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Abstract
Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge (zkSNARKs) lead to proofs that can be succinctly
verified but require huge computational resources to generate.
Prior systems outsource proof generation either through pub-
lic delegation, which reveals the witness to the third party, or,
more preferably, private delegation that keeps the witness hid-
den using multiparty computation (MPC). However, current
private delegation schemes struggle with scalability and effi-
ciency due to MPC inefficiencies, poor resource utilization,
and suboptimal design of zkSNARK protocols.

In this paper, we introduce DFS, a new zkSNARK that
is delegation-friendly for both public and private scenarios.
Prior work focused on optimizing the MPC protocols for ex-
isting zkSNARKs, while DFS uses co-design between MPC
and zkSNARK so that the protocol is efficient for both dis-
tributed computing and MPC. In particular, DFS achieves
linear prover time and logarithmic verification cost in the
non-delegated setting. For private delegation, DFS introduces
a scheme with zero communication overhead in MPC and
achieves malicious security for free, which results in loga-
rithmic overall communication; while prior work required
linear communication. Our evaluation shows that DFS is
as efficient as state-of-the-art zkSNARKs in public delega-
tion; when used for private delegation, it scales better than
previous work. In particular, for 224 constraints, the total com-
munication of DFS is less than 500KB, while prior work
incurs 300GB, which is linear to the circuit size. Additionally,
we identify and address a security flaw in prior work, EOS
(USENIX’23).

1 Introduction

Zero Knowledge Succinct Non-interactive Arguments of
Knowledge (zkSNARKs) allow a prover to attest the knowl-
edge of a witness that satisfies any given NP relation. The
prover only needs to send a short proof to the verifier, and
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without any further communication, the verifier will be con-
vinced that the prover has a satisfying witness, without learn-
ing anything about the prover’s secret witness. Their flexibility
has led to numerous academic [4, 10, 82, 43] and industrial
applications [81, 62, 75]. However, for many zkSNARK pro-
tocols, proof generation for complex statements incurs high
compute and memory overheads. In applications where the
prover might be resource-bounded (e.g., a mobile phone),
these overheads can make it impossible to efficiently generate
zkSNARK proofs, limiting the scope of applications.

To address this issue, prior work [76, 77, 52, 23, 36] has
proposed proof delegation schemes where the prover out-
sources the proof generation process to third parties with
access to more computational capacity. These schemes come
in two flavors: public delegation, where the prover’s witness
is revealed to the third party, and private delegation, where
the prover’s witness remains hidden. In this work, we will
be primarily concerned with constructing scalable private
delegation schemes.
Why hide the witness? Private delegation is motivated
by applications that touch sensitive user data. For example,
in systems for private financial transactions [4] or private
personal identity verification [30, 65], the witness contains
sensitive information about the user’s financial habits and
identity, and revealing this data to the third party weakens the
security guarantees of the system.
Prior work on private delegation. To prevent this leakage,
recent work [23, 53, 36, 58] has constructed private delegation
schemes in which the prover leverages secure multi-party
computation (MPC) techniques [64, 40, 2, 27] to outsource
proof generation to multiple (non-colluding) third parties,
who jointly but privately compute the proof. Unfortunately,
as we discuss in Section 7, while these works are able to
provide strong privacy guarantees, they are unable to scale
to proving large computations effectively. This is due to a
number of reasons:
• Inefficiencies due to MPC: Despite efforts to specialize

MPC techniques for the specific zkSNARKs, the resulting
private delegation schemes still incur significant communi-
cation among multiple parties and computation overheads
due to inherent inefficiencies of the choice of MPC proto-
col. For example, zkSAAS [36] uses packed secret sharing,
which is not compatible with Pippenger’s algorithm [6],
a common method for optimizing expensive multi-scalar
multiplications.
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• Inefficiencies due to poor resource utilization: Existing
schemes [58, 23, 36] cannot effectively scale: they are bot-
tlenecked by the computational resources of a single ma-
chine, and cannot take advantage of distributed computing
techniques that would allow proof generation to be paral-
lelized across multiple machines.

• Inefficiencies from choice of zkSNARK: Existing proto-
cols target zkSNARKs that, for various reasons, are not
well-suited for delegation. For example, zkSNARKs like
Plonk [35], which have been the target of prior delegation
schemes [36, 58], rely extensively on product check that
requires expensive communication in MPC settings.
Our goal is to address all these concerns and construct

horizontally-scalable private delegation schemes for zk-
SNARKs by combining distributed computations and MPC.
We say that a delegation scheme is scalable if the proving time
can be reduced by endowing each party with more nodes. We
scale delegation to larger instances by adding nodes within
each party, not by adding parties. We believe this is reasonable
because we envision that each party will be a non-colluding
cloud provider, and it is easier to add nodes within providers
than to find new providers. Moreover, only two to three non-
colluding clouds are typically available in practice.

1.1 Our contribution

We make progress towards this goal via several contributions.
First, we observed that previous work [58, 36] are unable

to avoid linear communication cost in the private delegation
setting, primarily due to two drawbacks of the underlying zk-
SNARKs: 1. random memory access operations, such as FFT,
which create bottlenecks in distributed computing commu-
nication; 2. the presence of multi-layer multiplication gates
hinders the efficiency of MPC communication, making it dif-
ficult to reduce the overall overhead in MPC protocols.

Second, we observe that when MPC protocols can achieve
security up to additive attacks [37], applying them to zk-
SNARKs with a single non-linear layer simplifies the design
of the delegation protocol. This simplification arises because
we can eliminate the computation-extensive check for mul-
tiplications, as zkSNARKs are publicly verifiable and inher-
ently prevent integrity attacks. As a result, we can achieve
malicious security for free in this setting, making the proto-
col both more efficient and secure without the overhead of
extra check. EOS [23] claims to achieve a similar property,
but their protocols do not satisfy this condition, leading to
vulnerabilities that could be exploited by adversaries.

Finally, we provide a systematic analysis of common zk-
SNARK building blocks that identifies how suitable they
are for distributed computing and different MPC techniques.
Based on this analysis, we identified two key techniques as
being particularly friendly to distributed MPC computation:
holography [22, 67] and multilinear sumchecks [55].

We leveraged these insights to construct DFS, a new zk-

SNARK for Rank-1 Constraint Systems (R1CS) with the
universal setup that achieves several attractive properties:
• In the non-delegated (single machine) setting, DFS

achieves linear prover time and logarithmic verification
costs, which matches the state-of-the-art linear-time prover
SNARKs that are scalable to large statements.

• In the private delegation setting, we construct a new private
delegation scheme for DFS that achieves zero communica-
tion overhead in MPC and malicious security for free. This
is a significant improvement over existing schemes [23,
58, 36, 53], which incur linear communication overhead.
Moreover, privately delegated DFS leverages distributed
computation to accelerate the local computation of each
party. As a result, the overall communication cost is loga-
rithmic, and with the increase in the number of computation
nodes for each party, the total latency decreases linearly.

• We also apply DFS to the public delegation setting, which
efficiently leverages distributed computing resources to op-
timize proof generation with logarithmic communications.
We implement DFS and its delegation schemes in a modu-

lar Rust library, and evaluate its scalability and performance.
Our implementation supports two types of secret sharing
schemes: Additive Secret Sharing (AddSS) and Replicated
Secret Sharing (RSS). We assume three parties for RSS, and
two parties for AddSS. These parties could naturally model
the prominent cloud computing platforms: AWS, GCP, and
Microsoft Azure. As discussed in our scalability goal, we do
not expect the need for more parties, as each party represents
a distinct non-colluding cloud platform, and such platforms
are limited in practice. Instead, we focus on deploying more
nodes within each platform to accelerate proof generation.

Our experiments in Section 6 show that (a) DFS’s prover
time scales linearly with the circuit size, and verification is
less than 50ms; (b) our private delegation scheme can scale
to larger circuits than prior work with lower communication
and latency overheads. For 224 constraints, DFS achieves
less than 500KB of communication, while prior work [36]
incurs 300GB. (c) our public delegation scheme achieves
similar scalability to the prior state-of-the-art Pianist [52],
while Pianist is not suitable for private delegation.

Finally as an additional minor contribution, we identify
a security flaw in prior work [23] and show that it does not
achieve the claimed malicious-security guarantees.

Private Delegation with Different Schemes. DFS’s pri-
vate delegation can be instantiated with different secret-
sharing schemes, each offering distinct trade-offs. Due to
DFS’s single multiplication layer in the private phase, using
RSS eliminates the need for inter-party MPC communication
and does not require authenticated shares for malicious se-
curity. However, RSS is limited to honest-majority settings
with three parties. To support more parties, Shamir Secret
Sharing (SSS) can be used, which also benefits from DFS’s
properties, providing similar advantages to RSS while scaling
to more parties. AddSS supports dishonest-majority settings



···

Node 1 Node 2 Node M

Cloud 
Platform 1
(Party 1)

Cloud 
Platform 2
(Party 2)

Cloud 
Platform 3
(Party 3)

Proof
Delegator

（Coordinator）

Share 1

···

···

Share 3

Node 1 Node 2 Node M

Node 1 Node 2 Node M Secret Witness

Share 2

Figure 1: System overview of DFS.

but requires authenticated shares for malicious security, and
inter-party communication scales linearly with the instance
size. Therefore, we mainly use AddSS in two-party settings,
though it can be extended to more parties if required. All
of these secret-sharing schemes can be accelerated by our
distributed computation designs. Lastly, we did not consider
Packed Secret Sharing (PSS) due to its inefficiency in multi-
scalar multiplication (MSM) computations and because DFS
optimizes proof generation by increasing the number of nodes
within parties, rather than increasing the number of parties.

While in this paper we focused on delegating our new
SNARK, our techniques enable efficient delegation of all
SNARKs whose private (witness-dependent) phase requires
only a single layer of multiplications. This class includes pop-
ular SNARKs like Spartan [67], Marlin [22] and Lunar [19].

2 Technical overview

System architecture. As shown in Fig. 1, we consider a
scenario where a delegator D wants to outsource the proof
generation to the parties P1, . . .PNp . We consider each party
as an independent trust domain, such as different cloud ser-
vice platforms, geographically distributed computation nodes,
or computing resources managed by different organizations.
Each party has multiple nodes, enabling it to parallelize its lo-
cal computations and accelerate the proof generation process.

The delegator D shares its witness www into Np shares
www1, . . . ,wwwNp , and sending each share to the respective party.
The Np parties then run a MPC protocol to compute the proof.
For efficiency, each party internally parallelizes its computa-
tion across a cluster of nodes. For example, the i-th share wwwi

is split into Nw chunks w(1)
i , . . . ,w(Nw)

i , which are distributed
across Nw nodes within the party Pi. The delegator also coor-
dinates the proof generation among different parties, but its
workload is designed to be logarithmic; thus, even users with
limited resources can effectively delegate the proof.

