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Abstract
As machine learning (ML) technologies become more preva-
lent in privacy-sensitive areas like healthcare and finance,
eventually incorporating sensitive information in building
data-driven algorithms, it is vital to scrutinize whether these
data face any privacy leakage risks. One potential threat arises
from an adversary querying trained models using the public,
non-sensitive attributes of entities in the training data to infer
their private, sensitive attributes, a technique known as the
attribute inference attack. This attack is particularly deceptive
because, while it may perform poorly in predicting sensitive
attributes across the entire dataset, it excels at predicting the
sensitive attributes of records from a few vulnerable groups, a
phenomenon known as disparate vulnerability. This paper il-
lustrates that an adversary can take advantage of this disparity
to carry out a series of new attacks, showcasing a threat level
beyond previous imagination. We first develop a novel infer-
ence attack called the disparity inference attack, which targets
the identification of high-risk groups within the dataset. We
then introduce two targeted variations of the attribute infer-
ence attack that can identify and exploit a vulnerable subset
of the training data, marking the first instances of targeted at-
tacks in this category, achieving significantly higher accuracy
than untargeted versions. We are also the first to introduce a
novel and effective disparity mitigation technique that simul-
taneously preserves model performance and prevents any risk
of targeted attacks.

1 Introduction

Advancements in machine learning (ML) techniques have
revolutionized the way data is analyzed and utilized, enabling
the solution of complex problems and the development of
a wide range of applications in many domains including
privacy-sensitive ones, such as personalized healthcare [1,25],
finance [12, 16], and customer analytics [2, 11]. However,
this technological leap has also launched a pivotal issue—the
vulnerability of ML models to privacy attacks. Recent stud-
ies reveal that ML models are vulnerable to various privacy

breaches. For instance, the models may reveal whether spe-
cific data was used in their training process [32], and even
allow the deduction of confidential information from the train-
ing dataset [8, 17, 29, 38]. The second type of attack, namely,
the model inversion attack, is particularly concerning as it
enables adversaries to recover sensitive information from
trained models. This weakness has constrained the training
and application of ML models in domains sensitive to privacy,
where safeguarding the privacy of the data is paramount.

Model inversion attacks can be broadly categorized into
two types: class representative reconstruction [37, 39] and
attribute inference [17, 29]. In class representative recon-
struction, the adversary aims to construct representative data
points for specific classes or categories of the training data.
In attribute inference attacks, notably suited for models uti-
lizing tabular data, the attacker aims to identify specific at-
tribute values within the training data. It is especially discon-
certing that tabular data, despite being the most widespread
type of structured data, is far less investigated for vulnera-
bilities [15, 17, 23, 29] when compared with other kinds of
data, e.g., images. This data domain faces a profound privacy
challenge from attribute inference attacks, where adversaries
can ascertain sensitive attributes using the model’s predictions
and the publicly accessible attributes of individuals whose
data was leveraged for training.

Motivation. Existing attribute inference attacks struggle to
achieve high performance, introducing uncertainty into their
predictions and thereby reducing the perceived severity of
privacy leakage through ML models. According to the evalu-
ation by Jayaraman et al. [23], their performance is usually
worse than that of an imputation attack, in which the attacker
collects a small amount of auxiliary data (roughly 10% the
size of the target data) and applies data imputation techniques
to estimate the missing sensitive attribute values. This causes
a further misjudgment of the threat level associated with at-
tribute inference attacks. However, the presence of disparate
vulnerability across various groups within the dataset [15, 29]
leads us to believe that the performance assessed on the whole
dataset does not truly represent the amount of privacy leakage,



as strong attack performance in some groups is offset by weak
attack performance in others. Consequently, if the adversary
becomes successful in identifying the subsets of data with
high attack performance, they can target those subsets and
predict the sensitive attribute values with greater certainty.
Thus, we seek to answer the following research question: can
an adversary effectively determine the vulnerability levels of
different groups within the dataset and then perform targeted
attacks that are highly effective?

Challenges. Identifying the dataset’s most at-risk groups
becomes a complex task under the assumption that the adver-
sary lacks direct access to the training data and does not have
a shadow dataset mirroring the training data’s distribution,
which is a realistic scenario in the context of model inversion
attacks. However, we show that the variation in factors caus-
ing disparity such as the correlation between the sensitive
and output attributes among different groups of the dataset
can be leveraged to identify the most vulnerable groups of
the dataset. To achieve this, the adversary needs to find a
way to measure the variation in the factors causing disparity
across different groups of the dataset. To this end, we intro-
duce a novel technique that leverages the confidence score
distribution of the model’s predictions on various groups of
the dataset to assess the variation in factors causing disparity
across these groups. Our approach introduces a metric called
angular difference, which can measure the vulnerability of
a group. We also discover that angular difference is closely
related to the correlation between the sensitive attribute and
the output at the group level and can be used to estimate this
correlation.

Proposed Attacks. We introduce a series of new attacks
with the shared goal of exploiting the disparate vulnerability
across groups. First, we propose an attack called disparity
inference attack, which, to the best of our knowledge, is the
first of its kind. This attack aims to rank the groups of records
according to their vulnerability to attribute inference attacks.
This attack can assist an adversary in launching existing at-
tacks by assigning a degree of certainty to predictions based
on group membership. Leveraging the disparity inference
attack, we develop two novel targeted attribute inference at-
tacks: single attribute-based and nested attribute-based, mark-
ing them as the first targeted attacks of their kind. Through
empirical evaluation, we show that these targeted attacks can
attain substantially higher performance in terms of accuracy
than their untargeted counterparts [29] while necessitating far
fewer queries to the target model.

The extensive and varied privacy leakage from exploit-
ing disparate vulnerability brings forth the pressing question:
what steps can be taken to mitigate disparity? Unfortunately,
current defensive methods against attribute inference attacks
are often ineffective or can even exacerbate disparity [15].
To address this, first, we explore the existing mutual infor-
mation regularization (MIR [36]) defense and incorporate a
disparity-aware objective into it, resulting in the Disparity-

Aware Mutual Information Regularization (DAMIR) solution.
We show that this disparity mitigation approach falls short
in consistently achieving its goal. Consequently, we design a
novel solution that mitigates disparity by balancing the con-
tributing factors, which we term as Balanced Correlation
Defense (BCorr). Our evaluation shows that BCorr consis-
tently mitigates disparity while also maintaining the original
task performance of the target model.

Summary of contributions. Our work makes the following
contributions:

❒ We present a novel attribute inference attack, termed the
disparity inference attack, which aims to identify the most
vulnerable groups in the training dataset. Our attack is the
first to focus on identifying high-risk groups, and we show
that our technique performs exceptionally well according to
ranking similarity metrics.

❒ We are the first to explore targeted attacks within the at-
tribute inference category, proposing two variations that focus
on a vulnerable subset of the training data and achieve a sig-
nificant performance boost over their untargeted counterparts.

❒ We introduce a novel disparity mitigation technique that
effectively eliminates disparity between groups. At the same
time, it preserves the target model’s performance and prevents
targeted attribute inference attacks.

2 Preliminaries

Attribute Inference Attack. Let n(x) denote the non-
sensitive portion of a record x, and let M represent the target
model. The objective of the attribute inference attack is to
predict s(x), the sensitive attribute value of x. Certain varia-
tions of the attack necessitate additional knowledge by the
adversary, such as auxiliary data Daux.
Confidence Score-based Model Inversion Attack (CSMIA).
In this attribute inference technique introduced in [29], an
adversary aims to predict the sensitive value of record x with
class label y by querying the model multiple times with xi
where n(x) = n(xi) and s(xi) = si, with si representing the
i-th sensitive value. The model returns predictions yi and
confidence scores con fi for i ∈ [1,k]. If only one yi matches
y, the corresponding si is output. If multiple yi match y, the
one with the highest con fi is chosen and the corresponding si
is output. Otherwise, the one with the lowest con fi is selected
and its corresponding si is output.
Label Only Model Inversion Attack (LOMIA). In the at-
tribute inference technique introduced by [29], the adversary
generates predictions for xi similar to CSMIA but does not
use confidence scores. They create an attack dataset from all
x that returned a true prediction for only one xi, adding (x,y)
as input and si as output. Subsequently, an attack model is
trained and used to infer the sensitive attribute value on the
remaining records.
Imputation Attack. The adversary creates an attack dataset
similar to LOMIA, but using Daux. Subsequently, an attack



model is trained to infer the sensitive attribute value on the
records.
Neuron Importance Attack. In this whitebox attack intro-
duced in [23], Daux is utilized to identify the top 10 most
correlated neurons within the MLP. For each record x, the
weighted sum of the activation values of these top 10 neu-
rons is calculated. If this sum exceeds a certain threshold, the
attacker predicts that x has the sensitive value of interest.
Disparate Vulnerability of MIAI. Let, M denote the MIAI
attack model, D denote the target dataset, and A denote the at-
tack algorithm that the adversary aims to launch. Additionally
let, ASR(M ,D,A) denote the attack success rate of launch-
ing A on model M and D. We state that A is disparate if
there exists two disjoint subsets D1 and D2 of D such that
|ASR(M ,D1,A)−ASR(M ,D2,A)| > ε for some ε > 0. In
other words, the attack success rate of A on D is not uniform
across all subsets of D. Here, ε is a threshold below which
any disparity is considered negligible.

3 Attack Threat Model

We assume the following adversary capabilities:
❏ Access to the black-box target model, i.e., the adversary

can query the model with x and obtain the output label y and
the corresponding confidence scores.

