
The DOMino Effect: Detecting and Exploiting DOM Clobbering Gadgets via
Concolic Execution with Symbolic DOM

Zhengyu Liu, Theo Lee, Jianjia Yu, Zifeng Kang, and Yinzhi Cao
{zliu192, imeal1, jyu122, zkang7, yinzhi.cao}@jhu.edu

Johns Hopkins University

Abstract

DOM Clobbering is a type of code-reuse attack on the
web that exploits naming collisions between DOM elements
and JavaScript variables for malicious consequences such
as Cross-site Scripting (XSS). An important step of DOM
clobbering is the usage of “gadgets”, which are code snippets
in existing JavaScript libraries that allow attacker-injected,
scriptless HTML markups to flow to sinks. To the best of our
knowledge, there is only one prior work on detecting DOM
clobbering gadgets. However, it adopts a set of predefined
HTML payloads, which fail to discover DOM clobbering
gadgets with complex constraints that have never been seen
before.

In this paper, we present Hulk, the first dynamic analysis
framework to automatically detect and exploit DOM Clobber-
ing gadgets. Our key insight is to model attacker-controlled
HTML markups as Symbolic DOM—a formalized represen-
tation to define and solve DOM-related constraints within the
gadgets—so that it can be used to generate exploit HTML
markups. Our evaluation of Hulk against Tranco Top 5,000
sites discovered 497 exploitable DOM Clobbering gadgets
that were not, and cannot be, identified by prior work. Exam-
ples of our findings include popular client-side libraries, such
as Webpack and the Google API client library, both of which
have acknowledged and patched the vulnerability. We further
evaluate the impact of our newly-found, zero-day gadgets
through successful end-to-end exploitation against widely-
used web applications, including Jupyter Notebook/Jupyter-
Lab and Canvas LMS, with 19 CVE identifiers being assigned
so far.

1 Introduction
As web application defenses have evolved and become
more widely adopted over the past two decades, new at-
tack strategies—such as code reuse [31]—have emerged be-
yond traditional code injection attacks like Cross-Site Script-
ing (XSS). More specifically, code reuse attacks manipulate
the control-flow or data-flow of existing JavaScript snippets,

known as gadgets, to dangerous effects. One relatively new,
yet less studied type of code reuse attack is called Document
Object Model (DOM) Clobbering, where an attacker injects
a seemingly benign, scriptless HTML markup into a web-
page. The injected markup could be unexpectedly loaded by
JavaScript through collided named property lookups on the
window or document objects, potentially altering program
execution and leading to serious security risks such as XSS
and Client-side Request Forgery (CSRF).

To the best of our knowledge, TheThing [27] is the only
prior academic work that presents a tool to detect DOM clob-
bering gadgets and explores how different HTML markups
exploit naming collisions between JavaScript variables and
DOM elements. However, two inherent properties of trigger-
ing DOM clobbering make the detection and confirmation
challenging: (i) HTML markup payload generation and (ii)
DOM clobbering gadget discovery.

First, DOM clobbering needs HTML markup payloads,
which will be parsed as a DOM tree structure containing a list
of DOM elements and attributes satisfying context constraints,
to trigger the vulnerability. This task is challenging because
a DOM Tree has strict and complex rulesets as opposed to
a string or an object used in traditional attacks. TheThing
simplifies this step by only adopting a list of predefined pay-
loads derived from manually created templates. Therefore, it
inevitably misses attack payloads that have never been seen
before due to complex constraints in the target program.

Second, DOM clobbering requires a sequence of gadgets
that allows the injected HTML markup payload to follow
an altered control-flow or data-flow path to reach the final
sink. This is challenging because of the dynamic nature of
JavaScript language, such as dynamically generated code and
aliased objects. TheThing only relies on static analysis for
gadget detection and will miss gadgets with these dynamic
features.

In this paper, we design and implement the first automated,
dynamic analysis tool, called Hulk, to detect and exploit DOM
clobbering gadgets via concolic execution with Symbolic
DOM. Specifically, our key insight is that attacker-controlled

HTML markups can be represented as a DOM tree structure
with symbolization, defined as Symbolic DOM. Here is how
Hulk tackles the aforementioned two challenges of DOM
clobbering. First, Hulk utilizes Symbolic DOM to model and
solve DOM-related constraints within the gadgets and gen-
erates a set of satisfying HTML markups from all possible
trees defined under symbolic DOM. Second, Hulk concretely
executes the program with taint tracking, enabling the anal-
ysis of dynamic features that are traditionally hard for static
analysis.

Our modeling of Symbolic DOM revealed two new types
of DOM Clobbering gadgets that convert DOM to strings.
Specifically, our modeling discovered that both property
lookups and built-in function calls can also serve as part
of such gadgets and achieve type conversion. This extends
beyond known techniques like binary operation + between
the a and area tags with href attribute and string value.

We evaluated Hulk on the Tranco [43] Top 5,000 websites.
Our evaluation showed that Hulk generated 1,741,254 HTML
markups as exploits and detected 497 exploitable DOM Clob-
bering gadgets, including zero-day gadgets in popular client-
side libraries, such as Google Client API, Google Closure,
MathJax, and Webpack. We also compared Hulk with the
state-of-the-art tool, TheThing, on Tranco Top 500 websites
and a ground truth dataset curated by us, containing known
gadgets in the wild. Our evaluation showed that Hulk outper-
formed TheThing in terms of false negatives on both datasets.
Neither tools have false positives as they both enforce ver-
ification. Furthermore, TheThing cannot detect any of the
aforementioned zero-day DOM clobbering gadgets reported
by Hulk.

Finally, we evaluated the feasibility of end-to-end exploita-
tion using DOM clobbering gadgets found by Hulk. We ap-
plied Hulk to a list of popular web applications that allow
scriptless HTML injection, and Hulk successfully discovered
12 end-to-end exploits that escalate HTML injection into
stored XSS. These include widely-used platforms such as
Jupyter Notebook/JupyterLab, Canvas LMS, Hackmd.io, and
Cocalc. These findings have so far resulted in 19 assigned
CVE numbers.

Contributions. In summary, we make the following contri-
butions in this paper:

• We design and implement the first automated, dynamic
analysis tool, Hulk, to detect and exploit DOM Clobbering
gadgets using concolic execution with Symbolic DOM.

• Hulk found 497 exploitable DOM Clobbering gadgets on
Tranco Top 5,000 websites, including those in popular
client-side libraries, such as Google Client API, Google
Closure, MathJax, and Webpack. We reported all of the
findings to affected parties as part of our responsible dis-
closure process and gave each party at least 45 days to
fix.

• We open-sourced not only our implementation but also

1 var e = document.scripts ||
2 document.getElementsByTagName("script") || [];
3 var d = [], f = [];
4
5 f.push.apply(f, window.___jsl["us"] || []);

↪→ // f = ["https://apis.google.com/js/api.js"]

6 for (var h = 0; h < e.length; ++h) {
7 for (var k = e[h], j = 0; j < f.length; ++j) {
8 k.src && 0 == k.src.indexOf(f[j]) && d.push(k);
9 }

10 }
11
12 for (e = 0; e < d.length; ++e) {
13 d[e].getAttribute("gapi_processed") ||
14 (d[e].setAttribute("gapi_processed", !0),
15 (f = d[e]) ? h = f.nodeType ,
16 f = 3 == h||4 == h ? f.nodeValue
17 : f.textContent||"",
18 : f = void 0,
19 (f = Df(f)) && b.push(f));
20 }
21
22 Df = function(a) {
23 if (a && !/^\s+$/.test(a)) {
24 for (; 0 == a.charCodeAt(a.length - 1);)
25 a = a.substring(0, a.length - 1);
26 try {
27 b = (new Function("return (" + a + "\n)"))()
28 } catch (c) {}
29 if ("object" === typeof b) return b;
30 }
31 }

Listing 1: A motivating example of a zero-day gadget found
in Google API client library.

1 <iframe name="scripts" src="https://apis.google.com/js
↪→ /api.js"></iframe>

2 <iframe name="scripts" src="https://apis.google.com/js
↪→ /api.js">alert(document.cookie)</iframe>

Listing 2: The HTML markups generated by Hulk that exploit
the gadget shown in listing 1 and lead to XSS.

our results, i.e., the first benchmark of DOM Clobbering
Gadgets containing 28 gadgets from wildly used client-side
libraries with over 1,000 stars on GitHub. Both the tool1

and benchmark2 are available in the respective repositories.

2 Overview
In this section, we first describe a motivating example and
present the threat model.

2.1 A Motivating Example
Listing 1 presents a motivating example of a zero-day gadget
discovered by Hulk in the Google API client library [10],
which is widely used by third-party websites to embed Google
services such as Google Drive, Google Maps, and Google
Translate. The Google API client library allows third-party
developers to define their own configurations and callback
functions within the body of script tags with src attribute

1https://github.com/jackfromeast/TheHulk
2https://github.com/jackfromeast/dom-clobbering-collection

set to a specific URL. Once the Google script is loaded, it
finds the script tag with the URL and processes the developer-
defined configurations and callbacks with new Function, as
shown in the code snippet in Listing 1. This code is vulnerable
to a DOM Clobbering attack that leads to XSS, allowing
attackers to access users’ Google accounts and third-party
website credentials. We responsibly disclosed this gadget to
Google, who acknowledged the vulnerability and has since
fixed it in the latest version.

Gadget Details. We now describe the details of the
gadget in the motivating example. First, the lookup of
document.scripts on line 1 can be “shadowed” by attacker-
injected DOM elements, meaning the attacker could inject a
custom DOM element with "scripts" as the name attribute,
causing the program to load the injected elements instead of
the pre-existing script tags in the DOM. Then, on lines 6-10,
the program filters the loaded DOM elements by the value
of their src attribute. Elements without a valid src value are
not passed to subsequent execution.

On lines 12-20, the program iterates through the fil-
tered elements. For each element, it first checks whether the
gapi_processed attribute has been set. Then, on lines 15-
17, it uses a ternary expression to decide whether to fetch
the nodeValue or textContent attribute, depending on the
element’s type, and passes the result to the Df function as its
argument a on line 19.

Finally, inside Df, the program calls new Function on
line 27, where the argument a is executed as JavaScript code.
This is where the textContent or nodeValue attribute of
the injected element reaches the JavaScript code execution
sink.

End-to-end Exploitation. In addition to the gadget itself,
we found real-world end-to-end exploitation of it in the popu-
lar online markdown editors Hackmd.io [11] and CodiMD [5].
While these editors correctly sanitize the user input from any
explicit scripts, they allow users to embed iframes in HTML
without sanitizing the name attribute, leaving them vulnerable
to DOM Clobbering attacks. For example, the exploitation
shown in Listing 2 can bypass the sanitization. Furthermore,
these editors allow users to connect their accounts to Google
Drive, in which case the vulnerable Google API client library
will be loaded. Therefore, by embedding malicious HTML
markup in shared markdown files and distributing the links,
attackers can expose victims who open them to XSS attacks.
We responsibly disclosed the vulnerability to the develop-
ers of Hackmd.io and CodiMD. It has since been fixed and
assigned to CVE-2024-38354.

Challenges and Our Solution. We first describe the chal-
lenges of detecting and verifying this gadget in two parts, and
then explain how Hulk addresses them.

First, generating HTML markup payloads that satisfy all
control-flow and data-flow constraints is non-trivial. Specifi-

cally, in addition to normal JavaScript constraint solving, the
generation of DOM Clobbering exploits requires complex
constraint solving for DOM elements. This includes resolving
DOM element tags, attributes, their interrelationships, and
also the conversions between window/document, DOM ele-
ments, and JavaScript strings.

