we show a classical exam-
ple where a circuit-like function is transformed to NP lan-
guage R1CS. Assume we want to prove the computation of
f (w,a,b) = w · (a+ b) + (1−w)(a · b). If we denote vari-
able y as the output, we can represent the computation by
adding variable constraints: w · (a+b) = y1, (1−w) ·a = y2,
b · y2 = y3, (y1 + y3) ·1 = y. Following the QAP definition in
Definition 2.6, the form of R1CS constraint system is:

(l0(x)+
m

∑
k=1

(ck · lk(x))) · (r0(x)+
m

∑
k=1

(ck · rk(x)))

= (o0(x)+
m

∑
k=1

(ck ·ok(x))).
(2)

Since we totally have 6 variables w,a,b,y1,y2,y3, m is set as
6. Besides, consider that there are 4 constraints. Polynomials
li,ri and oi are evaluated at 4 points and their values should
equal the coefficients of the corresponding variable. For in-
stance, let w denotes c1, we have l1(1) = 1 and l1(2) = −1,
while other points on l1 equal 0 as w does not exist.

Common constraint systems include R1CS [37], plonk cir-
cuit [40] and their variants such as layered circuits [38, 41]
and custom plonk [42]. These constraint systems differ in
algebraic structures for high-level computation, making it
troublesome for a non-expert developer to understand them
completely. For instance, all wire values in plonk circuit are
evaluated in one polynomial, while in R1CS the evaluations
only encode the existence and coefficients of the variables. In
most libraries, the languages that define a circuit are related
to underlying constraint systems, and developers are required
to understand these systems.
Proving Systems: Proving systems refer to the protocols be-
tween the prover and verifier, proving the correctness of a well-
defined circuit. A specific proving system [37] for the above
R1CS example utilizes the bilinear group. The basic idea is
that the prover generates group elements gL(x),gR(x),gO(x) and
gt(x), then the verifier checks if

e(gL(x),gR(x)) = e(gt(x),gq(x)) · e(gO(x),g), (3)

SMU Classification: Restricted

Original
program

Compilation

Constraint system

Circuits

Proving system

R1CS

Plonkish

Layered

QAP

PCS

Pairing

PIOP+ IP

Generic
transformation

……

PCP

* *
+

𝑥 𝑦

+

𝑧

gate1

gate2

gate4

gate3

+
AIR

Optimizers

zk-SNARK

Figure 2: The master recipe. General steps of converting a high-level program to a zk-SNARK.

where L(x),R(x),O(x),q(x), t(x) are defined in Definition 2.6,
e is bilinear mapping function, and g is the generator of the
group. The advantage of such a proving system is that the
proof only consists of a few group elements.

The proving system is the core component in a zk-SNARK
and has been widely studied in research. A main consideration
in choosing proving systems is the desired properties, such as
scalability, transparency, post-quantum security and universal
setup. Currently, practical zk-SNARKs with constant proof
size and fast verifier are based on QAP techniques [37, 43] or
pairing PCS [40, 44]. Those zk-SNARKs require a trust setup.
To eliminate the trust setup, there are zk-SNARKs utilizing
PCS based on discrete logarithm problem [45, 46, 47] or hash
function with code theory [48, 49]. The above schemes all
have a slow prover, which is quasi-linear. To achieve a fast
prover with linear time, several works [42, 50, 51, 52] de-
sign multilinear IOP and multilinear PCS. However, these
approaches utilize more rounds of communication, which sig-
nificantly increases the proof size. Due to the complicated
categories of zk-SNARKs, it requires expert knowledge of
the underlying construction of zk-SNARKs to choose an ap-
propriate scheme for a particular application. In Section 4 we
solve this problem by providing a comprehensive classifica-
tion of existing proving systems.

Optimizers: Nowadays, PIOP-based zk-SNARKs have
achieved the optimized asymptotic complexity for general
circuits by introducing linear provers, sublinear proof size
and sublinear verifiers. However, the efficiency in specific
circumstances can still be improved. For example, recur-
sive [53, 54, 55] or aggregate proof [45, 56] shrinks the proof
size where the verifier needs to verify a sequence of compu-
tations. Elastic proof [57] and parallel proof [58] allow the
prover to adjust the memory and time when proving dynami-
cally. Lookup tables [59] specify the range of the witness to
shrink the size of the generating circuit. It is also possible to
improve the performance of modern CPU architecture and
specific schemes by optimizing elliptic curve operations [60].

Applications: We can use a general purpose zk-SNARK in
various applications and prove different computations: (1)
In the confidential blockchain, zk-SNARK can be utilized to
prove a transaction is valid (e.g., if the sender has sufficient
funds, the transaction is properly signed and the value is in
a certain range) without revealing the details of the trans-
action to the public, which solves the privacy problem in
Bitcoin. Existing blockchain applications include zcash [6],
Ethereum [61], zkSync [62], and Aztec [63], etc. (2) In zero-
knowledge machine learning (ZKML), zk-SNARK can be
used to verify the correctness of training process without re-
vealing the underlying data. This allows the prover to train a
model in a verifiable way without sharing her local datasets.
Existing ZKML applications focus on generating the proof for
decision trees [64], federated learning [65], and convolutional
neural networks [12], etc. (3) In cryptography, zk-SNARK
has been employed to build post-quantum signatures [17],
verifiable differential privacy mechanisms [66], and oblivious
transfer [67], etc.

Takeaways. Determine the scope of the open problems – With
the master recipe, a practitioner can better determine the scope of
their work, position their problems and understand how the pieces
work together as a zk-SNARK. For instance: (1) The latest works
which reduce prover time include developing more efficient proof
systems, improving circuit compilers and leveraging hardware
acceleration (optimizer). (2) In [43], a theoretical problem is pro-
posed if three elements are the optimized proof size for zk-SNARK.
The question is positioned in the proving system and interested
readers can focus on its progress without being distracted after
understanding the functionality of other components.

4 Classification of Proving Systems

In this section, we discuss proving systems, the core of
zk-SNARK field. We classify zk-SNARKs into two cate-
gories termed as PCP and IP based on the information-
theoretic proof. We discuss the techniques used to construct

Information Theory Methodology Privacy Scability Examples References

Type Variants Constraint
System Technique

Underlying
Problem

Post
Quantum

Transparent
Setup P Time V Time Proof Size

PCP LPCP R1CS QAP
q-type
KoE # ✗ O(N logN) O(l) O(1) Groth16 [37, 43, 68, 69]

IP

/ Layered circuits GKR hash ✓ O(N) O(d logN) O(d logN) Virgo, Stark [39, 41, 70, 71]

PIOP R1CS/ Plonk

KZG PCS pairing # ✗ O(N logN) O(l) O(1) Plonk, Marlin [44, 72, 73]

IPA PCS
discrete
log # ✓ O(N) O(logN) O(logN)

Halo,
Bulletproof [45, 56, 74, 75]

FRI PCS hash ✓ O(N) O(log2 N) O(polylog N) Aurora, Fractal [48, 49, 71]
Multi-
PIOP R1CS/ Plonk Multi-PCS / H# ✓ O(N) O(l) O(logN) Hyperplonk, Spartan [41, 42, 50, 51, 52]

/
Boolean/Arithmetic
circuits MPC / H# ✓ O(N) O(N) O(N) Zkboo [16, 76, 77]

Table 2: Classification of ZKPs from different perspectives. Post Quantum: #: not post-quantum secure, : plausible post-quantum secure,
H#: partial works in the category are post-quantum secure. Scalability: For R1CS, the circuit size N denotes the number of multiplication gates.
For plonk circuit, N is the sum of the addition gate and the multiplication gate. For layered circuits, the circuit size N = dg, where d and g are
the depth and width of the circuit, respectively. In these circuits, l denote the input size. The asymptotic complexity in scalability stands for the
optimized scheme in the category.

a zk-SNARK in each category and summarize the properties
essential for both researchers and developers, such as trans-
parency, post-quantum security, universal setup and efficiency.
A comprehensive classification table is provided in Table 2.

4.1 PCP-based zk-SNARKs
Probabilistically checkable proof (PCP, see Definition 2.5)
allows for the verification of proofs with extremely high prob-
ability by checking only a tiny, randomly chosen portion of
the proof. This is in stark contrast to traditional proof verifi-
cation, which requires reading the entire proof.

Earlier works [36, 78] of PCPs have high asymptotic
complexity and do not focus on general computation mod-
els. In 2013, Gennaro et al. [37] proposed the first efficient
zk-SNARK for general circuits utilizing the quadratic span
program (a.k.a. QSP, a weak form of QAP) technique. The
basic idea of this category is to construct a set of polynomial
equations and use pairings to verify these equations. As an
example, to check the validity of Equation 3, one needs four
group elements gL(x), gR(x), gO(x) and gt(x) (q(x) can be pre-
defined when instantiating QAP). However, more elements
are required to make sure these four elements are indeed
computed from the linear combinations of the polynomial
coefficients. Besides, we also need to ensure that the same co-
efficients are used in each linear combination, which we call
consistency checks. These checks are based the the Knowl-
edge of Exponent (KoE) assumption [79] and the security
guarantee for the group operations is q-type assumption, dis-
cussed in [37]. Specifically, the consistency check consists of
two aspects:
• Polynomial consistency check: The prover computes

gL(x) and gαL(x), and the verifier checks if e(gL(x),gα) =
e(gαL(x),g) holds. For all polynomials, the prover also com-
putes group elements for R(x),O(x), t(x) and carries out
this check on them.