❏ Full knowledge of the non-sensitive attributes.
❏ Knowledge of every possible value of the sensitive at-

tribute and any non-sensitive attributes the adversary regards
as group attributes.

These capabilities are considered realistic in the context
of model inversion attacks, with most current model inver-
sion attacks assuming at least these capabilities. Notably, the
attacks introduced in Yeom et al [38], Fredrikson et al [17]
and CSMIA require full non-sensitive attribute knowledge for
the specific target record x, whereas LOMIA needs complete
non-sensitive attribute information for the entire target dataset.
Unlike in previous works [17, 38], the adversary in this case
does not need to be aware of the marginal priors, defined as
the relative frequencies of the sensitive attribute values, to
conduct the attack. In addition, the adversary can perform the
attack without needing an auxiliary dataset. This differs from
most existing attribute inference attacks [23, 38], which typi-
cally require an auxiliary dataset that matches the distribution
of the target dataset, except for CSMIA and LOMIA [29]. The
attacker is considered to have complete knowledge of all possi-
ble non-sensitive attribute values. This assumption is realistic
because publicly queryable ML models often reveal all possi-
ble values of query attributes. Leveraging this information and
our proposed targeted attribute inference attacks, the attacker
can identify groups based on different non-sensitive attributes.
When performing attacks, we assume the adversary has fewer
capabilities to investigate the extent of privacy leakage under
practical constraints. Conversely, during the evaluation of our
defense, we consider an adversary with greater capabilities to

rigorously evaluate the defense’s strength, as outlined in the
threat model in section 7.2.

4 Uncovering High-Risk Groups

4.1 Key Factor Contributing to Vulnerability
. To identify groups with a high risk of privacy leakage, it is
essential to understand the factors contributing to the differing
vulnerability levels among records from high-risk groups and
those from low-risk groups. The core factor contributing to the
vulnerability of ML models to attribute inference attacks is
the association between input and output data. For a model to
accurately predict outputs during inference, it must learn the
associations present in the training data. Therefore, a strong
association between input and output data in the training set
increases the likelihood of model inversion attacks, where an
adversary uses the model to infer sensitive attribute values in
the training data. One basic way to measure the association
between two variables is through correlation, leading to the
natural assumption that the correlation between the sensitive
attribute and the output plays a crucial role in the vulnerabil-
ity to attribute inference attacks. By ‘correlation’, we mean
Pearson’s correlation, which is often used interchangeably
in this domain. We conduct a simple experiment to provide
evidence supporting this hypothesis.

Experiment Setup. We use the Census19 and Texas-100X
datasets (detailed in section 6.1) for this experiment and apply
a sampling technique (described in section 6.1) to create
19 training sets from each dataset, each with varying levels
of correlation. We then train target models on each dataset
and perform CSMIA [29], LOMIA [29], Imputation [23],
and NeuronImportance [23] attacks on these models. For
the latter two attacks, we assume the adversary utilizes a
single auxiliary dataset across all scenarios, with a distribution
identical to that of the original datasets.

Results. Figure 1 reports the accuracy and F1 scores of the
attacks. The plot offers several compelling observations. In
the Census-19 dataset, both CSMIA and LOMIA exhibit a
monotonically increasing trend within the correlation range
of -0.2 to -0.9, a pattern not observed in the Imputation and
NeuronImportance attacks. A similar trend is seen in the
Texas-100X dataset for correlation values ranging from 0.3
to 0.9. The main factor behind the poor performance of Im-
putation and NeuronImportance at higher correlation mag-
nitudes is that their auxiliary data does not have the same
high correlation as the training data. The performance of an
imputation attack varies greatly depending on whether the
auxiliary data shares the same distribution as the original
data, an unrealistic scenario, or has a different distribution,
which is more likely in practice. This distinction is discussed
thoroughly in Section 6.2. Interestingly, correlation’s effect is
sign-agnostic; whether negative or positive, high correlations
lead to increased vulnerability. This occurs because different



(a) (b) (c) (d)

Figure 1: Comparative evaluation of CSMIA, LOMIA, Imputation Attack, and NeuronImportance Attack across scenarios where
dataset have varying level of correlation ranging from 0 to −0.9 for Census19 (a-b) and 0.9 for Texas-100X (c-d)

labeling methods can alter the correlation sign. An alterna-
tive labeling method (e.g., switching positive and negative
outputs) can convert a previously negative correlation to a pos-
itive one. The key takeaway from the results is that correlation
is a significant factor in vulnerability to attribute inference
attacks, prompting the question: does correlation also influ-
ence disparate vulnerabilities among groups? We explore this
with a brief experiment. Throughout the rest of this paper,
we describe correlation as high/low to refer to its magnitude,
avoiding redundancy and improving readability. Similarly,
‘correlation’ is used as shorthand to specifically refer to the
correlation between the sensitive attribute and the output.

Impact of Correlation on Disparate Vulnerability. We con-
duct another brief experiment to assess the impact of corre-
lation on disparate vulnerability. This experiment is carried
out on the Census-19 dataset, using the SEX attribute to di-
vide the dataset into Male and Female groups. We explore 9
scenarios, progressively increasing the correlation in Female
records and decreasing it in Male records. The experimental
results are depicted in Figure 2. The results clearly show that
the impact of correlation on vulnerability is significant at a
group level. When the correlation is high in Male records
and low in Female records, the attack performance is high in
the Male group and low in the Female group, and vice versa.
Both CSMIA and LOMIA performances exhibit this trend.
To emphasize, the experimental results demonstrate that cor-
relation is a key factor influencing the varying vulnerabilities
among groups within a dataset.

Given this observation, the key question is—Can an adver-
sary having only black-box access to the model compare the
correlation among these groups and thus identify the groups
with high privacy risk? Note that precise measurement of cor-
relation is not mandatory; being able to compare correlation
between groups is sufficient. However, comparing correlation
among groups poses a challenge since the adversary in our
threat model lacks access to an auxiliary dataset that matches
the distribution of the training data. To the best of our knowl-
edge, no method exists to estimate correlation in the training
data, let alone compare correlation among groups.

4.2 Comparing Correlation between Groups

A high degree of correlation in the dataset indicates that cer-
tain values of the sensitive attribute, or certain ranges of values
if the sensitive attribute is non-discrete, are more frequently
associated with a specific class label compared to other values
of the sensitive attribute. Conversely, a low correlation im-
plies that the relative difference in the occurrence of sensitive
attributes for a particular class label is minor or insignificant.
Our primary intuition is that during training, the target model
is influenced by the relative frequency of sensitive attributes
within a class label, leading it to predict with higher confi-
dence for a record from that label when the sensitive attribute
is set to the most frequent value, rather than to less common
values. In other words, the confidence score gap, defined as
the difference in confidence scores generated by querying the
same record with different sensitive attribute values, depends
on the relative frequency of those values. Since the level of
correlation determines relative frequency, the distribution of
the aforementioned confidence gap serves as an indicator of
the correlation level, which could be used by an adversary.
First, we will consider a dataset with a binary sensitive at-
tribute and a binary output class to present our argument more
clearly. Afterwards, we will discuss how the argument can be
extended to multi-category or non-discrete sensitive attributes
and multi-class outputs. Let’s assume the sensitive attribute
values are ‘yes’ and ‘no’, and the output class values are ‘True’
and ‘False’. If the dataset has a strong correlation, the ‘True’
class will contain significantly more ‘yes’ records than ‘no’
records. As a result of this imbalance, the model will develop
a bias towards assigning higher confidence to the ‘True’ class
for queries with the sensitive attribute set to ‘yes’ compared
to ‘no’ for the same record. If the records in a group exhibit a
high degree of imbalance, the expected confidence gap will
be large; conversely, a low degree of imbalance will result
in a smaller expected confidence gap. Thus, if an adversary
analyzes the distribution of the confidence gap across multiple
groups, they can predict which groups are more vulnerable.

To validate our intuition, we use the scenario from the
previous section where the correlation for the Male group
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Figure 2: Correlation vs. Attack performance for Male and Female group for 9 different scenarios using Census-19 Dataset.

(a) Group Correlation = -0.6 (b) Group Correlation = -0.5 (c) Group Correlation = -0.4

Figure 3: Histograms (bivariate and univariate) of confidence scores generated by querying records with different sensitive values,
taken from groups with varying correlation levels in the Census19 dataset.

is -0.6 and for the Female group is -0.4, and then we plot
the confidence scores generated by querying the same record
with different sensitive attribute values and present it in Fig-
ure 3. We plot the confidence scores for the records where
all predictions from various queries matched with the correct
label. In particular, we use hexagon bins to plot bivariate his-
tograms on a 2D plane and univariate histograms on the axis
margins to study the distributions of the confidence scores.
The Census19 dataset features a binary output class with la-
bels ‘High Income’ and ‘Low Income.’ The sensitive attribute
MAR, representing the marital status of the individual in the
record, has two possible values: ‘Married’ and ‘Single.’ In ad-
dition to ‘Male’ and ‘Female,’ we include the ‘White’ group,
which consists of records where the RACE attribute is set to
‘White,’ with a correlation of -0.5. High Income and Low
Income records are plotted in different colors to illustrate the
differences in their confidence score distributions. The plot
presents several intriguing insights. Each distribution forms
a comet-like shape with a concentrated head at the top right
and a tail extending away from that point. The direction of the
tail’s trajectory differs between High Income records and Low

Income records. The trajectory features support our hypoth-
esis; High Income records show more confidence with the
sensitive attribute set to ‘Married’ than ‘Single’, resulting in
a horizontal slant of the trajectory. The tail trajectories of the
distributions for High Income records across groups are tilted
at different angles. This occurs due to the differences in the
relative frequency of sensitive attribute values, as discussed in
the previous paragraph. A similar characteristic is observed in
Low Income records, except that their tail trajectories are ver-
tically slanted. After drawing regression lines on each set of
confidence scores, the gradual shift in angle toward the center
from high correlation to low correlation groups becomes even
more pronounced. Note that the regression line is slightly
slanted relative to the tail’s trajectory, which occurs due to
the high density of points in the top right region for High
(Low) Income records. The difference in angles between the
regression lines for High Income and Low Income records
also diminishes gradually from high to low correlation groups.
We term this the angular difference, which we argue an adver-
sary could exploit to understand and compare the correlation
between groups.



