
A Framework for Designing Provably Secure Steganography

Guorui Liao, Jinshuai Yang, Weizhi Shao, and Yongfeng Huang

Tsinghua University

Abstract
Steganography is a technique to transmit secret messages

over a public channel so that the very existence of these se-
cret messages can not be detected. In this field, provably
secure steganography based on shared white-box samplers is
a major focus due to its capability to construct secure and ef-
ficient steganographic systems on various practical channels.
However, designing a novel provably secure steganography
scheme remains challenging, since the scheme must maintain
a nearly identical sampling distribution to any given discrete
distribution while embedding secret information. Currently,
there are only a few provably secure steganography schemes
available, which significantly limits both practical applica-
tion and theoretical research. In this paper, we propose a
framework for designing provably secure steganography, with
the universal security proof for schemes derived from this
framework. This framework decomposes the overall complex
design into three sub-processes that can be relatively easily
achieved, namely Probability Recombination Module, Bin
Sampling and Uniform Steganography Module. With this
framework, we present several new provably secure steganog-
raphy schemes and demonstrate that the recent work, Dis-
cop(base), is also encompassed by this framework. Addition-
ally, guided by this framework, we have identified several
schemes that are theoretically optimal or very effective under
specified metrics and validated their effectiveness through
experimental verification.

1 Introduction

Privacy security, particularly the right to unmonitored commu-
nication in cyberspace, suffers severely from the proliferation
of surveillance and censorship [16, 17, 25, 33]. In response to
these rising cyberspace threats, encryption-based techniques
have been widely used in cyberspace communication systems.
They aim to protect the privacy of transmitted content by
thwarting content censorship through end-to-end encrypted
communication [6, 11], or to anonymize identities to circum-
vent surveillance, as seen with technologies like Tor [13, 29].

However, the protection offered by these technologies has
its limits. Traffic from Tor is easily identifiable [23, 24, 31],
which can lead authorities to easily detect and block such com-
munications outright. Additionally, in settings where strict
control is imposed, there may be a requirement for only plain-
text transmissions, disallowing any encrypted communication
if the content cannot be verified. This issue arises because
these technologies do not conceal the fact that a communi-
cation is taking place, exposing it to potential disruptions.
Furthermore, they often imply the existence of sensitive in-
formation, potentially leading to enhanced monitoring.

Thus, to counteract stringent content censorship, steganog-
raphy offers a solution: hiding the very existence of secret
messages during their transmission so that a third party (es-
pecially the monitor) cannot detect them [18]. One method
achieves this by disguising secret messages as seemingly
normal data, termed stegotext, within their respective commu-
nication channels, such as texts [36, 40] in natural language
channels or images [8] in visual channels. The actually nor-
mal data, such as appropriate text in a talking scene or le-
gitimate network traffic, is termed covertext. Informally, this
process can be described as generating/sampling stegotext to
act as the carrier for secret messages, thus called generative
steganography [1]. For a sufficiently normal-looking stego-
text that cannot be distinguished from covertext, censorship
continues as usual, yet without any detection of abnormalities.
Additionally, there is no effective way to only terminate the
steganographic communication without also terminating all
normal communication in the channel, thus circumventing
the problems mentioned earlier.

A representative application example of generative
steganography is its use within natural language channels
[36,40,42,43], driven by the desire to securely and efficiently
embed secret information within the most common human
communication. In practice, security often solely involves
avoiding unusual linguistic expressions or vocabulary. How-
ever, relying solely on the empirical security measures can
hardly be convincing and is easily detected, whether for text
or other carriers [20, 37, 41, 44].

In order to implement secure steganography, researchers
have proposed a variety of steganography models under dif-
ferent settings to describe steganography and its security
[7, 18, 19]. Researchers consistently describe the process of
generating covertext (or stegotext) as being accomplished
through a sampler (or steganographic sampler) within the
channel, making the nature of the sampler a crucial setting. In
modern days, with the development of AI-generated content
(AIGC), white-box samplers with explicit discrete distribu-
tions have emerged (e.g., large language models for natural
language channels [3,14,21,34], simulations for network traf-
fic channels [26]) and are considered capable of effectively
sampling covertext within the channel. Therefore, considering
practical applications, researchers are currently focusing on a
provably secure symmetric steganography model under the
white-box sampler setting [22]. This steganography model is
often referred to simply as Provably Secure Steganography
in some literature [12, 27], a term we will adopt in this paper.

However, constructing schemes within this steganography
model remains a difficult task. Each scheme must meet rig-
orous standards of security and universality. This means a
provably secure steganography scheme must not only achieve
computational indistinguishability against chosen hiddentext
attacks by ppt. (probabilistic polynomial-time) adversaries
but also maintain applicability across various discrete distri-
butions determined by white-box samplers within the channel.
This dual requirement makes designing such schemes one
of the most challenging theoretical problems in the field of
steganography. Notably, such schemes are applicable in any
channel equipped with a white-box sampler, thereby repre-
senting some of the most important and universally relevant
issues in steganography. Currently, only a few schemes like
Meteor [22] and Discop [12] have managed to meet these
criteria based on secure PRG (Pseudorandom Generators)
and achieve practical implementation. Due to the numerous
factors influencing steganography, these schemes do not per-
form optimally in all metrics and situations, such as capacity
within uniform distributions. Moreover, the limited variety of
available scheme options fails to meet the diverse demands
of practical applications. This scarcity also hinders further
exploration into the theory of such steganography model.

In this paper, we introduce a framework for constructing
provably secure steganography schemes. This framework al-
lows us to easily construct provably secure steganography
schemes based on two simple modules. We recognize that
this proposed framework does not encompass all provably
secure steganography schemes, but this proposed framework
still enables us to develop schemes that excel or achieve opti-
mal in some specific metrics of common concerns.