As an example, Listing 1 illustrates the constraints that
must be solved to make the payload successfully flow from
source to sink. We begin with the data flow-related con-
straints. When e is initialized with document.scripts on
line 1, it is restricted to being either an HTMLElement or
an HTMLCollection. To avoid runtime errors during in-
dex lookup e[h] on line 7, e has to be an array-like ob-
ject, which can only be fulfilled by an HTMLCollection.
Furthermore, the loading of f.textContent on line 17 re-
quires the attacker to embed the payload within the ele-
ment’s textContent. Regarding the control flow-related
constraints, on line 8, 0 == k.src.indexOf(f[j]) requires
the elements to have a specific src value. The check of
gapi_processed attribute on line 13 requires that attribute
to be unset for the subsequent expressions to proceed. Also,
there are string-related constraints on lines 23-25 that must be
solved. All of these constraints affect either the control-flow
or data-flow, requiring careful consideration when crafting
the payload.

The prior work, TheThing, fails to generate a work-
ing exploit for the above case as it simply selects from
a list of predefined templates as the input, only con-
sidering the pattern of the lookup (e.g., document.x or
document.x.y) and disregarding rest of the flow. For
example, TheThing uses HTML markups such as for exploits where
the lookup is document.scripts. While this markup clob-
bers e as an HTMLElement, it does not satisfy the property
lookup on line 7, preventing the payload from reaching the
sink.

Hulk handles such constraints by first collecting them under
dynamic execution and then modeling and solving them with
Symbolic DOM. As a result, Hulk outputs a set of satisfying
HTML markups. One example of the exploits generated by
Hulk is shown in Listing 2. The details of Symbolic DOM
can be found in Section 3.

Second, gadget detection with JavaScript dynamic fea-
tures and complex conditional expressions is challenging.
Prior work, TheThing, fails to detect this gadget because
it only relies on static analysis for gadget detection. In the
above example, the value in array f is dynamically set with
window.___jsl["us"] on line 5. The value is later used on
line 8 to filter the attacker-controlled elements, which deter-
mines whether they will flow to subsequent execution. On
lines 15-18, the program uses a complex ternary expression
with conditional assignments, which is challenging for static
analysis to solve. TheThing fails to solve the assignment to
f with nodeValue or textContent on lines 16-17, instead,

when Df is called on line 19, TheThing traces f back to its
original definition on line 3. Thus, it fails to detect the gadget.

Hulk solves this problem with dynamic taint tracking.
Specifically, Hulk performs taint tracking on the return value
of document.scripts as it propagates to the sink. During
execution, Hulk records all taint propagation operations with
value snapshots for further modeling and solving with Sym-
bolic DOM.

2.2 Threat Model

Our threat model considers a web attacker that can inject
crafted, scriptless HTML markups into a target webpage.
The attack payloads are “scriptless” as we assume the web-
sites have installed sanitizers to prevent user-injected markups
from being directly interpreted as JavaScript code (e.g., re-
moving onerror attribute of img tags). However, these san-
itizers do not strip id or name attributes, which are often
retained for intended functionality. The vulnerable webpages
span a wide range of commonly used web applications, in-
cluding web email clients, social media platforms, markdown
editors, machine learning playgrounds, and RSS readers—any
page where users can embed HTML. By injecting these pay-
loads into pages and distributing them through channels like
email, shared notebooks, or forum posts, the attacker can trig-
ger the DOM Clobbering gadgets when a victim opens the
compromised page, leading to harmful consequences such as
XSS and CSRF.

3 Design

In this section, we describe the overall system architecture
and the three phases of Hulk.

3.1 System Architecture

Figure 1 shows the overall architecture of Hulk which oper-
ates in three phases. In the first phase, given the URL of a web
page, Hulk performs gadget detection (Section 3.2) using dy-
namic taint tracking from attacker-clobberable sources to the
dangerous JavaScript sinks and records vulnerable taint traces
and taint-related condition expressions, which are then passed
to the second phase (Section 3.3), where Hulk performs con-
colic execution to generate exploit payloads. Specifically,
in the second phase, Hulk constructs the Taint Dependency
Graph (Section 3.3.1) and uses Symbolic DOM (Section
3.3.2) to model the constraints for the attacker-controlled
value for each operation on the graph. These constraints are
then merged and solved to generate a set of HTML markups
as the exploit. (Section 3.3.4). Finally, in the third phase,
Hulk replays the web page with the generated exploit HTML
markups injected and checks whether the payload successfully
reaches the sink (Section 3.4).

3.2 Gadget Detection
Dynamic taint tracking is a well-established technique for
detecting security-related client-side JavaScript data flows.
Previous works [25, 29, 33] introduced taint-aware browsers
like ChromiumTaintTracking [4] and Foxhound [8], which
store taint information and propagate taint by instrumenting
the interpreters. However, these approaches are not directly
applicable to our needs because they are designed to only track
string values (e.g., parameters loaded from the URL) but not
other data types, such as other primitive types and objects,
which are crucial for our detection as attacker-clobberable
values can be of any type. Additionally, these taint engines are
tied to specific browsers and lack portability, whereas DOM
Clobbering behavior can vary significantly between browsers.
Therefore, for the detection of DOM Clobbering gadgets, we
need a taint engine that not only performs taint propagation
across different JS data types and DOM elements but also
works across different browsers. To address this, we design
and implement our taint engine using a code rewriting ap-
proach. The process begins with statically rewriting the web
page source code to instrument hooks into every JavaScript
operation (e.g., unary operations, binary operations, function
calls) to handle the taint introduction and propagation. Then,
Hulk performs dynamic taint analysis by running the instru-
mented page in the browser. This approach avoids aliasing
issues which are common for static analysis, as all alias rela-
tionships are resolved at runtime.

3.2.1 Taint Representation
Hulk supports taint representation for all JavaScript data types,
including primitives (e.g., strings and numbers) and objects.
Hulk attaches taint information to these values in two different
ways.

• For objects, which can have properties, Hulk adds a specific,
non-enumerable property, named __TAINT__ to store the
taint information.

• For primitives, which cannot have properties like objects do,
Hulk wraps the primitive value with its taint information in
a special object called taintValue. Hulk handles opera-
tions involving taintValue by using its original primitive
value to perform the operation while propagating the taint
information to the result according to the taint policy, en-
suring that the taint information does not affect JavaScript
execution.

Each taint information contains the following elements: 1)
Taint Identifier, a unique identifier for each value produced
from the taint sources; 2) Taint Source, details about the taint
source, including source type and the variable’s location in
the code; 3) Taint Operations, a record of taint propagation
operations. Each record includes the operator, a snapshot of
the operands’ values at the time of propagation, a taint indica-
tor showing which operands are tainted, and the locations of
these operations in JS code.

Figure 1: System Architecture

3.2.2 Taint Propagation
The Hulk supports taint propagation across various operations,
including JS operations, JS built-in functions, and browser
built-in functions. The Hulk handles the operations involving
tainted values through the following steps:

• First, for the tainted values that serve as the operands or
arguments in the operation, Hulk dehydrates the values by
stripping away the taint information, performs the origi-
nal operation on the values, and rehydrates the values by
reattaching the stripped taint information.

• Then, Hulk checks whether any taint propagation rules
apply to the operation, given the operation type, the val-
ues’ types and the taint status. For example, in the case
of String.prototype.search, taint propagation occurs
only when the base object is tainted, not the arguments.

• Finally, if any propagation rule applies, Hulk propagates
the taint information from the base or argument values
to the return values by merging the taint information and
attaching them to the return values.

Next, we provide a detailed discussion on how Hulk man-
ages taint flows through various types of operations.

JS Operations. Hulk supports taint propagation through JS
operations such as unary operations, binary operations, and
getField. Specifically, Hulk handles putField operation
when there is a cross-boundary data flow, such as setting a
tainted string to the attribute of an HTMLElement.

JS Built-ins. JavaScript built-ins are functions implemented
by the JavaScript engine in C++ or assembly language and
exposed to the JavaScript environment. In Hulk, a value carry-
ing taint means it can be clobbered by an attacker or is derived
from such a clobberable value. The criterion is that a built-
in method should propagate taint only when its argument or
base object carries the taint and its return value inherits the
taint from them. We further elaborate this with two built-in
functions of array. For arr.toString(), if arr itself or
any of its elements is tainted, Hulk taints the return value. In
contrast, when arr.push(taintValue) is called, Hulk does

not propagate taint from the tainted argument taintValue to
the base object arr. This is because arr itself is not under
the attacker’s control—only one of its elements is, and that
element already has the correct taint attached.

With the above criterion, Hulk divides the JS built-in func-
tions into three following categories and deal with them dif-
ferently: Fully-Modeled, Non-Affected, and Concretized.
• Fully-Modeled: Built-in functions in this category prop-

agate taint and thus need full modeling. For this type of
built-ins, such as Array.prototype.toString, Hulk first
dehydrates the tainted value to get the concrete value, ex-
ecutes the built-in function, and then propagates the taint
to the return value according to the corresponding taint
propagation rules. Finally, Hulk rehydrates the value by
reattaching the taint back.

• Non-Affected: This type of built-in function does not
propagate taint and can execute with the tainted val-
ues, thus does not need modeling. This applies to func-
tions like array.push, which accept tainted values, i.e.,
taintValue, as arguments and do not require taint updates.

• Concretized: For this type of built-in function, taint
information has to be stripped from the arguments
before executing because they require the arguments
to be specific types. These functions typically have
return values that don’t need to be tainted, such as
FinalizationRegistry.prototype.register.

We surveyed all built-ins and modeled the built-in func-
tions associated with String, Array, RegExp, JSON, Object,
Reflect, Boolean, Number, and Symbol objects.

Browser Built-ins. In addition to the built-ins provided by
the JavaScript runtime engine, browsers, as the embedders of
these engines, can implement their own built-ins in C++ and
expose them to the JavaScript environment, such as DOM
APIs and Browser APIs.

For instance, browser built-ins associated with the
TrustedTypePolicy object are commonly used by modern
websites to perform potentially risky operations. If the value
passed to these functions is vulnerable to clobbering by an

attacker, the attacker could gain control over a trusted URL
or script, which poses a significant security risk. We observed
this in a gadget found in Google Closure, where the URL
passed to the TrustedTypePolicy.createScriptURL built-
in is clobberable, leading to arbitrary code loading.

For browser built-ins, we modeled functions asso-
ciated with URL, TrustedTypePolicy, TextEncoder,
TextDecoder, and various DOM APIs, such as
getAttribute.

Stored Cross-boundary Data Flows. The built-ins dis-
cussed so far involve only immediate cross-boundary data
flows, where the computed value is immediately returned to
the JavaScript environment. In contrast, stored cross-boundary
data flows occur when the values are stored outside the V8
heap, and retrieved back to V8 in subsequent operations. It’s
important to maintain the taint information of these values
when such cross-boundary behavior occurs. For example,
when assigning a tainted value to the innerText attribute
of an HTMLElement, the taint information is stripped before
the assignment, to avoid any error. But when we retrieve the
innerText later, we need to get its taint information as well.
To handle such cross-boundary taint flows, we maintain a
global taint table to maintain the taint information of those
values. We handle the following two types of values where
cross-boundary taint flow would happen:

• DOM Element: When a tainted value is passed to an
Element, we generate a unique taint tracking identifier
and assign it to the element’s data-taint-idx attribute.
The stripped taint information, along with the identifier
and destination attribute, is stored in the taint table. When
the value is later retrieved from the Element through a
getField operation or a getAttribute method call, we
first check for associated taint attributes and then reinstall
the taint information onto the return value.

• LocalStorage and SessionStorage: Since storage only ac-
cepts string values, we strip the taint information before
passing the tainted string to the storage. Similarly, we
store the stripped taint information in the taint table when
localStorage.setItem is called and lookup the taint in-
formation when localStorage.getItem is accessed.