The histograms clearly show that the level of correlation
affects the distribution of confidence scores when records are
queried with different sensitive attribute values. An adversary
could attempt to compare correlations between groups by
computing the difference in confidence score distributions for
records from different class labels. This method, however, is
prone to errors because the high density shared between the
distributions within the 0.95-1 confidence score range skews
the calculation of differences. We propose that computing
the angular difference for each group and using it to compare
correlations would be more effective, as the regression lines
reflect the tail points in the distributions, which are the key
differentiators.
Extending to Multi-Valued/Non-Discrete Sensitive At-
tributes and Multi-Class Outputs. We draw regression lines
in an n-dimensional space for multi-valued sensitive attributes,
where n denotes the number of possible sensitive attribute val-
ues. For multi-class outputs, we generate regression lines for
records from each class label and determine the average angu-
lar difference between all pairs of lines. We propose following
Mehnaz et al. [29]’s approach for non-discrete sensitive at-
tributes by binning the value ranges and using the set of bin
means as a substitute for the sensitive attribute values.

5 Attack Methodology

In this section, we outline the details of the two newly pro-
posed classes of attacks: disparity inference attack and tar-
geted attribute inference attack. In the disparity inference
attack, the adversary uses angular difference to rank groups
based on attack vulnerability. In the targeted attribute infer-
ence attack, the adversary uses angular difference to strategi-
cally identify target subsets with high vulnerability and then
launches attribute inference attacks on them. Since both types
of attacks rely on computing angular difference on groups of
records, we will begin by detailing this technique.

Definition 5.1 (Confidence Matrix). For a set of training data
D containing n records, a trained model M , the confidence
matrix C is of dimension n×|S | and defined as follows -

C =
[[

Pr(M (x′)) : x′ ∈ T (x)
]T ∀ x ∈ D

]T

where S denotes the set of all sensitive attribute values and
T (x) denotes the set of records generated by varying the
sensitive attribute value of record x.

Definition 5.2 (Angular Difference). Given a training dataset
D with n records and a confidence matrix C generated by
querying target model M with D, and with Y representing
the set of output labels, the angular difference is defined as
the average difference in angle between all pairs of lines Ly1

and Ly2 , where y1,y2 ∈Y. Ly denotes the regression line fitted
through |S |-dimensional points from Cy, the submatrix of C
that contains rows corresponding to records with label y.

Algorithm 1 Confidence Matrix Generation

Input: M ,N (D) ▷ M is the target model and N (D) is the non-
sensitive portion of dataset D

Output: C , t ▷ C is the confidence matrix of the dataset D and t
is a boolean vector

1: for each (n(x),y) in N (D) do
2: X ←{x′ : n(x) = n(x′)∧ s(x′) ∈ S}
3: C [x]← (Pr(M (x′)) : x′ ∈ X )
4: Y′←{M(x′) : x′ ∈ X } ▷ Set of output predicted on X
5: if Y′ = {y} then
6: t[x]← true ▷ If all predictions were correct
7: else
8: t[x]← false
9: end if

10: end for
11: return C , t

Algorithm 2 Angular Difference Computation

Input: M ,N (D),C ,t ▷ M is the target model, N (D) is the non-
sensitive portion of dataset D, C is the confidence matrix, and t
is the prediction correctness vector

Output: ∆ is the angular difference of the subset of data correspond-
ing to group i

1: Cy←∅ ∀y ∈ Y
2: for each (n(x),y) in N (D) do
3: if t[x] = true then
4: Cy←Cy∪{C [x]}
5: end if
6: end for
7: L ←{regression_ f it(Cy) : y ∈ Y}
8: ∆← Mean

L1,L2∈L
L1 ̸=L2

(angle(L1,L2))

9: return ∆

5.1 Computing Angular Difference

The process of computing angular difference involves gener-
ating confidence scores from records by querying the target
model while altering the sensitive attribute values. We call this
collection of confidence scores the confidence matrix, which
is formally defined in Definition 5.1. Angular difference is
formally defined in Definition 7.1. Algorithm 1 outlines the
steps for generating the confidence matrix and Algorithm 2
outlines the steps for computing angular difference from the
confidence matrix. Initially, a set of records is generated by
varying the sensitive attribute value for each original record,
and the target model is queried with these sets (Lines 1-3, Al-
gorithm 1). Subsequently, the predictions are recorded, and a
boolean vector t tracks whether all predictions returned were
correct for that record (Lines 4-8, Algorithm 1). For comput-
ing angular difference, we consider records where predictions
are correct for any sensitive attribute value. We hypothesize
that for these records, the differences in confidence scores
with varying sensitive values are highly indicative of the corre-
lation level. We refer to t as the prediction correctness vector.



Afterward, for each class label, a collection of confidence
scores is created from records in that class label with a pre-
diction correctness value of true (Lines 1-6, Algorithm 2). A
regression line is then fitted to each set of confidence scores,
using the dimension associated with the positive sensitive
attribute value as the output. The angular difference is defined
as the mean distance in angles between these lines (Lines 7-9,
Algorithm 2).

To enhance readability and simplify notation, D will refer
to the non-sensitive portion of the dataset for the remainder
of this section, except when defining attack objectives, where
N (D) will be used for correctness.

5.2 Disparity Inference Attack

Objective. Let M be a target model trained on dataset
N (D), which can be divided into k non-overlapping sub-
sets N (D1),N (D2), . . . , N (Dk). The success rate of an at-
tack A on target model M using dataset D is denoted by
ASR(M , N (D), A), with N (D) indicating the non-sensitive
part of the data accessible to the adversary. The attack vulnera-
bility ranking R = (r1,r2, . . . ,rk) of the groups corresponding
to subsets D1, D2, . . . , Dk is defined such that:

{r1,r2, . . . ,rk}= [1,k]
ASR(M , N (Dri), A)≥ ASR(M , N (Dr j),A)

∀ 1≤ i < j ≤ k

The attacker’s goal is to find R or a ranking very close to R .
It is important to consider that the attacker does not know the
true sensitive attribute values and therefore cannot determine
the exact ASR(M ,N (Di),A) for all i ∈ [1,k]. Otherwise, the
attacker’s goal would be trivial.

Attack Steps. Query M using Algorithm 1 to generate
the confidence matrix C for D. Next, use Algorithm 2 to
calculate the angular difference ∆i for each subset Di. Rank
the indices 1,2, . . . ,k by decreasing ∆i values and output this
as the desired ranking.

5.3 Targeted Attribute Inference Attack

Objective. Let M be a target model trained on dataset D. The
attack success rate of an attack A on target model M using
dataset D is denoted by ASR(M , N (D), A) where N (D)
denotes the non-sensitive portion of the data available to the
adversary. The objective of the adversary is to find a dataset
Dtarget ⊂ D satisfying the following conditions:∣∣∣∣ |Dtarget |

|D|
−κ

∣∣∣∣< ε (1)

ASR(M , N (Dtarget), A)≥ ASR(M , N (D′), A)

∀ D′ ∈ {D′ ⊂ D | |D′|> |Dtarget|}
(2)

where κ is the attack budget controlling the target dataset size
within 0 to 0.5. The value of ε is set to a very small amount
to ensure that the size of the target dataset meets the attack
budget. Condition 2 ensures that the adversary performs better
in the target subset than in any subset of equal or greater size.
The degree of disparate vulnerability determines how much
performance improvement the adversary can obtain through
a targeted attack versus an untargeted attack.

Key Insights. It is computationally intractable to evaluate
attack success rate on all possible D′ to find a Dtarget that sat-
isfies Condition 2. However, we can constrain our exploration
to the subsets of D′ defined by restricting one or more of non-
sensitive attributes of the records to a subset of their respective
possible values. Our next challenge is finding a method to
compare attack success rates between two subsets without
using an auxiliary dataset, since our threat model assumes the
adversary lacks access to any additional data. Similar to our
previous attacks, we propose utilizing the strong connection
between angular difference and attack success rate on a subset.
Hence, the adversary’s goal shifts to finding the subset that
has the greatest angular difference. Although constraining the
number of subsets to explore makes the adversary’s objective
feasible, it is still exponentially costly to naively compute an-
gular difference on the constrained set of subsets. Therefore,
we propose two innovative strategies to optimally explore the
subset space which are outlined in detail in the sections that
follow.

Single Attribute-based Targeted Attack

1. Randomly sample Dq from D with the condition: |Dq|=
q×|D| where q is the query budget to limit the number of
queries made to the model.

2. Use Algorithm 1 to query M and generate confidence
matrix C on Dq.

3. For each non-sensitive attribute a, split Dq into subsets
Dq

1,D
q
2, . . . ,D

q
k such that Dq

i = {x ∈ Dq |a(x) = Ai} for all
i ∈ [1,k] with A representing a set of size k that contains
possible values of a and a(x) denoting the value assigned
to attribute a in record x. Compute the angular difference
on each subset Dq

i and put them in the vector ∆
q
a. Define,

range(∆q
a) = max(∆q

a)−min(∆q
a).