The observation is that the difficulty in constructing a prov-
ably secure steganography scheme is partly due to the chal-
lenge of achieving validity across different distributions. If
we can, by some means, transform the task of constructing
such a scheme universally applicable to any distribution into

constructing one applicable only to specific distributions, we
can then focus our efforts on building steganography with se-
curity tailored for those specific distributions, which is easier.
This is the function of the two main modules of our frame-
work. The first module simplifies the task through probability
recombination. In the second module, we only need to design
a steganography scheme for the uniform distributions. These
two modules are interconnected through a sampling opera-
tion. We provide a universal security proof for steganography
schemes produced by this framework under the assumption
of secure PRG. Additionally, we give some different mod-
ule constructions that can be combined into various provably
secure steganography schemes and demonstrate that the con-
struction equivalent to the recent scheme Discop(base) can be
derived within our framework. Finally, under the guidance of
our framework, we construct provably secure steganography
schemes that excel in terms of capacity, stability, and time
complexity.

Contributions The contributions of this work can be sum-
marized as follows:

• We propose a novel framework for designing new prov-
ably secure steganography schemes which makes the
design process easier and we provide a security proof,
demonstrating that all steganography derived from our
framework are provably secure steganography schemes.

• We introduce many novel provably secure steganogra-
phy schemes with this proposed framework. Addition-
ally, we also clarify that the recently proposed scheme
Discop(base) can be derived from our framework.

• Under the guidance of our framework, we have devel-
oped provably secure steganography schemes optimized
for key metrics such as capacity, stability, and time com-
plexity. We have both theoretically derived and exper-
imentally validated the performance of these schemes,
demonstrating that they achieve or closely approach op-
timal performance in certain scenarios.

Organization Section 2 details the background of provably
secure steganography, including its history, definition, and
related works in practice. Section 3 describes the proposed
framework and the accompanying security proof. Section 4 in-
troduces typical derivative constructions based on our frame-
work and explains why Discop(base) can be considered a
construction derived from our framework. Section 5 discusses
the design of schemes tailored to key performance metrics,
such as capacity, stability, and time complexity. This section
also includes comparisons with existing schemes across these
metrics. Finally, Section 6 presents our conclusions.

2 Background and Related Work

2.1 Classic Steganography Model

Information-Theoretic Model The earliest formal defi-
nition of a steganography model comes from Cachin [7],
who defined “perfectly secure steganography” and “ε-secure
steganography” based on information-theoretic security. In
this model, both covertext PC and stegotext PS are treated
as random variables, enabling the problem of distinguishing
between them to be analyzed using hypothesis testing theory.

In this model, a scheme satisfying

KL(PC||PS) = ∑
v∈V

PC(v) log
PC(v)
PS(v)

≤ ε

is termed “ε-secure steganography”. Here, KL(PC||PS) de-
notes the Kullback-Leibler divergence (KLD). When ε = 0,
the scheme is termed “perfectly secure steganography”, indi-
cating that the distributions of the two random variables are
identical, and thus indistinguishable to third parties.

Universal Steganography Models Like most cryptosys-
tems, achieving a perfectly secure scheme in steganography
is practically unrealistic; hence, steganography shifted to-
wards definitions based on computational security. The fun-
damental intuition of these security definitions is that a ppt.
(probabilistic polynomial-time) adversary cannot distinguish
stegotext from covertext. Unlike most cryptosystems, how-
ever, stegosystems involve the nature of the communication
channel itself and the interaction between the communicating
entities and the channel.

Hopper et al. [18, 19] were the first to formalize these set-
tings in steganography, defining the communication channel
as a series of random variables and describing how commu-
nicating parties could interact with the channel through an
oracle. In Hopper’s setup, the monitor has complete knowl-
edge of the communication channel, the information sender
can only sample from the channel through an oracle, and the
receiver has no prior knowledge of the channel. This is known
as the universal steganography model.

Subsequent work has proposed many schemes building on
this model [2, 4, 5, 35]. However, there are some significant
limitations. These schemes, built on black-box samplers (ora-
cle) and relying on the rejection sampling, often depend on
strong assumptions: 1. Informative channel; 2. Unbiased hash
function. In practice, it has been shown that such assumptions
are not reasonable in some channels [22], and these schemes
also have extremely low capacity. Additionally, obtaining an
oracle is still a problem at that time, hence often impractical
to apply.

2.2 Provably Secure Steganography

The first practical application of generative steganography
came from the natural language processing (NLP) community
[9,15,32,40,42,43], where researchers sought to convey secret
messages through natural language while ensuring normal
linguistic expression. They used highly successful generative
language models [3,21,28], which can predict the distribution
of the next token (that is, punctuation mark, emoji, part of
word, word and so on) based on a given sequence of tokens.
Coupled with suitable mapping algorithms (where part of
the tokens represent secret information ‘1’, and others ‘0’),
which serve as an alternative to random sampling, this method
enables the transmission of secret messages in textual form.

However, these efforts primarily focused on fluid and rea-
sonable linguistic expression without considering security
aspects. In fact, most of these algorithms significantly alter
the channel distribution, making them easily distinguishable
by statistical and machine learning methods [37–39, 41, 44].
Therefore, this period’s work can hardly be considered secure
stegosystems.