• Variable consistency check: Given random values
βl ,βr,βo generated by trusted setup, the prover computes
∏

m
i (g

βl li(x)+βrri(x)+βooi(x))ci as part of the proof, denoted
as gZ(x). The verifier checks if e(gL(x),gβlγ) ·e(gR(x),gβrγ) ·
e(gO(x),gβoγ) = e(gZ(x),gγ).
To shrink the proof size, Danezis et al. [68] replace gβl ,

gβr and gβo with three basic group elements gl ,gr,go. Such a
replacement saves the need for γ and eliminates one element
from the proof. In 2016, Groth [43] integrated the validity
check, polynomial and variable consistency checks into one
equation using only three pairings. The proof size was further
reduced to an optimized three elements. Following these the-
oretical advances, practical work has been done on building
concrete implementations. Those works focus on designing
a compiler for QAP [68, 80, 81]. Since Groth16 [43] is the
optimized QAP-based approach in theory, follow-up works
further analyze the security properties [82] and apply it to
specific applications together with different models, such as
multiparty setup [83], universal reference string (URS) [69]
and recursive proof [84].

The proof size in these systems remains constant, and the
time for a prover is linear. These attributes are particularly ad-
vantageous and have facilitated real-world implementations,
such as ZCash [6] and Pinocchio coin [68]. Nevertheless, a
significant limitation of QAP-based systems is the substantial
overhead in prover running time and memory consumption,
which poses challenges for scaling to large statements. Addi-
tionally, each statement necessitates a separate trusted setup.

4.2 IP-based zk-SNARKs
Interactive proof (IP) is a generalization of PCP in which the
verifier can send random messages to the prover for multiple
rounds. The construction of IP is divided into two steps: (1)
construct a proof which models the message sent by the prover
as oracles; and (2) instantiate the oracles with well-defined

cryptographic techniques. The first part is also known as
PIOP where the prover needs to send a commitment of a
polynomial. The technique in the second part is PCS which
convinces a verifier that evaluations of a polynomial sent
by the prover are correct. IP can eliminate the trust setup,
long common reference string (CRS), and slow prover in
QAP-based zk-SNARKs, and it has been a mainstream in the
design of state-of-the-art proving systems.

4.2.1 GKR-based IP for Layered Circuits

Earlier IPs are mainly designed for layered circuits where
each gate can only connect to the layer above. Goldwasser-
Kalai-Rothblum (GKR) protocol [85] is designed to prove
the satisfiability of such a circuit by a layer-to-layer reduction.
The basic idea in this category is that for each layer the prover
proves that the gate’s output is correctly computed from last
layer’s output. Denote the number of gates in the i-th layer
as Si and si = logSi, the label of the wire is a, the value of
wire a in layer i as Vi(a), and the wire predict ADDi(a,b,c)
and MULi(a,b,c) (return 1 when a,b,c combine an addition
or multiplication gate, respectively). The GKR prover proves
for each wire c in each layer i, the following equation holds:

Vi+1(c) = ∑
a,b∈{0,1}si

(ADDi(a,b,c) · (Vi(a)+Vi(b))

+ MULi(a,b,c) ·Vi(a)Vi(b))
(4)

The first GKR protocol has cubic complexity prover, which
proves Equation 4 by sending commitments of the circuit
values Vi(c) and their linear combinations. Several follow-up
works [39, 41, 70, 71] extend the functions V,ADD,MUL in
Equation 4 to polynomials as if they are defined in a large field
and utilize polynomial evaluations to optimize the complex-
ity to quasi-linear. The GKR-based approaches are doubly
efficient, meaning that they have a quasi-linear prover along
with an efficient verifier where the verifier time is linear to the
input of the layered circuit. Despite the advancements of the
GKR protocol, a significant limitation is that it only works
on layered arithmetic circuits. This introduces a significant
overhead when padding general circuits to layered circuits
using dummy gates.

4.2.2 PIOP for General Circuits

To construct zk-SNARKs for general circuits such as R1CS
and plonkish circuit, a new construction of IP has been pro-
posed. It utilizes a generalized form of IP called PIOP, which
models the message sent by the prover as polynomial oracles,
which returns polynomial evaluations. To get an IP, the ora-
cles in PIOP must be instantiated with a PCS, which evaluates
a polynomial on a specific point with soundness and privacy.
We discuss the features of three different constructions of PCS
for univariate PIOP and briefly outline the idea of multivariate
PIOP.

Univariant PIOP: The idea of univariant PIOP is to model
the computation in the general circuit as a polynomial and
then prove its properties. The prover uses a polynomial T to
encode the values in the whole computation trace, such as the
inputs and wire values, and a gate polynomial S to encode all
the addition and multiplication gates, e.g., S(a) = 0 if a is an
addition gate and S(a) = 1 represents a multiplication gate.
The prover proves the circuit satisfiability by the following
equation for any y:

S(y)[T (y)+T (ωy)]+(1−S(y))T (y)T (ωy) = T (ω2y), (5)

where ω is a gate offset, T (y),T (ωy),T (ω2y) denote the left
input, right input and output of gate y, respectively. There
are various other polynomial relations related to T and S to
ensure the circuit is correct such as zero-test, product-test and
permutation-test. All the tests are proved by utilizing PCS,
where the prover sends the commitment of these polynomials
first and then evaluates them on the point given by the verifier
with zero knowledge. The soundness and privacy of all the
tests are based on underlying PCS which can fall into three
categories.
PIOP with pairing. The polynomial commitment by Kate, Za-
verucha and Goldberg (KZG) [86] has evaluation proofs that
consist of only a single bilinear group element, and verify-
ing an evaluation requires only a single pairing computa-
tion. To evaluate f (u) = v on point u, the prover constructs
f (x)−v=(x−u)t(x) for some polynomial t(x) and computes
the proof as π = gt(s), where s is a secret value computed in
the trust setup. The verification is done through a pairing oper-
ation e(com/gv,g) = e(gs/gu,π) (com is the commitment for
the polynomial generated in the setup). However, this asymp-
totically optimal performance comes at the cost of a trusted
setup that outputs gs and s must be deleted after generation.

Many efforts have been made to integrate the KZG PCS
into zk-SNARKs. Plonk [40] utilizes the PCS to evaluate
Equation 5, achieving a short proof and fast quasi-linear
prover. Similar to Plonk’s technique, Marlin [44] applies the
KZG PCS to instantiate PIOP to prove the satisfiability of
R1CS. It achieves better efficiency for certain types of compu-
tation that map well to R1CS (addition gates do not contribute
to R1CS’s complexity). Some other works [87, 88, 89, 90]
add more features to the zk-SNARK in this category like
updatable setup and accelerators.
PIOP with inner-product argument (IPA). To eliminate the
trust setup in pairing-based PCS, BulletProof [45] instantiates
the PIOP through a new PCS using IPA-based techniques.
The idea of IPA PCS utilizes algebraic tricks. By proving a
polynomial f with degree m equals v at point u (i.e., f (u) =
∑

m
i=0 ciui = v where ci is the coefficient), the prover folds the

polynomial to two parts as f (u) = fL(u)+um/2 fR(u). By first
proving the correctness of the folding and then recursively
invoking the procedure, the prover is able to get a logarithmic
proof and a linear proving and verifying time related to the
polynomial degree.

Following this technique, Hyrax [39] represents the coeffi-
cients in a matrix achieving O(

√
m) prover complexity as a

refinement. Dory [91] improves the verifier time to logarith-
mic by introducing a linear combination of the polynomial’s
coefficients. Other works further optimize the performance in
this category achieving both logarithmic time in prover and
verifier sides [46, 92, 93, 94]. Several works find IPA PCS is
suitable for range proofs and have continued to design opti-
mizers such as aggregate proof, recursive proof and updatable
proof in blockchain settings [53, 56, 75, 92, 95, 96, 97]. As
IPA PCS is based on the hardness of the discrete logarithm
problem, the resulting schemes are not post-quantum secure.
PIOP with code theory. To achieve both transparent setup and
post-quantum security, Ligero [98] utilizes the linear code in
code theory to construct a PCS. In linear code, an [n,k,∆]-
code has three properties: (1) it can encode an arbitrary mes-
sage to a codeword; (2) the minimum distance (Hamming) be-
tween any two codewords is ∆; and (3) any linear combination
of codewords is also a codeword. In Ligero, Reed-Solomon
code [99] is used which views the message as a k−1 degree
polynomial and views the codeword as its evaluations at n
fixed points. In PCS, the m+1 coefficients of the polynomial
are first encoded into O(

√
m) codewords. Then the prover

commits to the codewords using the Merkle tree to enable the
existence check of specific codewords. To verify the evalua-
tion f (u) = v, the verifier sends a message (1,u, . . . ,uO(