4. Find the attribute a with the highest range(∆q
a). Let, Di =

{x ∈D |a(x) = Ai} and ∆i be the angular difference on subset
Dq

i that we computed on the previous step for all i ∈ [1,k].

5. Rank indices 1,2, . . . ,k based on the value of ∆i in increas-
ing order. Let, I denote this ordered set of indices and I[m,n]
denote the ordered subset of I starting at index m and ending
at index n.

6. Let, D[1,m] =
⋃

i∈I[m,n]
Di for all m ∈ [1,k]. Output D[1,m]

that satisfies Condition 1.



The initial four steps identify the most suitable single attribute
for exploring the subset space. Intuitively, the attribute with
the widest range of angular differences in its subsets is likely
to contain the most vulnerable subsets among those defined by
a single attribute. Then the attacker can rank the vulnerability
of subsets defined by the selected attribute by ranking corre-
sponding angular difference values (step 5) and aggregating
the most vulnerable subsets in decreasing order of angular
difference until the attack budget is reached (step 6).

Nested Attribute-based Targeted Attack

1. Set the depth or the number of nested attributes d to
⌈log2(κ)⌉.

2. Follow steps 1 to 3 exactly as specified in the single
attribute-based targeted attack (section 5.3) to find the range
of angular differences for each attribute.

3. Select the attributes a1,a2, ..,ad that are among the top-d
in terms of the largest ranges of angular differences. Let Di

j
denote the set of records with the attribute ai set to the j-th
value from Ai.

4. For each attribute ai ∈ {a1,a2, ..,ad}, define Ii as the or-
dered set of indices ranked on angular differences of groups
defined by attribute ai. Let Ii

m denote the top-m groups defined
by attribute ai in terms of their angular difference.

5. Let the above-average-risk segment denote the set of the
most vulnerable groups based on their angular differences,
ensuring they comprise close to half of the total records
in all groups defined by the attribute ai. For each attribute
ai ∈ {a1,a2, ..,ad}, define Ii

1/2 as the indices within II that
identify the groups constituting the above-average-risk seg-
ment. Formally, Ii

1/2 = argmin
m∈[1,|Ai|]

∣∣∣∣∣∣∪ j∈Ii
m
Di

j

∣∣∣/|D|−0.5
∣∣∣. Find

above-average-risk segment, Di
1/2 = ∪ j∈Ii

1/2
Di

j, for each at-

tribute ai ∈ {a1,a2, ..,ad−1}.

6. Let, Dm = D1
1/2

⋂
. . .

⋂
Dd−1

1/2
⋂( ⋃

i∈Id
m

Dd
i

)
for m in

[1, |Ad |]. Output Dm with the lowest value of m that satisfies
Condition 1.

In this strategy, we examine the subset space made up
of nested groups, which are intersections of groups defined
by different attributes. We achieve this by combining the
above-average-risk segment from each attribute and forming
nested groups through their intersections. To comply with the
attack budget, we cap the number of attributes considered at
d. This greedy approach is adopted due to the exponential
computational complexity of considering every combination
of nested groups. Steps 1 to 3 involve identifying the best d
attributes in terms of the range of angular differences. The

attack budget may not permit selecting the full above-average-
risk segment from the last chosen attribute; therefore, for
that attribute, we select as many groups as possible while
satisfying Condition 1 as shown in step 6.

6 Experiments

In this section, we explain our experimental arrangement,
datasets, machine learning models, and performance metrics.
We then examine the performance of our proposed attacks.

6.1 Experimental Setup
Datasets. We use the following three datasets in our experi-
ments: Census19 [7], Texas-100X [30], and Adult [5]. More
details of the datasets are presented in Appendix C.1.
Sampling Technique. Both Census19 and Texas-100X
datasets contain around a million records each, making them
ideal candidates for selective sampling to manage dataset-
specific variables, including the relationship between sensi-
tive and output attributes. In contrast, earlier studies [17, 29]
utilizing datasets like Adult [5] and GSS [3] struggled with
limited data sizes, barely sufficient for training a model that
could achieve reliable accuracy on a test set and could not
conduct detailed sampling. In our experimental evaluation,
we incorporate a sampling technique that allows us to set a
predefined correlation between the sensitive and output at-
tributes not only for the full training data but also for specific
groups. The specifics of this sampling technique are detailed
step-by-step below.

1. Let n denote the number of desired samples for the train-
ing data or a specific group. Additionally, let m denote
the ratio between the number of samples with negative
sensitive values and the number of samples with positive
sensitive values, and let c denote the desired correlation
between the sensitive attribute and the output.

2. Let n++ and n−+ denote the number of samples to be picked
that have positive sensitive values with positive and nega-
tive output values, respectively. Similarly let, n+− and n−−
denote the number of samples to be picked that have neg-
ative sensitive values with positive and negative output
values, respectively. Simply put, the subscript denotes
the sensitive value and the superscript denotes the output
value. n+− = ⌊

√
m×(
√

m−c)×n
2×(m+1) ⌋, n−− = ⌊

√
m×(
√

m+c)×n
2×(m+1) ⌋

n−+ = ⌈ n
2 −n−−⌉, n++ = ⌈ n

2 −n+−⌉

The sampling method used above ensures that the desired
correlation is achieved while maintaining a balanced num-
ber of positive and negative output samples. The correctness
proof of our claim is provided in Appendix B.1. For all exper-
iments on Census19 and Texas-100X, the value of m is set to
1 to align with the sensitive attribute distribution of the orig-
inal dataset. This sampling method enables precise control



over attribute correlations, which enhances our capacity to
identify significant trends or effects on attack efficacy, while
still reflecting real-life data—something that prior research
methodologies have not been able to achieve. In addition, we
experiment with the Adult dataset without using controlled
sampling to create an even more realistic setting.
Model Training. For our experiments with both Texas-100X
and Census19 datasets, we select 50,000 records to create the
training set for training the neural network model. Addition-
ally, we randomly sample another 50,000 records from the
remaining data to form the test set, ensuring that the training
and test sets are mutually exclusive. For the Adult dataset, we
utilize the full dataset, splitting it into training and test data as
done in [29]. We use Scikit-learn’s [31] implementation of
Multi-layer Perceptron (MLP) as our default class of machine
learning model. The architecture and training hyperparameter
details are put into Appendix C.2.

6.2 Ideal vs. Practical Imputation Attacks

An ideal imputation attack is characterized by the adversary
having an auxiliary dataset that precisely matches the distri-
bution of the target data. This includes having similar distri-
bution properties, such as correlation and marginal priors, for
any group of records. However, it is impractical to assume
that an adversary, who is typically external to the organization
owning the private training data, would be able to acquire
an auxiliary dataset that accurately mirrors the distribution
at a granular level. Thus, any dataset obtained by a realistic
adversary would differ in distributional properties, either at
a macro-level (calculated across the whole dataset) or at a
micro-level (calculated for specific subsets within the dataset).
An imputation attack conducted with such auxiliary data is
termed a practical imputation attack. In this section, we per-
form two experiments on Adult dataset to evaluate the perfor-
mance of practical imputation attacks against ideal imputation
attacks, highlighting the substantial gap between them. The
first experiment explores dataset-level distributional drift in
the auxiliary dataset by altering the marginal prior relative
to the training dataset. The second experiment investigates
group-level distributional drift in the auxiliary dataset, main-
taining the same dataset-level correlation as the training data
but with different group-level correlations.

Dataset-level Distributional Drift. In this experiment, we
vary the marginal prior η of the auxiliary dataset, which rep-
resents the fraction of positive samples, from 0.5 to 0.1, thus
deviating it further from the training data’s marginal prior
of 0.52. We also consider auxiliary datasets of various sizes,
ranging from 5000 to 100. Figure 4(a) presents the perfor-
mance of imputation attacks for every combination of auxil-
iary datasets across the two analyzed dimensions. The results
demonstrate a significant performance decline with increased
deviation in η. Notably, for η values of 0.1 and 0.2, the impu-
tation attack’s performance falls below that of CSMIA (69.97)

η
|Daux|

100 500 1000 5000
0.1 47.96 54.41 60.15 62.54
0.2 57.79 68.95 66.93 67.68
0.3 64.16 71.50 70.58 71.57
0.4 71.47 71.98 72.89 73.31
0.5 68.84 73.43 71.82 73.46

(a) (b)

Figure 4: (a) Imputation attack performance across 2 dimen-
sions: Auxiliary Dataset Size (row) and Marginal Prior, η

(column). (b) Imputation Attacks (Practical – ImpP, Ideal –
ImpI) versus AI attacks (CSMIA, LOMIA) in Occupation
Groups with high correlation. Bottom x-axis labels indicate
group Names; Top x-axis labels indicate Group Correlation
Values; Y-axis denotes Attack Accuracy.

and LOMIA (70.61) regardless of auxiliary dataset size. Im-
putation attacks outperform CSMIA and LOMIA only when
the auxiliary dataset’s marginal prior is close to the origi-
nal. This implies that practical imputation attacks may only
achieve high performance when conditions are nearly ideal.
Otherwise, they are likely to perform worse than existing AI
attacks.