Kaptchuk et al. [22] extended the ideas of the universal
steganography model and re-formalized the intuitive concepts
derived from the works of NLP researchers, which include the
capability to acquire explicit distributions during the sampling
process (white-box sampler), contrasting with the reliance
on a black-box oracle that only allows sampling. Both the
sender and receiver have access to these distributions. This
steganography model, which leverages the symmetric access
to channel distributions, is referred to as the provably secure
symmetric steganography model, or simply Provably Secure
Steganography [12]. And for completeness in our discussion,
we include here the formal definitions provided by [22]:

2.2.1 Definition

A provably secure steganography scheme ΣD , under a cover-
text channel distribution D, consists of a triple of possi-
bly probabilistic algorithms. These are denoted as ΣD =
(KeyGenD ,EncodeD ,DecodeD).

• KeyGenD(1λ): An algorithm takes an input of arbitrary
length λ and generates K, a key that will be used in the
other two algorithms.

• EncodeD(K,M,H): An algorithm that accepts a key K,
a secret message M, and the channel history H . This
algorithm returns a stegotext S which is a sequence of
covertext symbols.

• DecodeD(K,S,H): An algorithm that accepts a key K,
a stegotext S, and the channel history H . This algorithm
returns the secret message M on success or the empty
string ε on failure.

Correctness A scheme must ensure correctness, meaning
that, with only a negligible probability of error, an encoded
message should be recoverable by the decoding algorithm:

Pr[DecodeD(K,EncodeD(K,M,H),H)=M]≥ 1−negl(λ).

Security A scheme must ensure security against chosen
hiddentext attacks, meaning that, for all ppt. adversaries AD ,
the following inequality holds:∣∣∣Pr

[
AEncodeD (K,·,·)

D = 1
]
−Pr

[
AOD (·,·)

D = 1
]∣∣∣< negl(λ),

where OD(·, ·) is an oracle capable of randomly sampling
from the distribution D .

Notably, channel distribution D is used to describe the
overall channel (a series of random variables). At each time
step, we denote the corresponding distribution by D←D(H)
to distinguish it. Additionally, we refer to the symbols of
covertext as tokens. Therefore, each D is essentially a discrete
probability distribution defined over the vocabulary of tokens.
In practice, the EncodeD /DecodeD consists of sequential
time-step encode and decode operations. Each time-step op-
eration takes the time-step distribution D as input and outputs
either the selected token or the secret bits.

As in most previous works [12, 35, 42], we assume that
the secret message is a sufficiently long encrypted bit stream.
This implies that each bit in the message can be considered
independent and random.

2.2.2 Practical Schemes

Meteor Kaptchuk et al. [22] developed the first stegano-
graphic scheme—Meteor—that satisfies this definition. The
scheme utilizes a secure Pseudo-Random Generator (PRG)
to share random bits at each time step of steganographic
sampling, acting as a mask for the secret information. This
masked secret information is then treated as a random number
for sampling and is decoded deterministically using a Ranged
Randomness Recoverable Sampling Scheme, akin to arith-
metic coding. This approach offers excellent practical security
with small additional time overhead. However, there is still
room for improvement in capacity. An improvement based on
reorder (Meteor-reorder) significantly enhances capacity, but
it also substantially increases the time required.

Discop Ding et al. [12] introduced a new scheme Dis-
cop(base), where at each time step of sampling, the sender and
receiver construct “distribution copies”. The secret message
is then used to determine which “distribution copies” to use,
and a shared random number generated by a secure PRG is
employed to select a token within the chosen “distribution
copy”. The authors also employed an iterative method based
on the Huffman tree to further enhance the capacity, referred
to as Discop(Huffman). Experimental results demonstrated
an exceptionally high utilization rate of entropy.

iMEC Another related steganographic scheme is iMEC
[10],which explores how much information the sender and re-
ceiver can deduce about a fixed-length secret message through
a chosen token and aims to maximize and accumulate this
information until the secret message is fully determined. How-
ever, this method does not fully satisfy the definition of prov-
ably secure steganography, as it involves an unavoidable error
rate related to the channel distribution, which may be non-
negligible, especially when the channel length is limited. Be-
sides, the computational efficiency of iMEC is extremely low,
making it difficult to be practically implemented in a large
token vocabulary situation. Despite these limitations, this ap-
proach still offers significant insights for the development of
provably secure steganography.

3 Our Framework and Its Security Proofs

As previously mentioned, the challenges involved in construct-
ing provably secure steganography schemes have resulted in
a limited number of existing solutions. In this section, we
introduce a framework designed to simplify this process.

One of the challenges in designing provably secure
steganography schemes arises from the need for universal-
ity—that is, the scheme must be valid across the entire cover-
text channel distribution D , where each time-step distribution
D can be any arbitrary discrete distribution. Thus, a natural
aspiration is to "simplify" the requirement for any arbitrary
discrete distribution through some efficient algorithm to only
need to accommodate some specific distributions. Generally,
only constructing a scheme valid for specific distributions is
much simpler than designing a universal one.

Our framework describes this “simplified” methodology
and demonstrates how to construct a provably secure steganog-
raphy scheme from both a “simplified” scheme and a
steganography scheme valid only for uniform distributions. In
our framework, the “simplified” methodology involves Prob-
ability Recombination Module and Bin Sampling, while
the provably secure steganography scheme for specific dis-
tributions is described in Uniform Steganography Module,
see Figure 1.

The main idea of the Probability Recombination Module at
each time step is to transform a complex discrete probability
distribution D into a collection of uniform distributions. Bin
Sampling then select one uniform distribution from this using
random numbers shared by communication entities. Finally,
the Uniform Steganography Module needs only to implement
a provably secure steganography scheme valid for the selected
uniform distribution.

3.1 Probability Recombination Module
This module describes a class of schemes that decompose and
recombine the probability values of any arbitrary discrete dis-
tribution into a set of non-overlapping uniform distributions.