√
m))

requesting the prover to do linear combinations of the code-
words using the message as coefficients. The prover checks
(1) the result is generated using the codeword committed
before (utilizing the Merkle tree); and (2) the result is a code-
word in the same class of the encoding codewords. As the
message is O(

√
m)-length, the prover size and verifier time

both have O(
√

m) complexity. A bottleneck in the prover side
is encoding the polynomial requires FFT which has O(

√
m)

complexity.
Later works generalize the idea of polynomial encoding

by dividing the coefficients in the polynomial into multi-
dimensions and encoding them into more codewords [100,
101] to achieve time-space tradeoff. In [51], a different code
encoding algorithm is used to further accelerate the prover.
In Fractal [48] and other subsequent works [49, 102], a
novel variant called Fast Reed-Solomon IOP of proximity
(FRI) [103] is used. FRI treats the polynomial coefficients as
a O(m)-sized vector and recursively encodes it by folding it in
half each time to achieve logarithmic proof size. By applying
all above-mentioned advanced techniques in code theory, ex-
isting code PCS can achieve a logarithmic verifier and proof
size, a linear prover and post-quantum security.
Multivariant PIOP: Though efficient PCS can shrink the
proof size and reduce the workload of the verifier, the usage
of FFT to construct the key polynomial in the univariate PIOP
has been a bottleneck on the prover side as it introduces a
quasi-linear complexity. To resolve this efficiency issue, sev-
eral works [41, 42, 50, 51, 52, 104] aim at multi-variant poly-

nomial evaluation for eliminating FFT. Those works require
modifying the PIOP protocol and PCS to a multivariant type
and then using the sumcheck protocol for proving. The key
polynomial can be constructed using the multilinear extension
technique which only needs linear time.
MPC-in-the-head: Several works prove the computation by
letting the prover simulate the multiparty protocol [16, 76, 77,
105, 106]. The technique is called "MPC-in-the-head”. Since
it incurs great overhead of the proof size and verifier, this kind
of zk-SNARKs has not been widely implemented.

Takeaways. Trade-off between efficiency and security–Linear
PCP achieves constant proof size but at the cost of a trust setup.
The zk-SNARKs in other categories try to mitigate this issue and
all incur a sublinear proof size. In PIOP, compared to the usage
of KZG PCS and IPA PCS, the code-based PCS incurs a signifi-
cant constant overhead in proof size and prover time though the
asymptotic complexity is similar.
Guidelines for choosing an appropriate proving system– As
a summary of this section, Table 2 serves as a guideline for
practitioners to choose their appropriate proving systems. We
address a few important properties: (1) determine whether a trust
setup is accepted. If yes, more considerations shall be taken when
choosing the trust third party; (2) determine the appropriate
scalability. For instance, blockchain applications prefer a fast
verifier and small proof size in order to save transaction fee and
the schemes in PIOP with pairing PCS category can be a good
choice; and (3) determine if post-quantum security is necessary
and choose code-based schemes if yes.

5 Library Evaluation

We survey 11 general-purpose popular ZK libraries, all of
which contain implementations for zk-SNARK protocols
aforementioned. Our survey follows the steps in Figure 2
where a high-level program is first converted to an interme-
diate representation, a.k.a. a circuit, specified by a constraint
system. Then, the circuit is passed to a proving system, which
implements specific zk-SNARK techniques to output a proof.
We limit our scope to zk-SNARK schemes proposed in the
last decade with open-source implementations. Note that the
industry in this field is rapidly developing, and some pop-
ular protocols, such as halo2 [47] and Plonk [40], do not
have peer-reviewed published papers yet. We include those
libraries as long as they have basic tools for implementing
a circuit (e.g., gadget functions or compiler), their proving
systems are popular (at least 5 citations in our references),
and they are widely used (e.g., in commercial privacy-focused
blockchain projects, or open-source project which have more
than 200 GitHub stars and forks). In this section, we compare
each library from the perspectives of usability and efficiency4.

4All our codes and documents are available at https://doi.org/10.
5281/zenodo.14682405.

https://doi.org/10.5281/zenodo.14682405
https://doi.org/10.5281/zenodo.14682405

Library Year Language Technique
Circuit
Generality Compiler

User
docus

Example
docus

Example
code Online support Academic Commercial

Last
update

libsnark [107] 2014 C++ LPCP-QAP ✓ eDSL # G# ✗ ✗ 02/2024
bellman [108] 2017 Rust PIOP-IPA ✓ \ # # # # ✗ ✓ 07/2024
libSTARK [109] 2018 C++ IP-GKR ✗ \ # # # ✓ ✗ 12/2018
dalek [74] 2018 Rust PIOP-IPA ✗ \ G# ✗ ✗ 01/2024
libiop [110] 2019 C++ PIOP-FRI ✗ \ # # # ✓ ✗ 05/2021
snarkjs [111] 2019 JavaScript PCP,PIOP ✓ DSL ✗ ✓ 04/2024
Spartan [112] 2019 Rust PIOP ✓ eDSL G# G# ✗ ✗ 04/2024
gnark [113] 2022 Go PCP,PIOP ✓ eDSL ✗ ✓ 07/2024
arkworks [114] 2022 Rust PCP,PIOP ✓ DSL # G# ✗ ✗ 01/2023
halo2 [53] 2022 Rust PIOP-IPA ✓ eDSL ✗ ✓ 02/2024
plonky2 [54] 2023 Rust PIOP ✓ eDSL ✗ ✓ 08/2024

Table 3: Comparison table of ZKP implementation libraries. In Circuit generality, ✓: targets general circuit, ✗: targets specific
circuit. In docus, example codes and online support column, : full support, G#: partial support, #: lack of support.

5.1 Basic Information
We first survey basic information about these libraries, in-
cluding language, technique, circuit generality, compilers and
documentation. Our findings are summarized in Table 3. The
language refers to the programming language that implements
the library. The techniques fall into four categories, with PIOP-
based schemes being the most common. Circuit generality
indicates whether a library supports general circuits. In Sec-
tion 3, we classify R1CS and Plonk circuits as general, while
layered circuits and range proofs are not. The latter two can
be adapted to general circuits but at an efficiency cost.

Compilers refer to tools that convert high-level languages
into circuit constraints, which we categorize in Section 5.3.
We also identify valuable documentation types: user docu-
mentation (installation, usage, and testing) and example docu-
mentation (sample code for applications). Some projects offer
additional support via GitHub issues or email.

While some libraries target commercial applications like
blockchain transactions, others are research-focused. Due to
page limits, detailed discussions on basic information, toolk-
its, and documentation for each library are provided in Ap-
pendix B.

5.2 Usability Issues
Note that some of the attributes in Table 3 represent critical
challenges in engineering, which we explain below.
Various Languages and Compatibility: Implementations
of zk-SNARK schemes are limited across programming lan-
guages. For example, Plonk [40] is only implemented in Rust,
making it challenging to use in applications written in other
languages. Developers needing Plonk-based schemes must
use Rust, which may not align with their preferences. Addi-
tionally, none of the libraries provide interfaces for compati-
bility. While components like constraint systems and proving
systems can be separated in code, their functions and tools
are confined to their respective libraries. For instance, we at-
tempted to use circuits generated in libsnark with libiop’s
proving systems to test Aurora and Fractal, as suggested by

[115]. However, we faced significant challenges due to in-
compatible circuit formats, as there are no interface functions
or documentation to bridge the gap.
Misuse of Circuits: Current libraries are not all focused on
the general circuits. For instance, Bulletproof [45] targets
range proofs and is not competitive enough compared with
other schemes targeting general circuits like R1CS when de-
signing complex applications. However, an appropriate choice
requires expert knowledge of constraint systems, which is
impractical for programmers. We believe the master recipe
in Section 3 and the classification table and explanations in
Section 4 can help mitigate this problem by enabling a practi-
tioner to choose an appropriate scheme for her application.
Misuse of Curves: The choice and usage of curves in each li-
brary are often implicit, leading programmers to overlook this
critical configuration. However, selecting an inappropriate
curve can reduce efficiency or introduce vulnerabilities. For
instance, if the computation exceeds the finite field’s limits,
the system becomes unsafe, yet programmers may remain
unaware. A common example is in blockchain range proofs,
where programmers must ensure the curve’s bit size exceeds
the maximum transaction value; otherwise, severe commer-
cial losses can occur. To address this, we documented the
curves used in the surveyed libraries and provided guidelines
for proper configuration.
Lack of Compilers: Many libraries lack a compiler to con-
vert high-level code into circuit representations, forcing pro-
grammers to manually add constraints. At the circuit level,
programmers must handle intricate details like curve opera-
tions, loops, and permutations. For example, implementing
a hash function like SHA256 requires tens of thousands of
constraints, placing a significant burden on the programmer.
Additionally, this task demands deep familiarity with both the
programming language and the constraint system.
Lack of Documentation: Here, we find that in many libraries,
example documents are rather limited. For example, arith-
metic circuits operate over a finite field whose size must be
set in advance, but very few documents tell how to choose
the size. The programmer is responsible for avoiding field

overflow, which requires preliminary knowledge of complex
field operations.