3.2.3 Taint Sources & Sinks
The Hulk follows the definition of taint sources in prior
work [27] (listed in Appendix 8), mainly in the following
two categories:

• window.v and v: Lookups on the window object and vari-
able v are considered clobberable only when they return
an undefined value. For such sources, Hulk generates
two types of JavaScript inputs and tracks their flow to
the sink: an object and an array of objects, correspond-
ing to an HTMLElement and an HTMLCollection that an
attacker can inject. We start with an empty tainted object
or an array containing one empty tainted object, then fill

Termnode ::= (Varnode)
Termcollection ::= getSiblings((Termnode))

| getChildren((Termnode))
| add((Termcollection),(Termnode))

Termstring ::= (Varstring)
| DOMElementTagName
| DOMElementAttributeName
| ConstString

Termint ::= (Varint)
| length((Termcollection))
| Number

Termbool ::= (Varbool)
| true
| false
| hasChild((Termnode),(Termnode))
| hasSibling((Termnode),(Termnode))
| hasTagName((Termnode),(Termstring))
| hasAttribute((Termnode),(Termstring),(Termstring))
| hasSrcDoc((Termnode),(Termnode))
| isRoot((Termnode))
| include((Termcollection),(Termnode))
| forAll((Termcollection),(Exprbool))

Exprbool ::= (Termbool)
| (Termnode) = (Termnode)
| (Termstring) = (Termstring)
| not (Exprbool)
| (Exprbool)∧ (Exprbool)
| (Exprbool)∨ (Exprbool)
| (Termint){<,≤,=,≥,>}(Termint)

Assertion ::= assert(Exprbool)

Figure 2: Constraint Syntax for Symbolic DOM

their fields based on program feedback (e.g., default val-
ues, string comparison, method calls) iteratively. Specif-
ically, when a property lookup happens on the injected
object, Hulk records the property and returns a tainted
undefined value, which helps gather type information
and potential values based on the left-hand values, com-
parison operators, and string-related built-in methods (e.g.,
String.prototype.includes). With the collected infor-
mation, we generate better inputs to explore more control-
flow paths.

• document.v: Lookups on the document object can
be shadowed by the attacker-injected DOM elements,
such as document.scripts, with one exception,
document.location. Hulk taints the return values of
clobberable lookups if they are not undefined. Otherwise,
Hulk follows the same input generation process as it does
for window.v and v.

Regarding the sinks, Hulk tracks a list of sinks that DOM
Clobberable gadgets could potentially lead to, following prior
works [26, 27, 34]. The complete list is provided in Ap-
pendix 9.

3.3 Exploit Generation
The mere existence of a tainted data flow doesn’t imply an
exploitable gadget, as discussed in prior works [29, 33], and
this is particularly the case for DOM Clobbering. This is be-

cause taint flows of program-defined values do not necessarily
guarantee that the path can be exploited by attacker-inserted
HTML markups, which must be validated through a proof-
of-concept exploit. Concolic execution combines concrete
execution for context modeling with symbolic execution for
input generation, making it well-suited for the exploit gener-
ation task [34]. Hulk applies concolic execution to generate
attacker-controlled values by solving constraints generated
from the exploitation modeling, enabling successful flow to
the sink.

In the following section, we first describe how Hulk con-
structs the Taint Dependency Graph and applies concolic
execution. Next, we formally define Symbolic DOM and ex-
plain how it is used to model constraints on the graph. Finally,
we outline the process of solving these constraints along the
graph to generate HTML markups as exploits.

3.3.1 Concolic Execution on Taint Dependency Graph
Hulk performs concolic execution on the recorded taint-
related execution trace, represented as a Taint Dependency
Graph, to collect constraints that facilitate conversions from
DOM elements to other DOM elements or from DOM ele-
ments to strings. This is because, unlike typical exploit gener-
ation where the attacker’s input is a string, DOM clobbering
requires the input to be DOM elements. The attacker must
leverage DOM operations along the trace to propagate the
attacker-controlled string into the program and guide its flow
to the sink.

Taint Dependency Graph represents the data flow of the
program slice for each recorded taint trace, following prior
works [29, 53]. This graph details how attacker-controlled
values are utilized in each operation where taint propagation
occurs, along with snapshots of the concrete values. The core
structure of the graph is composed of a sequence of operation
nodes. It begins with the node that introduces the attacker-
controlled value (e.g., lookups on the document object), fol-
lowed by a series of taint propagation operation nodes, and
concludes with the sink operation node. Each operation node
is connected to the value nodes that represent the base object,
arguments, and return value. The Taint Dependency Graph
for the motivating example is presented in Figure 3.

3.3.2 Symbolic DOM
Symbolic DOM is defined by the constraint syntax illus-
trated in Figure 2. It describes a set of DOM elements with
the same features. In the constraint syntax, we consider
four primitive types: int, bool, string, and node, along with
their interrelationships. A node represents a DOM element,
which has a tag name (i.e., DOMElementTagName) and at-
tributes (i.e., DOMElementAttributeName), as defined in the
HTML standard [12]. A node may have siblings or chil-
dren, defined through hasSibling or hasChild. The hasSrcDoc
specifically applies to iframe elements. It decides whether
the first argument has the second argument as its srcdoc
attribute. A valid Symbolic DOM must have at least one

document "scripts"

getField Document-to-DOM

$1

C1: (declare Node R1) ∧ (R1 = $1) ∧ (P =
"scripts") ∧ (05 ∨ 06 ∨ 07 ∨ 08)

C2: (declare Node R1) ∧ (R1 = $1) ∧ (is-
Root(R1)) ∧ (length(getSiblings(R1)) ≥ 1)

1

getField DOM-to-DOM

$2

C3: (declare Node R1, R2) ∧ (R1 = $1) ∧ (R2
= $2) ∧ hasSibling(R1,R2)

C4: (declare Node R1) ∧ (R1 = $2)
∧ (P = "textContent") ∧ 20

"textContent"

getField DOM-to-String

"+" "return(" $3

BinaryOp String-to-String

$4"+" ")"

BinaryOp String-to-String

Function $5

InvokeFun
(constructor)

arg0 arg1

ret

arg0 arg1

ret

arg0 arg1

ret

arg0 arg1 arg2

ret

arg0 arg1 arg2

ret

arg0 arg1

Figure 3: The Taint Dependency Graph of the motivating
example shown in Listing 1.

root node. As an example, a valid set of DOM elements R
can be defined by: isRoot(R))∧ (hasTagName(R,“tag1”))∧
(hasAttribute(R,“id”,“P”), meaning the element is the root
node with a tag name “tag1”, and has an attribute “id” with
the value “P”.

3.3.3 DOM Constraints Modeling
We conceptualize DOM Clobbering exploitation into four dis-
tinct stages: initial clobbering (i.e., Document-to-DOM and
Window-to-DOM), advanced clobbering (i.e., DOM-to-DOM),
string loading (i.e., DOM-to-String), and finally, string op-
erations (i.e., String-to-String). Note that successful ex-
ploitation must contain initial clobbering and string loading,
while advanced clobbering and string operations, though com-
monly observed in real-world data flows, are not strictly re-
quired.

Given the constructed Taint Dependency Graph, Hulk tra-
verses the operation nodes on the graph and tags them with
the relevant stage objectives, such as DOM-to-String. The
tagging is based on two criteria: 1) The operation’s capability,
for example, a binary operation + cannot achieve DOM-to-DOM
advanced clobbering, but a getField can; 2) The possi-
ble output types of preceding operations. For instance, the
final binary operation in Figure 3 should only assume a
String-to-String conversion since the output of the previ-
ous binary + operation cannot be a DOM element. Next, we
explain the defined constraints applied to each operation with
the assigned stage objective.

Window-to-DOM & Document-to-DOM. In this stage,
Hulk deals with the initial clobbering where the lookup hap-
pens directly on window or document. Table 1 (01 - 08) de-

Stages Obj. Op. Conditions Constraints

Initial
Clobbering

Win-to-DOM getField/
varRef

The base object is the window object;
P is the property name (variable name for
varRef);
R1 is the return value;

01 (isRoot(R1))∧ (hasTagName(R1,TNS1))∧ (hasAttribute(R1,“id”,P))

02 (isRoot(R1))∧ (hasTagName(R1,TNS2))∧ (hasAttribute(R1,“name”,P))

03 (isRoot(R1)) ∧ (length(getSiblings(R1))≥ 1) ∧(forAll(add((getSiblings(R1)),R1),(((hasTagName(R,TNS1)) ∧
(hasAttribute(R,“id”,P)))∨ ((hasTagName(R,TNS2))∧ (hasAttribute(R,“name”,P)))))

04 (isRoot(R1)) ∧ (forAll(add((hasChildren(R1)),R1),(((hasTagName(R,TNS1)) ∧ (hasAttribute(R,“id”,P))) ∨
((hasTagName(R,TNS2))∧ (hasAttribute(R,“name”,P))))))∧ (length(getChildren(R1))≥ 1)

Doc-to-DOM getField The base object is the document object;
P is the property name;
R1 is the return value;

05 (isRoot(R1))∧ (hasTagName(R1,TNS2))∧ (hasAttribute(R1,“name”,P))

06 (isRoot(R1))∧ (hasTagName(R1,“ob ject”))∧ (hasAttribute(R1,“id”,P))

07 (isRoot(R1)) ∧ (length(getSiblings(R1))≥ 1) ∧(forAll(getSiblings(R1),(((hasTagName(R,TNS2)) ∧ (hasAttribute
(R,“name”,P)))∨ ((hasTagName(R,“ob ject”))∧ (hasAttribute(R,“id”,P)))))

08 (isRoot(R1)) ∧ (forAll(add((hasChildren(R1)),R1),(((hasTagName(R,“ob ject”) ∧ (hasAttribute(R,“id”,P))) ∨
((hasTagName(R,TNS2))∧ (hasAttribute(R,“name”,P))))))∧ (length(getChildren(R1))≥ 1)

Advanced
Clobbering

DOM-to-DOM getField R1 is the base object;
P is the property name;
R2 is the return value;

09 (isRoot(R1)) ∧ (hasChild(R1,R2)) ∧ (hasTagName(R1,“ f orm”)) ∧ (hasTagName(R2,TNS3)) ∧ (hasAttribute
(R2,“name”,P))

10 (isRoot(R1)) ∧ (hasChild(R1,R2)) ∧ (hasTagName(R1,“ f orm”)) ∧ (hasTagName(R2,TNS4)) ∧ (hasAttribute
(R2,“id”,P))

11 (isRoot(R1)) ∧ (hasTagName(R1,“ f orm”)) ∧ (hasChild(R1,R2)) ∧ (hasTagName(R2,“input”)) ∧ (hasAttribute
(R1,“id”,X))∧ (hasAttribute(R2,“ f orm”,X))∧ (hasAttribute(R2,“id”,P))

12 (isRoot(R1)) ∧ (hasTagName(R1,“i f rame”)) ∧ (hasSrcDoc(R1,R2)) ∧ (hasTagName(R2,“i f rame”)) ∧
((hasAttribute(R2,“id”,P))∨ (hasAttribute(R2,“name”,P)))

13 (isRoot(R1))∧ (hasTagName(R1,“i f rame”))∧ (hasSrcDoc(R1,R2))∧ (((R2 = R)∧ 01)∨ ((R2 = R)∧ 02))

14 (isRoot(R1)) ∧ (length(getSiblings(R1)) ≥ 1) ∧ (include(getSiblings(R1),R2)) ∧ (forAll(getSiblings(R1)
,((((not(R = R2)) ∧ not((hasAttribute(R,“id”,P)))) ∨ ((R = R2) ∧ (hasAttribute(R,“name”,P)))) ∨ (((
not(R = R2))∧not((hasAttribute(R,“name”,P))))∨ ((R = R2)∧ (hasAttribute(R,“id”,P)))))))

15 (isRoot(R1)) ∧ (length(getChildren(R1)) ≥ 1) ∧ (include((getChildren(R1),R2)) ∧ (forAll(getChildren(R1),((((
not(R = R2)) ∧ not((hasAttribute(R,“id”,P)))) ∨ ((R = R2) ∧ (hasAttribute(R,“name”,P)))) ∨ (((not(R = R2)) ∧
not((hasAttribute(R,“name”,P))))∨ ((R = R2)∧ (hasAttribute(R,“id”,P)))))))

R1 is the base object;
R2 is the return value;

16 (isRoot(R1))∧ (length(getSiblings(R1))≥ 1) ∧(include(getSiblings(R1),R2))
*This applies to previousSibling and nextSibling.
Similar rules apply to firstChild, lastChild, childNodes and parentElement.