Probability
Recombination

Bin
 Sampling

Uniform
Steganography

Secret Message
 0100101…

Probability Distribution

Chosen Token

Steganography
Sampler

1
2 3

4
token

probability 1
2 3

4

token

probability

Decomposed
by Blocks

Recombination1

2 3

4

token

probability

1
3

1

2 3

4

bin

probability
1

3

1 2 3

Sample a Bin
probabilistically1

2 3

4

bin

probability1

3

1 2 3

1

2 3

4

bin

probability1

3

1 2 3

Chosen Bin

1
1 3 4

token

probability

Secret Message
 0100101…

Chosen Token

Uniform Distribution

Uniform
Steganography

Shared Key

encode

decode

PRG

Figure 1: The illustration of the overall framework.

Specifically, it takes as input an arbitrary discrete distri-
bution D = [p1, p2, .., pn] where ∑

n
j=1 p j = 1. In this module,

the probability p j of each token j is decomposed into several
non-negative pk

j, where p j = ∑k pk
j and each pk

j is termed a
block of token j. For example, if a token has a probability of
0.5, it could be decomposed into blocks 0.4 and 0.1. Note that,
the decomposition can be performed arbitrarily. Subsequently,
we combine blocks from different tokens into bins according
to the following principles:

1. Each block must be assigned to exactly one bin.

2. Blocks within a bin must have equal probability values.

3. No token can have more than one block in the same bin.

We denote the set of bins by G = {Gi}i≤N , where Gi is a
certain bin. And if a block pk

j of token j was assigned to the
bin Gi, we express this relationship as pk

j ∈ Gi. Thus the 3
principles above can be formulated as:

1. For any pk
j there exists Gi such that pk

j ∈ Gi.

2. For any i and pk1
j1 , pk2

j2 ∈ Gi, it holds that pk1
j1 = pk2

j2 .

3. For any i and j, pk1
j , pk2

j ∈ Gi indicates k1 = k2.

Then, the output of the probability recombination module is
the set of bins G .

For ease of discussion, the probability of a bin P[Gi] is
defined as the sum of the probabilities of the blocks it con-
tains, and we use DG = [P[G1],P[G2], ...,P[GN]] to represent

the distribution of these bins. This formulation is a valid dis-
tribution due to the first principle. Additionally, we denote
Ti as the set of tokens from which a block is derived before
assigned to Gi, and define TG = {Ti}i≤N .We can observe that
the pair(DG ,TG) also serves as an equivalent representation
of G .

For instance, consider a probability distribution with “A”
at 0.5, “B” at 0.4, and “C” at 0.1. One feasible approach to
recombination might involve splitting “A” into blocks of 0.4
and 0.1, while treating “B” and “C” as individual blocks. Con-
sequently, the first bin could include the 0.4 block from “A”
combined with the block from “B”, and the second bin could
consist of the 0.1 block from “A” combined with the block
from “C”. This configuration adheres to the three principles:

Bin 1 : G1 = [0.4A,0.4B] Bin 2 : G2 = [0.1A,0.1C]

The resulting distributions for the bins and the corresponding
token sets are

DG = [0.8,0.2],TG = [{A,B},{A,C}].

Through this module, we achieve a recombination of the
original probability distribution D of tokens into a new proba-
bility distribution DG of bins. Moreover, by considering the
blocks within each bin, we ensure a uniform distribution (due
to the second principle).

We refer to a specific implementation that fulfills these
requirements across all discrete distributions as a “Probability
Recombination Scheme”. Some implementations are intro-
duced in Section 4.2.

3.2 Bin Sampling

The Bin Sampling takes as input the bins G from the Proba-
bility Recombination Module and samples a bin Gi as output,
based on its distribution DG . To facilitate this sampling, a
secure PRG is employed, with the key shared between the
sender and the receiver. This shared key ensures that at each
time step, both parties can generate the same pseudo-random
number in range (0,1]1. To determine which bin is sampled,
the range (0,1] is divided into intervals corresponding to
the bins in G based on the probabilities in DG . The pseudo-
random number is then used to identify the bin by finding the
interval it falls into. Consequently, both the sender and the
receiver can determine which bin was sampled at each time
step.

3.3 Uniform Steganography Module

We use the term “uniform steganography” to denote a weak-
ened version of provably secure steganography. The only
difference is that the conditions which previously had to be
met for all discrete distributions now only need to be satisfied
for uniform distributions. In other words, all the distributions
D in the covertext channel distributions D are uniform distri-
butions.

At each time step, the Uniform Steganography Module
takes a bin Gi as input from the Bin Sampling. Given that the
distribution of blocks in Gi can be considered as a uniform
distribution, this module functions effectively under these con-
ditions. Using the time-step encoding algorithm of a uniform
steganography scheme, this module can take a secret message
as input, steganographically sample a block pk

j from Gi and
then output the token j from which the block originated.

It also takes a token j as input, identifies the only block pk
j

that comes from j within the bin Gi (due to the third principle),
and decodes the secret message using the time-step decoding
algorithm of the same uniform steganography scheme.

For instance, consider the scenario where Bin 1: G1 =
[0.4A,0.4B] is sampled during Bin Sampling. This bin can
then be viewed as a 2-uniform distribution [0.5,0.5] with the
token set {A,B}. In this simplified uniform distribution, we
could employ a straightforward steganography: choose token
“A” when the secret bit is ‘0’, and choose token “B” when the
secret bit is ‘1’, without distorting the original distribution.