Group-level Distributional Drift. In this experiment, we
use an auxiliary dataset where the correlation for each occupa-
tion group is -0.44, which matches the overall correlation of
-0.4412 in the training data. However, correlations within the
groups of the original training data vary significantly, ranging
from -0.17 to -0.55, suggesting a group-level distributional
drift in the auxiliary data. We perform an imputation attack
with this auxiliary dataset, an ideal imputation attack, LOMIA,
and CSMIA, and display the attack success rate of all attacks
for groups with higher-than-overall correlation in Figure 4(b).
According to the results, CSMIA and LOMIA outperform
the practical imputation attack in the top 3 out of 5 vulnera-
ble groups. By contrast, ideal imputation attack performance
is very similar to CSMIA and LOMIA in 2 out of these 3
groups. Nevertheless, the results indicate that a practical im-
putation attack with group-level distributional drift is likely
to perform poorly in highly vulnerable groups compared to
attribute inference (AI) attacks.

The results of the experiments above suggest that practical
imputation attacks, the only type that a realistic adversary can
execute, are likely to underperform relative to AI attacks de-
spite having access to an auxiliary dataset that the AI attacks
do not assume. This implies that AI attacks on ML models en-
able adversaries to more accurately predict sensitive attributes
compared to practical imputation attacks, signaling privacy
leakage from these models. In short, even if AI attacks do not
surpass ideal imputation attacks, their superiority over practi-
cal imputation attacks demonstrates privacy leakage from ML
models. Thus, practical imputation attacks should be viewed
as a baseline for AI attack evaluation, whereas ideal impu-



Figure 5: Angular difference vs. attack performance (CSMIA
- left, LOMIA - right) of 51 states from Census19 dataset.
Accuracy is used as attack performance metric.

tation attacks can provide a useful benchmark for assessing
privacy leakage. In the sections that follow, we first evaluate
the effectiveness of our Disparity Inference Attack and then
we investigate the extent of privacy leakage resulting from
the two targeted AI attack types.

6.3 Disparity Inference Attack Performance

Sensitive Attribute and Group Attribute Selection. We se-
lect the MAR column, denoting marital status, as the sensitive
attribute for the Census-19 dataset, and for the Texas-100X
dataset, we pick SEX_CODE as the sensitive attribute to be
inferred. For the Census-19 dataset, we employ the State
attribute to divide the training data into 51 groups and for the
Texas-100X dataset, we use the PAT_STATUS attribute to di-
vide the training data into 10 groups. Since attribute inference
attack performance is significantly influenced by the corre-
lation between the sensitive attribute and output, we assign
different correlation values to each of the 51 groups to achieve
varying levels of vulnerability. Each state is indexed from 0
to 50, and the desired correlation between the sensitive and
output attributes is set to −0.01× i for records from the state
with index i. Whenever possible, 1,000 records are sampled
per group, or fewer if fewer are available, while preserving the
specified correlation. Similarly for Texas-100X, each group,
defined by a specific value of PAT_STATUS, is assigned a de-
sired correlation value from 0, 0.05, 0.10, . . . , 0.45. Afterward,
we train target models on each subset of records.

Evaluation. We launch our proposed disparity inference
attack, which computes angular differences for each group
and ranks them based on that. Figure 5 plots the angular dif-
ference in X-axis and the actual attack performance in Y-axis
for both CSMIA (left plot) and LOMIA (right plot). The re-
sults clearly demonstrate a strong association between the
angular difference and the success rate of the attack. Specif-
ically, a higher angular difference for a group indicates that
both attacks will likely perform well, whereas a lower angu-
lar difference suggests that the performance will be poor.

Therefore, an adversary can compute angular differences on
multiple groups and use that as an indicator of the quality of
attack predictions made on the records of the groups.

To evaluate the ranking quality of our disparity inference
attack, we use two statistical metrics: Kendall’s Tau [26] and
Spearman’s Rank Correlation [33]. These two metrics, known
for their robustness against outliers and ability to minimize
the impact of extreme values, have been extensively applied
across numerous scientific domains. The metrics range from
-1 to 1, however, ranking performing close to 0 is considered
poor while ranking performance further from 0 (close to ei-
ther -1 or 1) is considered good. That is because a ranking
performing negatively implies the order is in reverse and may
not necessarily be lacking in utility. Furthermore, we con-
sider the following baseline vulnerability ranking attack for
comparison – we assume that the attacker possesses an aux-
iliary dataset that is the same size as the training dataset in
which the sensitive attribute values of all records are known.
To ensure that the auxiliary dataset and the original dataset
have different distributions, we randomly sample from the
full versions of Census19 and Texas-100X to create the auxil-
iary dataset. The attacker launches CSMIA on the auxiliary
dataset and evaluates attack performance on all the groups
and ranks them based on the attack performance on the aux-
iliary data. Table 1 presents the comparative evaluation of
ranking quality between our proposed disparity inference at-
tack and the baseline attack we considered. The results show
that the vulnerability ranking by our disparity inference attack
is far superior to that of the baseline attack. This not only
establishes that the task of disparity inference is not trivial
but also our proposed approach is very effective in ranking
the groups in terms of their vulnerability. The extremely low
p-values corresponding to the null hypothesis indicate that
the closeness between the rankings is not due to chance and
the null hypothesis can be rejected.

6.4 Targeted Attribute Inference Attack

We adopt the same configuration as the disparity inference at-
tack for our evaluation. Alongside Census19 and Texas-100X,
we also perform targeted attribute inference (AI) experiments
on the full Adult dataset to illustrate the real-world effects
of the attacks. The adversary follows the steps outlined in
Section 5.3, using either CSMIA or LOMIA as the underly-
ing attribute inference algorithm. As baselines, we consider
two variations of the imputation attack: ImpI and ImpP. ImpI
uses an auxiliary set that matches the distribution of the orig-
inal data, while ImpP uses an auxiliary set with a different
distribution. For both methods, the adversary applies an im-
putation attack on the auxiliary data to determine the attack
success rate across various groups. Using the success rate as
a substitute for angular difference, the adversary then mimics
the steps of our proposed targeted attacks to initiate a tar-
geted imputation attack. Once the target subset is chosen, the



Census19
Kendall Tau Spearman R

CSMIA LOMIA CSMIA LOMIA
Disparity Inference Attack 0.6914 (1.39e-12) 0.7579 (8.30e-15) 0.8767 (7.23e-17) 0.9104 (5.06e-20)

Baseline -0.0759 (4.37e-01) -0.0931 (3.40e-01) -0.1225 (3.97e-01) -0.1275 (3.77e-01)

Texas-100X
Kendall Tau Spearman R

CSMIA LOMIA CSMIA LOMIA
Disparity Inference Attack -0.7778 (9.46e-04) -0.7778 (9.46e-04) -0.9273 (1.12e-04) -0.9152 (2.04e-04)

Baseline -0.2444 (3.81e-01) -0.2444 (3.81e-01) -0.3576 (3.10e-01) -0.3939 (2.60e-01)

Table 1: Comparative evaluation of the ranking quality of disparity inference attacks versus baseline attacks employing an
auxiliary dataset. The values inside the parentheses are p-values corresponding to the null hypothesis.

Census19
κ 1 0.75 0.5 0.375 0.25 0.1 0.05

CSMIA 62.56 64.73 67.43 69.02 70.42 72.54 73.27
LOMIA 61.24 63.71 67.56 69.45 70.82 72.92 73.78

ImpI 65.38 65.65 66.10 65.91 65.71 67.30 66.85
ImpP 62.99 63.30 63.57 62.96 64.12 64.17 64.25

Texas-100X
κ 1 0.75 0.5 0.25 0.1

CSMIA 60.95 62.82 64.39 61.00 62.82
LOMIA 61.50 63.90 66.72 64.68 69.68

ImpI 59.33 63.95 65.01 65.57 66.75
ImpP 51.64 47.55 46.73 46.26 48.97

Adult
κ 1 0.75 0.5 0.25 0.1

CSMIA 69.96 69.14 72.37 74.83 81.61
LOMIA 70.61 69.79 73.36 74.86 81.68

ImpI 74.46 76.96 77.72 79.82 81.52
ImpP 65.05 68.31 69.70 63.94 65.21

Table 2: Attack success rate of single attribute-based targeted inference attack compared with targeted imputation baselines.
Accuracy is used as the metric for attack success rate.

adversary carries out an imputation attack on it.
Single Attribute-based Targeted AI. Table 2 presents

the evaluation results of the single attribute-based targeted
inference attack. To evaluate the attack, we use various κ

values from 1 to 0.1. For Census19 specifically, we set κ as
low as 0.05, which is feasible because the grouping attribute
has 51 unique values. κ = 1 denotes the untargeted version.
For Census19, Texas-100X, and Adult, we choose STATE,
PAT_STATUS, and Occupation respectively as the grouping
attributes, since these exhibit the greatest range in angular
difference. The results show that targeted attacks using both
CSMIA and LOMIA consistently improve in accuracy as κ is
reduced, demonstrating a clear trend across nearly all cases.
The CSMIA variant targeted attack results in performance in-
creases of 17.12% for Census19, 5.65% for Texas-100X, and
16.66% for Adult, compared to the untargeted counterpart.
For the LOMIA variant, the performance gains are 20.48%,
13.31%, and 15.68%, respectively.