String
Loading

DOM-to-String InvokeFunc R1 is the base argument or one of the
arguments of the method; Payload is the
string type return value (applies to all the
following conditions);

17 (isRoot(R1))∧ ((hasTagName(R1,“a”))∨ (hasTagName(R1,“area”)))∧ (hasAttribute(R1,“hre f ”,Payload))
*This only applies to toString when R1 is the base argument and other methods when R1 is one of the arguments, as
listed in Table 6.

R1 is the base object; P is the attribute
name; NS is the namespace for the
getAttributeNS case;

18 (isRoot(R1))∧ (hasAttribute(R1,P,Payload)∨hasAttribute(R1,NS : P,Payload))
*This applies to getAttribute and getAttributeNS.

R1 is the base object; 19 (isRoot(R1))∧ (hasAttribute(R1,Payload,∗))
*This applies to getAttributeNames.

getField R1 is the base object; P is the property
name;

20 (isRoot(R1))∧ (hasTagName(R1,TNS*))∧ (hasAttribute(R1,P,Payload))
See Table 7 for possible values for P and the corresponding tag set TNS.

R1 is the base object; 21 (isRoot(R1))∧ (hasAttribute(R1,“data−∗”,Payload))
*This applies to the cases where R has attribute names starting with "data-".

Binary + R1 is one of the operands of the binary
operation +;

22 (isRoot(R1))∧ ((hasTagName(R1,“a”))∨ (hasTagName(R1,“area”)))∧ (hasAttribute(R1,“hre f ”,Payload))

Table 1: Overview of constraints on Symbolic DOM for DOM Clobbering exploitation. The constraints are summarized based on
whether the DOM elements can achieve the objectives in either Chrome or Firefox.
Rows marked with are not included in the prior work [27].

tails the constraints we use to define the DOM elements that
can clobber lookups on window or document. While prior
work applied HTMLCollection to solve nested lookups like
window.x.y, Hulk decouples the two lookups and deal with
them separately. Specifically, Hulk applies 03 - 04 to solve
the first lookup which achieves Window-to-DOM and then uti-
lizes other constraints for DOM-to-DOM if subsequent lookups
occur.

DOM-to-DOM. When a DOM-to-DOM transition happens,
we need special clobbering techniques to construct nested
DOM elements that satisfy the transition. Beyond the tech-
niques summarized in prior work, such as form parent-child
(09 - 10), nested window proxy (12), and HTMLCollection
(14 - 15), we identified three additional techniques that were
missing in previous research by studying the DOM standard.

• An input element with a form attribute set to the id

of a form element can clobber lookups on that form el-
ement (11). For example, in the code <input form=X
name="target"> <form id=X target=_>, the input
element will be returned when looking up X.target.

• Although prior work [27] identified that an iframe can
have another iframe element as its srcdoc attribute to
clobber nested lookups like win.x.y and doc.x.y — a
technique known as nested window proxy — we discovered
a more general approach. Specifically, the first reference
of the iframe is used as a window proxy, and any element
capable of clobbering the window object can be used in the
srcdoc attribute, not just the iframe tag. This is defined
as 13 .

• We also discovered other methods that load an ele-
ment from its sibling, parent, or child element, such
as previousSibling, firstChild, and parentElemnt
(16).

DOM-to-String. One known technique for converting
attacker-controlled elements to a string is through implicit
type coercion during binary operations (22). For exam-
ple, + "/script.js"
results in "https://attack.com/script.js". This occurs
because, according to the DOM standard, the implicit call of
toString on the a and area tags returns the value of their
href attribute.

Here, given other techniques less studied before, we further
complete the picture by summarizing the operations that can
be used to load strings from attacker-controlled elements.

• Operation invokeFun: Firstly, Element methods such
as getAttribute can directly load a string from an
element. Secondly, in addition to type coercion dur-
ing binary operations, built-ins can also implicitly call
the toString method on the arguments. For example,
Array.prototype.join will convert its first argument to
a string. We exhaustively studied JavaScript built-ins that
tolerate DOM elements as arguments and implicitly call
their toString method, as presented in Table 6. These
include the constraints 17 - 19 .

• Operation getField: We compile a list of reflective at-
tributes from various HTML elements that return strings
or JavaScript objects during lookup, according to the Web
IDL [12]. This enables type conversion between DOM ele-
ments and program-defined objects. For example, if there
is a code snippet x.type where x is a DOM element un-
der the attacker’s control, the attacker could insert an a
tag , causing x.type to load
"payload". This works because the type attribute of the
a tag is set to Reflect, and its return value is of type DOM-
String. The full list of such attributes can be found in Ta-
ble 7. The constraints are shown in 20 - 21 .

3.3.4 Constraints Merging & Solving
The constraints merging and solving process for DOM Clob-
bering involves both DOM operations and string operations.
Given the tagged Taint Dependency Graph, Hulk traverses
the graph from top to bottom and applies distinct strategies
tailored to each operation node based on the objectives of its
corresponding stage. Hulk sequentially encounters the four
stages outlined in Section 3.3.3 during traversing, as long
as the graph is exploitable. In the first three stages, where
the final goal is to convert a DOM element to a string, Hulk
checks the objective (e.g., Doc-to-DOM) and the operation
type (e.g., getField) of the node and refers to Table 1 for
constraints. Specifically, for each attacker-controlled variable
node, they must satisfy two conjunctive sets of constraints, as
it serves both as the return value of its precedent operation
and an argument of the subsequent operation.

Take Node $1 in Figure 3 for a detailed illustration.
Node $1 is the return value of a getField operation,
document.scripts, with the stage objective Doc-to-DOM.
Therefore, it should satisfy the join of constraints 05 - 08 ,

as indicated in the second line of Table 1. In addition, the
property name must be scripts, as derived from the opera-
tion document.scripts. To interpolate the concrete value of
the property name, a clause P = "scripts" is added. Thus,
the final constraint for the precedent operation of Node $1
is represented by C1 in Figure 3. Furthermore, $1 serves as
the argument for a subsequent getField operation with a nu-
meric index, indicating that it is a HTML collection containing
more than one element. This relationship is represented by
constraint C2.

Next, Hulk merges the modeled constraints in the graph
if their nodes are bound to the same variable node (e.g.,
R2 in C3 and R1 in C4, which both refer to $2). We define
a root formula as a first-order logic formula that includes
a conjunctive clause isRoot(R1). Each root formula repre-
sents a DOM tree. Further, each set of constraints can be
expressed as a disjunction of such root formulas. To merge
two sets of constraints, Hulk computes the pairwise con-
junction of all root formulas from both sets. If any pair of
root formulas results in a conflict, the conflicting conjunc-
tion is discarded. For example, when merging C1 and C2 for
Node $1. Constraint 05 from C1 conflicts with C2 because
05 implies length(getSiblings(R1)) = 0 while C2 implies
length(getSiblings(R1))≥ 1. As a result, 05 is discarded. The
other root formulas from C1 are merged to C2 with the same
rules, respectively. Finally after merging, the constraint for-
mula for Node $1 reduces to (P = "scripts")∧ 07 , as all other
root formulas from C1 conflict with C2.

Hulk applies the aforementioned merging rules to the con-
straints during the first three stages. When Hulk reaches to
the final stage, where DOM elements are converted to strings
and all operations are string operations (e.g., string concate-
nation), it applies symbolic string modeling to represent these
operations and solves the constraints using Z3. For exam-
ple, when traverses to Node $3 in Figure3, Hulk models
and solves the following constraints: (= $4 (str.++ "+" "re-
turn" $3)) ∧ (= $5 (str.++ "+" $4 ")")) ∧ (str.contains $5
"alert(document.domain)"), to generate the string payload
for $3. Finally, the concrete string payload is used to add a
fact, e.g., Payload = "alert(document.domain)", to the root
formula and generate the concrete DOM elements.

3.4 Gadget Verification

In this phase, Hulk verifies the exploitability of the identified
taint flows by injecting the HTML markups generated in
the second phase and tracking their flow. According to our
threat model, an attacker can inject malicious HTML markups
before any JavaScript code is parsed or executed, which is
common in most stored HTML injection cases. Therefore,
Hulk injects these markups into the web page during its initial
loading phase and then runs the web page as normal. Hulk
then monitors the arguments of the sink functions to verify
whether the payload strings successfully flow to the sink.

4 Implementation
Our implementation contains 8,434 lines of new code, ex-
cluding third-party libraries and tests. We now describe the
implementation of the three components of Hulk.

• Gadget Detection. The architecture setup is illustrated
in Figure 5. We implemented our taint engine based on
the Jalangi2 framework [45], which rewrites the program
to hook all JavaScript operations and exposes them to
self-defined analysis scripts. On the client side, a play-
wright [15]-derived browser is used to inject Hulk and
the Jalangi2 runtime into the JavaScript context before
any HTML or JavaScript files are loaded. The browser is
routed through a Man-in-the-Middle (MITM) proxy, based
on mitmproxy [13], to intercept and instrument all HTML
and JavaScript responses from the server, ensuring that
all code arrived at the browser is analyzable by Hulk. For
JavaScript dynamically generated on the client side, the
Jalangi2 runtime instruments the code on-the-fly. To en-
hance performance, we also deploy a cache to store all
instrumented JavaScript resources, allowing direct retrieval
of instrumented files if available when a request is made.

• Exploit Generation. We developed the exploit generation
phase as a standalone module that takes a taint trace and
condition expressions as input and outputs a set of HTML
markups as the exploit. We implemented the prototype
of Symbolic DOM from scratch, including the modeling
and solving of DOM-related constraints. For string-related
constraints, we adopted the string built-in modeling from
ExpoSE [36, 37] and used Z3 as the solver.

• Gadget Verification. For the verification phase, we used
the same setup as in Gadget Detection but disabled taint
introduction and propagation. We utilized playwright to
inject the exploit HTML markups into the page and then
monitored the sink arguments to check for the presence of
the payload.

5 Evaluation
We structure our evaluation of Hulk around the following
three Research Questions (RQs):

• RQ1 [Zero-day]: How many zero-day gadgets can Hulk
detect but state-of-the-art approaches cannot?

• RQ2 [FN&FP]: What are Hulk’s false negatives (FNs)
and false positives (FPs) compared to the state-of-the-art
approach?

• RQ3 [Performance]: How does Hulk perform in analyzing
real-world websites?

5.1 Experimental Setup
Baselines. In the evaluation, we adopt the following base-
line in comparison with Hulk.
• TheThing: This tool, provided by the only prior work [26]

on DOM Clobbering, is designed to detect gadgets in the

wild. It includes a web crawler, a static analyzer for gadget
detection, and a dynamic analyzer for verifying the detected
gadgets using a set of predefined payloads. We used the
code [16] provided by the authors.

Datasets. We use the following datasets when evaluating
Hulk. Note that, there currently exists no public dataset with
ground truth for DOM Clobbering gadgets.

• Top 5,000 Websites: This dataset contains the top 5,000
websites from the Tranco List [43]. We use the dataset to
evaluate the zero-day gadgets found by Hulk (i.e., RQ1).

• Top 500 Websites: This subset contains the top 500 web-
sites from the Tranco List [43]. We use it for detailed com-
parison with baselines in RQ2 and RQ3. We chose 500
instead of 5,000 for comparison to keep the runtime man-
ageable, as the default implementation and experimental
settings of TheThing took approximately 40 hours to ana-
lyze 500 websites, whereas Hulk was able to analyze 5,000
websites in only 41 hours.

• Known Gadgets Dataset: Since no public dataset of DOM
Clobbering gadgets exists, we curated a dataset by con-
ducting a comprehensive survey of publicly known DOM
Clobbering gadgets found in the wild, from (i) Issues, com-
mits, and pull requests in open-source JavaScript libraries
on GitHub and (ii) Bug bounty reports and Capture The
Flag (CTF) write-ups. In total, the dataset contains 12
gadgets, two from security analysis reports, and 10 from
past CTF challenges. We use this dataset to test the false
negatives of Hulk and the baseline in RQ2.