3.4 Integration of Modules

At each time step, sequentially chaining a Probability Recom-
bination scheme PR, Bin Sampling, and a Uniform Steganog-
raphy scheme US (with the time-step encoding algorithm
USE and decoding algorithm USD) yields the correspond-
ing time-step encoding/decoding algorithm, which, when

1A finite-length bit stream can represent a fraction in binary.

Algorithm 1 EncodePR,US
D

Input: Key KPRG and KUS, Secret Message M, History H
Output: Stegotext S

1: S← “ ”
2: PRG.set_key(KPRG)
3: while not the end of S do
4: D←D(H ||S) ▷ Time-Step Distribution
5: G ← PR(D) ▷ Probability Recombination
6: Gi← Sample(G ,PRG) ▷ Bin Sampling
7: s,c← USE(Gi,KUS,M) ▷ Uniform Steganography
8: M←M[c :],S← S∥s
9: end while

10: return S

applied step-by-step across all time steps, forms the En-
codeD /DecodeD algorithm, shown as Algorithm 1 and Algo-
rithm 2. Additionally, another intuitive diagram demonstrating
this integration at each time step is provided in Figure 1.

Algorithm 2 DecodePR,US
D

Input: Key KPRG and KUS, Stegotext S, History H
Output: Secret Message M

1: PRG.set_key(KPRG)
2: n← 0
3: M← “ ”
4: while n < |S| do
5: D←D(H ||S[: n]) ▷ Time-Step Distribution
6: G ← PR(D) ▷ Probability Recombination
7: Gi← Sample(G ,PRG) ▷ Bin Sampling
8: s← S[n]
9: M←M||USD(Gi,KUS,s) ▷ Uniform Steganography

10: n← n+1
11: end while
12: return M

Correctness Noting the symmetry, the chosen bin Gi at
each time step is identical for both the encoding and decoding
algorithms. Therefore, the overall correctness is guaranteed
by the correctness of the uniform steganography scheme used.

3.5 Security Proofs

Before delving into formal proofs, let us gain an intuitive
understanding of the security of this framework through an
informal proof.

(Informal Proof) At each time step, the probability Pstego[i]
of token i being selected within our steganography framework
can be calculated as:

Pstego[i] = ∑
G j∈G

PBS[G j] ·PUS[i | G j]

≈ ∑
j: ∃k, pk

i ∈G j

P[G j] ·
1
|G j|

= ∑
k

pk
i = pi.

(1)

Here, PBS[G j] represents the probability of selecting bin G j
during the Bin Sampling, and PUS[i | G j] denotes the proba-
bility of selecting token i’s block after G j has been chosen
during the Uniform Steganography Module. The approxi-
mation arises because Bin Sampling functions similarly to
random sampling based on bin’s probability, and Uniform
Steganography Module mimics random sampling within a
uniform distribution due to its security. The third equality
follows from the definition of P[G j] given in Section 3.1.

Therefore, this steganographic sampler does not change
the original distribution D at each time step. In addition, the
parameters used for each time-step sampling are independent.
This independence ensures that the overall channel distribu-
tion D remains unchanged, thus preventing an attacker from
distinguishing between random sampling and steganographic
sampling outcomes.

Formally, to demonstrate that the two distributions D and
D̂, which are derived from OD(·, ·) and EncodeD(K, ·, ·) re-
spectively, are computationally indistinguishable, we define a
sequence of hybrid distributions as D := H0,H1,H2,H3 =: D̂ .
The transformations between these hybrids are constructed as
follows:

• H0 is constructed by randomly sampling tokens from
each time-step distribution D and concatenating them,
which is exactly the sampling result of the channel dis-
tribution D .

• H1 differs from H0 in the sampling method at each time
step. Instead of randomly sampling a token from the
time-step distribution D, H1 is obtained by first employ-
ing the probability recombination module to generate
G , then sampling a bin according to its probability, and
finally sampling a block within the bin based on its prob-
ability to determine the corresponding token.

• H2 differs from H1 in that the probabilistic random sam-
pling of the bin is replaced with the Bin Sampling de-
scribed in Section 3.2.

• H3 is modified from H2 by replacing the sampling of
the block with Uniform Steganography Module, which
corresponds to the EncodeD(K, ·, ·).

Note that H0 = H1 is directly proven by Equation 1 in the
informal proof. If there exists an adversary A with a non-
negligible advantage in distinguishing H1 from H2 , we can
construct a polynomial-time adversary B distinguishing be-
tween the outputs of the oracle O(·), which produces true

randomness, and the outputs of a secure PRG. Adversary B
runs A as a subroutine and simulates responses for A fol-
lowing the behavior of H0 or H1, where the randomness for
selecting the bin is either sourced from O(·) or the secure
PRG. By making B output the same guess as A , B has the
same, non-negligible advantage. However, the assumption of
a secure PRG ensures that no such adversary B exists, which
implies that A also cannot exist. Similarly, if H2 and H3 were
distinguishable, It would be trivial to construct an effective
adversary with a non-negligible advantage in distinguishing
the sampling results from a channel distribution D ′, where
all time-step distributions are uniform, and the corresponding
steganographic outputs. This would violate the security of the
uniform steganography scheme used.

Thus, based on the assumption of secure PRG and the
security of the uniform steganography scheme, we have:

D := H0
p
= H1

c
≈ H2

c
≈ H3 =: D̂.

The security proof above confirms that any steganography
scheme developed within this framework adheres to the corre-
sponding security definition outlined in Section 2.2.1. Conse-
quently, by employing any probability recombination scheme
and uniform steganography within this framework, we can
establish a provably secure steganography scheme.