Nested Attribute-based Targeted AI. Table 3
presents the evaluation results of the nested attribute-
based targeted inference attack. The top-d attribute
ordered set selected for Census19, Texas-100X, and
Adult are {STATE, SCHOOL, RACE, SEX}, {PAT_STATUS,
RACE, ADMITTING_DIAGNOSIS, TYPE_OF_ADMISSION,
SOURCE_OF_ADMISSION}, {Occupation, Work, Race, Sex}
respectively. Similar to single attribute-based attacks,
nested attribute-based targeted AI shows increased attack
performance with a smaller attack budget, i.e., increased
depth of attributes. For the Adult dataset, the attack success
rate increases up to 86.77%, and for the Texas-100X dataset,
it reaches 100% at a depth of 5 for both CSMIA and LOMIA
variants.

Comparison with Baselines. The pattern of improved per-
formance as κ decreases is not observed for ImpP, implying
that when an adversary’s auxiliary dataset differs in distri-
bution, a targeted imputation attack will not outperform an
untargeted attack. ImpI demonstrates improved performance
with decreasing κ values, though at a slower rate than our
proposed attack, suggesting a correlation between group-level
attack success rates on ImpI’s auxiliary dataset and the origi-

nal data. Given that obtaining auxiliary dataset with the same
distribution as the private training data is impractical, our
proposed targeted AI attacks remain the most feasible option
for adversary with minimal knowledge and capabilities.

Effect of MLP Architecture. Targeted AI attacks are
launched on MLPs with varying depths (with hidden lay-
ers ranging from 2 to 4) trained on Census19 to examine
whether the complexity of ML models influences their sus-
ceptibility to AI attacks. Table 4 displays the experimental
results. The findings indicate that both single and nested vari-
ations show similar performance across MLPs with different
numbers of layers, suggesting that the architecture of MLPs
does not influence vulnerability to AI attacks.

7 Potential Mitigation Strategies

In this section, we examine potential strategies to mitigate dis-
parate vulnerabilities that an adversary could exploit to launch
various types of attacks, as demonstrated in the previous sec-
tion. Existing literature [23,36] provides techniques to defend
against attribute inference attacks, but none propose methods
to mitigate disparity between groups. Dibbo et al. [15] ap-
ply defense techniques tailored to mitigate disparity in other
domains [27] or to defend against attribute inference attacks
without attempting to address disparity [36], finding limited
success in mitigating disparity against attribute inference at-
tacks. We investigate two defensive strategies: the first adapts
the mutual information regularization (MIR) technique [36]
to address disparity, referred to as disparity-aware mutual
information regularization (DAMIR), while the second is a
novel method focusing on balancing correlation across the
dataset, termed as the balanced correlation defense (BCorr).

7.1 Disparity-Aware Mutual Information Reg-
ularization (DAMIR)

The mutual information regularization method [36] incorpo-
rates a secondary loss minimization objective during training
to reduce the mutual information between sensitive attribute



Census19
κ 1 (0) 0.5 (1) 0.375 (2) 0.25 (3) 0.1 (4)

CSMIA 62.56 67.43 67.43 69.70 69.36
LOMIA 61.24 67.56 66.96 68.20 70.26

ImpI 65.38 66.06 65.98 66.17 66.85
ImpP 62.99 63.57 63.42 63.60 60.86

Texas-100X
κ 1 (0) 0.5 (1) 0.25 (2) 0.1 (3) 0.05 (4) 0.01 (5)

CSMIA 60.95 64.39 61.77 66.12 67.77 100.00
LOMIA 61.50 66.72 63.64 64.85 66.19 100.00

ImpI 59.33 63.97 63.78 72.02 72.67 78.42
ImpP 51.64 46.73 48.11 45.38 48.40 43.15

Adult
κ 1 (0) 0.5 (1) 0.375 (2) 0.25 (3) 0.1 (4)

CSMIA 69.97 71.18 73.72 77.57 86.74
LOMIA 70.61 72.19 73.90 73.90 86.77

ImpI 74.46 77.72 76.47 78.16 77.86
ImpP 65.05 69.70 73.59 58.89 68.65

Table 3: Attack performance of nested attribute-based targeted inference attacks compared with targeted imputation baselines.
The values inside parentheses denote the number of nested attributes considered. Accuracy is used as the attack performance
metric.

Number of MLP Layers→ 4 3 2
κ→ 1 0.05 1 0.05 1 0.05

Single Attribute-based CSMIA 63.82 72.42 62.56 73.27 60.73 71.85
LOMIA 61.63 73.02 61.24 73.78 60.79 73.66

κ→ 1 0.1 1 0.1 1 0.1

Nested Attribute-based CSMIA 63.82 68.66 62.56 69.36 60.73 68.96
LOMIA 61.63 70.75 61.24 70.26 60.79 70.56

Table 4: Attack success rate of targeted inference attacks
across MLP models of varying depths.

Figure 6: ASRD of Mutual Information Regularization de-
fense (MIR - left, DAMIR - middle) under CSMIA and LO-
MIA and target model accuracy of MIR and DAMIR trained
models (right).

and output. A hyperparameter β adjusts the weight of the
secondary loss compared to the primary loss, to adjust the
strength of the mutual information regularization. Although it
successfully decreases the performance of untargeted attribute
inference attacks, it does not mitigate disparity and may even
worsen it, as shown in the evaluation results in Figure 7 of
[15]. To overcome this limitation, we make a key adjustment:
mutual information loss is calculated solely on records from
the vulnerable group, ensuring that mutual information be-
tween sensitive attribute and output is minimized only for that
group’s records. We refer to this revised defense strategy as
disparity-aware mutual information regularization (DAMIR).
Evaluation. We apply both MIR and DAMIR during the train-
ing of a subset of the Census-19 dataset where the correlation
of Male and Female group is -0.4 and -0.1 respectively. The
range of β, from 0.001 to 0.4, is used to alter the intensity
of the mutual information regularization. Figure 6 shows the
attack success rate difference (ASRD) (defined in section 7.2)
between the Male and Female groups and the model accu-
racy of both MIR and DAMIR trained models. The plots
indicate that MIR can only reduce disparity when β is set
to a high value, resulting in a significant loss of utility in
the target model. DAMIR, in contrast, exhibits slightly better
performance in CSMIA, being able to reduce disparity to a
degree without substantial degradation of model utility. Nev-

ertheless, it can only achieve full disparity mitigation with a
considerable loss of model utility. Furthermore, in LOMIA,
the performance is worse, where reducing disparity appears
to be impossible without a significant loss of model utility.
Therefore, mutual information regularization is ineffective in
reducing disparity.

7.2 Balanced Correlation Defense (BCorr)

This defense strategy focuses on addressing disparities by
ensuring similar correlation levels across all relevant groups
in the dataset, thereby eliminating group-specific differences
contributing to the disparity. The main rationale for this de-
fense is that disparity stems from differences in correlation
between groups, and thus, mitigating disparity requires elimi-
nating these differences.
Objective. The objective of BCorr is to mitigate disparate
vulnerability by lowering attack performance on more vulner-
able groups. In particular, BCorr aims to reduce the metric
ASRD (Attack Success Rate Difference) as defined below.

Definition 7.1 (ASRD). Given a target model M trained with
D and D1,D2, . . . ,Dk denoting the set of records belonging
to groups defined by a non-sensitive grouping attribute a,
ASRD is defined as: ASRD(M ,D,a,A) = maxi∈[1, k] ASRi−
min j∈[1, k] ASR j where A denotes the attack algorithm and
ASRi = ASR(M ,N (Di),A).

Defense Threat Model. To achieve the objective of the de-
fense, we make the following assumptions: the defender has
access to the full dataset and the trained target model, and op-
erates as a single entity with complete control over the dataset
and model training. Additionally, the defender is aware of
which groups are more vulnerable to attacks. This assump-
tion is practical because the defender can simulate attack
scenarios using the full dataset and target model to identify
vulnerable subgroups. Moreover, the defender can compute
correlations between sensitive attributes and outputs for each
subgroup, leveraging these correlations as strong indicators
of attack vulnerability. These capabilities enable the defender
to effectively identify and mitigate disparities in vulnerability.

Design. BCorr comprises of the following steps.

• Given non-sensitive grouping attribute a such that some
groups are more vulnerable than others, the first step



is to rank groups defined by a in terms of their correla-
tion, correlation(S(Di)),Y(Di)), where Di ⊂D denotes
records from group i. Suppose, m is the index of the
group with the least correlation which is cm.

• Sample records from each Di to form D′i such that the
correlation of D′i is equal to cm. Note that, Dm does not
need to be sampled and therefore, D′m = Dm. Let, D′ =
D′1∪D′2∪·· ·∪D′k. Train model M ′ on D′.