We have taken steps to address or mitigate these issues. For
language and compatibility challenges, we created runnable
Docker images for our test sample codes, enabling program-
mers to configure their environments without relying on cross-
platform functions. To tackle circuit and curve misuse, we
provided comprehensive guidelines in earlier sections and
included a detailed discussion of curves in our project. For
compiler-related problems, we categorized existing compil-
ers in each library and analyzed their strengths and weak-
nesses to help programmers understand compiler concepts
in the ZK context. Regarding documentation, we developed
open-source materials, including a wiki-book documenting
all APIs related to our master recipe components and three
walk-through tutorials for our sample code in each library.

5.3 Compilers

We identify compilers as the bottleneck of zk-SNARK appli-
cations for two reasons. Firstly, during the implementation
of our test code, most of the codes are for compilers and we
have spent most of time debugging compiler-related issues.
Secondly, according to [25], more than 90% of the vulnera-
bilities are found at the circuit level due to misunderstanding
the compiler’s languages. Here we discuss the categoriza-
tion of existing compilers for practitioners to understand their
features and functionality.

5.3.1 Categorization

Commonly used compilers for zk are categorized into
Domain-Specific Languages (DSLs), Embedded Domain-
Specific Languages (eDSLs), and Zero-Knowledge Virtual
Machines (zk-VMs). The input of DSL is an independent file
with syntax tied to circuit constraints, separate from library
functions, and its output is a separate file containing circuit
information. The input of eDSL combines library functions
related to the constraint system, often using gadgets (built-in
functions for complex constraints like inner products or loop
specifications); gadgets are tools, not compilers, that help
build compiler inputs, and the output of eDSL is a data struc-
ture for the proving system. The input of zk-VM is opcodes
compiled by general-purpose compilers, and its output is cir-
cuit information. We discuss the strengths and drawbacks of
these compilers as follows.
Domain-specific languages (DSLs): DSLs are special-
ized programming languages designed for specific prob-
lem domains, offering tailored syntax to efficiently express
constraints in arithmetic circuits for zk-SNARK. Current
DSLs are categorized as hardware description languages
(HDLs) [116] or programming languages (PLs) [117, 118,
119, 120]. HDLs describe circuit synthesis directly in wire
form, providing elegant syntax but posing challenges for pro-

grammers due to their independent wire-based structure and
limited data type abstraction, as inputs are represented as sig-
nal data structures. In contrast, PLs define constraints in high-
level programming languages, supporting various data types
and resembling languages like Rust or Python. This makes
PLs more accessible to programmers without wire form cir-
cuit knowledge, offering the easiest way to define constraints.
However, PLs’ flexible syntax increases vulnerability risks
and introduces efficiency issues. Currently, learning DSLs is
challenging due to the lack of standardization, with each DSL
having an entirely different syntax.
Embedded Domain-Specific Languages (eDSLs): eDSLs
for zk-SNARK have gained popularity in recent years and
are implemented as functions within general-purpose pro-
gramming languages, making them distinct from traditional
compilers in the context of programming languages. In
this paper, we generalize the concept of a compiler to in-
clude any tool that transforms its input into a circuit def-
inition. eDSLs are designed to describe circuit synthesis,
similar to HDLs, but they target wire form circuits while
offering greater expressiveness and ease of use by inherit-
ing data structures and programming features from the em-
bedded language. Examples of eDSLs include implemen-
tations in Golang [113], Rust [53, 54, 108, 114, 121, 122],
C&C++ [107, 110], Java [123], and TypeScript [124]. These
eDSLs streamline the development of ZK proofs by integrat-
ing circuit definition and proof generation into a single file,
simplifying code and enabling programmers to leverage exist-
ing library functionalities. However, writing code in eDSLs
requires developers to explicitly distinguish between in-circuit
and out-circuit operations, necessitating expert knowledge of
the specific language and library design.
Zero-Knowledge Virtual Machines (zk-VMs): zk-VMs tar-
get the opcode of the fetch-decode-execute cycle, replicating
the computation trace for general programs (typically smart
contracts) and generating corresponding ZK proofs. They
support various instruction set architectures (ISAs), including
Ethereum Virtual Machine [125, 126, 127], RISC [128, 129],
and custom ISAs [130, 131, 132]. zk-VMs are compatible
with existing high-level programming languages and can
leverage features of existing compilers, such as gcc. How-
ever, despite targeting low-level opcodes, zk-VMs are not
fully compatible with top-level applications and often require
minor or major program modifications, which can be error-
prone and difficult for programmers to manage. Additionally,
zk-VMs use a Turing machine computation model instead of
circuits, introducing significant overhead. While zk-VMs re-
duce the burden of writing constraints for programmers, they
may suffer from efficiency issues, particularly for large-scale
applications.

5.3.2 Compatiability

We assess the compatibility of these compilers according to

two properties:
Cross-compatibility: This indicates whether the compila-
tion result of a compiler can be utilized by another one. DSL
compilers offer moderate cross-compatibility as they separate
the constraint system and the proving system. With the stan-
dardization of compilation results in the future, the libraries
can only focus on providing the proving systems by taking
DSL results as inputs. The eDSL compilers have low cross-
compatibility as they define the circuit within a programming
language which makes it difficult to use their defined circuit
in platforms with other languages. Even in the same language,
the compilation result may not be compatible because gad-
get functions are different, as we find in libiop [110] and
libsnark [107]. The zk-VMs have low cross-compatibility
as they are only designed for some specific high-level pro-
grams.
Syntax-compatibility: This indicates whether the input lan-
guage of a compiler has a similar syntax to another one.
Syntax-compatibility is important as it allows a programmer
familiar with a language to move to another one without com-
prehensive studies. Unfortunately, we find even in the same
category, the languages of the compiler have a completely
different syntax and it will be hard to learn them all. In DSL,
HDL is a hardware circuit language while PL is more like a
general programming language. In eDSL, the syntax depends
on the basic language of the library, ranging from C, C++,
Rust, Go and JavaScript. In zk-VM, only opcodes from smart
contract languages are well supported and opcodes from other
general languages will not pass the compilation.

Takeaways. Absence of universal standardization – Current
compilers are categorized as DSL, eDSL and zk-VM, and each
has pros and cons. We identify two issues related to compatibility.
Firstly, even in the same category, there are significant differences
in the syntax, which makes it difficult to migrate projects and
confuse programmers. Secondly, even for the same circuit, the
compilation result cannot be used by a proving system in another
library, though the compilers are designed separately from the
proving system. We thus call for a universal standardization for
these compilers including a standard language syntax and the
compilation output.

5.4 Experimental Evaluation

In this section, we benchmark the performance of
zk-SNARKs on three sample programs. These programs are
all well-designed and popular in real-world applications. All
our experiments are conducted on a server equipped with an
Intel Xeon Silver 4314 CPU running at 2.40 GHz. The system
is powered by 64 GB of RAM and the operating system used
is Ubuntu 20.04.6 LTS. Our results are reported in Table 4
and here we make two comments.

Firstly, we compare the performance results with the
asymptotical complexity of each scheme and give interesting

findings that optimal theoretical complexity does not always
result in better performance. We discuss why this is the case
and recommend researchers discuss more suitable applica-
tions for their approach.

Secondly, we believe the quantitative results of our sample
programs are meaningful as a reference to practical appli-
cations for specific proving systems, but we emphasize that
the results would not accurately represent the performance
abilities of each scheme. The circuits used in each scheme are
different in theory or have different implementations in prac-
tice. Besides, the security models vary in transparent setup,
post-quantum security, universal reference string, etc., and in
academic papers, they are only compared to counterparts in
the same category. In our evaluation, we aim to show the com-
mon characteristics of each scheme and provide an intuitive
comparison from an engineering perspective.

5.4.1 Sample Programs

We carefully design sample programs to evaluate the effi-
ciency and usability of each library.
A Cubic Expression: Our first example is a cubic expression
proof that the prover proves that she knows x that satisfies a
polynomial x3 +x+5 = y. This example tests the usability of
a library and checks whether it is possible to add constraints
manually for arbitrary small-size circuits without compilers.
It also tests the basic efficiency of implemented schemes on
small-sized circuits.
Range Proof: Our second example proves that a value x is in
a certain range [0,232). Range proof is a popular application in
blockchain because it enables confidential transactions. Some
systems like Bulletproof [45] are not designed for general
circuits but for range proofs. This example compares such
schemes with other general-purpose ones.
Hash Function: Our third example is SHA256 hash function.
The prover proves that she knows a value x such that y =
SHA256(x) and only y is known to the verifier. A SHA2 hash
function is inefficient and has more than 30,000 constraints,
which is impossible without compilers. For those libraries
that only have proving systems, we test random circuits in the
same quantity of constraints instead. The hash example tests
the efficiency of the proving systems for large constraints.
Additionally, it tests different constant systems, e.g., R1CS
and Plonk, when representing the same function.