5.2 RQ1: Zero-day Gadgets
In this research question, we answer the question of whether
Hulk can detect and exploit zero-day gadgets. Specifically,
our definition of a zero-day gadget is that the gadget has not
been reported by any prior work, such as those detected and
verified by TheThing, nor has it been discovered manually.

We crawled Tranco [43] Top 5,000 websites. On average,
we measured 62 DOM Clobbering sources and 97 sink calls
per URL. In total, Hulk identified 310,163 unique DOM Clob-
bering sources and 485,102 sink function calls. This analy-
sis resulted in 34,040 taint flows from the gadgets detection
phase, from which Hulk generated 1,741,254 HTML markups
as candidate exploits. Finally, Hulk successfully validated 497
unique gadgets, each with different source or sink locations.
Among the validated gadgets, 378 (76.0%) led to XSS, 90
(18.1%) resulted in CSRF, 26 (5.2%) led to open redirection,
and 3 (<1%) caused storage manipulation.

Table 2 shows a selective list of zero-day gadgets found by
Hulk in wildly-used client-side libraries, with over 1,000 stars
on GitHub. The prevalence of these libraries poses significant
security risks to the web. For instance, the Webpack library,
which appears with an average of 1.27 Webpack bundles per
site among the Tranco Top 100K websites [44], indicates that

Table 2: [RQ1 & RQ2] A selective list of zero-day gadgets detected by Hulk that cannot be found and verified by the state-of-
the-art approach, TheThing, in wildly-used client-side libraries, with over 1,000 stars on GitHub (shown in the "# of Stars"
column). The column "Version" indicates the latest affected version. The column Det. and Exp. are shorthands for the detection
of vulnerable flow and exploit generation, respectively.

Library # of Stars Version Impact Status TheThing Hulk Exploits Generated by Hulk
Det./Exp. Det./Exp.

Vite 67.2K v5.4.5 XSS CVE-2024-45812 #

Webpack 64.4K v5.93.0 XSS CVE-2024-43788 #

Astro 45.7K v4.5.9 XSS CVE-2024-47885 # <form name="scripts">alert(1)</form><form name="scripts">alert(1)</form>

plausible-analytics 19.7K v2.1.0 CSRF Reported #

plotly.js 16.9K v2.35.2 CSRF Reported # <a id="PLOTLYENV" name="BASE_URL"
href="https://attack.com/?a=">

Prism 12.2K v1.29.0 XSS CVE-2024-53382 #

MathJax2 10.1K v2.7.9 XSS Acknowledged #

MathJax3 10.1K v3.2.2 XSS Acknowledged # $$\require{}tex}$$

tsup 8.9K v8.2.4 XSS CVE-2024-53384 #

rspack 8.6K v1.0.0-rc.0 XSS Patched #

seajs 8.3K v3.0.3 XSS CVE-2024-51091 # <img name="scripts"
src="https://attack.com">

Google Closure 4.9K v20230103 XSS Acknowledged #

pagefind 3.3K v1.1.0 XSS CVE-2024-45389 #

Google Client API 3.2K 5BIk7BglYEE XSS Patched # <iframe name="scripts" src="https://apis.google.com/js/api.js"></iframe><iframe
name="scripts" src="https://apis.google.com/js/api.js">alert(1)</iframe>

Mavo 2.8K v0.3.2 XSS CVE-2024-53388 #

Stage.js 2.4K v1-alpha XSS CVE-2024-53386 #

cusdis 2.6K v1.3.0 XSS CVE-2024-49213 #

inspire.js 1.7K v1.10 XSS CVE-2024-53385 #

steal 1.4K v2.3.0 XSS CVE-2024-45939 #

UMeditor 1.4K v1.2.2 XSS CVE-2024-53387 #

doomcaptcha 1K latest XSS Reported G# <img name="currentScript" label="<script>alert(1)</script>" />

#: indicates that the gadget cannot be detected or exploited by the tool.G#: indicates successful detection but failed exploit generation. : indicates successful detection and verification.

nearly every site could contain this DOM Clobbering gadget,
potentially escalating HTML markup injections to XSS.

In addition to these popular open-sourced client-side li-
braries, Hulk also identified gadgets in widely-used third-
party services, such as the “share button” from AddToAny [1],
which is embedded in millions of websites to track user statis-
tics and share content across platforms. The gadget in Ad-
dToAny can expose any embedding website to XSS vulner-
abilities. Based on these findings, we curated the first DOM
Clobbering benchmark, documenting these gadgets along
with the library name, vulnerable version, exploit, and a proof-
of-concept HTML test page.

We also evaluated the real-world impacts of the identified
zero-day gadgets through end-to-end exploitations. We man-
ually examined web pages containing the identified gadgets,
focusing on those susceptible to HTML injections, i.e., pages
with markdown editors, comment sections, and wikis, to as-
sess whether there exists end-to-end exploitations. As a result,
we discovered 12 cases of successful end-to-end exploitation
of zero-day gadgets discovered by Hulk. Among these, 11
cases led to XSS attacks, and one resulted in a CSRF attack.
These findings are summarized in Table 3.

Table 3: [RQ1] A list of websites with end-to-end exploitation
of our newly discovered gadgets.

Domain Gadget From Impact Status

cocalc.com† MathJax2 XSS Patched
www.kaggleusercontent.com MathJax2 XSS Reported
hackmd.io† Google Client API Lib XSS Patched
jupyter.org† MathJax2&3 XSS Patched
jupyterlite.github.io MathJax2&3 XSS Patched
notebooks.gesis.org MathJax2&3 XSS Reported
curvenote.dev MathJax2&3 XSS Patched
github.dev MathJax2&3 XSS Patched
p5nb.vercel.app MathJax2&3 XSS Reported
jhu.instructure.com Webpack XSS Patched
anotepad.com AddToAny XSS Patched
gitea.com plausible-analytics CSRF Reported

†: indicates domains with CVE number assigned.

5.3 RQ2: Hulk vs. TheThing
In this research question, we evaluate the false positives and
false negatives of Hulk and compare them with the prior work.
Table 4 shows the results of Hulk and TheThing on Tranco
Top 500 websites and the Known Gadgets dataset. For both
tools, we began by running their respective gadget detection
components—TheThing’s static analyzer and Hulk’s gadget
detection phase. We then verified the detected gadgets using
each tool’s verification component: TheThing’s dynamic an-

alyzer with payloads generated from predefined templates,
and Hulk’s gadget verifier with payloads generated from Sym-
bolic DOM. Because there is no pre-existing ground truth
for the Tranco Top 500 dataset, we consider all the verified
gadgets by either tool as the ground truth (denoted as the “GT”
column in Table 4).

Upon testing the Tranco Top 500 dataset, Hulk identified
3,027 gadget candidates during the detection phase and gen-
erated 176,716 HTML markups as potential exploits based
on the collected taint traces. Finally, it successfully verified
33 gadgets. In contrast, TheThing reported 33,743 gadget
candidates through static analysis, but only 6 of these were
successfully verified using payloads generated from their pre-
defined templates. Notably, Hulk successfully detects all the
gadgets identified by TheThing, whereas TheThing fails to
detect additional gadgets uncovered by Hulk.

Testing on the Known Gadgets dataset, Hulk identified five
out of 12 gadgets, compared to TheThing’s identification of
four. It is worth noting that ten of the gadgets in this dataset
are from CTF challenges, which do not exist in real-world ap-
plications but rather are intentionally designed to be difficult
for security enthusiasts, making them particularly challenging
for automated tools to detect.

False Negatives. Hulk outperforms TheThing in terms of a
lower number of false negatives on both datasets. The false
negatives in Hulk primarily originate from the gadget detec-
tion phase, whereas in TheThing, they may arise from both
gadget detection and exploit generation. Below, we outline
the reasons for the false negatives in both Hulk and TheThing.

Hulk fails to detect gadgets due to the following reasons:

• Code Coverage. For clobberable sources that return an
undefined value, the inputs generated by Hulk are some-
times insufficient to guide flows to the sinks during dynamic
taint tracking. This is due to two main challenges. First,
branches may be protected by complex string-related con-
straints, making it difficult for Hulk to generate appropriate
inputs. Second, the required values may be buried within
multiple nested layers, resulting in a large search space that
complicates Hulk’s ability to efficiently discover the correct
inputs.

• Control-flow Dependent Gadgets. Currently, Hulk only
supports solving control-flow and data-flow constraints as-
sociated with a single gadget. We leave the detection of
control-flow dependent gadgets, where one gadget affects
the control-flow of the target program, thus leading to the
second gadget, as future work.

Next, we describe the major reasons for false negatives in
TheThing.

• Dynamic Features. TheThing failed to detect most gadgets
that contains dynamic features, e.g., IIFE statements in List-
ing 3 and this keyword in Listing 4, which are challenging
for static-analysis-based approaches to resolve.

Table 4: [RQ2] Comparison of False Positives and Negatives
between Hulk and TheThing on Top 500 Websites and the
Known Gadgets dataset. The “GT” column represents the
ground truth.

GT
TheThing Hulk

R TP/FP FN R TP/FP FN

Tranco Top 500 33 6 6/0 27 33 33/0 0
Known Gadgets 12 4 4/0 8 5 5/0 7

• Source Identification. TheThing struggles to recognize
all sources due to the extensive use of aliases in modern
client-side JavaScript programs. Specifically, it may not
correctly identify variables that point to global window and
document objects.

• Predefined Payloads. TheThing is unable to verify gad-
gets that require exploits to satisfy constraints beyond
the initial clobberable source lookup. For example, in
the exploit of the gadget in the doomcaptcha library (as
shown in Table 2), the payload is loaded through the
getAttribute("label") method on attacker-clobberable
elements, which necessitates setting the label attribute to
the payload. As a result, even though TheThing could stati-
cally detect the data flow of this gadget, it cannot effectively
verify it.

False Positives. Neither tool produces false positives in its
output because both have verifiers that test the gadgets dynam-
ically with generated exploits. Although both tools initially
detect a large number of gadget candidates—3,027 for Hulk
and 33,743 for TheThing—most of these detected data flows
from attacker-clobberable sources to sinks cannot be realized
by attacker-injected HTML markups, making them inherently
unexploitable. However, TheThing generates significantly
more gadget candidates than Hulk, primarily due to incorrect
source identification. In many cases, the statically identified
sources are not truly clobberable, often due to challenges in
analyzing the variable’s definition in dynamically generated
code and alias analysis.

5.4 Performance
In this subsection, we answer the research question of Hulk’s
performance in detecting and generating exploits on real-
world websites. We break down the analysis time into three
parts according to the system architecture in Figure 1: (i)
gadget detection phase, (ii) exploit generation phase, and (iii)
gadget verification phase. Figure 4 shows the breakdown
of the Cumulative Distribution Function (CDF) of analysis
time for Hulk on different gadgets. The y-axis represents
the percentage of websites based on each phase’s input (e.g.,
for the Exploit Generation Phase, the input is the number of
websites with detected gadgets), while the x-axis shows the
analysis time on a log scale to account for its wide range.

We observed the following based on the evaluation results.

Figure 4: Cumulative Distribution Function (CDF) of the
analysis time of Hulk in different phases on Tranco Top 500
websites.

Firstly, Hulk completed the analysis pipeline for most web-
sites (80%) within 17 minutes. The detection and verifica-
tion phases took the most time, as both required repeatedly
testing websites with different inputs. During the detection
phase, Hulk generates inputs for clobberable sources that
return undefined based on program feedback. In the ver-
ification phase, Hulk tests each detected gadget using the
generated exploits. Note that we inject payloads one at a time
because the injected markups may alter the program’s control
flow accidentally, such as by raising exceptions, which could
interfere with the results of other gadgets. Secondly, the figure
shows that 76% of the top 500 websites successfully output
detected gadgets and progressed to the exploit generation
phase. However, 28.9% of these websites failed to generate
working exploits. This is because the detected gadgets did not
follow the stages of DOM Clobbering exploitation and, there-
fore, could not lead payload flows from attacker-controlled
HTML elements to the sinks. Finally, Hulk successfully veri-
fied gadgets for the 54% websites with the generated exploits.