In the public-delegation setting, all nodes are controlled by
a single party, which can see the witness, and D can ask any
node to serve as the coordinator.

Threat model. We focus on designing private-delegation
protocols in the presence of a malicious adversary that can
deviate from the protocol in an arbitrary way. We assume
that all the nodes controlled by the same party are part of the
same “trust” domain: if this party is corrupted, then all the
nodes owned by this party are malicious. We envision that the
parties in our protocol will be instantiated with different cloud
computing platforms. An attacker who corrupts a cloud plat-
form is more likely to corrupt all the nodes on that platform,
but not the nodes on the other platforms.

Depending on the kind of underlying MPC protocol, we
target two different settings: the two-party setting and the
three-party setting, where at most one party is allowed to
be corrupted in both settings. Note that our protocol can be
extended to support more parties.

To construct such a scheme, we begin by analyzing whether
the cryptographic building blocks we rely on (MPC protocols
and components of zkSNARKs) achieve these goals.

2.1 Scalability of MPC

We analyze three linear secret-sharing schemes that have been
commonly used in prior MPC protocols for their efficiency
properties. We first note that all linear secret-sharing schemes
do not require communication for linear operations, and thus
eliminate communication overhead for these operations.
Additive secret sharing (AddSS) is an efficient linear secret-
sharing scheme used by many MPC protocols [27]. AddSS
supports all-but-one dishonest majority security. Multiplica-
tion for AddSS relies on the “Beaver’s triples”, which requires
cryptographic operations to generate some preprocessing ma-
terial for the parties, and requires each party to communicate
n−1 field elements to evaluate the multiplication gate. This
means that if the zkSNARK prover requires a number of
multiplications that is linear in the size of the circuit, the
communication overhead from AddSS will be linear as well.
Packed secret sharing (PSS) [32] is a generalization of
Shamir secret sharing (SSS) [70] that packs multiple secrets
into a single share. The corruption threshold supported by
PSS depends on the number of packed secrets; if k secrets are
packed into a single share, then the corruption threshold can
be at most n− k. PSS supports (a bounded number of) cheap
multiplication operations: simply multiply the shares. How-
ever, not all linear operations are cheap in PSS: operations
on secrets within the same packed share require unpacking,
which involves reconstructing and redistributing the individ-
ual secrets, leading to additional communication. Moreover,
this also inhibits important algorithmic optimizations like
using the Pippenger algorithm [61] for multi-scalar multipli-
cation, thus incurring high computational overheads as well.
Replicated secret sharing (RSS) [56] offers different trade-
offs compared to AddSS and PSS. RSS only provides security
in an honest-majority setting, and furthermore incurs a 2×
overhead for computing linear gates whose output is used



in further secret computations. However, when the output is
made public (i.e., not used in further secret computations),
RSS can compute the linear gate with no overhead. Further-
more, unlike AddSS and PSS, the same benefit applies to
multiplication gates as well: they incur neither communica-
tion nor computation overhead when the gate output is public.
To the best extent of our knowledge, the latter observation
is novel, and might be of independent interest in other MPC
applications.1 Finally, we also observe that RSS achieves
malicious security for free in our setting.

Summary. The inefficiency of PSS for common and expen-
sive operations like MSMs makes RSS and AddSS the most
efficient choices for our private delegation scheme.

Security up to additive attacks. MPC protocols, which
guarantee security up to additive attacks in the presence of
malicious adversaries, imply that the only effective attack is
to add adversarial-known errors at the output of multiplica-
tion gates. Previous work [37] has identified that a class of
MPC protocols satisfy this property. We can apply such MPC
protocols to realize private delegation of zkSNARKs without
the need of checking multiplication gates that is computation-
ally expensive, since zkSNARKs are publicly verifiable and
guarantee integrity.

If we remove the multiplication check, we need to require
that there is only one layer of multiplication gates. If there
are multiple layers of multiplication gates, additive errors at
the outputs of multiplication gates may be introduced to the
evaluation of subsequent multiplication gates, which brings
about the cross terms between errors and secrets. This allows
the adversary to perform selective-failure attacks (i.e., it can
guess whether the equation involving the errors and secrets is
zero), which leak one-bit information for each protocol exe-
cution. Conversely, if there is only one layer of multiplication
gates, the errors only affect the integrity but not the privacy.

We find that this property can simplify the design of private-
delegation protocols. Specifically, when a zkSNARK has only
one layer of multiplication gates, we can employ an MPC pro-
tocol that guarantees security up to additive attacks against
malicious adversaries to realize private delegation. At the
end of protocol execution, we can use the public verifiability
of zkSNARKs and run the verification algorithm to guar-
antee integrity, which eliminates the computation-expensive
check of multiplication gates. In this way, we can achieve the
performance similar to semi-honest protocols, i.e., guarantee
malicious security for free.

Previous work, such as EOS [23], attempted to remove the
check of multiplication gates, but failed because their MPC
protocol did not satisfy this property, resulting in privacy leak-
age. We will discuss this issue in more detail in Section 2.4.

1In fact, the same benefit applies also to Shamir secret sharing [70], but
for concreteness we focus on RSS as it achieves better efficiency.

2.2 Scalability of zkSNARKs

We now analyze common building blocks used in zkSNARK
constructions, focusing on SNARKs constructed via the PIOP
+ PC scheme methodology [22, 18]. Chiesa et al. [22] intro-
duced a methodology for constructing zkSNARKs from two
components: polynomial interactive oracle proofs (PIOPs)
[18] and polynomial commitment (PC) schemes [47]. The
methodology works as follows: the PC scheme is used to
commit to all (indexer and prover) oracles as they are com-
puted, and then the PC scheme’s opening and verification
algorithms are used to prove the correctness of the evalua-
tions. It is straightforward to see that the properties of the
compiled zkSNARK is determined by the underlying PIOP
and PC schemes, so we now focus on analyzing the efficiency
of these components.

We first analyze the scalability of PIOPs. There are a myr-
iad of PIOP constructions in the literature, and it is infeasible
to analyze all of them individually. Instead, we identify core
building blocks subPIOPs that underlie most of these PIOPs,
and analyze their communication and computation overhead.

Product-check PIOPs. Many popular zkSNARKs [35, 21]
rely on a subprotocol that checks that the product of the entries
of a vector v equals a claimed value c, i.e., that ∏i vi = c. Ob-
serve that proving this claim requires computing the product
∏i vi. This is straightforward in the single-prover setting, and
in the public delegation, the computation can be distributed
across nodes effectively: give to the nodes equal-sized parti-
tions of v, have them compute the product of their partition,
and then have all nodes send their partial products to the
delegator, who then computes the final product.

In the private delegation setting, however, these strategies
do not work. When the vector v consists of secret-shared
values (e.g., when the vector is the witness), computing the
product requires computing a product of n secret-shared val-
ues. Despite optimizations, the best known protocol for this
task requires O(n) inter-party communication. Not only does
this violate our target of sublinear communication, but prior
work [58] observes that this additional communication leads
to bottlenecks in performance. Moreover, the product intro-
duces multiple layers of multiplication gates, making it im-
possible to achieve malicious security for free. Note that prior
works [21, 69] use sumcheck to prove product relations, avoid-
ing direct product-checks. However, computing intermediate
polynomials still involves multiple multiplication layers, lead-
ing to unavoidable MPC overhead.

Hence, we deem product-check subPIOPs and the PIOPs
that rely on them unsuitable for private delegation.

Sumcheck PIOPs. A second class of popular zkSNARKs
[22, 67, 19, 9] relies instead on the sumcheck protocol [55],
which checks that the sum of the entries of a vector v (repre-
sented as polynomials) equals a claimed value c, i.e., ∑i vi = c.
There are two kinds of sumcheck protocols in the literature:
univariate sumcheck and multilinear sumcheck.



Univariate sumcheck requires quasilinear proving time due
its use of FFTs for polynomial multiplications and divisions,
and distributed computation of FFTs is known to require
linear communication [76], and furthermore, provides dimin-
ishing returns as the number of nodes increases. Therefore,
univariate sumcheck is unsuitable for delegation.

For multilinear sumcheck, on the other hand, there are ef-
ficient linear-time prover algorithms for sumcheck [73, 72].
Moreover, the operations performed by the prover in these
algorithms are embarrassingly parallel, and thus can be dis-
tributed across nodes effectively in delegation settings.

Finally, in the private delegation setting, when performing
sumcheck over a multilinear polynomial, these same opera-
tions are linear, and thus do not require communication in
MPC. However, when performing sumcheck over a product
of multilinear polynomials, this does require communication
in MPC. However, we observe that if the sumcheck only
involves a single-layer of inner-product, then the protocol
can be performed in RSS without communication. Thus, we
conclude that multilinear sumcheck-based PIOPs are ideal
candidates for private delegation.
PIOPs for table lookups have emerged as a key tool for
improving the efficiency of several recent zkSNARKs [34,
60, 33, 31, 68, 80, 45]. These protocols assert that the entries
of a vector are contained in predefined tables, and have been
used to reduce the overhead of circuit operations that have
traditionally been regarded as expensive in zkSNARKs, such
as bitwise operations, integer operations, comparisons, and
more. Recently, they have also been used to directly improve
the efficiency of PIOP constructions [67, 68].

Unfortunately, not all lookup protocols are suitable for del-
egation. For example, the widely-used plookup [34] protocol
requires product checks, which incur high costs. Yet another
class of lookup protocols, such as Lasso [68, 67], based on
time-stamping and offline memory-checking [7] has shown
excellent performance in the single-prover setting. However,
previous work [9] has indicated that offline memory-checking
requires random memory access, which is not suitable for
distributed computing environments.

We observe that a recently proposed lookup protocol,
LogUp [45] is able to avoid these drawbacks by relying on
multilinear sumcheck. LogUp allows distributed computa-
tion to avoid additional communication between nodes, as
its operations are inherently parallelizable and can be exe-
cuted locally within each node. In Section 5 we show how to
leverage this fact to distribute the prover’s computation across
multiple nodes while minimizing communication overhead.

It is important to note that all lookup protocols, including
LogUp, cannot avoid multiple layers of multiplication gates
when computing intermediate polynomials. As a result, apply-
ing lookup protocols in private delegation presents challenges.
However, as we designed in Section 2.3, we can separate
the witness-dependent and witness-independent phases of
the zkSNARK. By applying the lookup protocol only to the

witness-independent portion, we ensure that multiple multi-
plication layers do not appear in the MPC phase, enabling
more efficient private delegation.

Scalability of polynomial commitment schemes. There
have been numerous constructions of PC schemes in recent
work, spanning a variety of assumptions and efficiency. Fol-
lowing prior work on MPC-friendly zkSNARKs [58, 23],
we focus on PC schemes based on pairing-friendly curves
[47, 59], as the core component of their commitment and
opening algorithms, namely elliptic-curve multi-scalar mul-
tiplications (MSMs), are linear operators. This means that
committing to and opening secret-shared polynomials does
not require communication under MPC. Furthermore, because
the MSM is easily partitioned and parallelized [6, 84, 54], it is
well-suited for distributed computing. Another popular class
of PC schemes consists of those based on error-correcting
codes [3, 79, 41]. These achieve attractive properties such as
post-quantum security, but their algorithms require construct-
ing and opening Merkle trees, which are highly nonlinear
operations, and are hence expensive to perform in MPC.