5.4.2 Experimental Setup

In this section, we talk about the criteria for choosing schemes
for evaluation and evaluation metrics.
Inclusion & Exclusion Criteria: We aim to build a com-
prehensive benchmark for more zk-SNARK schemes both
from papers accepted at top Crypto & security conferences
and industry popular projects (due to the long review cycle,
several schemes have not yet been published but have various

Library Scheme Cubic expression Range proof Hash
CRS N P V S CRS N P V S CRS N P V S

libsnark
Groth16 0.86 3 0.008 0.001 0.13 7.56 39 0.023 0.001 0.13 4.19k 27.30k 0.92 0.001 0.13
BCTV14 1.74 3 0.013 0.004 0.28 9.63 39 0.024 0.004 0.28 6.28k 27.30k 0.97 0.004 0.28
GM17 2.11 3 0.010 0.002 0.13 15.21 39 0.035 0.002 0.13 10.30k 27.30k 1.78 0.002 0.13

gnark Groth16 4.65 3 0.002 0.002 0.56 17.09 22 0.005 0.003 0.70 100.50k 153.00k 0.28 0.002 0.70
Plonk 31.09 4 0.010 0.004 1.32 40.11 90 0.003 0.014 1.44 78.91k 599.20k 9.55 0.002 1.44

snarkjs
Groth16 5.87 2 0.78 0.70 0.79 26.22 33 0.76 0.70 0.79 33.00k 59.00k 2.19 0.71 0.79
Plonk 13.20 4 0.83 0.71 2.20 195.14 100 0.94 0.73 2.20 100.50k 241.70k 549.95 0.76 2.20
FFlonk 19.67 4 0.81 0.72 2.20 291.62 100 0.97 0.70 2.20 11044.20k 241.70k 556.31 0.71 2.20

libiop
Ligero \ 4 0.04 0.01 608.00 \ 32 0.04 0.02 608.00 \ 27.28k 2.195 2.081 3.01k
Aurora \ 4 0.022 0.004 35.40 \ 32 0.026 0.007 50.78 \ 32.77k 7.44 0.41 125.98
Fractal \ 4 0.014 0.007 54.69 \ 32 0.044 0.013 156.25 \ 32.77k 8.83 0.012 201.44

Spartan Spartan \ 4 0.59 0.32 9.67 \ 32 1.07 0.45 15.29 \ 32.77k 103.20 2.07 67.49

arkworks Groth16 2.05 3 0.036 0.033 0.25 15.48 33 0.037 0.037 0.25 22.32k 58.94k 3.40 0.036 0.25

halo2 Halo2 \ 2 0.001 0.001 11.97 \ 33 0.002 0.002 117.04 \ 242.65k 4.16 0.13 3.97

plonky2 Plonky2 \ 2 15.36 0.19 145.33 \ 9 15.42 0.19 145.32 \ 261.98k 274.96 0.28 175.59

dalek Bulletproofs \ \ 0.008 0.001 0.66 \

Table 4: Main results. CRS: the size of a common reference string (KB), N: the number of constraints in a circuit, P: running
time of generating a proof (s), V: running time of verifying a proof (s), S: the size of a proof (KB). Since some zk-SNARKs
don’t need trust setup, they have no CRS and we mark them with ‘\’. Since Dalek-bulletproofs is used to generate range proofs
and not for general circuits, we do not evaluate the Cubic expression or Hash on it.

applications). We then made an initial attempt to run each
approach, following the instructions in README on their
GitHub homepages and applying the frontend and backend
programming styles documented in their evaluation settings.
We exclude libraries that either (1) are implemented by au-
thors as materials for the paper or (2) fail to compile and with
limited documentation or online support. In the end, we eval-
uate twelve schemes in 9 libraries, with three (Groth16 [43],
BCTV14 [81], GM17 [133]) under the category of QAP (Sec-
tion 4.1), one (Ligero [98]) under GKR interactive proof
(Section 4.2.1), and eight (Plonk [40], Aurora [49], Spar-
tan [50], Bulletproof [45], Halo2 [47], Plonky2 [54], Frac-
tal [48], FFlonk [134]) under PIOP (Section 4.2.2).
Evaluation Metrics: As each scheme has different proper-
ties and security models, we choose five general criteria, i.e.,
(1) the size of common reference string, (2) the number of
constraints in the circuit, (3) the running time of the prover, (4)
the running time of the verifier, and (5) the size of the proof.
We assess different schemes with our three basic examples
while more complex examples, such as scenarios that need to
verify many proofs at once and a sequence of range proofs,
are excluded. Some optimizers like recursive [53] or aggre-
gate proof [75] may perform well in these complex scenarios,
but testing them is beyond the scope of this work.

5.4.3 Performance Highlight

Best Practice: For different application scenarios, we rec-
ommend the best scheme along with its implementation.
Groth16 [43] is the best practice for applications that need a
fast prover, a small proof size, and can tolerate a trust setup.

gnark [113] implements Groth16 more efficiently in Go,
while snarkjs [111] provides an implementation of Groth16
in Rust with more compatibility (using a DSL compiler).
Plonk [40] is the best practice for applications that need a
transparent setup and are not sensitive to the slight increase
of the proof size. For the widely used range proof, we recom-
mend dalek [74], which is designed for range proof, specif-
ically. We also recommend gnark [113], arkworks [114],
snarkjs [111], halo2 [53] for study or research purposes
as they have well-formed documents and running a proof in
these libraries follows a complete walk-through of our master
recipe.

6 Discussion

According to our findings, we advocate for documenta-
tion, standardization, and designing specific proving systems,
which we explain in detail as follows.
Documentation: Universally, the biggest obstacle when us-
ing zk-SNARK libraries is the lack of documentation. The
community has dedicated thousands of hours to produc-
ing the work presented here, but not enough documentation
makes these contributions less accessible. In the context of
zk-SNARK field, we recommend two kinds of documents.
One is the user document, which contains not only the neces-
sary steps to run an example in the library but also the details
of gadgets API in eDSL or the language syntax in DSL about
how to define a circuit. The lack of documentation about the
compiling phase hinders the library from the cryptographic
developers. Besides, We find online support valuable when

experimenting with these libraries where the issues in Github
solved most of our problems. We also find a walk-through
of examples provided by the developers of the library is very
helpful. We thus advocate for dynamic documentation such
as executable codes (as the docker resources we provided)
and enough support through mail or Github.
Standardization: We advocate for two types of standardiza-
tion. One is about the feature in the zk-SNARK field. Many
of these libraries are designed around a particular feature, e.g.,
small proof with a trust setup in libsnark [107], transparent
and fast prover in arkworks [114]. The library’s documen-
tation about these core features is implicit, and developers
need to understand underlying cryptographic techniques to
choose an appropriate scheme. The standardization can help
developers compare essential features across libraries and
also set a more consistent baseline for performance. The other
standardization we advocate is for the compiler. The existing
libraries use different approaches such as DSL, eDSL and
zk-VMs for defining circuits, which makes it difficult to reuse
existing tools due to non-standardization of compilers.
Specific Proving Systems: During our exploration, we
find some libraries are designed for specific tasks, such as
halo2 [53], plonky2 [54] for recursive proof and dalek [74]
for range proof. It remains an open question if proving sys-
tems for specific scenarios will perform better than generic
proving systems. Designing such specific proving systems
requires cooperation between the theory progress and engi-
neering.

7 Conclusion

In this paper, we systematically summarized research of
zk-SNARK from theory to practice. We begin by present-
ing a master recipe for zk-SNARK, which outlines the key
steps in constructing zk-SNARKs. We then examined each
component in the recipe from both theoretical and engineer-
ing perspectives and identified gaps between them. Extensive
efforts were made to evaluate different zk-SNARK libraries,
and based on our findings, we offered recommendations for
programmers and developers while providing new insights
for future research.

Acknowledgments

The authors appreciate zk-SNARK engineers Zhiwen Zhang
and Yu’ao Zhou for their help and suggestions when preparing
our open-source project.

8 Ethics Statements and Compliance with the
Open Science Policy

Ethics Statements: In this paper, all evaluated zk-SNARK
libraries are open-source and freely available on GitHub or

their respective homepages. As such, this research does not
involve any ethical concerns, as it does not include activities
that could pose harm or risk to individuals or organizations.
We hope this work helps bridge the gap between theory and
practice, providing valuable insights for researchers and de-
velopers working on zk-SNARK applications.
Open Science Policy: We fully adhere to the principles
of the Open Science Policy and are committed to promot-
ing transparency and reproducibility in scientific research.
In line with these principles, we ensure that all evaluated
zk-SNARK libraries are available with their links provided
in the references. Our artifacts consist of a completely vir-
tual environment (Docker image), a walk-through tutorial
for every test code and an API wiki book in which to run
the compiler for each system and are available at https:
//doi.org/10.5281/zenodo.14682405 as per the confer-
ence’s requirements.

References

[1] How can convince your colour-blind friend that
two balls have the same colour. [Online], 2022.
https://cs.stackexchange.com/questions/150548.

[2] Oded Goldreich and Johan Håstad. On the complexity
of interactive proofs with bounded communication. Inf.
Process. Lett., 67(4):205–214, 1998.

[3] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu
Sudan, and Mario Szegedy. Proof verification and the
hardness of approximation problems. Journal of the
ACM (JACM), 45(3):501–555, 1998.