6 Discussion and Limitation
Feasibility of End-to-end Exploitation. An end-to-end
exploitation of DOM Clobbering requires the injection of
HTML markups into target web pages to exploit the gadget.
One common method of HTML injection is directly inputting
markups that will be rendered as HTML. This works mainly
due to insufficient sanitization, allowing id or name attributes
to remain in the input.

Another method is through pasting, as clipboard con-
tent can include complex types like text/html. In prac-
tice, web applications retrieve clipboard content by setting
the contenteditable attribute of elements or using clip-
board APIs (e.g., navigator.clipboard.read). Although
browsers perform some sanitization for HTML in the clip-
board content, they do not remove id or name attributes either,
which makes HTML injection feasible. We found that some of
the most widely used rich-text editors, such as TinyMCE [52]

and CKEditor [20], allow users to copy-paste HTML ele-
ments. If a web application saves the content from these
editors without further sanitization, it is exposed to HTML
injection attacks.

On-the-fly Code Rewriting. One challenge for code rewrit-
ing is that Jalangi2 [45] only supports instrumenting up to
ECMAScript 5.1 specification. Hulk addresses this by tran-
spiling unsupported syntax introduced in later versions with
Babel [3]. For keywords such as import and export, which
have no equivalents in the browser-supported ECMAScript
5.1 specification, Hulk avoids instrumenting them to preserve
the functionality. Additionally, Hulk resolves global name
conflicts and ensures strict mode compatibility of the instru-
mented code.

Since Hulk performs code rewriting on-the-fly, another
challenge is the delay in transmission brought by the increased
code size after instrumentation. To address this, Hulk sets up
a local Man-in-the-Middle (MITM) proxy based on mitm-
proxy [13] to avoid the transmission of instrumented files
over network. Furthermore, Hulk improved the mitmproxy [9]
by addressing the non-linear growth in processing time with
packet size, significantly reducing transmission delays.

Cross-boundary Taint Flow Tracking. While Hulk sup-
ports cross-boundary taint flow tracking through the direct
access of HTML elements and the client-side storage, it does
not deal with indirect access, where a value is retrieved with-
out directly referencing the tainted element. For instance,
consider a case where a <p> tag is tainted and is wrapped
in a non-tainted <div> tag. If JavaScript later accesses the
<p> element through the innerHTML method of the <div> tag,
the taint will not propagate. This is a tradeoff between effi-
ciency and effectiveness as Hulk avoids recursively traversing
nested DOM structures to prevent significant performance
overhead. Additionally, Hulk does not support tracking taint
flows through WebAssembly, as Jalangi2 does not support it.

Constraint Solving. During exploit generation, Hulk mod-
els and solves constraints on Symbolic DOM to transform
attacker-controlled values (in the form of DOM elements)
into strings. Once the attacker-controlled value is converted
to a string, Hulk leverages existing constraint models for
JavaScript string builtins [36, 37] and uses Z3 as the solver.
Consequently, Hulk inherits Z3’s limitations for solving string
constraints. Specifically, when the execution involves regu-
lar expressions and string-related builtins such as replace,
indexOf, and split, Z3 may fails to produce a solution
within the given time. We leave this as future work.

DOM Clobbering Mitigation. The mitigation of DOM
Clobbering remains an open challenge. Completely disabling
DOM Clobbering features is not a preferred solution as it
would break approximately 12.16% of web pages, according
to measurements by Chrome platform [2]. Current mitigations
either focus on preventing HTML injection using sanitizers

or reducing DOM Clobbering gadgets through secure coding
practices, such as enforcing type checking [6, 14]. Regarding
HTML injection prevention, 16 out of 29 popular HTML san-
itizers are vulnerable to DOM Clobbering markups according
to Khodayari et al. [27]. The remaining 13 unconditionally
remove all name or id attributes, which may affect functional-
ity of the web application. For instance, JupyterLab generates
id attributes for markdown headers for URL fragment refer-
ences, which would break if all id attributes were removed
during sanitization. On the other hand, secure coding prac-
tices require significant developers’ effort to account for all
potential DOM Clobbering lookups, making it challenging
for developers to adhere to these practices comprehensively.

7 Related Work
In this section, we discuss related works. We start with prior
work on DOM Clobbering, then discuss our work in a broader
area of code-resue attacks on the Web, and finally, position
our contribution in the techniques for exploit generation for
the Web.

DOM Clobbering. DOM Clobbering has been a well-
known issue in the security community as a way to break
XSS mitigations [24, 32] while gaining significant attention
following the XSS vulnerability in Gmail’s AMP4Email in
2019 [22]. Yet, it has not been thoroughly explored in research.
The only prior work in the literature [27] studied the tech-
niques of DOM Clobbering and presented a static analysis
tool, TheThing, for the detection. Despite the contributions,
their approach is limited by the inherent constraints of static
analysis in detecting data flows and, more importantly, lacks
an effective method for generating DOM Clobbering exploits
beyond providing a predefined list. Given the highly flexible
and varied nature of DOM elements and the inconsistencies
across browser implementations, there is a pressing need for
a generic and efficient method to describe DOM elements
and resolve the DOM operation constraints. In this paper, we
creatively propose Symbolic DOM, to symbolically represent
DOM elements and resolve operation constraints in a formal
way to generate effective HTML markup exploits for DOM
Clobbering, as our main contribution.

Code-reuse Attacks on the Web. In 2017, Lekies et al. [31]
proposed the code-reuse attack for the Web and introduced
the idea of script gadgets, which are legitimate JavaScript
code snippets that an attacker can abuse to execute JavaScript.
Recent years have seen increasing attention on the detection
of script gadgets in JavaScript, as they serve as the second
stage of exploitations for attacks such as prototype pollu-
tion [21, 25, 34, 46, 47, 50], and HTML Injection [27], leading
to further severe consequences such as XSS, while the ex-
ploitation of the gadgets remains underdeveloped. Kang et
al. [25] generated exploits for client-side prototype pollution
by following a predefined list of common string patterns. Sub-
sequent works [21, 46, 47] heavily rely on manual effort for

the exploitation of gadgets in NPM packages, Node.js, and
Deno runtimes. The work of Liu et al. [34] utilized concolic
execution with Z3 as the constraint solver for exploit gener-
ation. While effective in generating exploits for server-side
JavaScript libraries, their method is not applicable to DOM
Clobbering due to the lack of modeling of DOM APIs and the
representation of DOM elements. They also did not consider
the resolution of data-flow and control-flow constraints for
DOM operations.

Exploit Generation for the Web. Exploit generation for the
web is not a trivial task. Some works [17, 18, 38, 41] have fo-
cused on exploit generation for XSS, where the exploitations
are strings. Others [19,29,33,39,51] adopted a similar idea of
break-out/break-in strategy, which uses break-out sequence
to close the preceding elements and allowed for the injection
of the attacker’s payload, and then followed by a break-in
sequence to comment out the rest of the code. Despite being
effective for string-based exploit generation in XSS cases, this
strategy falls short in the context of DOM Clobbering, where
the exploit involves constructing a DOM element rather than
a string. Instead of merely closing a preceding context, DOM
Clobbering exploits need to build a DOM tree that adheres to
the semantics of JavaScript operations without raising excep-
tions, while ensuring that attacker-controlled payloads flow
to the sink.

Besides string-based exploitations, several works [28, 30,
42, 48, 49] have focused on analyzing browser issues using
HTML markups as payloads. For instance, Kim et al. [28]
leveraged Domato [7], a generation-based DOM fuzzer to
generate HTML for UXSS, while Klein et al. [30] generated
HTML fragments to abuse the sanitizer’s vulnerable HTML
parser for mXSS [23]. However, these approaches rely on
fuzzing techniques that use self-defined grammars or muta-
tion rules to generate HTML, without considering the need for
HTML markups to conform to JavaScript operations. In this
work, we propose Symbolic DOM, a formal representation
that defines a set of HTML markups satisfying the constraints
within gadgets, offering a more fine-grained method for gen-
erating these markups.

8 Conclusion
In this paper, we present Hulk, the first dynamic analysis
framework to automatically detect and generate exploits for
DOM Clobbering gadgets using concolic execution with Sym-
bolic DOM. We further expand DOM Clobbering techniques
by introducing previously unknown gadgets that help type
conversion and systematically modeling relevant operations
with constraints using our formalized Symbolic DOM ap-
proach. Our evaluation shows that Hulk outperforms the state-
of-the-art approach in reducing false negatives and detects 497
zero-day gadgets, including those in widely-used client-side
libraries. Our research also results in 19 CVEs for high-profile
web applications.

9 Ethical Discussion and Open Science
Ethical Discussion. Our evaluation of Hulk on live web-
sites was conducted with careful consideration to minimize
risks to all possible stakeholders, including website main-
tainers and users. Given that the tests are conducted against
websites, website maintainers may inherently encounter risks
such as unexpected interactions with server-side interfaces
and increased server load. Since detecting DOM Clobbering
gadgets only involves analyzing client-side JavaScript code,
our evaluation did not test on any server-side interfaces. Re-
garding the server load, to prevent overloading website servers
during testing, we implemented a caching mechanism in the
MITM proxy, ensuring each web resource was requested only
twice per test: one in the detection phase and one in the verifi-
cation phase.

For website users, our experiments were conducted without
affecting any real users. In the case of gadget detection and
exploitation, the tests do not involve stored data and thus do
not affect other users. In the cases of end-to-end exploita-
tion involving stored HTML injection that other users could
potentially access, we first searched for publicly available
server-side source code (e.g., from GitHub or GitLab) of the
web application and hosted them locally for testing. If the
source code was unavailable, we conducted experiments on
the website excluding functionalities that could impact real
users, and limited the tests only to our created account.

Responsible Disclosure. We responsibly disclosed all find-
ings, including 497 zero-day gadgets (28 of them have clear
attribution from client-side libraries) across 354 websites
and 12 end-to-end exploits, to the relevant parties, allowing
45 days for fixes. For the 497 gadgets, we notified the web-
site maintainers via email, using contact information listed
on their websites or retrieved from whois records. For the
28 gadgets associated with client-side libraries, we further
reported them to the library vendors through GitHub secu-
rity advisories (if available) or email. For the 12 end-to-end
exploitations, we reported both the HTML injection vulnera-
bilities and the gadgets to website maintainers. In each report,
the notification includes the vulnerability details, a proof-of-
concept exploit payload, followed by a potential remediation.
As of the camera-ready submission, six gadgets have been
fixed, nine have been confirmed, and all the rest have been
reported.

Open Science. To support future research efforts, we have
made our implementation of Hulk and the first benchmark of
DOM Clobbering gadgets publicly available on Zenodo3 for
permanent retrieval.

Acknowledgement
We would like to thank anonymous shepherd and reviewers
for their helpful comments and feedback. This work was sup-

3https://zenodo.org/records/14736712

ported in part by National Science Foundation (NSF) under
grants CNS-21-54404 and CNS-20-46361 and a Defense Ad-
vanced Research Projects Agency (DARPA) Young Faculty
Award (YFA) under Grant Agreement D22AP00137-00. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or im-
plied, of NSF or DARPA.

References
[1] Addtoany: Share buttons by the universal sharing plat-

form. https://www.addtoany.com/.

[2] Affected web page number counter for DOM-
ClobberedWindowPropertyAccessed feature.
https://chromestatus.com/metrics/feature/
timeline/popularity/1824.

[3] Babel. https://babel.dev/.

[4] ChromiumTaintTracking. https://github.com/
wrmelicher/ChromiumTaintTracking.

[5] CodiMD. https://github.com/hackmdio/codimd.

[6] DOM Clobbering Wiki. https://domclob.xyz/
domc_wiki/defenses/.

[7] Domato. https://github.com/
googleprojectzero/domato.

[8] FoxHound. https://github.com/SAP/
project-foxhound.

[9] GitHub pull request: resolving non-linear processing
time growth in mitmproxy for large packet sizes. https:
//github.com/mitmproxy/mitmproxy/pull/6952.