Evaluation. We examine the effectiveness of the balanced cor-
relation defense with the Census-19 and Texas-100X datasets,
specifically targeting the binary attributes SEX and SEX_CODE,
and the multi-valued attributes STATE and PAT_STATUS for
each dataset, respectively. We also apply a Fairness Constraint-
based defense (FC), as used in [27], to mitigate disparate vul-
nerability in Membership Inference attacks. For this baseline,
we use the Exponentiated Gradient algorithm with the Equal-
ized Odds [22] constraint. The results of this experiment are
presented in Table 5. We measure group vulnerability by the
difference in attack success rates between the most and least
vulnerable groups which is referred to as ASRD. Accuracy
is used as the metric for ASRD. To evaluate group fairness,
we use Equalized Odds Difference (EOD) [10] and Demo-
graphic Parity Difference (DPD) [10]. Model accuracy (MA)
is reported at the group level for binary attribute scenarios
and across the entire test dataset for multi-valued attribute
scenarios. BCorr can completely mitigate disparities between
Male and Female groups in binary attribute scenarios for both
datasets, achieving this without sacrificing model utility or
group fairness despite using 66.67% of the original training
data in the balanced correlation set. FC, in contrast, fails to
effectively reduce disparity in either binary attribute scenar-
ios, although it preserves group fairness. For multi-valued
attribute scenarios, BCorr can substantially reduce disparity
and lower the ASR of the most vulnerable group from 73.8%
to 62.92% for Census19 and from 72.59% to 59.07% for
Texas-100X under CSMIA. It is worth noting that reducing
ASRD between 51 groups is much harder than between 2
groups, yet BCorr still achieves a substantial reduction. The
FC evaluation for the multi-valued attribute case was omitted
because it failed in the binary case, and the computational cost
was deemed too high. BCorr effectively mitigates disparity
regardless of MLP depth used in training, as it addresses the
root cause of vulnerability at the dataset level, as shown in
Table 6.
How/Why Bcorr Works. Suppose, occupation=nurse and
gender=female might constitute the most vulnerable groups
within their respective categories in a particular scenario. Fe-
male individuals may be more vulnerable than males because
a large proportion of them belong to the highly vulnerable
‘nurse’ occupation compared to other occupations like teacher
or salesperson. In contrast, there are significantly fewer males
in the ‘nurse’ occupation, resulting in a lower overall vulner-
ability for males. The assumed scenario is similar to that of

the UC Berkeley Admissions Rate Bias study [6]. Their study
found that women faced higher rejection rates overall but were
often favored at the department level. This paradox stemmed
from women applying disproportionately to competitive de-
partments. In our case, the higher privacy vulnerability of
female individuals is driven by their significant representation
in ‘nurse’ occupation, a highly vulnerable group. Through
our targeted attack approach, an attacker could determine that
‘nurse’ is the most vulnerable occupation and ‘female’ is the
most vulnerable gender. In our proposed defense, the defender
can similarly identify privacy disparities in gender and oc-
cupation groups. Depending on the severity of the observed
disparities or the defender’s priorities, they can apply BCorr to
either attribute (gender/occupation) to mitigate the disparate
vulnerabilities effectively. The severity of disparity can be
measured through ASRD. Suppose the disparity across the oc-
cupation groups is more severe than that of gender groups and
the defender applies BCorr on the occupation attribute. While
lowering the attack vulnerability of occupation-based groups,
our sampling-based defense approach is unlikely to increase
the attack vulnerability of the gender=female group. Specifi-
cally, reducing the correlation between the sensitive attribute
and model output within the occupation=nurse group—the
core mechanism of BCorr—is also likely to reduce the cor-
relation within the female records of that group, resulting in
lower attack vulnerability for the gender=female group.
Comparison with Fairness. The existing work in fair-
ness [10, 13, 14] primarily focuses on ensuring equal model
performance across groups. In contrast, BCorr aims to equal-
ize the success rates of attribute inference attacks across
groups while simultaneously preserving model performance
fairness. Due to this distinction, fairness metrics like equal-
ized opportunity or equalized odds, often used to measure
model fairness, are not directly applicable to evaluate BCorr’s
ability to mitigate attack disparity. To address this, we intro-
duce ASRD, which parallels fairness metrics like equalized
odds difference but measures disparities in attacker success
rates across groups rather than disparities in model perfor-
mance. Theoretical guarantees for attack disparity mitigation
are inherently challenging due to the use of non-linear DNNs
and the varying strategies employed by the attacker. Any
bound on DNNs must be derived through approximations
of their non-linear behavior, which often fail to capture in-
tricate interactions between layers and parameters, resulting
in imprecise bounds. Moreover, the variability in attribute
inference attack strategies adds another layer of complexity
to establishing reliable bounds on attack performance dispar-
ity. Nevertheless, we provide empirical evidence that BCorr
effectively mitigates disparate vulnerability.

8 Related Works

Foundational Works. Fredrikson et al. initially introduced
model inversion attacks for linear regression models in [18]



Census19

Defense
SEX STATE

ASRD EOD DPD MA ASRD EOD DPD MACSMIA LOMIA Male Female CSMIA LOMIA
None 12.52 14.97 0.0674 0.0178 73.21 78.16 22.94 26.75 0.4 0.2401 73.19
BCorr 2.06 3.59 0.0416 0.0015 73.89 77.90 10.93 7.58 0.4 0.1923 74.02

FC 11.45 11.90 0.0221 0.0144 70.72 70.30 - - - - -

Texas-100X

Defense
SEX_CODE PAT_STATUS

ASRD EOD DPD MA ASRD EOD DPD MACSMIA LOMIA Male Female CSMIA LOMIA
None 12.12 14.45 0.0332 0.0177 72.53 74.08 17.27 20.54 0.3707 0.2176 75.11
BCorr 0.94 2.48 0.0172 0.0186 74.70 74.35 7.34 4.26 0.3519 0.1982 75.19

FC 11.45 13.28 0.02176 0.0020 71.788 68.108 - - - - -

Table 5: Comparison of group vulnerability (ASRD), group fairness (EOD, DPD), and group-level model utility (MA) between
models trained with and without BCorr Defense.

Census19

MLP Depth ASRD EOD DPD MA
CSMIA LOMIA Male Female

BCorr
2-layer 0.45 3.05 0.0494 0.0171 75.312 78.532
3-layer 2.06 3.59 0.0416 0.0015 73.89 77.90
4-layer 1.45 4.54 0.0353 0.0030 72.39 75.62

Table 6: BCorr performance across varying MLP models.

and extended these attacks to non-linear ML models in [17].
This subsequent work defined two major types of model in-
version attacks: attribute inference, in which the adversary
tries to uncover the sensitive attributes in the dataset used
to train the model, and class representative reconstruction,
where the goal is to reconstruct instances resembling those in
the training data. Mehnaz et al. provide the first evidence of
disparity in attribute inference attacks [29].
Notable Works in Attribute Inference. Existing works on
attribute inference attacks have considered a wide range of
threat models, with most assuming strong attacker capabili-
ties, rendering their proposed attacks impractical. In a series
of works [20, 21, 24], Gong et al. and Jia et al. applied at-
tribute inference attacks in social media scenarios, where an
adversary infers private attributes of a user based on their
public information, but these attacks depend on users who
also disclose their private attributes publicly, limiting their
applicability to cases where private-public attribute pairs can
be collected for an auxiliary set of data matching the distri-
bution of the target data. Yeom et al. [38] investigate how
the influence, defined as the extent to which changes in a
sensitive attribute affect predictions, impacts vulnerability to
attribute inference attacks. Their analysis reveals that while
attacker advantage grows with initial increases in influence, it
actually decreases as the influence becomes more significant.
Conversely, our research identifies the correlation between
the sensitive attribute and the output as a consistent factor con-
tributing to the vulnerability of ML models. Wang et al. [36]
propose a mutual information regularization method to defend
against model inversion attacks, including attribute inference
attacks. Mehnaz et al. [29] introduce CSMIA and LOMIA,
with the latter being the first to show that attribute inference
attacks can be launched on models without confidence scores,
proving the inadequacy of defenses that mask these scores.
Jayaraman et al. [23] provide evidence that existing attribute
inference attacks perform worse compared to an imputation
attack using auxiliary data without even querying the target
model. Our evaluation in section 4, however, demonstrates
that when there is a high correlation in the private training

data, existing attacks surpass the imputation attack in perfor-
mance. The study by Tramer et al. [35] reveals that attribute
inference attacks perform better if the adversary can poison
the training data. However, the assumption that training data
can be poisoned is applicable in crowdsourced or collabora-
tive scenarios; the former is unrealistic for private training
data, while the latter falls outside the scope of our work.
Other Related Works. Dibbo et al. [15] investigate vari-
ous potential contributors to disparity but find no consistent
factors. While their work focuses on understanding dispar-
ity in attribute inference attacks, it does not identify specific
contributing factors. Our work goes further by identifying
correlation as a key factor driving this disparity. Kulynych
et al. [27] proposes a defense to mitigate disparate vulnera-
bility in membership inference attacks. In contrast, we tackle
attribute inference attacks. We also include [24]’s fairness
constraint-based (FC) defense as a baseline in our experi-
ments and demonstrate its ineffectiveness in mitigating dis-
parate vulnerability for attribute inference attacks. Zhong
et al. [40] propose a defense against disparate vulnerability
in link inference attacks within GNNs, but their technique
cannot be transferred to attribute inference attacks in tabular
data. Property inference attacks, closely related to correla-
tion estimation attacks, were first introduced in [4] and later
applied to deep learning models in [19]. However, existing
attacks [9, 28, 34] focus on inferring properties such as group
size rather than the correlation between sensitive attributes
and outputs, which is our focus.

9 Conclusion

In this paper, we present a series of novel attacks that ex-
pose significant privacy leakage in ML models trained on
tabular data, a risk that has often been underestimated and
overlooked. Our comprehensive evaluation reveals that adver-
saries can identify high-risk groups within records, posing an
alarming threat to individuals in those groups. Our findings
underscore that privacy leakage through targeted attribute
inference attacks is far from trivial, with adversaries capa-
ble of making highly accurate predictions. To address these
significant privacy concerns, we introduce a novel defense
that have been demonstrated to be effective through evalu-
ation. Looking forward, we are committed to incorporating
advanced privacy-preserving techniques into our methods to
provide a comprehensive toolkit for creating safe and secure
data-driven algorithms.