2.3 Delegation-friendly zkSNARKs

Our goal is to design a zkSNARK protocol that is friendly
to both distributed computing and multi-party computation,
enabling it to work effectively in both public and private
delegation scenarios.

Starting point: an observation about Marlin. We start by
recalling an observation made in prior work on delegating
SNARKs [58, 23]: the Marlin zkSNARK [22] proved to be
more efficiently delegable than other common zkSNARKs
such as Groth16 [42] and Plonk [35]. These works attribute
this to the fact that Marlin’s protocol can be divided into two
parts: a witness-dependent portion (non-holography), and a
witness-independent portion (holography). While the witness-
dependent portion clearly requires MPC to protect witness
privacy, the witness-independent portion only involves public
data, and hence can be computed without MPC. Because in
practice the witness-independent portion is the most time-
consuming part of the protocol, eliminating the need to use
MPC allowed prior work to derive significant improvements.

Not all protocols satisfy the holography property, and thus
the whole protocol is witness-dependent. As a result, these
protocols [21, 35] unavoidably involve multiple layers of
multiplication gates for computing intermediate polynomials
in private delegation, leading to increased MPC overhead.

Our approach. Marlin is a good starting point for construct-
ing DFS. Unfortunately, as noted in Section 2.2, Marlin relies
on univariate sumcheck and is hence not suitable for scalable
delegation. So instead we take as our starting point the multi-
linear adaptation of Marlin, namely Spartan [67]. Like Marlin,
Spartan’s protocol can also be divided into witness-dependent
and witness-independent portions. However, Spartan’s pro-



tocol uses as a crucial component a lookup PIOP that relies
on offline memory-checking, and as noted in Section 2.2, this
protocol is not scalable. We show how to fix this issue and
construct a delegation-friendly zkSNARK. DFS’s PIOP for
R1CS follows the lead of the holographic PIOPs and proves
R1CS by breaking it up into three subrelations: a “rowcheck”,
a “lincheck”, and a matrix-evaluation check, shown in Fig. 2.
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Rowcheck Lincheck Matrix Evaluation

Private × Private Public × Private Public Only

Non-holographic Protocol
(Witness Dependent)

Holographic Protocol
(Witness Independent)

Figure 2: Protocol overview of zkSNARKs for R1CS. M ∈
{A,B,C} indicates the R1CS matrices, zzz indicates the witness
vector, zzzM indicates the result of multiplying M by zzz, and M̂
indicates the polynomial encoding of M. zzz,zzzM are private, and
M,M̂,x,y, p are public.

The protocol starts with the indexer computing polynomial
encodings of the R1CS matrices. Then, the prover computes
polynomials zzzA,zzzB,zzzC claiming to equal the matrix vector
products Azzz, Bzzz, and Czzz, and proves that these satisfy the
Hadamard product relation Azzz◦Bzzz =Czzz (this is the rowcheck
step). DFS reduces the rowcheck to a sumcheck over prod-
ucts of polynomials, which requires only a single layer of
multiplications between secret-shared values.

After this, the prover is then left to show that for each
M ∈ {A,B,C}, zzzM indeed equals Mzzz. This is the lincheck
step, and, as illustrated in Fig. 2, it involves linear checks
between the public matrix M and the private vectors zzzM and
zzz. To prove this step, DFS uses sumcheck (this time only over
a single private polynomial) to reduce the check to a claim
about evaluations of polynomials encoding the matrices M.

Spartan uses offline memory-checking technique to express
this claim as a specialized circuit and then uses an external
proof system to prove this circuit. However, this technique has
two drawbacks. First, as we discussed in Section 2.2, offline
memory-checking may require random memory accesses,
which are not scalable. Second, the external proof system is
required to be delegation-friendly, which leads to a circular
dependency. We instead express the matrix evaluations as a
lookup relations, and then use the sumcheck-based lookup
algorithm LogUp [45] to prove the claim directly. LogUp not
only avoids the random memory accesses required by offline
memory-checking, but also performs simple and paralleliz-
able operations over the involved polynomials before produc-
ing a sumcheck claim. We observe that this matrix-evaluation
check is witness-independent and involve only public data;
thus, it can be computed without MPC.

We instantiate DFS with the PST13 polynomial commit-

ment scheme [59], which is scalable and MPC-friendly.

Distributed computation. DFS is highly efficient for dis-
tributed computing because the protocol design deliberately
avoids operations such as FFT and memory-checking, which
require random memory access. To construct a public delega-
tion scheme, we designed distributed computation algorithms
for the PIOP and polynomial commitment that require only
logarithmic communication overhead, shown in Appendix E.

2.4 Private delegation for DFS

We first identify a security issue in the recent private-
delegation protocol EOS [23] based on additive secret sharing
(AddSS). Then, we show how to fix it, and present our im-
proved approach in the two-party setting. In the three-party
setting with at most one malicious corruption, we present
a simpler and more efficient approach to delegate the proof
generation of DFS using replicated secret sharing (RSS). The
RSS-based protocol can achieve zero communication over-
head and malicious security for free. When the number of
parties is two or three, and every party has a cluster of nodes,
our private-delegation protocols are more efficient than the re-
cent protocols [58, 36, 53] and the improved EOS, due to the
MPC-friendly design of DFS and the optimized techniques
exploiting the specific private-delegation application.

A security issue in EOS. The recent work EOS [23] adopts
AddSS to realize private delegation of zkSNARKs in the
dishonest-majority malicious setting. It uses the technique of
Beaver triples [1] to compute multiplications. In particular,
given two additive secret sharings 〈x〉 and 〈y〉, the parties need
to compute an additive secret sharing 〈z〉 with z = x · y. Given
a Beaver triple (〈a〉,〈b〉,〈c〉) with two random elements a,b
and c = a ·b from a delegator D, all parties run the standard
protocol to open 〈x〉−〈a〉 and 〈y〉−〈b〉 to obtain two public
values µ = x− a and ν = y− b. Then, the parties compute
〈z〉 = µ · ν+ ν · 〈a〉+ µ · 〈b〉+ [c] based on the linear prop-
erty of AddSS. The proof is verified by D to guarantee the
correctness of multiplication computation.

EOS claims that the opened values do not require authen-
tication, thereby reducing the cost. We observe that a mali-
cious adversary can introduce two errors e0,e1 during the
open procedure, so that µ′ = µ+ e0 and ν′ = ν+ e1 are com-
puted. When z is reconstructed by D using the shares sent
by the parties, an additional error e2 can be introduced by
the adversary. In this case, the parties actually obtain a value
z′ = z+(e0 ·b+ e1 ·a+ e2). If the resulting proof passes the
verification, then e0 ·b+e1 ·a+e2 = 0, else it is not zero. This
leaks one-bit information on a,b, which in turn reveals the
information on secret values x,y, due to the fact that µ = x−a
and ν= y−b are publicly known. The above attack is referred
to as a selective-failure attack in the MPC setting, and can
be repeated to leak more information. We have reported this
problem to the authors of EOS, and they will fix it.



MPC for DFS in the two-party setting. The crucial se-
curity issue of EOS is that the values to be opened are not
authenticated. To solve the issue, we can equip additive secret
sharings with SPDZ-like information-theoretic message au-
thentication codes (IT-MACs) [27, 26], so that the values to
be opened are authenticated with IT-MACs. Furthermore, we
can adopt the recent VOLE protocols (e.g., [11, 13, 66, 14, 74,
12, 44, 63]) to compress random IT-MACs into short seeds
such that the communication between D and all parties is sub-
linear in the number of IT-MACs. We can use the batch-check
technique [27, 26] to realize authenticated opening, which
brings a negligibly small communication overhead.

If we transform a Beaver triple (〈a〉,〈b〉,〈c〉) into an au-
thenticated triple denoted by ([[a]], [[b]], [[c]]), this will incur an
expensive computation cost for all parties, according to the
state-of-the-art protocols [15, 28, 12, 8] for generating authen-
ticated triples. We overcome the efficiency problem by letting
D generate partially authenticated triples (([[a]], [[b]],〈c〉), i.e.,
c = a ·b is not authenticated with IT-MACs), where the input
shares are authenticated but the output shares are not. This
allows the parties to compute an unauthenticated sharing 〈z〉,
which is not a problem when there is only one layer of mul-
tiplications in zkSNARKs such as DFS. Therefore, it does
not allow the adversary to introduce an error, leading to a
cross term between the error and secret, and thus prevents
selective-failure attacks. Our zkSNARK scheme DFS uses
the inner product instead of Hadamard product as the unique
non-linear operations. In this case, we are able to generalize
the above approach to handle inner products by generating
a semi-authenticated inner-product tuple, i.e., ([[aaa]], [[bbb]],〈c〉),
where c is the inner product of two vectors aaa and bbb.

MPC for DFS in the three-party setting. When at most
one of three parties is corrupted, we use replicated secret
sharings to give a simpler and more efficient solution. Specif-
ically, due to the linear property, all linear operations are
communication-free. In DFS, the only non-linear operations
are a single layer of inner products. We use the multiplication
property of RSS to let all parties locally compute the inner-
product operation. In this case, RSS will be converted into
AddSS. Different from the general MPC setting, we do not
choose to convert AddSS back into RSS. The reason behind
this is that all inner-product operations only occur in a single
layer, no non-linear operation between two additive secret
sharings is required. Therefore, we achieve zero communi-
cation for inner-product operations. This idea can be applied
to any non-linear operations, as long as there is a single layer.
To obtain the simulation-based security, we let all parties ran-
domize the resulting sharings with fresh zero sharings, so
that the shares of honest parties are still uniform under the
condition that the shares could be reconstructed as the secret.

Since the inner product of two RSSs results in an AddSS,
and AddSS does not provide the authentication property (even
in the honest-majority setting), we cannot guarantee the cor-
rectness of reconstruction of the inner-product result. Nev-

ertheless, the reconstruction procedure does not allow the
adversary to introduce an error leading to a cross term be-
tween the error and secret. Therefore, it is not possible to
perform selective-failure attacks. We note that the above idea
can also be applied to Shamir secret sharings, which support
more parties. In conclusion, our approach only allows a ma-
licious adversary to mount additive attacks, and guarantees
privacy in the presence of malicious adversaries. Through
the public verifiability of zkSNARKs, we can guarantee the
integrity, and achieve malicious security for free.