[4] Amos Fiat and Adi Shamir. How to prove yourself:
Practical solutions to identification and signature prob-
lems. In Conference on the theory and application of
cryptographic techniques, pages 186–194, 1986.

[5] Sanjeev Arora and Shmuel Safra. Probabilistic check-
ing of proofs: A new characterization of np. Journal
of the ACM (JACM), 45(1):70–122, 1998.

[6] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In IEEE symposium on security and
privacy, pages 459–474, 2014.

[7] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian
Miers, Pratyush Mishra, and Howard Wu. Zexe: En-
abling decentralized private computation. In 2020
IEEE Symposium on Security and Privacy (SP), pages
947–964, 2020.

[8] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani,
and Dan Boneh. Zether: Towards privacy in a smart

https://doi.org/10.5281/zenodo.14682405
https://doi.org/10.5281/zenodo.14682405

contract world. In International Conference on Finan-
cial Cryptography and Data Security, pages 423–443,
2020.

[9] Zhiguo Wan, Yan Zhou, and Kui Ren. Zk-authfeed:
Protecting data feed to smart contracts with authenti-
cated zero knowledge proof. IEEE Transactions on
Dependable and Secure Computing, 20(2):1335–1347,
2022.

[10] Samuel Steffen, Benjamin Bichsel, Roger Baumgart-
ner, and Martin Vechev. Zeestar: Private smart con-
tracts by homomorphic encryption and zero-knowledge
proofs. In 2022 IEEE Symposium on Security and Pri-
vacy (SP), pages 179–197, 2022.

[11] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz,
and Xiao Wang. Mystique: Efficient conversions for
{Zero-Knowledge} proofs with applications to ma-
chine learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 501–518, 2021.

[12] Tianyi Liu, Xiang Xie, and Yupeng Zhang. Zkcnn:
Zero knowledge proofs for convolutional neural net-
work predictions and accuracy. In ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 2968–2985, 2021.

[13] Donald Beaver. Secure multiparty protocols and zero-
knowledge proof systems tolerating a faulty minority.
Journal of Cryptology, 4:75–122, 1991.

[14] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Zero-knowledge from secure multiparty
computation. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 21–30,
2007.

[15] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof.
Practical fully secure three-party computation via sub-
linear distributed zero-knowledge proofs. In ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 869–886, 2019.

[16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
{ZKBoo}: Faster {Zero-Knowledge} for boolean cir-
cuits. In 25th usenix security symposium (usenix secu-
rity 16), pages 1069–1083, 2016.

[17] Melissa Chase, David Derler, Steven Goldfeder,
Jonathan Katz, Vladimir Kolesnikov, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel
Slamanig, Xiao Wang, et al. The picnic signature
scheme. Submission to NIST Post-Quantum Cryptog-
raphy project, 2020.

[18] Zk market prediction for 2030. [Online], 2023.
https://www.aligned.co/post/10-billion-revenue-
market-size-by-2030.

[19] Axiom. Axiom, 2024. https://www.axiom.xyz/.

[20] FedML. Fedml, 2024. https://fedml.ai/home.

[21] Giza. Giza, 2024. https://gizatech.xyz/.

[22] Matteo Campanelli, Rosario Gennaro, Steven
Goldfeder, and Luca Nizzardo. Zero-knowledge con-
tingent payments revisited: Attacks and payments for
services. In ACM SIGSAC Conference on Computer
and Communications Security, pages 229–243, 2017.

[23] Hongbo Wen, Jon Stephens, Yanju Chen, Kostas Ferles,
Shankara Pailoor, Kyle Charbonnet, Isil Dillig, and
Yu Feng. Practical security analysis of zero-knowledge
proof circuits. IACR Cryptol. ePrint Arch., 2023:190,
2023.

[24] Alex Ozdemir, Riad S Wahby, Fraser Brown, and Clark
Barrett. Bounded verification for finite-field-blasting:
In a compiler for zero knowledge proofs. In Inter-
national Conference on Computer Aided Verification,
pages 154–175, 2023.

[25] Stefanos Chaliasos, Jens Ernstberger, David Theodore,
David Wong, Mohammad Jahanara, and Benjamin
Livshits. Sok: What don’t we know? understand-
ing security vulnerabilities in snarks. arXiv preprint
arXiv:2402.15293, 2024.

[26] Feng Li and Bruce McMillin. A survey on zero-
knowledge proofs. In Advances in computers, vol-
ume 94, pages 25–69. Elsevier, 2014.

[27] Anca Nitulescu. zk-snarks: A gentle introduction.
Ecole Normale Superieure, 2020.

[28] Li Wei-Han, ZHANG Zong-Yang, ZHOU Zi-Bo, and
DENG Yi. An overview on succinct non-interactive
zero-knowledge proofs. Journal of Cryptologic Re-
search, 9(3):379–447, 2022.

[29] Eduardo Morais, Tommy Koens, Cees Van Wijk, and
Aleksei Koren. A survey on zero knowledge range
proofs and applications. SN Applied Sciences, 1:1–17,
2019.

[30] Miranda Christ, Foteini Baldimtsi, Konstantinos Kryp-
tos Chalkias, Deepak Maram, Arnab Roy, and Joy
Wang. Sok: Zero-knowledge range proofs. Cryptology
ePrint Archive, 2024.

[31] Yongming Fan, Yuquan Xu, and Christina Garman.
Snarkprobe: An automated security analysis frame-
work for zksnark implementations. In International
Conference on Applied Cryptography and Network Se-
curity, pages 340–372, 2024.

https://www.axiom.xyz/
https://fedml.ai/home
https://gizatech.xyz/

[32] Miguel Isabel, Clara Rodríguez-Núñez, and Albert Ru-
bio. Scalable verification of zero-knowledge protocols.
In IEEE Symposium on Security and Privacy (SP),
pages 133–133, 2024.

[33] David Cerdeira, Nuno Santos, Pedro Fonseca, and San-
dro Pinto. Sok: Understanding the prevailing security
vulnerabilities in trustzone-assisted tee systems. In
IEEE Symposium on Security and Privacy (SP), pages
1416–1432, 2020.

[34] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos
Chaliasos, Zhipeng Wang, Ye Wang, Kaihua Qin,
Roger Wattenhofer, Dawn Song, and Arthur Gervais.
Sok: Decentralized finance (defi) attacks. In 2023
IEEE Symposium on Security and Privacy (SP), pages
2444–2461, 2023.

[35] Shafi Goldwasser, Silvio Micali, and Chales Rack-
off. The knowledge complexity of interactive proof-
systems. In Providing sound foundations for cryptogra-
phy: On the work of shafi goldwasser and silvio micali,
pages 203–225. 2019.

[36] Jens Groth. Short pairing-based non-interactive zero-
knowledge arguments. In International Conference on
the Theory and Application of Cryptology and Infor-
mation Security (AsiaCrypt), pages 321–340, 2010.

[37] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mar-
iana Raykova. Quadratic span programs and succinct
nizks without pcps. In International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 626–645, 2013.

[38] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable zero knowledge with no
trusted setup. In Advances in Cryptology–CRYPTO
2019: 39th Annual International Cryptology Confer-
ence, pages 701–732, 2019.

[39] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin
Thaler, and Michael Walfish. Doubly-efficient zksnarks
without trusted setup. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 926–943, 2018.

[40] Ariel Gabizon, Zachary J Williamson, and Oana Ciob-
otaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, 2019.

[41] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Char-
alampos Papamanthou, and Dawn Song. Libra: Suc-
cinct zero-knowledge proofs with optimal prover com-
putation. In Advances in Cryptology–CRYPTO 2019:
39th Annual International Cryptology Conference,
pages 733–764, 2019.

[42] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei
Zhang. Hyperplonk: Plonk with linear-time prover and
high-degree custom gates. In International Confer-
ence on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 499–530, 2023.

[43] Jens Groth. On the size of pairing-based non-
interactive arguments. In International Conference
on the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT), pages 305–326, 2016.

[44] Alessandro Chiesa, Yuncong Hu, Mary Maller,
Pratyush Mishra, Noah Vesely, and Nicholas Ward.
Marlin: Preprocessing zksnarks with universal and up-
datable srs. In International Conference on the Theory
and Applications of Cryptographic Techniques (EU-
ROCRYPT), pages 738–768, 2020.

[45] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bullet-
proofs: Short proofs for confidential transactions and
more. In 2018 IEEE symposium on security and pri-
vacy (SP), pages 315–334, 2018.

[46] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Trans-
parent snarks from dark compilers. In International
Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT), pages 677–706,
2020.

[47] halo2 book. https://zcash.github.io/halo2/,
2022.

[48] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner.
Fractal: Post-quantum and transparent recursive proofs
from holography. In International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 769–793, 2020.

[49] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev,
Nicholas Spooner, Madars Virza, and Nicholas P Ward.
Aurora: Transparent succinct arguments for r1cs. In In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), pages
103–128, 2019.

[50] Srinath Setty. Spartan: Efficient and general-purpose
zksnarks without trusted setup. In Annual International
Cryptology Conference, pages 704–737, 2020.