Ethics Consideration

In evaluating the ethical implications of our research, we con-
sidered both deontological and consequentialist perspectives.
From a deontological standpoint, our work respects individ-
uals’ rights to privacy by avoiding the use of identifiable
data and adhering to the principle of minimizing harm. Our
research utilizes publicly available datasets (Census19 [7],
Texas-100X [30], and Adult [5]) to evaluate the vulnerabil-
ity of machine learning models to attribute inference attacks.
All data used in our experiments is de-identified, meaning
that no direct identifiers are associated with any individual’s
private information. We have adhered strictly to the data use
policies outlined by the data providers and ensured that all
experimental results are presented in aggregate form to avoid
re-identification risks.

From a consequentialist perspective, our research seeks
to maximize benefits by improving the understanding of
machine learning vulnerabilities and contributing to the de-
velopment of stronger defenses against privacy attacks. We
have weighed the potential harms of publicizing new attacks
against the benefits of increased awareness and preparedness
within the security community. We believe that the positive
outcomes, particularly the advancement of privacy-preserving
technologies and methodologies, outweigh the risks associ-
ated with our findings. Moreover, our inclusion of mitigation
strategies provides actionable insights to help practitioners
secure their models against these new forms of attack.

Compliance with the Open Science Policy

We fully support the principles of open science as outlined in
the USENIX Security 2025 Open Science Policy. We have
released the full codebase, including all scripts and binaries
necessary for replicating our experiments, via a public reposi-
tory: https://zenodo.org/records/14732956. However,
due to licensing restrictions associated with the Texas-100X
dataset, we are unable to provide direct access to this specific
dataset. For the other datasets used in our research, we have
shared them freely alongside our codebase. For the Texas-
100X dataset, we provide detailed instructions on how to ac-
cess it directly from the original provider, along with scripts
to preprocess the data to match the format used in our experi-
ments. This approach ensures compliance with the dataset’s
licensing agreements while still promoting the principles of
reproducibility and transparency.
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A Overview of Notations

B Methodology

B.1 Correctness Proof of Sampling Technique
Let, s and y denote the sensitive attribute and output respec-
tively and n denote the total number of records. Then, accord-
ing to definition,

c =
n∑sy− (∑s)(∑y)√

(n∑s2−n(∑s)2)(n∑y2−n(∑y)2)
(3)

Symbol Description
D The original training dataset
M Target model trained on D

Pr(M (.)) Confidence score output by M
A Attack Algorithm

s(.) Sensitive attribute value of a record
n(.) Vector of non-sensitive attribute values of a record
S Set of possible values of the sensitive attribute

N (D) Non-sensitive portion of dataset D
C Confidence matrix
ρ Correlation

Table 7: Notations used and their descriptions

Now, ∑y essentially means the sum of output values of n
records. Since, the output can either take 0 or 1 and takes
1 a total of n+++ n+− times, ∑y = n+++ n+− and ∑y2 = n++×
12 + n+− × 12 = n++ + n+−. Similarly, ∑s2 = ∑s = n++ + n−+.
Substituting these values in equation 3 and performing a few
algebraic operations we get,

c =
n++×n−−−n−+×n+−√

(n+++n−+)(n
+
++n+−)(n

+
−+n−−)(n

−
++n−−)

(4)

According to our requirement, the number of positive sam-
ples (n+++ n+−) is equal to the number of negative samples
(n−++n−−) and the ratio between positive and negative samples

( n+++n−+
n+−+n−−

) is m. If we combine n+++n−++n+−+n−− = n with the

above we get,

n+++n+− = n−++n−− =
n
2

n+++n−+ =
n

m+1
, n+−+n−− =

mn
m+1

Substituting all these in equation 4 we get,

n++×n−−−n−+×n+− = c
√

m× n
m+1

× n
2

(5)

Substituting n++ with n
2 −n+− and n−+ with n

2 −n−− we get,

n−−−n+− = c
√

m× n
m+1

(6)

Now we can solve to get the values of n−− and n+− first, and
using those to get the values of n++ and n−+ as shown in sec-
tion 6.1. Note that, these values are integers which is why the
fractions are rounded up using floor and ceiling. Therefore,
the sampled records may not have the exact correlation as c
but the difference would be negligible for our purpose.

C Details of Experiment Setup

C.1 Datasets
(1) Census19. Originating from the 2019 US Census Bureau
Database [7], the Census19 dataset includes over 1.6 million



records and 12 variables capturing a wide range of personal
and demographic details of US residents. The goal of this
dataset is to classify individuals by their annual income, set-
ting the threshold at over $90,000, an adjustment from the
Adult dataset’s $50,000 threshold to account for inflation over
the years. Marital status is chosen as the sensitive attribute
in this dataset. The attribute can take multiple values but we
convert the attribute into binary by labeling all values except
Married as Single. To streamline analysis, we categorize all
instances of marital status into two groups, married or single,
in the initial preprocessing steps.
(2) Texas-100X. The Texas-100X dataset expands upon the
Texas-100 hospital dataset [30] originally introduced by
Shokri et al [32] and contain 925,128 records from 441 hospi-
tals. We use the PRINC_SURG_PROC_CODE column from
the dataset as the output attribute for this dataset. However,
PRINC_SURG_PROC_CODE is a categorical column that
can take up 100 different values. The other columns do not
contain sufficient information related to the surgery procedure
to allow training of a target model for a 100-class classifica-
tion problem with good classification accuracy on a held-out
test set. Therefore, we project the 100 values into 2 distinct
categories: top-10 most frequent surgery procedures and the
rest of the procedures. After this mapping, the classification
problem becomes a binary one. For this dataset, SEXCODE
is selected as the sensitive attribute which can take up values
corresponding to ‘Male’ or ‘Female’.
(3) Adult. This dataset [5] is used to predict whether an indi-
vidual earns over 50,000 a year. The dataset contains 48,842
instances and has 14 attributes. Following the preprocessing
technique in [29] We merge the marital status attribute into
two distinct clusters: Married, which includes ‘Married-civ-
spouse,’ ‘Married-spouse-absent,’ and ‘Married-AF-spouse’;
and Single, which includes ‘Divorced,’ ‘Never-married,’ ‘Sep-
arated,’ and ‘Widowed.’ We then consider this attribute (Mar-
ried/Single) as the sensitive attribute that the adversary aims
to learn. After removing records with missing values, the final
dataset consists of 45,222 records. We split the Adult dataset
and use 35,222 records to train the target models, and the
remaining 10,000 records to evaluate attacks on data from the
same distribution but not in the training set.

C.2 Model Architecture and Training Hyper-
parameters

The default neural network used consists of three hidden lay-
ers having 32, 16, and 8 neurons respectively with ReLU
activation function. For 4-layer MLP, another layer with 64
neuron was added adjacent to input layer and for 2-layer MLP,
the layer with 32 neurons were dropped. The output layer is a
softmax layer consisting of one neuron for each output class.
This is a standard neural network architecture used in prior
inference works [23]. The Adam optimization algorithm is
incorporated with the initial learning rate set to 0.001. The

Figure 7: Model utility vs. attack performance (CSMIA - left,
LOMIA - right) of 51 states from Census19 dataset. Accuracy
is used as a metric for both axes.

training is run for 500 iterations.

D Additional Experiment Results

D.1 Model Utility vs. Vulnerability at Group
Level

Figure 7 plots the correlation between the sensitive attribute
and the output of the 51 states on the X-axis and the angular
difference on the Y-axis. This is from the same scenario as
section 6.3. The results reveal that there is no correlation
between group-level model utility and group vulnerability.
This behavior explains the failure of fairness constraint-based
defenses in reducing disparity as groups with similar model
utility can have different levels of vulnerability.

D.2 Correlation vs. Angular Difference

Figure 8: Correlation vs. angular difference of 51 states from
Census19 Dataset

Figure 8 plots the correlation between the sensitive attribute



and the output of the 51 states on the X-axis and the angular
difference on the Y-axis. This is from the same scenario as
section 6.3. The results reveal that groups with a high correla-
tion between the sensitive attribute and output tend to have
a high angular difference, while those with a low correlation
exhibit a low angular difference. While correlation ranges
from 0 to -0.5, angular difference ranges from −0.33 to 0.71.
Nonetheless, their relationship is visibly linear confirming
the appropriateness of our design choice of fitting a linear
regression model for the correlation estimation attack.

D.3 Angular Difference Visualization Across
States

In Figure 9, we plot the confidence matrix found during the
computation of angular difference for the states with indexes
0, 25, and 50 respectively. We chose these three states par-
ticularly as they denote the state with the lowest (0), median
(-0.25), and the highest correlation (0.5) among the range of
correlation we considered. In the Census19 dataset, the sen-
sitive attribute is marital status and has two possible values:
single and married. We chose the former as positive and the
latter as negative. The output attribute, which corresponds to
the output label given by the target model, also has two val-
ues - high income and low income. High income was chosen
as positive and low income was chosen as negative for this
attribute. The positive output records and the negative output
records are plotted with different markers and two different re-
gression lines are fit for the two sets of records. In the highest
correlation case, the regression line corresponding to the low
income records has a higher slope than the line corresponding
to the high income records. This essentially means that the
target model predicted with higher confidence when queried
with the negative value for these high income records than
when queried with the positive value. The root of this behavior
comes from the high magnitude of correlation we set for this
particular group as we identified in section 4. A high negative
correlation means that there are more married high income
records than their single counterpart. In summary, the plots
reveal that the variation in angular difference across groups
arises inherently from the variation in the correlation between
the sensitive attribute and output.

Figure 9: Confidence matrix plotted for state with index 0
(left), 25 (middle), and 50 (right). The selected three states
have a correlation of 0, -0.25, and -0.5 respectively between
the sensitive attribute and output.
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