4 Typical Implementations of the Framework

In this section, we present several implementations of proba-
bility recombination and uniform steganography schemes,
which can be used to construct various provably secure
steganography schemes within our framework. At the end
of this section, we will also briefly discuss why recently pro-
posed scheme Discop(base) [12] can be considered a specific
case within our framework.

4.1 Notation

For clarity in the following discussion, we adopt the follow-
ing notations: U(n) denotes the uniform distribution with n
tokens. U(1,n) signifies the uniform distribution over the in-
tegers from 1 to n. The modulo operation is represented by
“ mod ”, where “a mod b” is the remainder of a divided by b,
with the result adjusted to range from 1 to b by default. The
function floor(x) returns the largest integer less than or equal
to x. The function int2bits(x, k) converts an integer x into its
binary representation with k bits, for example int2bits(2, 2)
= ‘10’. Conversely, bits2int(bits) converts a binary string bits
back into an integer. The notation [: n] refers to the first n
items of a list. The operator || represents the concatenation of
strings. The symbol | · | represents the number of elements in
a set.

1 2
3 4

Token

Probability

Decompose Recombination

1 2
3 4

Token

Probability

1
2
3
4

Bin

Probability

1
2
3

1

2

1

Differential-Based Recombination

Decompose Recombination

1

2

3
1

Binary-Based Recombination

1 2
3 4

Token

Probability
𝟑
𝟖 𝟓

𝟏𝟔
𝟑
𝟏𝟔 𝟏

𝟖
1 2

3 4

Token

Probability
𝟑
𝟖 𝟓

𝟏𝟔
𝟑
𝟏𝟔 𝟏

𝟖𝟏
𝟖

𝟏
𝟒 𝟏

𝟖
𝟏/𝟏𝟔

𝟏
𝟒

2
3

4

Bin

Probability

𝟏
𝟒

𝟏
𝟖

𝟏
𝟏𝟔

1 2

3

4

Token

Probability

Decompose

1 2
3 4

Token

Probability

Stability-Based Recombination

3

1 2

3

4

Token

Probability/Bin

3

𝟏/𝟏𝟔

First Step

Second Step

Figure 2: The illustration of typical implementations of prob-
ability recombination scheme.

4.2 Probability Recombination Schemes
Before presenting more practical schemes, we show two triv-
ial examples to illustrate the simplicity of creating probability
recombination schemes:

• Each token’s probability itself acts as a block and is
assigned to separate bins.

• Take the two tokens with the highest probabilities. Split
the higher one into two blocks, where one block is equal
to the lower token’s probability. Group the lower token’s
probability and the equal one block in one bin, with
all other tokens’ probability and the remaining block in
separate bins.

These simple schemes easily satisfy the principles, illustrat-
ing how numerous provably secure steganography schemes
can be readily constructed when a uniform steganography
scheme is available. We will now introduce several non-trivial
schemes with intuitive figures shown in Figure 2 and discuss
their varied effects in Section 5.

4.2.1 Differential-Based Recombination

The differential-based scheme first rearranges tokens by their
probabilities pi in descending order. Each probability is then
decomposed as

pi =
n

∑
k=i

(pk
i) =

n

∑
k=i

(pk− pk+1).

where pn+1 = 0 and for each token i, the block pk
i = pk− pk+1

was assigned to bin Gk. We can verify it as a probability
recombination scheme:

1. Block pk
i is assigned to a bin Gk.

2. All blocks in bin Gk are equal to pk− pk+1.

3. Each bin Gk contains at most one block pk
i from token i.

This scheme is valid for all distributions and can output the
G = (DG ,TG) using Algorithm 3 in O(n logn) time, where n
represents the size of the token vocabulary.

Algorithm 3 Differential-Based Recombination

Input: Distribution D = [pi]n
Output: G = (DG ,TG)

1: D, Indices← sort(D) ▷ descending order
2: Diff← diff(D) ▷ Calculate the difference
3: for i = 1 to n do
4: DG [i] = Diff[i]× i
5: TG [i] = Indices[:i]
6: end for
7: return G = (DG ,TG)

Figure 2 provides a visual demonstration of this scheme.
The probabilities are initially represented as bars. Red dashed
lines, determined by the heights of the token probabilities,
decompose these probabilities. All blocks between any two
red lines are then recombined to form a bin.

4.2.2 Binary-Based Recombination

The Binary-Based Recombination scheme first represent the
probabilities in binary form with precision m (decided by
channel) as

pi =
m

∑
k=1

pk
i =

m

∑
k=1

bk
i ·2−k.

where bk
i ∈ {0,1} and the non-zero block pk

i = 2−k was as-
signed to bin Gk. We can verify it as a probability recombina-
tion scheme:

1. Block pk
i is assigned to a bin Gk.

2. All blocks in bin Gk are equal to 2−k.

3. Each bin Gk contains at most one block pk
i from token i.

This scheme is valid for all distributions and outputs G using
Algorithm 4 in O(n) time, considering time complexity in
terms of n.

Algorithm 4 Binary-Based Recombination

Input: Distribution D = [pi]n, Precision(fixed) m
Output: G = (DG ,TG)

1: for j = 1 to m do
2: for i = 1 to n do
3: if binary form of pi contains 2− j then
4: TG [j].append(i)
5: end if
6: end for
7: DG [j] = 2− j · |TG [j]|
8: end for
9: return G = (DG ,TG)

4.2.3 Stability-Based Recombination

The Stability-Based Recombination scheme2 first rearranges
tokens by their probabilities pi in descending order.

If p1 > 0.5, then p1 is decomposed into blocks as follows

p1 =
n

∑
i=1

pi
1 = (2p1−1)+

n

∑
i=2

pi.