[51] Alexander Golovnev, Jonathan Lee, Srinath Setty,
Justin Thaler, and Riad S Wahby. Brakedown: Linear-
time and field-agnostic snarks for r1cs. In Annual
International Cryptology Conference, pages 193–226,
2023.

https://zcash.github.io/halo2/

[52] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion:
Zero knowledge proof with linear prover time. In An-
nual International Cryptology Conference, pages 299–
328, 2022.

[53] ZCash. halo2, 2023. https://github.com/zcash/halo2.

[54] Mir Protocol. Plonky2. Github https://github.
com/mir-protocol/plonky2, 2023.

[55] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra,
and Nicholas Spooner. Recursive proof composition
from accumulation schemes. In Theory of Cryptogra-
phy (TCC), pages 1–18. Springer, 2020.

[56] Heewon Chung, Kyoohyung Han, Chanyang Ju,
Myungsun Kim, and Jae Hong Seo. Bulletproofs+:
shorter proofs for a privacy-enhanced distributed ledger.
Ieee Access, 10:42081–42096, 2022.

[57] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and
Michele Orru. Gemini: Elastic snarks for diverse envi-
ronments. In International Conference on the Theory
and Applications of Cryptographic Techniques (EU-
ROCRYPT), pages 427–457, 2022.

[58] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and
Rafael Pass. Sparks: succinct parallelizable arguments
of knowledge. In Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pages 707–737, 2020.

[59] Matteo Campanelli, Antonio Faonio, Dario Fiore,
Tianyu Li, and Helger Lipmaa. Lookup arguments:
improvements, extensions and applications to zero-
knowledge decision trees. In International Conference
on Public-Key Cryptography (PKC), pages 337–369.
Springer, 2024.

[60] Youssef El Housni and Aurore Guillevic. Families of
snark-friendly 2-chains of elliptic curves. In Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 367–396, 2022.

[61] Gavin Wood. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum project yellow
paper, 151:1–32, 2014.

[62] zksync. https://docs.zksync.io/, 2023.

[63] arkworks contributors. Aztec protocol, 2024.
https://github.com/AztecProtocol.

[64] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and
Dawn Song. Zero knowledge proofs for decision tree
predictions and accuracy. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 2039–2053, 2020.

[65] Haohua Duan, Zedong Peng, Liyao Xiang, Yuncong
Hu, and Bo Li. A verifiable and privacy-preserving fed-
erated learning training framework. IEEE Transactions
on Dependable and Secure Computing, 2024.

[66] Ari Biswas and Graham Cormode. Interactive proofs
for differentially private counting. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 1919–1933, 2023.

[67] Carmit Hazay and Yehuda Lindell. Efficient secure
two-party protocols: Techniques and constructions.
Springer Science & Business Media, 2010.

[68] George Danezis, Cedric Fournet, Markulf Kohlweiss,
and Bryan Parno. Pinocchio coin: building zerocoin
from a succinct pairing-based proof system. In Pro-
ceedings of the First ACM workshop on Language sup-
port for privacy-enhancing technologies, pages 27–30,
2013.

[69] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah
Meiklejohn, and Ian Miers. Updatable and univer-
sal common reference strings with applications to zk-
snarks. In Annual International Cryptology Confer-
ence, pages 698–728, 2018.

[70] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and
Dawn Song. Transparent polynomial delegation and
its applications to zero knowledge proof. In IEEE
Symposium on Security and Privacy (SP), pages 859–
876, 2020.

[71] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang,
Dawn Song, Xiang Xie, and Yupeng Zhang. Dou-
bly efficient interactive proofs for general arithmetic
circuits with linear prover time. In ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 159–177, 2021.

[72] Mary Maller, Sean Bowe, Markulf Kohlweiss, and
Sarah Meiklejohn. Sonic: Zero-knowledge snarks from
linear-size universal and updatable structured reference
strings. In ACM SIGSAC Conference on Computer and
Communications Security, pages 2111–2128, 2019.

[73] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dim-
itrios Papadopoulos, and Charalampos Papamanthou.
vsql: Verifying arbitrary sql queries over dynamic out-
sourced databases. In 2017 IEEE Symposium on Secu-
rity and Privacy (SP), pages 863–880, 2017.

[74] dalek contributors. dalek-bulletproof, 2017.
https://github.com/dale-cryptography/bulletproofs.

[75] Liam Eagen, Sanket Kanjalkar, Tim Ruffing, and Jonas
Nick. Bulletproofs++: next generation confidential
transactions via reciprocal set membership arguments.

https://github.com/mir-protocol/plonky2
https://github.com/mir-protocol/plonky2
https://docs.zksync.io/

In International Conference on the Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT),
pages 249–279, 2024.

[76] Melissa Chase, David Derler, Steven Goldfeder,
Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 1825–1842, 2017.

[77] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang.
Improved non-interactive zero knowledge with appli-
cations to post-quantum signatures. In ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 525–537, 2018.

[78] Joe Kilian. A note on efficient zero-knowledge proofs
and arguments. In Proceedings of the twenty-fourth an-
nual ACM symposium on Theory of computing, pages
723–732, 1992.

[79] Mihir Bellare and Adriana Palacio. The knowledge-
of-exponent assumptions and 3-round zero-knowledge
protocols. In Annual International Cryptology Confer-
ence, pages 273–289. Springer, 2004.

[80] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. Snarks for c: Verifying
program executions succinctly and in zero knowledge.
In Annual cryptology conference, pages 90–108, 2013.

[81] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct {Non-Interactive} zero knowl-
edge for a von neumann architecture. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 781–
796, 2014.

[82] Helger Lipmaa. A unified framework for non-universal
snarks. In International Conference on Public-Key
Cryptography (PKC), pages 553–583. Springer, 2022.

[83] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable
multi-party computation for zk-snark parameters in
the random beacon model. Cryptology ePrint Archive,
2017.

[84] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Scalable zero knowledge via cycles of
elliptic curves. Algorithmica, 79:1102–1160, 2017.

[85] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Roth-
blum. Delegating computation: interactive proofs for
muggles. Journal of the ACM (JACM), 62(4):1–64,
2008.

[86] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Advances in Cryptology - ASIACRYPT
2010, pages 177–194, Berlin, Heidelberg, 2010.

[87] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan
Tyagi, and Psi Vesely. Proofs for inner pairing products
and applications. In International Conference on the
Theory and Application of Cryptology and Information
Security (AsiaCrypt), pages 65–97, 2021.

[88] Matteo Campanelli, Antonio Faonio, Dario Fiore,
Anaïs Querol, and Hadrián Rodríguez. Lunar: a tool-
box for more efficient universal and updatable zksnarks
and commit-and-prove extensions. In International
Conference on the Theory and Application of Cryptol-
ogy and Information Security (AsiaCrypt), pages 3–33.
Springer, 2021.

[89] Yuncong Zhang, Shi-Feng Sun, and Dawu Gu. Effi-
cient kzg-based univariate sum-check and lookup ar-
gument. In International Conference on Public-Key
Cryptography (PKC), pages 400–425. Springer, 2024.

[90] Diego F Aranha, Emil Madsen Bennedsen, Matteo
Campanelli, Chaya Ganesh, Claudio Orlandi, and
Akira Takahashi. Eclipse: enhanced compiling method
for pedersen-committed zksnark engines. In Interna-
tional Conference on Public-Key Cryptography (PKC),
pages 584–614. Springer, 2022.

[91] Jonathan Lee. Dory: Efficient, transparent arguments
for generalised inner products and polynomial commit-
ments. In Theory of Cryptography (TCC), pages 1–34,
2021.

[92] Nan Wang and Sid Chi-Kin Chau. Flashproofs: Ef-
ficient zero-knowledge arguments of range and poly-
nomial evaluation with transparent setup. In Inter-
national Conference on the Theory and Application
of Cryptology and Information Security (AsiaCrypt),
pages 219–248, 2022.

[93] Helger Lipmaa and Kateryna Pavlyk. Succinct func-
tional commitment for a large class of arithmetic cir-
cuits. In International Conference on the Theory and
Application of Cryptology and Information Security
(AsiaCrypt), pages 686–716. Springer, 2020.

[94] Arasu Arun, Chaya Ganesh, Satya Lokam, Tushar Mop-
uri, and Sriram Sridhar. Dew: a transparent constant-
sized polynomial commitment scheme. In Interna-
tional Conference on Public-Key Cryptography (PKC),
pages 542–571. Springer, 2023.

[95] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Re-
cursive proof composition without a trusted setup. iacr

cryptol. eprint arch.(2019), 1021. URL: https://eprint.
iacr. org/2019/1021, 2019.

[96] Thomas Attema and Ronald Cramer. Compressed-
protocol theory and practical application to plug & play
secure algorithmics. In Annual International Cryptol-
ogy Conference, pages 513–543, 2020.

[97] Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis.
Updateable inner product argument with logarithmic
verifier and applications. In International Conference
on Public-Key Cryptography (PKC), pages 527–557,
2020.

[98] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura-
makrishnan Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 2087–2104, 2017.