Distributed computation of private delegation. We em-
ploy distributed computing to accelerate the MPC opera-
tions performed by each party, thereby achieving the overall
speedup. This approach is highly effective because, in DFS,
most operations are linear and can be computed locally with-
out communication between parties. The only operation that
requires the communication is the inner product. However, we
have accounted for this in the design of DFS, i.e., there is only
one layer of inner-product operations during the sumcheck for
the product of multiple polynomials. In the three-party setting,
we can achieve zero communication overhead for this step,
allowing all computations to be executed locally within each
party. Each party can then leverage its local cluster of nodes
to parallelize local computations, thus ensuring scalability
without inter-party communications.

Another key advantage of DFS is the holography property,
as illustrated in Fig. 2, which ensures that the final phase in-
volves purely public computation. This means that we do not
need to rely on MPC to protect the witness during this phase,
allowing for public delegation instead. Since secret sharings
are no longer required, we can switch from private delegation
to public delegation, enabling the use of all nodes from all
parties for distributed computation. This maximizes the uti-
lization of computational resources. Our experiments show
that, in the non-delegation setting, the holographic portion
accounts for 70% of the proof generation time. This indicates
that even in the private-delegation setting, we can acceler-
ate the majority of computations purely through distributed
computing, without the additional overhead of MPC.

3 Preliminaries

Notation. We use λ to denote the security parameter, and
F to denote the prime field. We denote by [a . . .b] the set
{a, . . . ,b} for a,b ∈ N; particularly, we use [1 . . .n] to denote
the set {1, . . . ,n} for some n ∈ N. We use F to denote a finite
field Zq of prime order q. We will use bold letters like xxx for
vectors, and denote by xxxi the i-th component of xxx with xxx1
the first entry. We also use colon notation to denote slices
of vectors. For example, xxx[i : j] denotes a vector constitut-
ing of xxxi, . . . ,xxx j. We will occasionally explicitly denote the
multilinear extension of a vector aaa ∈ FN using the notation
aaa(xxx)∈ F[xxx] where xxx∈ {0,1}logN , and for example, aaa(0) = aaa0.



We use upper-case letters A,B,C,M to denote matrices. For
the matrix M ∈ Fn×m, we denote by MMM(x,y) the multilinear
extension of M to F[xxx,yyy], where xxx ∈ Flogn,yyy ∈ Flogm.
Algebraic background. Throughout this paper, we will
work with the n-dimensional Boolean hypercube {0,1}n. The
polynomial eq(xxx,yyy) := ∏

n
i=1(xxxiyyyi +(1− xxxi)(1− yyyi)) checks

that xxx = yyy.

Definition 3.1 (Rank-1 Constraint Systems). The indexed
relation RR1CS is the set of all triples

(i,x,w) =
(
(F,n,m,A,B,C),x,w

)
where F is a finite field, n and m are natural numbers, w ∈
Fm−|x|−1 is a vector over F, A,B,C are m×m matrices over F
with at most n nonzero entries, such that Azzz◦Bzzz =Czzz, where
zzz := (x || 1 || w). Let s = logm and d = logn.

Sparse matrix encodings. Prior work [22, 24, 19] has
shown how to represent (or arithmetize) a square matrix
M ∈ FN×N with N non-zero entries via three multilinear poly-
nomials rrrM , cccM , vvvM , such that vvvM(xxx) = MrrrM(xxx),cccM(xxx), where
xxx ∈ {0,1}logN . If we map the matrix index (i, j) to the vector
(iii, jjj), we can define the function ˆrrrM(xxx) = iii and ˆcccM(xxx) = jjj.
Then the matrix encoding of M is the multilinear polynomial
MMM(iii, jjj) = ∑xxx vvvM(xxx)eq( ˆrrrM(xxx), iii),eq( ˆcccM(xxx), jjj).

3.1 Background for zkSNARKs
A succinct preprocessing non-interactive argument of knowl-
edge in the random oracle model (ROM) for an indexed rela-
tion R is a tuple of algorithms ARG= (G ,I ,P ,V ) satisfying
completeness, knowledge soundness, succinctness, and zero-
knowledge. The indexer I preprocesses the NP index i into
index-specific proving (ipk) and verification (ivk) keys. The
prover P , on input ipk, an instance x, and a witness w such
that (i,x,w) ∈R, outputs a proof π which can be checked
by the verifier V when given ivk and x.
Polynomial interactive oracle proofs. A polynomial in-
teractive oracle proof (PIOP) for an indexed relation R
is an interactive protocol specified by a tuple PIOP =
(F,k,s,I ,P ,V ) where F is a finite field, k is the number
of rounds, s( j) is the number of prover polynomials in the
j-th round, and I , P , V are algorithms described next.
Polynomial commitments. A polynomial commitment
scheme enables a sender to commit to a polynomial
p and then later prove the correct evaluation of p at
a desired point. Formally, it is a tuple of algorithms
PC = (Setup,Trim,Commit,Open,Check) satisfying com-
pleteness, extractability, and hiding properties.

3.2 Background for MPC
We will use linear secret sharing schemes (LSSSs) to realize
private delegation of DFS. A t-out-of-n LSSS enables a secret

x to be shared among n parties, such that no subset of t parties
is able to learn any information on x, while any subset of t +1
parties can reconstruct x.

Definition 3.2. A linear secret sharing scheme has the fol-
lowing algorithms and protocols:
• [x]← Share(x): A dealer D runs this algorithm to share a

secret x among the parties P1, . . . ,Pn, such that Pi gets a
share [x]i for i ∈ [1 . . .n]. The sharing on x is denoted by
[x] = ([x]1, . . . , [x]n).

• x← Rec([x],B): Given at least t + 1 shares in [x], any
party B (e.g., one of P1, . . . ,Pn) can reconstruct the secret
x. Although t +1 shares instead of n shares are sufficient
to reconstruct the secret x, we still write [x] as the input of
Rec for simplifying the description.

• LINEAR COMBINATION: Given the public coefficients
c0,c1, . . . ,c` and secret sharings [x1], . . . , [x`], parties
P1, . . . ,Pn can locally compute [y] = ∑

`
i=1 ci · [xi]+c0, such

that y = ∑
`
i=1 ci · xi + c0.

We can also define a Open([x]) protocol to open x to all par-
ties, and Open([x]) can be constructed by running Rec([x],Pi)
for each i∈ [1,n]. For a vector xxx= (x1, . . . ,xm), we will use [xxx]
to denote ([x1], . . . , [xm]). We use [x]i to denote the share held
by a party Pi. We present three common LSSS instantiations
in Appendix F. We will use [[x]] to denote a secret sharing
with the authentication property, i.e., the reconstruction of
secrets can be verified (RSS and AddSS with authentication
check), and 〈x〉 to denote an unauthenticated secret sharing.

4 DFS: a delegation-friendly zkSNARK

Before we start generating our proof, we first need to ef-
ficiently encode the R1CS matrices A,B,C. Each matrix
M ∈ {A,B,C} is expressed as three multilinear polynomi-
als rrrM , cccM , and vvvM , such that vvvM(xxx) = MrrrM(xxx),cccM(xxx). Here, we
focus on the non-zero elements of the matrix, ensuring that
the polynomials are defined only over the positions corre-
sponding to these non-zero entries. This encoding is handled
by the indexer before the proof generation and can be reused
as long as the R1CS matrices remain unchanged. The verifier
is given oracle access to rrrM , cccM , and vvvM .

To generate the proof, we start by defining the following,Â(xxx) := ∑y∈{0,1}s AAA(xxx,yyy)zzz(yyy)
B̂(xxx) := ∑yyy∈{0,1}s BBB(xxx,yyy)zzz(yyy)
Ĉ(xxx) := ∑yyy∈{0,1}s CCC(xxx,yyy)zzz(yyy)

 (1)

where xxx ∈ {0,1}s, and for M ∈ {A,B,C}, MMM is the sparse
matrix encoding defined in Section 3. Notice that Â, B̂, and
Ĉ are respectively the multilinear extensions of Azzz, Bzzz, and
Czzz. This means that Azzz◦Bzzz =Czzz only if the evaluations of
the polynomial FFF(xxx) := Â(xxx) · B̂(xxx)−Ĉ(xxx) over the Boolean
hypercube are all zero. This is a classical zerocheck claim,
and so to check it, the verifier samples a randomness rrr, which



reduces to proving the sumcheck ∑xxx FFF(xxx)eq(xxx,rrr) = 0. At
the end of the sumcheck protocol, the verifier checks that
ex = FFF(ρρρxxx)eq(ρρρxxx,rrr), where ex is the final claim of the sum-
check protocol, and ρρρxxx is the sumcheck challenge. The veri-
fier can evaluate the polynomial eq(xxx,yyy) in logarithmic time.
However, the evaluation of the polynomial FFF(xxx) needs the
proof.

The prover will provide claimed evaluations vM := M̂(ρρρxxx),
where M ∈ {A,B,C}, and the verifier will check if (vA · vB−
vC)eq(ρρρxxx,r)

?
= ex. Next, in order to verify the authenticity of

vA,vB, and vC, we perform a batched sumcheck. The prover
receives random challenges rA,rB and rC from the verifier,
and we batch AAA, BBB, and CCC together as Mρρρxxx(~y) := rA ·AAA(ρρρxxx,~y)+
rB ·BBB(ρρρxxx,~y)+rC ·CCC(ρρρxxx,~y). Then, we perform a sumcheck for:

rAvA + rBvB + rCvC
?
= ∑

~y∈{0,1}m
Mρρρxxx(~y)zzz(~y) (2)

By the sumcheck protocol, this, too, turns into a claimed eval-
uation ey

?
= Mρρρxxx(ρρρyyy)zzz(ρρρyyy), where ey is the final claim of the

sumcheck, and ρρρyyy is the sumcheck challenge. Again, the veri-
fier needs to check the evaluation of Mρρρxxx(ρρρyyy) and zzz(ρρρyyy). In
order for the verifier to efficiently query zzz(ρρρyyy), we have the
prover send an oracle to witness extension www at the start of
the protocol, and the verifier can construct zzz(ρρρyyy) using www.

To evaluate Mρρρxxx(ρρρyyy), the verifier needs a fast, succinct way
to evaluate AAA,BBB, and CCC at (ρρρxxx,ρρρyyy). Spartan [67] uses offline
memory-checking to express this verification as a circuit,
which is then handled by an external proof system. How-
ever, as Gemini [9] points out, the timestamp calculations
required for offline memory-checking need random memory
access, making it unsuitable for distributed computing. Addi-
tionally, the external proof system itself must be delegation-
friendly, leading to a circular dependency. We instead employ
a lookup [45], directly proving the matrix evaluations.