Each of the other tokens acts as a single block. The block
p1

1 = (2p1− 1) is assigned to bin G1, and each block pi
1 is

combined with pi into the bin Gi. We can readily verify that
this meets those principles.

If p1 ≤ 0.5, we denote k as the minimal number such that
∑

k
i=2 pi ≥ p1.
First Step: We decompose pk into two blocks: p1

k =

∑
k
i=2 pi− p1 and p2

k = pk− p1
k . We decompose p1 as p1 =

∑
k−1
i=1 pi

1 = p2 +∑
k−1
i=3 pi + p1

k . Next, we combine pi
1 with pi

for each i ∈ {3,4, ...,k−1} and pk−1
1 with p1

k .
Second Step: The remaining blocks p1

1 (equal to p2), p2,
p2

k , pk+1, ..., pn are then recombined into bins by Differential-
Based Recombination. Note that these values may not be in
descending order since p2

k may be less than pk+1.
The first principle is obvious; for the second and third

principles, the bins obtained in the first step clearly meet the
requirements, and those from the second step are ensured by
the properties of Differential-Based Recombination.

property: An important property to note is that when p1 ≤
0.5, no bin with positive probability contains only one block.
In fact, in the first step, all bins contain two blocks, while
in the second step, only the first bin with probability pmax−
psecond might consist of one block. However, its probability
is p1

1− p2 = 0.
This scheme is also valid for all distributions and can output

G = (DG ,TG) in O(n logn) time using Differential-Based
Recombination in Algorithm 3.

2Stability will be explained in the next section

4.3 Uniform Steganography
The construction of uniform steganography is relatively easier,
and some existing constructions can be handily found, such as
ones proposed by Ryabko et al. [30], which also aligns with
the original intent of this proposed framework. Additionally,
all provably secure steganography can function as uniform
steganography due to their inclusive relationship.

This section only presents a detailed description of one
novel construction proposed by us, which is called Cyclic-
shift Uniform Steganography.

Algorithm 5 Time-Step Encoding: USE(·)
Input: Distribution U(n), Key KUS, Secret Message M
Output: Stegotoken s, Embedded Bit Count c

1: ptr← PRGKUS ,R← ⌈ptr ·n⌉
2: k← floor(log2(n)),m← n−2k

3: bits←M[: k], res←M[k]
4: idx← bits2int(bits)
5: if idx < 2k−m then
6: return s = T(R+idx) mod n,c = k
7: else
8: return s = T(2idx−(2k−m)+R+res) mod n,c = k+1
9: end if

For an input with a uniform distribution of n tokens
T1,T2, ...,Tn:

U(n) =
[

1
n
,

1
n
, . . . ,

1
n

]
n

We denote k and m such that n = 2k +m where 0 ≤ m < 2k.
Thus, we have:

2−k · (n−2m)+2−(k+1) ·2m = 1.

Consider the sequence Bk = [int2bits(i,k)]2
k−1

i=0 , which rep-
resents the binary encoding of numbers from 0 to 2k−1 using
k bits. We define a new sequence Cn, consisting of n(= 2k+m)
elements. The first 2k−m elements are the same as those in
Bk , and the remaining 2m elements are formed by append-
ing ‘0’ or ‘1’ to the last m elements of Bk . For example,
B2 = [00,01,10,11] and C5 = [00,01,10,110,111].

We notice that the sequence Cn forms a prefix-free code set,
meaning no code in the set is a prefix of any other. And for
any bit stream M, there exists an element in Cn that is a prefix
of M. We use Cn(M) to denote the index of this element in
Cn, for example C5(

′001101′) = 1, C5(
′1100′) = 4.

At each time step, the sender and receiver first generate a
shared pseudo-random number ptr∈ (0,1], which is produced
by a secure PRG using the shared key KUS. By multiplying
ptr by n and taking the ceiling value, we obtain R, an integer
that can be considered to follow distribution U(1,n) . And we
define the time-step encoding algorithm as follows:

USE(U(n),KUS,M) = T(Cn(M)+R−1) mod n,

Algorithm 6 Time-Step Decoding: USD(·)
Input: Distribution U(n), Key KUS, Stegotoken s = Ti
Output: Secret Message M

1: ptr← PRGKUS ,R← ⌈ptr ·n⌉
2: k← floor(log2(n)),m← n−2k

3: idx← (i−R) mod n ▷ range from 0 to n-1
4: if idx < 2k−m then
5: return int2bits(idx,k)
6: else
7: s1← idx−2k +m,s0← s1 mod 2 ▷ from 0 to 1
8: return M = int2bits(floor(s1−s0

2)+2k− t,k)||s0
9: end if

prefix of secret bits 00 01 10 110 111

R = 1 T1 T2 T3 T4 T5

R = 2 T2 T3 T4 T5 T1

R = 3 T3 T4 T5 T1 T2

R = 4 T4 T5 T1 T2 T3

R = 5 T5 T1 T2 T3 T4

Figure 3: An example of n = 5

where Ti represent the i-th token and time-step decoding algo-
rithm as follows:

USD(U(n),KUS,Ti) =Cn[i−R+1 mod n].

An intuitive illustration of the inverse relationship between
the secret message prefix and tokens for n = 5 is shown in
Figure 3. The corresponding complete time-step algorithms
USE and USD are presented in Algorithm 5 and Algorithm 6.

Correctness The correctness of this uniform steganography
scheme can be verified by ensuring the correctness at each
time step:

USD(U(n),KUS,USE(U(n),KUS,M)) =Cn[Cn(M)],

which is exactly the prefix of the secret message M, as well
as the secret bits embedded at each time step.