[99] Stephen B Wicker and Vijay K Bhargava. Reed-
Solomon codes and their applications. John Wiley
& Sons, 1999.

[100] Jonathan Bootle, Alessandro Chiesa, and Jens Groth.
Linear-time arguments with sublinear verification from
tensor codes. In Theory of Cryptography (TCC), pages
19–46. Springer, 2020.

[101] Jonathan Bootle and Jens Groth. Efficient batch zero-
knowledge arguments for low degree polynomials. In
IACR International Workshop on Public Key Cryptog-
raphy, pages 561–588. Springer, 2018.

[102] Alan Szepieniec and Yuncong Zhang. Polynomial iops
for linear algebra relations. In International Confer-
ence on Public-Key Cryptography (PKC), pages 523–
552. Springer, 2022.

[103] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Fast reed-solomon interactive or-
acle proofs of proximity. In 45th international col-
loquium on automata, languages, and programming
(icalp 2018), 2018.

[104] Benoît Libert. Simulation-extractable kzg polynomial
commitments and applications to hyperplonk. In In-
ternational Conference on Public-Key Cryptography
(PKC), pages 68–98. Springer, 2024.

[105] Riddhi Ghosal, Paul Lou, and Amit Sahai. Efficient
nizks from lwe via polynomial reconstruction and
“mpc in the head”. In International Conference on
the Theory and Application of Cryptology and Infor-
mation Security (AsiaCrypt), pages 496–521. Springer,
2022.

[106] Carsten Baum and Ariel Nof. Concretely-efficient zero-
knowledge arguments for arithmetic circuits and their
application to lattice-based cryptography. In Interna-
tional Conference on Public-Key Cryptography (PKC),
pages 495–526. Springer, 2020.

[107] libsnark contributors. libsnark, 2014.
https://github.com/scipr-lab/libsnark.

[108] bellman contributors. zkcrypto/bellman, 2017.
https://github.com/zkcrypto/bellman.

[109] libSTARK contributors. elibensasson/libstark, 2018.
https://github.com/elibensasson/libSTARK.

[110] libiop contributors. libiop, 2019.
https://github.com/scipr-lab/libiop.

[111] snarkjs contributors. snarkjs, 2020.
https://github.com/iden3/snarkjs.

[112] spartan contributors. microsoft/spartan, 2020.
https://github.com/microsoft/Spartan.

[113] gnark contributors. gnark, 2022.
https://github.com/Consensys/gnark.

[114] arkworks contributors. arkworks zksnark ecosystem,
2022. https://arkworks.rs.

[115] How can convince your colour-blind friend that
two balls have the same colour. [Online], 2019.
https://github.com/scipr-lab/libiop/issues/2.

[116] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-
Tapia, Albert Rubio, and Jordi Baylina. Circom: A cir-
cuit description language for building zero-knowledge
applications. IEEE Transactions on Dependable and
Secure Computing, 20(6):4733–4751, 2022.

[117] Collin Chin, Howard Wu, Raymond Chu, Alessan-
dro Coglio, Eric McCarthy, and Eric Smith. Leo:
A programming language for formally verified, zero-
knowledge applications. Cryptology ePrint Archive,
2021.

[118] Alex Ozdemir, Fraser Brown, and Riad S Wahby. Circ:
Compiler infrastructure for proof systems, software
verification, and more. In IEEE Symposium on Security
and Privacy (SP), pages 2248–2266, 2022.

[119] Nada Amin, John Burnham, François Garillot, Rosario
Gennaro, Daniel Rogozin, Cameron Wong, et al. Lurk:
Lambda, the ultimate recursive knowledge. Cryptology
ePrint Archive, 2023.

[120] Jacob Eberhardt and Stefan Tai. Zokrates-scalable
privacy-preserving off-chain computations. In 2018
IEEE International Conference on Internet of Things,
pages 1084–1091, 2018.

[121] Privacy & Scaling Explorations. halo2 com-
munity edition. Github https://github.com/
privacy-scaling-explorations/halo2, 2023.

[122] zksecurity. Noname: a programming language to
write zkapps. https://github.com/zksecurity/
noname, 2023.

[123] Ahmed Kosba, Charalampos Papamanthou, and Elaine
Shi. xjsnark: A framework for efficient verifiable com-
putation. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 944–961, 2018.

[124] o1 labs. Typescript framework for zk-snarks and
zkapps. GitHub https://github.com/o1-labs/
o1js, 2021.

[125] Scroll. Scroll zkevm, 2023. https://scroll.io/.

[126] polygon. Github https://polygon.technology/
polygon-zkevm, 2023.

[127] Matter Labs. zksync era, 2023. https://era.
zksync.io/.

[128] Jeremy Bruestle, Paul Gafni, and the RISC Zero Team.
Risc zero zkvm: Scalable, transparent arguments
of risc-v integrity. https://dev.risczero.com/
proof-system-in-detail.pdf, 2023.

[129] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt:
Snarks for virtual machines via lookups. In Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 3–
33, 2024.

[130] Lior Goldberg, Shahar Papini, and Michael Riabzev.
Cairo–a turing-complete stark-friendly cpu architec-
ture. Cryptology ePrint Archive, 2021.

[131] Yuncong Zhang, Shi-Feng Sun, Ren Zhang, and Dawu
Gu. Polynomial iops for memory consistency checks
in zero-knowledge virtual machines. In International
Conference on the Theory and Application of Cryp-
tology and Information Security (AsiaCrypt), pages
111–141, 2023.

[132] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune
Jakobsen, and Mary Maller. Arya: Nearly linear-time
zero-knowledge proofs for correct program execution.
In International Conference on the Theory and Appli-
cation of Cryptology and Information Security (Asi-
aCrypt), pages 595–626. Springer, 2018.

[133] Jens Groth and Mary Maller. Snarky signatures:
Minimal signatures of knowledge from simulation-
extractable snarks. In Annual International Cryptology
Conference, pages 581–612, 2017.

[134] Ariel Gabizon and Zachary J Williamson. fflonk: a
fast-fourier inspired verifier efficient version of plonk.
Cryptology ePrint Archive, 2021.

A Sudoku example for ITP

Scenario: When convincing someone that a Sudoku puzzle
has a unique solution, we can use IP, PCP or IOP and compare
their difference.
IP: The verifier can ask any question she likes to the prover
who has the complete solution, such as:
• "What’s the number in row 3, column 5?"
• "Why can’t the number 8 be in the 7th box?"
• "Explain how you deduced the number in row 2, column

1?"
PCP: The prover writes the complete solution on a very
large piece of paper (the PCP proof). The verifier is allowed
to randomly choose a few cells to check (random oracle access
to the proof):
• "Check the number in row 2, column 8."
• "Check the number in row 6, column 3."
• "Check the number in row 9, column 9."

IOP: The prover also provides oracles like PCP but the
verifier has more kinds of interactions.
• First, the prover writes some hints on several sheets of

paper (oracles), such as "the sum of each row and column
is 45", "each box contains digits from 1 to 9", or a specific
deduction step.

• Then, the verifier can ask questions about the hints, such as
"show me the arrangement of numbers in row 3", or "show
me the numbers in box 5".

• Last, the verifier can randomly check parts of the hints
provided.

B Library Surveys

We survey each library in detail, including libsnark [107],
bellman [108], libSTARK [109], dalek [74], libiop [110],
snarkjs [111], gnark [113], arkworks [114], halo2 [53],
Spartan [112], and plonky2 [54]. We discuss the chal-
lenges we encountered when implementing the sample pro-
grams and elaborate on limitations noted in the tables on
the overall usability of each library. We compare the differ-
ences between academic and commercial projects and ad-
dress recommendations to help the developer improve their
projects. We also mention the history and the great contri-
butions those projects made to zk-SNARK field. We pro-
vide the detailed discussion in our open source materials
in https://doi.org/10.5281/zenodo.14682405 for in-
terested readers.

https://github.com/privacy-scaling-explorations/halo2
https://github.com/privacy-scaling-explorations/halo2
https://github.com/zksecurity/noname
https://github.com/zksecurity/noname
https://github.com/o1-labs/o1js
https://github.com/o1-labs/o1js
https://scroll.io/
https://polygon. technology/polygon-zkevm
https://polygon. technology/polygon-zkevm
https://era.zksync.io/
https://era.zksync.io/
https://dev.risczero.com/proof-system-in-detail.pdf
https://dev.risczero.com/proof-system-in-detail.pdf
https://doi.org/10.5281/zenodo.14682405

	Introduction
	Background
	Notions of IP, NIZK and zk-SNARK
	Cryptographic Techniques

	Overview
	Classification of Proving Systems
	PCP-based zk-SNARKs
	IP-based zk-SNARKs
	GKR-based IP for Layered Circuits
	PIOP for General Circuits

	Library Evaluation
	Basic Information
	Usability Issues
	Compilers
	Categorization
	Compatiability

	Experimental Evaluation
	Sample Programs
	Experimental Setup
	Performance Highlight

	Discussion
	Conclusion
	Ethics Statements and Compliance with the Open Science Policy
	Sudoku example for ITP
	Library Surveys