Recall that for all M ∈ {A,B,C}, we have MMM(iii, jjj) =

∑xxx vvvM(xxx)eq( ˆrrrM(xxx), iii),eq( ˆcccM(xxx), jjj). Recall that ˆrrrM and ˆcccM
output the vector of binary representations of the row and
column indices of M, respectively. Then the evaluation
claim Mρρρxxx(ρρρyyy) can be reduced to a sumcheck problem for
∑xxx vvvM(xxx)eq( ˆrrrM(xxx),ρρρxxx),eq( ˆcccM(xxx),ρρρyyy), which results in evalu-
ating vvvM(rz), eq( ˆrrrM(rz),ρρρxxx), and eq( ˆcccM(rz),ρρρyyy) at a random
point rz. The verifier can easily check vvvM using its oracle.
However, the verifier still needs to check eq( ˆrrrM(rz),ρρρxxx) and
eq( ˆcccM(rz),ρρρyyy). The prover computes the multilinear poly-
nomials such that eqrow(xxx) := eq( ˆrrrM(xxx),ρρρxxx) and eqcol(xxx) :=
eq( ˆcccM(xxx),ρρρyyy) for xxx ∈ {0,1}d , and send the polynomial or-
acles to the verifier. And the verifier can simply query the
oracles eqrow(xxx) and eqcol(xxx) at rz.

Now, the prover needs to show that their oracle to eqrow(x)
and eqcol are well formed. We observe that if we treat eq(iii,ρρρxxx)
as a table where iii is the binary representation of the index,
then eq( ˆrrrM(xxx),ρρρxxx) can be viewed as a subset of this table,
where each element is indexed by the ˆrrrM(xxx) values. This
interpretation allows us to consider eqrow(xxx) as a sequence of

lookups into the table, with each lookup corresponding to the
appropriate entry based on the rrrM(xxx) indices.

We use the lookup protocol [45] to check the indexed
lookup relations: {(rrrM(xxx),eqrow(xxx))} ⊂ {(i,eq(iii,ρρρxxx))}
where i ∈ F, xxx ∈ {0,1}d and iii ∈ {0,1}s. The verifier can be
convinced that the provided oracle to eqrow(xxx) is valid, since
this lookup relation ensures that each entry of eqrow(xxx) is ob-
tained from the table based on the index of rrrM(xxx). Finally,
the lookup protocol require the verifier to check the oracle
evaluations of the lookup sequence and the table. Note that
the lookup sequence oracle can be obtained from rrrM(xxx) and
eqrow(xxx), which both are accessible by the verifier. And the
table has a structure that allows the verifier to construct its
oracle. The same process applies for eqcol(x).

Finally, we instantiate all the polynomial oracles with mul-
tilinear polynomial commitments [59].

Formal Construction. We present our formal protocol in
Appendix D.

Efficiency. The verifier needs to participate in a constant
number of sumchecks over log(m) and log(n)-variate polyno-
mials and all evaluations can be done in O(log(m)+ log(n))
time; thus, the verifier time and proof size are O(log(m)+
log(n)), where m is the size of inputs and n is the number
of non-zero entries in the matrix. The prover work, along-
side the aforementioned sumchecks, additionally requires
some polynomial operations. All of these take time linear
in either the size of input or the number of non-zero entries.
The tricky part is the calculation of eqrow and eqcol . The
naive solution might takes O(n logm) time, as eq(xxx,yyy) :=
∏

logm
i=1 (xxxiyyyi + (1− xxxi)(1− yyyi)) and each element could in-

volve O(logm) multiplications. However, we observe that
each element can be derived from the previous element’s re-
sult. By leveraging dynamic programming, we can efficiently
pre-compute and store all the possible values of eq(xxx,yyy) in
O(m) time, and then construct eqrow and eqcol using the pre-
compute results in O(n) time. In summary, the overall prover
time complexity is O(m+n).

Zero-knowledge. So far, we have not discussed the zero-
knowledge. However, achieving zero-knowledge is straight-
forward. We can easily incorporate zero-knowledge by adding
a masking polynomial to the witness and sumcheck proto-
col [22, 78]. Additionally, we require the hiding properties of
the PST13 [59] polynomial commitment scheme.

Security proof. The security of the non-holographic part
follows Spartan’s approach. In particular, the proof of Eqs. (1)
and (2) follows the Theorem 5.1 in Spartan [67]. For the holo-
graphic part, we utilize a lookup algorithm [45] to verify the
correctness of the oracle for eqrow(xxx). The key aspect here
is that the lookup relation ensures each entry of eqrow(xxx) is
accurately retrieved from the structured table based on the
index of rrr(xxx), which fulfills the requirement of the sparse
matrix encoding. The table’s structure allows the verifier to
construct its oracle independently, ensuring that the prover



cannot cheat by manipulating the oracle responses. By requir-
ing soundness from the lookup protocol, we guarantee that
any incorrect entries would be detected, thereby ensuring the
soundness of the holographic verification.

Public Delegation of DFS. DFS enables efficient pub-
lic delegation through distributed computing. The protocols
primarily leverage the tree-like structure of the multilinear
polynomials, so that each node can recursively compute the
values in the tree and then the coordinator combines the re-
sults to obtain the final output. We present our formal proto-
col in Appendix E. As a result, each node’s computation is
O(Nw + m+n

Nw
), where m is the size of inputs, n is the number

of non-zero entries in the matrix, and Nw is the number of
nodes, and the communication cost is O(logm+ logn).

5 Private delegation of DFS

In the private-delegation setting, a delegator D holds a wit-
ness, and D as well as all parties P1, . . . ,PNp know the com-
mon reference string (CRS) and preprocessing keys included
in a zkSNARK scheme. We denote every party as P j for
j ∈ [1 . . .Np], which controls Nw nodes, each denoted by E (k)

j
for k ∈ [1 . . .Nw]. All computations of P j could be performed
in parallel by these nodes. In this setting, D is always honest,
and at most one party is corrupted for both the two-party and
three-party settings. We prove the security of our protocols
in the presence of malicious, static adversaries. We use the
standard security model in the ideal/real paradigm [20, 38].
In our protocols, for a vector of secret sharings [[xxx]], each set
of shares [[xxx]] j held by every party P j is split into Nw parts
{[[xxx]](k)j }k∈[1...Nw], and each node E (k)

j holds [[xxx]](k)j .

5.1 Building blocks

The private-delegation protocol can be built using the follow-
ing building blocks. For simplicity, we omit the number Nw
of nodes controlled by every party.
• Multi-scalar multiplication: MSM([[yyy]],XXX)→ [[Z]] takes

as input a vector of secret sharings [[yyy]] with yyy∈ F`, a vector
of public group elements XXX ∈ G`, and outputs a secret
sharing [[Z]] with Z =∑i∈[1...`] yyyi ·XXX i ∈G, where “·” denotes
the scalar multiplication in group G.

• Linear combination: LinearComb([[xxx]],ccc)→ [[y]] takes as
input a vector of secret sharings [[xxx]] with xxx ∈ F` and a
vector of public elements ccc ∈ F`+1, and outputs [[y]] with
y = ∑i∈[1,`] ccci · xxxi + ccc0 ∈ F.

• Inner product: InnerProd([[xxx]], [[yyy]])→ 〈z〉 takes as input
two vectors of secret sharings [[xxx]] and [[yyy]] with xxx,yyy ∈ F`,
and outputs a secret sharing 〈z〉 with z = ∑i∈[1...`] xxxi ·yyyi ∈ F.

• Folding: Fold([[xxx]],r)→ [[yyy]] takes as input a vector of se-
cret sharings [[xxx]] with xxx ∈ F` and a public element r ∈ F,
and outputs a vector of secret sharings [[yyy]], where yyy ∈ F`/2

such that yyyi = xxx2i−1+ r ·xxx2i ∈ F for i ∈ [1 . . . `/2]. Here, we
w.l.o.g. assume that ` is an even.

In addition, our private-delegation protocol will invoke two
building blocks Share and Rec defined in Section 3.2. In
particular, a delegator D could run the Share procedure to
share the witness with all parties. The parties run the Rec
procedure to let D obtain a proof. These building blocks
may be independent of interest to design private-delegation
protocols for other zkSNARK schemes such as Marlin [22].

A private-delegation protocol can invoke the building
blocks multiple times in any order. We use an ideal function-
ality (shown in Appendix I) to define security of the protocols
that only consist of these building blocks. Building upon this,
we are able to prove the security of our private-delegation
protocol with these building blocks.

Next, we show how to instantiate the building blocks using
replicated secret sharing (RSS). The AddSS-based instantia-
tion is postponed to Appendix G.
Instantiation from RSS. The following protocol shows
how to construct the building blocks in the honest-majority
setting from replicated secret sharings. The constructions of
building blocks Share and Rec are described in Appendix F.
We focus on the three-party setting with at most one corrupted
party, but the protocol is natural to be extended to more par-
ties. Note that the output by the InnerProd algorithm need
to be randomized with zero sharings. When multiple zero
sharings need to be generated, D can send a set of keys to
each party in the setup phase, and then all parties generate
random zero sharings with free communication using the keys
and a pseudo-random function (PRF). The detailed protocol
to generate zero sharings can be found in prior works [51, 49,
46]. The security proof can be found in Appendix I.

Prot. 1: RSS-BASED BUILDING BLOCKS

Let m = d`/Nwe.
• MSM([[yyy]],XXX)→ [[Z]]: Given a vector of RSSs [[yyy]] and pub-

lic group elements XXX ∈F`, every party P j controls each node

E (k)
j to compute in parallel: [[Z]](k)j := ∑

km
i=(k−1)m+1[[yyyi]]

(k)
j ·

Xi. Every party P j chooses one node to compute [[Z]] j :=

∑
Nw
k=1[[Z]]

(k)
j , and then all parties output a RSS [[Z]].

• LinearComb([[xxx]],ccc)→ [[y]]: Given a vector of RSSs [[xxx]]
and public elements ccc ∈ F`+1, every party P j controls each

node E (k)
j to compute in parallel: [[y]](k)j := ∑

km
i=(k−1)m+1 ccci ·

[[xxxi]]
(k)
j . Every party P j chooses one node to compute

[[y]] j :=∑
Nw
k=1[[y]]

(k)
j +[[ccc0]] j , where [[ccc0]] is locally computed

from the public element ccc0. Then, all parties output [[y]].

• InnerProd([[xxx]], [[yyy]]) → 〈z〉: Given two vectors of RSSs
[[xxx]] and [[yyy]], D runs the Share(0) algorithm to let the
parties obtain a fresh zero-sharing 〈0〉. Every party P j

controls each node E (k)
j to compute in parallel: 〈z〉(k)j :=



∑
km
i=(k−1)m+1[[xxxi]]

(k)
j · [[yyyi]]

(k)
j . Every party P j chooses one

node to compute 〈z〉 j := ∑
Nw
k=1〈z〉

(k)
j + 〈0〉 j , and then all par-

ties output 〈z〉.
• Fold([[xxx]],r) → [[yyy]]: Given a vector of RSSs [[xxx]] and

a public element r ∈ F, let m′ = d`/2Nwe, every party
P j controls each node E (k)

j to compute in paral-

lel [[yyyi]]
(k)
j := ∑

km′
i=(k−1)m′+1[[xxx2i−1]]

(k)
j + r · [[xxx2i]]

(k)
j for i ∈

[1 . . . `/2]. Then, all parties output [[yyy]] by collecting results
from all the nodes.