[10] google/google-api-javascript-client: Google
APIs Client Library for browser JavaScript,
aka gapi. https://github.com/google/
google-api-javascript-client/.

[11] Hackmd.io. https://hackmd.io.

[12] HTML Living Standard. https://html.spec.
whatwg.org/.

[13] mitmproxy: A free and open source interactive HTTPS
proxy. https://mitmproxy.org/.

[14] OWASP DOM Clobbering Prevention
Cheat Sheet. https://cheatsheetseries.
owasp.org/cheatsheets/DOM_Clobbering_
Prevention_Cheat_Sheet.html#
dom-clobbering-prevention-cheat-sheet.

[15] Playwright. https://playwright.dev/.

https://www.addtoany.com/
https://chromestatus.com/metrics/feature/timeline/popularity/1824
https://chromestatus.com/metrics/feature/timeline/popularity/1824
https://babel.dev/
https://github.com/wrmelicher/ChromiumTaintTracking
https://github.com/wrmelicher/ChromiumTaintTracking
https://github.com/hackmdio/codimd
https://domclob.xyz/domc_wiki/defenses/
https://domclob.xyz/domc_wiki/defenses/
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato
https://github.com/SAP/project-foxhound
https://github.com/SAP/project-foxhound
https://github.com/mitmproxy/mitmproxy/pull/6952
https://github.com/mitmproxy/mitmproxy/pull/6952
https://github.com/google/google-api-javascript-client/
https://github.com/google/google-api-javascript-client/
https://hackmd.io
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://mitmproxy.org/
https://cheatsheetseries.owasp.org/cheatsheets/DOM_Clobbering_Prevention_Cheat_Sheet.html#dom-clobbering-prevention-cheat-sheet
https://cheatsheetseries.owasp.org/cheatsheets/DOM_Clobbering_Prevention_Cheat_Sheet.html#dom-clobbering-prevention-cheat-sheet
https://cheatsheetseries.owasp.org/cheatsheets/DOM_Clobbering_Prevention_Cheat_Sheet.html#dom-clobbering-prevention-cheat-sheet
https://cheatsheetseries.owasp.org/cheatsheets/DOM_Clobbering_Prevention_Cheat_Sheet.html#dom-clobbering-prevention-cheat-sheet
https://playwright.dev/

[16] TheThing Artifact. https://github.com/
SoheilKhodayari/TheThing.

[17] ALHUZALI, A., ESHETE, B., GJOMEMO, R., AND
VENKATAKRISHNAN, V. Chainsaw: Chained au-
tomated workflow-based exploit generation. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (2016),
pp. 641–652.

[18] ALHUZALI, A., GJOMEMO, R., ESHETE, B., AND
VENKATAKRISHNAN, V. {NAVEX}: Precise and scal-
able exploit generation for dynamic web applications. In
27th USENIX Security Symposium (USENIX Security
18) (2018), pp. 377–392.

[19] BENSALIM, S., KLEIN, D., BARBER, T., AND JOHNS,
M. Talking about my generation: Targeted dom-based
xss exploit generation using dynamic data flow analy-
sis. In Proceedings of the 14th European Workshop on
Systems Security (2021), pp. 27–33.

[20] CKEDITOR. https://ckeditor.com/.

[21] CORNELISSEN, E., SHCHERBAKOV, M., AND BAL-
LIU, M. Ghunter: Universal prototype pollution gad-
gets in javascript runtimes. In 33rd USENIX Security
Symposium (USENIX Security 24) (2024), pp. 3693–
3710.

[22] CZAGAN, D. Xss in gmail’s amp4email via dom
clobbering. https://research.securitum.com/
xss-in-amp4email-dom-clobbering/, 2019.

[23] HEIDERICH, M., SCHWENK, J., FROSCH, T., MAGA-
ZINIUS, J., AND YANG, E. Z. mxss attacks: Attack-
ing well-secured web-applications by using innerhtml
mutations. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security
(2013), pp. 777–788.

[24] JANC, A., AND WEST, M. Oh, the places you’ll go! find-
ing our way back from the web platform’s ill-conceived
jaunts. In 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW) (2020), pp. 673–
680.

[25] KANG, Z., LI, S., AND CAO, Y. Probe the proto: Mea-
suring client-side prototype pollution vulnerabilities of
one million real-world websites. In NDSS (2022).

[26] KHODAYARI, S., BARBER, T., AND PELLEGRINO, G.
The great request robbery: An empirical study of client-
side request hijacking vulnerabilities on the web. In
Proceedings of 45th IEEE Symposium on Security and
Privacy (2024).

[27] KHODAYARI, S., AND PELLEGRINO, G. It’s (dom)
clobbering time: Attack techniques, prevalence, and de-
fenses. In 2023 IEEE Symposium on Security and
Privacy (SP) (2023), IEEE, pp. 1041–1058.

[28] KIM, S., KIM, Y. M., HUR, J., SONG, S., LEE, G.,
AND LEE, B. {FuzzOrigin}: Detecting {UXSS} vul-
nerabilities in browsers through origin fuzzing. In 31st
usenix security symposium (usenix security 22) (2022),
pp. 1008–1023.

[29] KLEIN, D., BARBER, T., BENSALIM, S., STOCK, B.,
AND JOHNS, M. Hand sanitizers in the wild: A large-
scale study of custom javascript sanitizer functions. In
2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P) (2022), IEEE, pp. 236–250.

[30] KLEIN, D., AND JOHNS, M. Parse me, baby, one more
time: Bypassing html sanitizer via parsing differentials.
In 2024 IEEE Symposium on Security and Privacy (SP)
(2024), IEEE Computer Society, pp. 173–173.

[31] LEKIES, S., KOTOWICZ, K., GROSS, S., VELA NAVA,
E. A., AND JOHNS, M. Code-reuse attacks
for the web: Breaking cross-site scripting mitiga-
tions via script gadgets. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security (2017), pp. 1709–1723.

[32] LEKIES, S., KOTOWICZ, K., AND NAVA, E. V. Break-
ing xss mitigations via script gadgets. Black Hat USA
(2017).

[33] LEKIES, S., STOCK, B., AND JOHNS, M. 25 million
flows later: large-scale detection of dom-based xss. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security (2013), pp. 1193–
1204.

[34] LIU, Z., AN, K., AND CAO, Y. Undefined-oriented pro-
gramming: Detecting and chaining prototype pollution
gadgets in node. js template engines for malicious con-
sequences. In 2024 IEEE Symposium on Security and
Privacy (SP) (2024), IEEE Computer Society, pp. 121–
121.

[35] LMS, C. instructure/canvas-lms: The open lms by in-
structure, inc. https://github.com/instructure/
canvas-lms.

[36] LORING, B., MITCHELL, D., AND KINDER, J. Expose:
practical symbolic execution of standalone javascript. In
Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software
(2017), pp. 196–199.

https://github.com/SoheilKhodayari/TheThing
https://github.com/SoheilKhodayari/TheThing
https://ckeditor.com/
https://research.securitum.com/xss-in-amp4email-dom-clobbering/
https://research.securitum.com/xss-in-amp4email-dom-clobbering/
https://github.com/instructure/canvas-lms
https://github.com/instructure/canvas-lms

[37] LORING, B., MITCHELL, D., AND KINDER, J. Sound
regular expression semantics for dynamic symbolic ex-
ecution of javascript. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language
Design and Implementation (2019), pp. 425–438.

[38] MARTIN, M. C., AND LAM, M. S. Automatic genera-
tion of xss and sql injection attacks with goal-directed
model checking. In USENIX Security symposium
(2008), pp. 31–44.

[39] MELICHER, W., DAS, A., SHARIF, M., BAUER, L.,
AND JIA, L. Riding out DOMsday: Toward detect-
ing and preventing DOM cross-site scripting. In
Proceedings of the 25th Network and Distributed
System Security Symposium (2018).

[40] MOZILLA CONTRIBUTORS. Javascript, n.d. Accessed:
2024-08-31.

[41] PARAMESHWARAN, I., BUDIANTO, E., SHINDE, S.,
DANG, H., SADHU, A., AND SAXENA, P. Dexterjs:
Robust testing platform for dom-based xss vulnerabili-
ties. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (2015), pp. 946–
949.

[42] PENG, H., YAO, Z., SANI, A. A., TIAN, D. J., AND
PAYER, M. {GLeeFuzz}: Fuzzing {WebGL} through
error message guided mutation. In 32nd USENIX
Security Symposium (USENIX Security 23) (2023),
pp. 1883–1899.

[43] POCHAT, V. L., VAN GOETHEM, T., TAJAL-
IZADEHKHOOB, S., KORCZYŃSKI, M., AND JOOSEN,
W. Tranco: A research-oriented top sites ranking
hardened against manipulation. arXiv preprint
arXiv:1806.01156 (2018).

[44] RACK, J., AND STAICU, C.-A. Jack-in-the-box: An
empirical study of javascript bundling on the web
and its security implications. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and
Communications Security (2023), pp. 3198–3212.

[45] SEN, K., KALASAPUR, S., BRUTCH, T., AND GIBBS,
S. Jalangi: a tool framework for concolic testing, selec-
tive record-replay, and dynamic analysis of javascript.
In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (2013), pp. 615–
618.

[46] SHCHERBAKOV, M., BALLIU, M., AND STAICU, C.-
A. Silent spring: Prototype pollution leads to re-
mote code execution in node.js. In 32nd USENIX
Security Symposium (USENIX Security 23) (Anaheim,
CA, Aug. 2023), USENIX Association, pp. 5521–5538.

[47] SHCHERBAKOV, M., MOOSBRUGGER, P., AND BAL-
LIU, M. Unveiling the invisible: Detection and eval-
uation of prototype pollution gadgets with dynamic
taint analysis. In Proceedings of the ACM on Web
Conference 2024 (2024), pp. 1800–1811.

[48] SONG, S., HUR, J., KIM, S., ROGERS, P., AND LEE, B.
R2z2: Detecting rendering regressions in web browsers
through differential fuzz testing. In Proceedings of the
44th International Conference on Software Engineering
(2022), pp. 1818–1829.

[49] SONG, S., AND LEE, B. Metamong: Detecting
render-update bugs in web browsers through fuzzing.
In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering (2023),
pp. 1075–1087.

[50] STEFFENS, M. Understanding emerging client-side web
vulnerabilities using dynamic program analysis.

[51] STEFFENS, M., ROSSOW, C., JOHNS, M., AND STOCK,
B. Don’t trust the locals: Investigating the prevalence
of persistent client-side cross-site scripting in the wild.

[52] TINYMCE. https://www.tiny.cloud/.

[53] YU, F., ALKHALAF, M., AND BULTAN, T. Gen-
erating vulnerability signatures for string manipu-
lating programs using automata-based forward and
backward symbolic analyses. In 2009 IEEE/ACM
International Conference on Automated Software
Engineering (2009), IEEE, pp. 605–609.

https://www.tiny.cloud/

Appendices
A Case Studies
We now describe two case studies of zero-day gadgets found
by Hulk and show the challenges for the prior work to detect
or verify them.

Case Study 1: Webpack. The first case study, as shown
in Listing 3, is a gadget detected by Hulk in the Webpack
v5.93.0 library. The code shown in Listing 3 will be inter-
polated into bundles generated by Webpack for resolving
all user JavaScript files. The gadget is triggered at Line 11,
where the Webpack runtime uses doc.currentScript.src
as the base URL to load other resources, as shown in
Line 17. Unfortunately, doc.currentScript can be clob-
bered by attacker-injected HTML elements, such as . In this case, the attacker-
controlled string can be loaded from the src attribute of the
injected element and then assigned to scriptUrl. Conse-
quently, all subsequent JavaScript resources are loaded from
the attacker’s domain (Lines 17-19).