5.2 Our private-delegation protocol

Delegator Work. In private delegation, the proof delega-
tor acts as the global coordinator, responsible for collecting
messages from each party and outputting the final proof. Ad-
ditionally, the delegator generates the Fiat-Shamir and the
zero-knowledge randomnesses. Finally, the delegator also
needs to verify proof to ensure that no malicious attacks have
compromised the integrity of the computation. Since both the
output proof and verification are succinct, the workload and
communication for the delegator are logarithmic.

Private delegations for sumcheck. In DFS, all linear op-
erations can be completed locally by each party without addi-
tional MPC communication. The only exception is the sum-
check protocol, where the computation of sumcheck messages
involves inner-product operations that may require MPC com-
munication. Specifically, DFS includes two types of sum-
checks involving secret shares: ∑ f ·g ·h, where f and g are
private polynomials and h is a public polynomial, and ∑ f ·g,
where f is a private polynomial and g is a public polynomial.
For the second type, since g is public, the multiplication can
be handled via linear combination linearcomb, avoiding the
need for inner-product operations on secret values. However,
the first type involves the product of two private polynomials,
which requires MPC communication to securely compute the
inner product. This makes the first type of sumcheck more
communication-intensive compared to the second.

Specifically, in the i-th round of sumcheck, the prover
needs to compute a degree-4 polynomial p(Xi), defined as
p(Xi) := ∑bbb∈{0,1}n−i ( f ·g ·h)(rrr,Xi,bbb), where rrr ∈ {0,1}i−1

are the verifier randomnesses in the previous rounds, and send
it to the verifier. After receiving p(Xi), the verifier samples a
new randomness ri and sends it back to the prover, who then
proceeds with the next round of computation. It’s important
to note that the inner product only occurs during the computa-
tion of p(Xi) in each round, and p(Xi) is directly used as part
of the proof. So the computation of p(Xi+1) relies only on
f ,g,h, and the public randomness ri, and there is only a single
layer of multiplication gates. As we designed in the honest-
majority scenario, the inner product will not trigger additional
MPC communication, allowing each party to perform the
computation locally without needing inter-party communica-
tion. However, in the dishonest-majority scenario, each party

needs to perform multiplications using Beaver triples. This
means that inter-party communication is inevitable and will
involve linear communication overhead. Specifically, during
the multiplication operations in the sumcheck protocol, each
party must engage in MPC protocols to securely compute the
inner products using the Beaver triples.

Finally, we also need to use distributed computing to accel-
erate each party’s local computation. This part is similar to
the distributed computing protocol used in public delegation.
Each party will first distribute the shares of f and g, along
with the public polynomial h, across its local computation
nodes. For simplicity, we assume the number of nodes is a
power of 2, allowing us to partition the computations by vari-
ates so that each node receives a multilinear polynomial with
fewer variables. In the sumcheck protocol, after determining
each variable ri, the process effectively performs a folding
operation on the polynomial. This folding can be done in
parallel across nodes, with each node folding its local polyno-
mial. Similarly, polynomial evaluation can also be executed
locally at each node, with the results aggregated at the end.

Notably, all operations in this process—both folding and
evaluation—are linear and do not require any MPC communi-
cation. Thus, the entire procedure can be completed efficiently
through distributed computing, ensuring scalability and speed
without incurring additional communication overheads.

Mode Switching. As mentioned in Section 2, The final
phase of DFS involves the holography verification, which
only contains computations on purely public data. At this
stage, the protocol can seamlessly switch from private del-
egation to public delegation. Specifically, the delegator can
distribute the public data, such as the R1CS matrices, across
all the nodes managed by the different parties before the proof
generation. This phase can directly adopt the distributed com-
puting protocol used for public delegation (Appendix E), al-
lowing for the maximization of resource utilization, further en-
hancing scalability and efficiency. As shown in Section 6.1.1,
even with a single node per party, DFS outperforms prior
work EOS because of mode switching.

Formal Construction. We present our formal protocols in
Appendix H.

Security. The security of our private-delegation protocol
is straightforward. All SNARK operations except for inner
product are linear, and thus the security is directly guaranteed.
Only the inner-product operation allows a malicious adversary
to introduce an error at the inner-product result. However, the
result is reconstructed to the delegator D , and thus is not used
in other operations. Therefore, the error does not reveal the
privacy, and will be detected by D through verifying the final
proof. In addition, the adversary can also introduce some
errors into the reconstruction secrets. In a similar reason, the
errors have no impact on privacy, and will also be detected
by D. Overall, the malicious adversary can only perform
additive attacks, which will be detected by D. Due to the



single layer of non-linear operations, the privacy of witness
is guaranteed. The final proof is verified by D, and thus is
valid if D does not abort. Note that our protocol also involves
multi-round of Fiat-Shamir transformations. This is secure
because each subcircuit has only one layer of multiplication,
and the output is hashed for FS. Therefore, any additive attack
would lead to different FS values and, thus, invalid proofs with
overwhelming probability. Formal proof is in Appendix I.

Efficiency. Consider an R1CS with m constraints and n
non-zero entries, with three parties in the honest-majority set-
ting and two parties in the dishonest-majority setting, where
each party has Nw computation nodes. In the honest-majority
scenario, there is no additional MPC communication, and
each party only needs to distribute and process the computa-
tions related to its share. Note that each party may internally
coordinate its own nodes. Thus, the computation cost for
each node is O(Nw + (m+n)

Nw
). Communication is minimal due

to DFS requiring O(logm+ logn) rounds, with each round
only needing to send a constant-sized message. Therefore,
the communication cost per node is O(logm+ logn). In the
dishonest-majority scenario, the computation cost for each
node remains O(Nw + (m+n)

Nw
), but multiplications incur linear

communications, meaning the communication cost for each
node is also O( (m+n)

Nw
). In both scenarios, the delegator, re-

sponsible for coordinating the parties and verifying the proof,
only performs a constant amount of work per round, so the to-
tal computation and communication cost is O(logm+ logn).
Finally, the proof size and verification cost remain the same.

6 Implementation and evaluation

We implemented DFS as a library in about 13000 lines of
Rust code, building on top of the arkworks framework [25].
Our library contains not only a single-machine implementa-
tion of DFS’s prover, but also public and private delegation
protocols. For the zkSNARK, we implemented the LogUp and
multilinear sumcheck PIOPs, and PST13 polynomial commit-
ments. For private delegation, our implementation supports
both AddSS and RSS protocols. To provide inter-node com-
munication, we relied on mpi-rs, a MPI library for Rust. We
plan to open-source the library after submission.

6.1 Evaluation and comparison

Our goal is to determine whether DFS achieves horizontal
scalability, and thus answer the following questions:
• Does the proof generation latency decrease linearly as we

increase the number of nodes?
• Does the proof generation latency increase linearly as we

increase the size of the instance?
• Does communication become a bottleneck when we in-

crease the number of nodes and the instance size?

Experimental setup. We evaluated our system on the uni-
versity’s computing cluster, with each machine equipped with
an Intel Xeon Scalable Cascade Lake 6248 CPU and 192GB
of memory. In the delegation scenarios, each node uses 8 vC-
PUs. All network link has maximum bandwidth of 100Gbps.
The nodes communicated directly with the coordinator, with
logarithmic communication costs. In all scenarios, the co-
ordinator cost is also logarithmic. In public delegation, the
coordinator could be one of the nodes; in private delegation,
the coordinator could be the delegator. We ran the delegator on
a cluster node, but limited its vCPUs and memory to simulate
real-world deployments. Concretely, the delegator was limited
to 1MB of memory during the delegation We obtained experi-
mental setups and data of prior work from their papers. More-
over, DFS’s setup used fewer resources than prior baselines,
and so our comparisons are conservative and favor the base-
lines. For example, EOS [23]’s experiments used two EC2
c5.24xlarge servers (96 vCPUs at 3.6GHz); the equivalent
DFS experiments used two servers with 8 vCPUs at 2.5GHz.
Both used BLS12-381 and Arkworks. Pianist [52]’s experi-
ments used m6i.16xlarge instances (64 vCPUs at 3.5GHz);
the equivalent DFS experiments had to use more machines (8
vCPUs at 2.5GHz) to reach the same total number of vCPUs.
Pianist used a faster curve (BN254) and MSM (Gnark).

We assume three parties for RSS, and two parties for
AddSS. We do not enforce authenticated secret share for
AddSS-based protocol to enable a fair comparison with
prior semi-honest work. In contrast, our RSS-based proto-
col achieves malicious security for free. We assume that each
party receives their share of the instance, witness, and compu-
tation trace before the proof generation begins. These shares
are then distributed to their respective nodes. Since this dis-
tribution can be preprocessed, we do not include this time
in the overall proof generation time. In all scenarios, the
total per-party input is less than 100 GB. We gives a detailed
brakedown in Appendix A.

Proof size, verifier time and coordinator cost. The proof
size and verifier time do not depend on the particular imple-
mentation of the prover algorithm. For instance sizes ranging
from 215 to 227, the proof size is about 10 - 17 KB and the
verification time is about 37 - 45 ms. Both are logarithmic to
the instance size. The number of interaction rounds is also
logarithmic. In all scenarios, the coordinator’s local computa-
tion time is less than 50 ms, communication with each node is
less than 30 KB, and memory usage is less than 1 MB making
our protocol viable for weak devices.

Single machine. We present the single machine proving
time in Appendix B. The results show that DFS’s prover
achieves lower latency than Marlin [22], previously noted for
its efficiency in private delegation [58].

Public delegation. We present the full evaluation results in
Appendix C. Compared to the state-of-the-art public delega-
tion protocol Pianist [52], both take approximately 20 seconds



for 225 constraints with 512 vCPUs. The communication cost
of DFS is about 21 KB, which is larger than Pianist’s 2.1 KB.
However, it is still very small and acceptable in real-world
applications. Additionally, DFS provides better support for
private delegation, offering enhanced privacy and efficiency in
scenarios where privacy is crucial. Pianist achieves a constant
proof size (2.8 KB) and verifier time (3.5 ms) with quasilinear
proving time, whereas we achieve logarithmic proof size (10
KB) and verifier time (40 ms) with linear proving time.

6.1.1 Private delegation

Replicated secret sharing. In Fig. 3 and Fig. 4, we report
the proving time of our private delegation protocol based on
RSS. We observe that as expected, the proof time decreases
linearly with the increasing number of nodes per party. More-
over, even when each party has only one node, the time re-
quired is still less than that of a single machine. This is a
significant advantage of DFS, because the holography part, as
the bottleneck, does not require MPC and therefore can utilize
all resources for acceleration, achieving better performance.

There are three types of communication: node-node within
a party, inter-party, and node-coordinator. Our private delega-
tion protocols avoid intra-party communication; RSS-based
protocols further eliminate inter-party communication. Fig. 5
shows the per-node cost for communication. We see that the
communication cost grows logarithmically with the number
of constraints, as expected. Moreover, since DFS achieves
zero communication cost for MPC, the communication here
is only related to public operations.

Additive secret sharing. In Fig. 6 and Fig. 7, we report the
proving time of DFS based on AddSS. We observe that the
performance is close to that of RSS. That is because of several
reasons. First, our default bandwidth is 100 Gbps, which is
much larger than the communication cost of AddSS. If the
bandwidth is 5 Mbps, AddSS may require about 100 extra
seconds for 224 constraints. Second, the holographic proto-
col in both AddSS and RSS is accelerated without the use
of MPC. Due to implementation limitations, the holographic
protocol can only be distributed among 2n nodes, even though
RSS has three parties and thus more vCPUs. This issue could
be addressed in future implementations. Finally, we do not im-
plement authenticated share for AddSS to enforce comparison
with other semi-honest work [23]. Fig. 8 reports the per-node
communication cost. Unlike RSS, the communication cost
scales linearly with the number of constraints. Note that this is
dominated by inter-node communications for multiplication,
and the coordinator communication is still logarithmic and no
more than 30 KB. Moreover, each node interacts exclusively
with another node, enabling the entire communication to be
efficiently partitioned.

Finally, in both the replicated and additive cases, the del-
egation protocol spends about 55% time in the holographic
protocol, compare to 70% in public delegation. This is be-

cause the non-holographic part in the private delegation uses
MPC and less resources for distributed computation.

Comparison to prior work. Compared to previous private
delegation protocols, our approach differs significantly in both
the threat model and system model, and we give a more de-
tailed comparison in Section 7. Despite these differences, the
distributed private delegation scheme zkSAAS [36] requires
about 4000 seconds and 350 GB of communication for 224

constraints with 280 vCPUs. In contrast, DFS using RSS
and AddSS spend approximately 50 seconds with only 192
and 128 vCPUs. Specifically, RSS-based DFS requires only
logarithmic communication, with each machine needing no
more than 30 KB and a total communication overhead of
less than 500 KB. While AddSS-based DFS, like zkSAAS,
involves linear communication, each node requires no more
than 1.3 GB, with a total communication overhead of less
than 20 GB. A recent prior work [53] has achieved improve-
ments over zkSAAS. However, this approach is limited to
data-parallel circuits and still requires linear communication,
which concretely can be up to 100× worse than our method.

Another line of work [23, 58] shares a similar system model
with ours but does not consider distributed computing, mak-
ing them not scalable. In comparison to EOS [23], which uses
AddSS with each party operating a single node, our protocol
demonstrates improvement under the same setup. For 224 con-
straints, EOS requires approximately 500 seconds, whereas
DFS only needs 400 seconds while using much fewer vCPUs
per machine. This improvement is due to DFS being faster
than Marlin and the mode switch of our delegation protocol
in the holographic phase as described in Section 5.2.

7 Related works

Existing zkSNARKs. Existing zkSNARKs vary widely
in terms of their design goals, computational requirements,
and application areas. For example, [42, 22, 35] are designed
for succinct verification; [67, 41, 79, 21] are designed for
linear proving; [5, 24, 3] are designed for post-quantum se-
curity. However, none of them are designed for private dele-
gation, making them less friendly for distributed computing
or MPC. For instance, Marlin’s [22] reliance on FFTs and
Spartan’s [67] offline-memory checking are not efficient in
distributed environments. Plonk’s [35, 21] partial product
computations and Orion’s [79] Merkle-tree hashing are inef-
ficient for MPC. These limitations underscore the need for
new protocols that better support both distributed comput-
ing and MPC. In contrast, DFS achieves linear proving time,
logarithmic verification, and efficient private delegation.

Public delegation. Public delegation protocols have been
studied to enhance the efficiency and scalability of proof
generation in distributed systems without hiding the witness.
DIZK [76] is proposed to support distributed computation
for Groth16 [42]. Similarly, deVirgo accelerates the GKR-
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based [39] protocol Virgo [83], showing improvements over
DIZK. However, Virgo’s succinct verification is limited to
structured layer-circuits, and deVirgo requires the circuits to
be data-parallel for effective parallelization. Both DIZK and
deVirgo incur linear communication costs. Pianist [52] solves
the issue and proposes a constant-communication solution for
arithmetic circuits. However, Pianist’s prover time is quasilin-
ear, while DFS is linear. A recent concurrent work HyperPi-
anist [50] achieves the same complexity as public delegated
DFS but targets arithmetic circuits instead of R1CS. Another
work, Gemini [9], is proposed to achieve a space-efficient
prover, and has the potential to be adapted for efficient dis-
tributed computation. However, these work [52, 50, 9] require
the witness to compute partial products, which introduces
significant overheads in MPC. Another line of work uses
folding-based SNARKs [57, 17, 48] to reduce resources over-
heads. However, they rely on recursive proof composition,
incurring additional overheads.

Private delegation. Private delegation protocols have been
proposed to support efficient private proof generation in dis-
tributed systems. Collaborative zkSNARKs [58] tested var-
ious MPC schemes on Groth16, Marlin, and Plonk, finding
that Marlin performed the best. Another work [29] applies
MPC to Ligero. These works were the first to introduce the
concept of MPC-friendliness as a criteria for evaluating ex-
isting zkSNARKs. Building on this insight, EOS [23] ex-
plores further optimizations for Marlin’s performance using
AddSS. As discussed in Section 2.4, EOS fails to achieve
malicious security without authenticated shares. Moreover,

these works require linear communication and do not support
parallel computing. We show that under the same threat model
and MPC scheme, DFS outperforms EOS in Section 6.1.1.
zkSAAS [36] aims to enhance performance and scalability
while preserving privacy by using an honest-majority threat
model and leveraging packed secret sharing (PSS) to accel-
erate Plonk. In zkSAAS, each party operates a single node
for parallel computation, supporting a large number of par-
ties. However, Plonk’s product check is not friendly for MPC,
resulting in linear communication overhead. Moreover, zk-
SAAS only achieves semi-honest security and, due to its star
network topology, is limited by the resources of the central
node. Despite the different threat and system model, our ex-
periments show that DFS performs significantly better.

Similar to zkSAAS’s setting, a recent work [53] scales
a GKR-based zkSNARK, Libra [78]. However, they inherit
weaknesses from GKR [39] – Libra works with layered arith-
metic circuits. Their proof size and verifier time is linear
in the size of the repeated circuit, which may be large for
certain computations. In addition, this work only scales for
data-parallel circuits, while we achieve high parallelism for
general arithmetic circuits. That is because, depending on
the circuit structure, GKR may require PSS to handle op-
erations between secrets within the same share. Moreover,
[53] still require linear communication, while DFS’s cost is
logarithmic. We also note that GKR protocol might not be
distribution-friendly for non-parallel circuit since the circuit
structure affects the memory access patterns.



8 Conclusion

We propose a new delegation-friendly zkSNARK DFS, and
provide both public delegation and private delegation for it.
The experiments show that DFS achieves logarithmic com-
munication and can scale with large general circuits.

9 Ethics considerations and compliance with
the open science policy

9.1 Ethics considerations
We attest that we have thoroughly reviewed the ethics con-
siderations as outlined in the conference call for papers, the
detailed submission instructions, and the ethics guidelines
document provided by the conference organizers. The re-
search team has carefully evaluated the ethical implications
of our work on DFS, ensuring that the research has been
conducted in accordance with the highest ethical standards.

Our team has considered all potential ethical issues arising
from this research, including the responsible disclosure of
findings, the privacy implications of the technologies devel-
oped, and the potential for both positive and negative impacts
on stakeholders. We have also proactively assessed the pos-
sible risks and mitigated them where necessary. We believe
that our research was conducted ethically and in a manner
that aligns with both the principles of beneficence and respect
for persons as described in the Menlo Report.

Additionally, our next steps following publication have
been carefully planned with ethical considerations in mind.
We commit to following responsible procedures for the further
dissemination and application of our findings, particularly
in terms of sharing data and code in compliance with the
conference’s open science policy. We are prepared to engage
with the broader community to address any ethical concerns
that may arise as the research progresses.

Finally, we have also provided this additional Ethics Con-
siderations and Compliance with the Open Science Policy
section to ensure that all relevant ethical issues are transpar-
ent and addressed appropriately.

9.2 Compliance with the open science policy
In alignment with the Open Science Policy, we commit to
making all research artifacts related to DFS openly accessible
to the community. This includes the source code and detailed
experimental results used in our study. Our goal is to promote
transparency and reproducibility in the field of cryptographic
research, enabling others to validate, build upon, and further
enhance our work.

We will provide all relevant resources in a public reposi-
tory, ensuring that proper documentation and instructions are
included for easy replication and understanding. Additionally,
we will release the DFS implementation under an appropriate

open-source license, allowing others to freely use, modify, and
distribute the work while maintaining responsible practices.
By adhering to these principles, we not only comply with
the Open Science Policy but also contribute to the broader
academic and research community in a manner that fosters
collaboration and innovation.

The artifact can be found in DOI 10.5281/zen-
odo.14677896.
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A Computation traces

In all scenarios, the total per-party input is less than 100 GB,
which includes the SRS, the R1CS matrices, and the Beaver
triples for the largest measured instance size of 225. Some
of these are one-off costs (SRS, matrices), while others are
incurred per-delegation (Beaver triples, witness shares). The
per-delegation cost is at most 7.5 GiB, which does not include
optimizations from EOS which would further reduce this cost
by over half. One can also reduce Beaver triple costs entirely
via techniques like pseudorandom correlation generators [16].

We further emphasize that DFS, like prior work, focuses on
the online performance of proof generation after the witnesses
have been secret-shared, and indeed all prior work incurs a
similar per-delegation communication cost. In the private
delegation setting, the computation trace of zkSaaS includes
Az, Bz, Cz due to the reliance on packed secret sharing, while
EOS’s trace only includes z because their protocol computes
shares of Az, Bz, Cz on the servers directly. DFS can do
the same in EOS’s setting (no distributed proving within
each party), but distributed matrix-vector multiplication seems
more challenging. In the public delegation setting, Pianist
omits witness generation and distribution costs, and in fact
generates the entire witness on each machine.

B Single machine evaluation
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Figure 9: Proving time of single machine setting.

In Fig. 9, we evaluate the latency of DFS’s prover on a
single machine, comparing it against Marlin [22], which has
been highlighted in prior work [58] to be more efficient in the
private delegation. Fig. 9 illustrates that DFS’s prover incurs
significantly lower latency than Marlin. This is because DFS
avoids FFTs and also requires fewer MSM operations.