It is very challenging for tools like TheThing that rely on
static analysis to identify the source on line 11. This difficulty
arises from tracking the semantic type of variable document
through the dynamic feature on lines 2-5. Specifically, on line
9, the doc variable is initialized within the function scope. It is
loaded from webpack_require.g, an Immediately Invoked
Function Expression (IIFE) defined in lines 2-5 that returns
globalThis, which refers to the global window object. This
dynamic resolution prevents TheThing from identifying the
point-to relationship between the document variable and the
global window.document, leading to a failure in detecting the
clobberable source. However, Hulk determines all clobberable
sources dynamically at runtime, avoiding this issue.

1 /* Setting global variable for Webpack runtime */
2 __webpack_require__.g = (function() {
3 if (typeof globalThis === "object") return

↪→ globalThis; // return value = window
4 return this || new Function("return this")();
5 })();
6
7 /* Setting Autopath of Webpack runtime */
8 (() => {
9 var doc = __webpack_require__.g.document;

10 if (doc.currentScript)
11 var scriptUrl = doc.currentScript.src;
12 __webpack_require__.p = scriptUrl;
13 });
14
15 /* Resolving & Loading JS programs dynamically */
16 __webpack_require__.f.j = (chunkId , promises) => {
17 var url = __webpack_require__.p +

↪→ __webpack_require__.u(chunkId);
18 var script = document.createElement("script");
19 script.src = url;
20 };

Listing 3: A zero-day gadget case study from Webpack
v5.93.0 library.

We showcase severe end-to-end exploitation of this gadget

1 if (window.MathJax) {
2 window.MathJax = { AuthorConfig: window.MathJax }
3 } else { window.MathJax = {} }
4
5 window.MathJax.Ajax = {
6 fileURL: function(j) {
7 j = this.config.root + j.substr(i[1].length + 2)
8 };
9

10 loader: {
11 function(){
12 var script = document.createElement("script");
13 script.src = this.fileURL(k) + this.fileRev(j);
14 }
15 }
16 }
17
18 if (MathJax.AuthorConfig && MathJax.AuthorConfig.root)

↪→ {
19 MathJax.Ajax.config.root = MathJax.AuthorConfig.

↪→ root
20 }

Listing 4: A zero-day gadget case study from MathJax 2.7.9
library.

leading to stored XSS in Canvas LMS [35], a course manage-
ment system that is widely adopted by U.S. universities. We
found the platform allows low-privileged users (e.g. students)
to use certain script-less HTML markups in their posts on the
course discussion page. While Canvas properly sanitizes the
name attribute on most HTML tags, such as stripping it from
img tags, we found that the embed tag remains exploitable.
This exploit was uncovered because the list of exploits gener-
ated by Hulk is complete, following the constraints defined in
Table 1 and we tested all of them locally.

Case Study 2: MathJax2. The second case study, as shown
in Listing 4, is a gadget detected by Hulk in the MathJax
v2.7.9 library. This code snippet loads a URL base from the
user’s configuration and combines it with a URL path to load
third-party scripts into the document. The property lookup on
window.MathJax (line 3) returns underfind value, which is
clobberable by the attacker.

Note that when the method loader of MathJax.Ajax
is called, the clobberable source flows from
MathJax.AuthorConfig.root to the src attribute of
a script element in the document. The attacker can craft
such HTML element to clobber MathJax and make the
website load arbitrary scripts from a malicious base URL.

The prior work, TheThing, failed to detect and generate
working exploits for this gadget. The detection failure was
due to the inability to resolve the this keyword on line
9, which requires contextual information. Besides, even if
the TheThing could identify the flow, it couldn’t generate
the exploit to dynamically verify the gadget. This is be-
cause TheThing only considers the source pattern at the first
lookup, which is window.MathJax on line 3, for generat-
ing the exploit. However, the initial attacker-controlled value
will be saved at the window.MathJax.AuthorConfig, and
its root property is subsequently loaded on line 8. Note that,

simply identifying all the property lookups, e.g. MathJax.
AuthorConfig.root, in the program slices cannot gener-
ate the correct exploit—effectively window.MathJax.root—
without precisely modeling the data-flow constraints within
the gadgets.

We found that both JupyterLab and Jupyter Notebook use
the MathJax library to for math equations rendering. Addi-
tionally, there is HTML injection for their functional purposes.
By combining HTML injection in JupyterLab/Notebook with
DOM Clobbering gadgets in the MathJax library, we success-
fully achieved stored XSS attacks on both web applications.
We responsibly reported the vulnerability to the developers,
who have since patched it and assigned it with CVE-2024-
43805.

B Additional Details for DOM Clobbering Ex-
ploitation

Set HTML Tags

TNS1 svg, customtag, form, TNS4

TNS2 embed, form, iframe, image, img, object

TNS3 button, embed, fieldset, iframe, image, img, input, object, output, select, textarea

TNS4 a, abbr, acronym, address, applet, area, article, aside, audio, b, base, basefont, bdi, bdo, bgsound,
big, blink, blockquote, br, button, canvas, center, cite, code, command, content, data, datalist, dd,
del, details, dfn, dialog, dir, div, dl, dt, element, em, embed, fieldset, figcaption, figure, font, footer,
h1, header, hgroup, hr, i, iframe, image, img, input, ins, isindex, kbd, keygen, label, legend, li,
link, listing, main, map, mark, marquee, menu, menuitem, meta, meter, multicol, nav, nextid, nobr,
noembed, noframes, noscript, object, ol, optgroup, option, output, p, param, picture, plaintext, pre,
progress, q, rb, rp, rt, rtc, ruby, s, samp, script, section, select, shadow, slot, small, source, spacer,
span, strike, strong, style, sub, summary, sup, table, template, textarea, time, title, track, tt, u, ul,
var, video, wbr, xmp

Table 5: List of HTML tags used in Table 1 that share the
same DOM Clobbering behavior.

Built-in Object Method Arg./Base

Object Object.prototype.toString base

String String.prototype.constructor arg0

String String.prototype.anchor arg0

String String.prototype.concat any arg

String String.prototype.fontcolor arg0

String String.prototype.fontsize arg0

String String.prototype.link arg0

Array Array.prototype.join arg0

Array Array.prototype.toLocaleString inside base

Array Array.prototype.toString inside base

/ encodeURIComponent arg0

/ decodeURIComponent arg0

/ encodeURI arg0

/ decodeURI arg0

Table 6: List of JavaScript/DOM built-in methods that achieve
the DOM-to-String conversion, through explicit or implicit
toString calls. means the feature is deprecated according
to MDN web docs [40].

Attr. Tags Attr. Tags
download a clear br

background body face font

acceptCharset form cols, rows frameset

color hr version html

srcdoc iframe lowsrc img

accept,
max, min,
pattern, step,
defaultValue

input behavior,
bgColor,
direction

marquee

httpEquiv, con-
tent, scheme

meta data, archive,
code, standby,
codeBase,
codeType

object

valueType param cite blockquote

integrity, event script headers, abbr,
axis

td

border,
frame, rules,
summary

table wrap textarea

dateTime time kind, srclang track

poster video href, rel a, area, link

origin,
protocol,
username,
password,
host, host-
name, port,
pathname,
search, hash,
coords, shape

a, area target a, area, base, form, link

title, lang, ac-
cessKey

a, area, audio, base,
blockquote, body, br, button,
canvas, caption, col, data,
datalist, details, dialog, dir, div,
dl, embed, fieldset, font, form,
frame, frameset, h1, head, hr,
html, iframe, img, input, label,
legend, li, link, map, marquee,
menu, meta, meter, object, ol,
optgroup, option, output, p,
param, picture, pre, progress,
script, select, slot, source,
span, style, table, td, template,
textarea, thead, time, title, tr,
track, ul, unknown, video

id, className,
slot,
nodeValue,
textContent,
innerHTML,
innerText,
outerHTML,
outerText

a, area, audio, base,
blockquote, body, br, button,
canvas, caption, circle, col,
data, datalist, details, dialog,
dir, div, dl, embed, fieldset,
font, form, frame, frameset,
h1, head, hr, html, iframe, img,
input, label, legend, li, link,
map, marquee, menu, meta,
meter, object, ol, optgroup,
option, output, p, param,
picture, pre, progress, script,
select, slot, source, span,
style, svg, table, td, template,
textarea, thead, time, title, title,
tr, track, ul, unknown, video

hreflang, rev a, link type a, embed, li, link, object, ol,
param, script, source, style, ul

charset a, link, script name a, button, embed, fieldset, form,
frame, iframe, img, input, map,
meta, object, output, param, se-
lect, slot, textarea

alt area, img, input src audio, embed, frame, iframe,
img, input, script, source, track,
video

preload audio, video formTarget button, input

value button, data, param align caption, col, div, embed, h1, hr,
iframe, img, input, legend, ob-
ject, p, table, td, thead, tr

contentEditable,
enterKeyHint

blockquote, caption, col,
embed, fieldset, font, form,
frame, frameset, h1, head, hr,
html, iframe, img, input, label,
legend, li, link, map, marquee,
menu, meta, meter, object, ol,
optgroup, option, output, p,
param, picture, pre, progress,
script, select, slot, source,
span, style, table, td, template,
textarea, thead, time, title, tr,
track, ul, unknown, video

width col, embed, hr, iframe, mar-
quee, object, table, td

height embed, iframe, marquee, ob-
ject, td

size font, hr

scrolling,
frameBorder

frame, iframe longDesc frame, iframe, img

srcset, sizes img, source useMap img, input, object

autocomplete,
dirName,
inputMode,
placeholder

input, textarea htmlFor label, script

media link, source, style label optgroup, track

ch, chOff,
vAlign

col, td, thead, tr

Table 7: List of HTML tags with reflected DOMString type
attributes that helps to achieve the DOM-to-String conver-
sion through property lookup.

C System Implementation

Figure 5: The setup of gadget detection and verification phases
of our implementation of Hulk.

D Taint Source & Taint Sink

Object DOM Clobbering Source Condition

v v and window.v are not assigned before, v is
not declared with var, let and const before.

window.v v and window.v are not assigned before, v is not
declared with var afterwards within the same
script or anywhere before

document.v document.v is not assigned before or it has
browser-defined semantics but can be shadowed
by the named DOM elements.

Table 8: Summary of DOM Clobberable sources. The list
follows the rule defined by the prior work [27]. Note that,
unlike the prior work, we do not differentiate whether v is
a native property in the v and window.v cases, as we found
that native properties are clobberable only when they return
undefined and cannot be shadowed.

Conseq. Threat Sink Pattern

Code
Execution

Loading arbitrary scripts from
attacker-controlled domain

script.src = T
import(T)

Executing code dynamically
constructed from attacker-
controlled string

eval(T)
new Function(T)
setTimeout(T)
setInterval(T)
script.innerHTML = T

Request
Forgery

Hijacking Websocket Connec-
tions

new WebSocket(T)

Manipulating Asynchronous
Requests as the first-party

fetch(T)
XMLHttpRequest.open(T)
xhr.send(T)

Open
Redirection

Redirecting the window to
other domains through top-
level navigation

window.open(T)
window.location=T
location.href=T
location.replace(T)
location.assign(T)

Cookie
Manipulation

Injecting the arbitrary value to
user cookie

document.cookie=T

Storage
Manipulation

Injecting the arbitrary value to
user storage

localStorage.setItem(T)
sessionStorage.setItem(T)

Letter T in the Sink Pattern column refers to a tainted value.

Table 9: Summary of client-side sinks supported by Hulk.
The list is obtained by aggregating the sinks from existing
literature [26, 27, 34]

	Introduction
	Overview
	A Motivating Example
	Threat Model

	Design
	System Architecture
	Gadget Detection
	Taint Representation
	Taint Propagation
	Taint Sources & Sinks

	Exploit Generation
	Concolic Execution on Taint Dependency Graph
	Symbolic DOM
	DOM Constraints Modeling
	Constraints Merging & Solving

	Gadget Verification

	Implementation
	Evaluation
	Experimental Setup
	RQ1: Zero-day Gadgets
	RQ2: Hulk vs. TheThing
	Performance

	Discussion and Limitation
	Related Work
	Conclusion
	Ethical Discussion and Open Science
	Case Studies
	Additional Details for DOM Clobbering Exploitation
	System Implementation
	Taint Source & Taint Sink