C Public delegation evaluation

We focus on two metrics: proof generation time and commu-
nication cost. In Fig. 10 and Fig. 11, we present the proof
generation time. Note that some experiments stops earlier
due to the memory constraints. We first observe that as the

number of nodes increases, the proving latency decreases
approximately linearly. Additionally, when the number of
nodes is fixed, increasing the number of constraints results
in a corresponding linear increase in proving latency. This
demonstrates the scalability of our protocol with respect to
both the number of nodes and the size of the constraints. Fur-
thermore, our experiments show that for all measured instance
sizes, the delegation protocol spends 70% of the time in the
holographic protocol, which is consistent with the single ma-
chine scenario. It indicates that the holography part is the
bottleneck of the whole protocol, which can be accelerated
without the cost of MPC.

Fig. 12 reports the per-node communication cost during
the proof generation. The cost grows logarithmically with
the number of constraints. Furthermore, the per-node cost
(slowly) decreases as we increase the number of nodes, since
each node handles a smaller portion of the instance.

D Formal protocol of DFS PIOP

D.1 Common PIOPs
We now recall some common PIOPs that we will use in our
construction of DFS. We omit their completeness, soundness,
and zero-knowledge proofs as these can be found in prior
work [72, 71, 21].

Sumcheck PIOP. Throughout this paper, we will be tasked
with checking that an n-variate polynomial p sums to a
claimed value σ over an n-dimensional Boolean hypercube
{0,1}n. This is formalized via the following relation:

Definition D.1. The Sumcheck relation RSUM is the set of
tuples

(i,x,w) = (⊥,(F,n,σ), p(xxx))

where σ ∈ F, and ∑xxx∈{0,1}n p(xxx) = σ.

The PIOP below illustrates a standard way of proving this
relation.

PIOP 1: PIOP for SUMCHECK
For each i in 1, . . . ,n:

1. If i = 1, V sets σi := σ; otherwise, it sets σi := pi−1(ri−1).
2. P computes the sumcheck message pi(Xi) :=

∑bi+1,...,bn∈{0,1}n−i p(r1, . . . ,ri−1,Xi,bi+1, . . . ,bn) and
sends it to V .

3. V checks that pi(0)+ pi(1) = σi.
4. V samples a random point ri ∈ F and sends it to P .
Finally, V needs to check the polynomial oracle p at the eval-
uation point (r1, . . . ,rn).

Zerocheck PIOP. Throughout this paper, we will be tasked
with checking that an n-variate polynomial p is zero at all
points of an n-dimensional Boolean hypercube {0,1}n. This
is formalized via the following relation:
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Definition D.2. The Zerocheck relation RZERO is the set of
tuples

(i,x,w) = (⊥,(F,n), p(xxx))

where ∀xxx ∈ {0,1}n, p(xxx) = 0.

The PIOP below illustrates a standard way of proving this
relation.

PIOP 2: PIOP for ZEROCHECK
P has input p, while V has oracle access to p.

1. V samples a random point r ∈ Fn and sends it to P .
2. P and V invoke the sumcheck PIOP for the claim

“∑X∈{0,1}n p(X) · eq(X ,r) = 0”.

Lookup PIOP. Another important building block is the
lookup PIOP, where P has a query vector~q ∈ F2n

and and a
pre-shared table vector~t ∈ F2m

. The prover’s goal is to assert
that all elements of the query vector are contained in the table
vector. In practice, the query and table vectors are represented
as the evaluations of polynomials over the boolean hypercube.

This problem is formalized via the following relation:

Definition D.3. The Lookup relation RLU is the set of tuples

(i,x,w) = (⊥,(F,n),(p0(xxx), p1(xxx), p2(xxx), p3(xxx)))

where {(p0(xxx), p1(xxx))} ⊂ {(p2(xxx), p3(xxx))} for xxx ∈ {0,1}n.

The PIOP below illustrates a standard way of proving this
relation that is adapted from [45].

PIOP 3: PIOP for LOOKUP
P gets as input (q, t), while V gets as input (F,n,m,d) and

oracles for q and t.
1. P receives a random challenge r ∈ F from V .
2. P computes polynomials h1(X),h2(X) such that for each

x∈ {0,1}n, h1(x) = (r+q(x))−1, and for each x∈ {0,1}m,
h2(x) = (r + t(x))−1. That is, h1 and h2 are multilinear
extensions of (r+q(x))−1 and (r+ t(x))−1, respectively.

3. P sends hhh111(xxx) and hhh222(xxx) to V .
4. P evaluates k := ∑x h1(x). Then, P and V invoke two Sum-

check PIOPs: one for the claim “∑x h1(x) = k”, and another
for the claim “∑x h2(x) = k”.

5. P and V invoke a Zerocheck PIOP for the claim “(r +
q(X))h1(X)−1 = 0”.

6. P and V invoke a Zerocheck PIOP for the claim “(r +
t(X))h2(X)−1 = 0”.

This PIOP shows how to perform lookups over scalars,
where each element of the query or table vectors is a single
field element. Prior work [34, 45] has shown how to batch
check multiple lookup relations with a single lookup proof.

D.2 Polynomial commitments
DFS uses the PST13 polynomial commitment scheme [59].
This construction requires a one-time, universal trusted setup,
distributing the committer and verifier keys to the appropri-
ate parties. This setup determines the maximum degree of
the polynomials we can commit to. For the PC.Commit and
PC.Open algorithms, we omit the hiding randomness p̄ for
simplicity; see [22] for details.

Prot. 2: MULTILINEAR POLYNOMIAL COMMITMENT

PST.Setup(1λ,n)→ (ck, rk):
1. Obtain 〈group〉 = (F,G1,G2,GT ,e,G,H) ←

SampleGrp(1λ).
2. Sample random ααα = (α1, . . . ,αn)← Fn.
3. Set ΣΣΣ := [eq(ααα, i) ·G]i∈{0,1}n .
4. Set ck := (ΣΣΣ,〈group〉).
5. Set rk := ([αi ·H]i∈[1..n],〈group〉).
6. Output (ck, rk).

PST.Commit(ck, p)→ cm:
1. Parse ck as ([eq(ααα, i) ·G]i∈{0,1}n ,G,H).
2. Output cm := ∑i∈{0,1}n pi · eq(ααα, i) ·G.

PST.Open(ck, p,zzz)→ πPC:
Parse: ck= ([eq(ααα, i) ·G]i∈{0,1}n ,G,H).
1. Let y := p(zzz)
2. For each i in [1, . . . ,n]:

(a) Compute i-th witness polynomial qi(X) such
that p(X)− y = ∑

n
i=1 qi(X) · (Xi− zi)

(b) Compute πi := qi(ααα) ·G.
3. Output evaluation proof πPC := (π1, . . . ,πn).



PST.Check(rk,cm,zzz,v,πPC)→{0,1}:
Parse: rk = ([αi · H]i∈[1..n],G,H) and πPC =
(π1, . . . ,πn).
1. Accept if e(cm− vG,H) = ∑

n
i=1 e(πi,(αi− zi) ·H).

D.3 DFS full PIOP
We present our formal protocol description as follows. For
simplicity, we assume that there is only private witness and
no public input.

PIOP 4: PIOP for R1CS

Indexer I : on input (F,n,m,A,B,C), proceeds as follows:
1. For each M ∈ {A,B,C}:

(a) Derive polynomials rrrMMM(xxx), cccMMM(xxx), and vvvMMM(xxx) from
M. Output these polynomials.

Initialization: P gets as input the witness zzz = (w),
as well as A, B, and C, while V gets the polyno-
mial oracles of rrrMMM(xxx),cccMMM(xxx),vvvMMM(xxx) for M ∈ {A,B,C}.

Protocol:
1. P sends the oracle zzz(xxx) to the V .
2. Let M̂(x) := ∑yyy∈{0,1}s MMM(xxx,yyy)zzz(yyy), for M ∈ {A,B,C}, and

FFF(xxx) = Â(xxx) · B̂(xxx)−Ĉ(xxx). P and V invoke the Zerocheck
PIOP (PIOP 2) on the polynomial FFF . This leads to an
evaluation claim of the form ex = FFF(ρρρxxx) · eq(rrr,ρρρxxx) for a
zerocheck challenge rrr and random point ρρρxxx ∈ Fs.

3. To answer this claim, P computes vM := M̂(ρρρxxx) for each
M ∈ {A,B,C}, and sends vA,vB,vC to V .

4. V asserts that ex
?
= (vA · vB− vC) · eq(rrr,ρρρxxx).

5. V randomly samples rA,rB,rC ∈ F, and sends them to P .
6. P computes M̂ρρρxxx

(yyy) := (rA ·AAA(ρρρxxx,yyy)+ rB ·BBB(ρρρxxx,yyy)+ rC ·
CCC(ρρρxxx,yyy))zzz(yyy).

7. P and V engage in a Sumcheck PIOP for the claim
“∑yyy∈{0,1}s M̂ρρρxxx

(yyy) = (rAvA + rBvB + rCvC)”. This leads

to an evaluation claim of the form ey
?
= M̂ρρρxxx

(ρρρyyy), where
ρρρyyy ∈ Fs is a random evaluation point.

8. V queries the oracle vZ := zzz(ρρρyyy). Then, the verifier asserts

that ey
?
= (rA ·AAA(ρρρxxx,ρρρyyy)+ rB ·BBB(ρρρxxx,ρρρyyy)+ rC ·CCC(ρρρxxx,ρρρyyy)) ·

vZ
9. For each M ∈ {A,B,C}:

(a) P sends oracles for eqrow(xxx) and eqcol(xxx).

(b) P and V invoke a Sumcheck PIOP for the claim
∑vvv(xxx)eqrow(xxx)eqcol(xxx) = Mρρρxxx

(ρρρyyy), resulting in a ran-
dom challenge ρρρzzz and claimed evaluation ez.

(c) V uses oracles to assert
vvvM(ρρρzzz)eqrow(ρρρzzz)eqcol(ρρρzzz)

?
= ez

(d) P and V invoke the batched lookup PIOP where
q1(xxx) := rrrM(xxx), q2(xxx) := eqrow(xxx), t1 is the poly-
nomial interpolated from (0,1, · · · ,n), and t2(xxx) :=
eq(xxx,ρρρxxx).

(e) P and V invoke the batched lookup PIOP for q1(xxx) :=
cccM(xxx), q2(xxx) := eqcol(xxx), t1 is the polynomial interpo-
lated from (0,1, · · · ,n), and t2(xxx) := eq(xxx,ρρρyyy).

E Formal protocols of DFS with public dele-
gation

Formal protocols of DFS with public delegation can be found
in the extended version.

F Instantiations for linear secret sharings

Instantiations for linear secret sharings can be found in the
extended version.

G Building blocks for private delegation from
additive secret sharings

Building blocks for private delegation from additive secret
sharings can be found in the extended version.

H Detailed protocol for DFS with private del-
egation

Detailed protocol for DFS with private delegation can be
found in the extended version.

I Ideal functionalities and security proofs of
our protocols

Ideal functionalities and security proofs of our protocols can
be found in the extended version.
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