Security For the security, we prove that if the ptr used at
each time step is a truly random number and mutually indepen-
dent across time steps, then the stegotext matches the original
channel distribution D, where all time-step distributions are
uniform distributions.

For each time-step distribution U(n)3, the probability of

3n may vary across different time steps

steganographic sampling to any Ti is exactly 1
n :

Pstego(Ti) =
n

∑
r=1

P[R = r] ·P[Cn(M) = (i− r+1) mod n]

=
1
n
·

n

∑
x=1

P[Cn(M) = x] =
1
n
.

The last equality holds since Cn ensures that for any bit stream
M, there exists an element in Cn that is a prefix of M. This
equation shows that each step of steganographic sampling
adheres to the time-step distribution U(n). Additionally, the
samplings across different time steps are clearly independent,
as the input parameter (ptr and the embedded secret message)
used in each step are independent. These two properties to-
gether guarantee that the stegotext conforms to the channel
distribution D. When ptr is replaced with pseudo-random
numbers generated by a secure PRG, it is easy to see that
the stegotext and covertext from D become computationally
indistinguishable to any polynomial-time adversary, which
satisfies the security definition outlined in Section 2.2.1.

4.4 Discop Revisited

We revisit Discop(base) from the perspective of our frame-
work. Discop can be understood as follows: during each step
of sampling, the sender and receiver share a random number
ptr between 0 and 1. If there exists an n such that this random
number ptr satisfies ptr+ 1

2n × k landing in different intervals
corresponding to tokens Ik, then Ik can be sampled to transmit
n-bit information k. Here, n is defined as the largest such value
satisfying this condition, and we denote it as N(ptr) = n. If n
does not exist, we define N(ptr) = 0.

Therefore, the intervals corresponding to each token I can
be split into several continuous sub-intervals: A1,A2, . . . ,Al ,
such that for all r ∈ Ai, N(r) are the same. Additionally, adja-
cent sub-intervals within the same token correspond to differ-
ent n. We denote this as N(Ai) = N(r) for any r ∈ Ai.

Consider the decomposition of the probability of token
I into blocks according to A1, . . . ,Al , note that if N(Ai) >
0, then Ai +

1
2n × k precisely corresponds to other tokens’

blocks, so we assign these corresponding 2n blocks to the
same bin. If N(Ai) = 0, we assign Ai to its own bin. This can
be easily verified as a probability recombination scheme. In
this case, each bin contains a number of blocks that is a power
of two. Therefore, consider a uniform steganography scheme
that adopts the most natural time-step encoding under the
distribution U(2n): first, a random number is used to sample a
block as T0. Then, starting from T0, the i-th block corresponds
to the n-bit binary representation of i. Clearly, ptr can be
interpreted as being decomposed into the random numbers
used in the Bin Sampling and the uniform steganography.
Such a scheme is completely equivalent to the Discop(base).

5 Optimal Schemes Within Our Framework

In this section, we explore an important aspect of our frame-
work: its capacity to guide us in discovering some effective,
provably secure steganography schemes for capacity, stabil-
ity, and time complexity. We demonstrate how to identify
these schemes, which are theoretically optimal or nearly so
within our framework. Subsequent experimental and theoreti-
cal analyses confirm that these schemes perform well in spe-
cific metric tests, with some indicators reaching optimal levels
compared to other provably secure steganography schemes.

5.1 Capacity
Capacity is one of the most important metrics in steganog-
raphy. It indicates the amount of secret information that can
be carried by a stegotext symbol (token), implying the speed
of secret information transmission. Since each sample step
involves probabilistic algorithms, we use the expected number
of bits that can be hidden under a time-step distribution D,
denoted Cscheme(D), to represent capacity per token.

In fact, information theory suggests that the upper limit of
information that can be transmitted under a distribution, on
average, is its entropy. Thus, the upper limit of capacity for
any provably secure steganography scheme A is:

CA(D)≤ H(D),4

where H(D) = ∑ pi log2

(
1
pi

)
represents the entropy of distri-

bution D.
On the other hand, as the distribution D changes constantly

within the channel, the lower bounds of capacity achievable
by a scheme are also of interest, indicating how effectively a
scheme can utilize entropy. We know from the study [12, 22]:

CMeteor(D)≥ H(D)

2
−0.5, CDiscop(base)(D)≥ Hmin(D).

These lower bounds are still significantly distant from the
upper bounds H(D), suggesting considerable room for theo-
retical improvement.

We will first explore the near-optimal/optimal schemes
of the uniform steganography and probability recombina-
tion schemes, focusing on their capacity performance. Sub-
sequently, we will identify the near-optimal provably secure
steganography scheme within our framework, then calculate
its lower bounds of capacity and evaluate its average capacity
in Section 5.4.

5.1.1 Optimal Capacity of Universal Steganography

Similarly, we know that the capacity of uniform steganog-
raphy applied to a uniform distribution U(n) is limited to

4This should refer to the distribution of the stegotoken, but the security of
provably secure steganography ensures that these two distributions are nearly
identical.

0 20 40 60 80 100 120
Number of Tokens

0

1

2

3

4

5

6

7

Bi
ts

Entropy
Cyclic-shift
Discop-Huffman
Discop-base
Meteor
Binary

Figure 4: The average capacity of typical implementations
of provably secure steganography schemes [12, 22] and uni-
form steganography by ours and Binary [30], under uniform
distribution.

H(U(n)) = log2(n). We will next demonstrate that Cyclic-
shift Uniform Steganography (Section 4.3) qualifies as a near-
optimal scheme, achieving a lower bound of log2(n)−0.0861.

For any time step in Cyclic-shift Uniform Steganography,
it can hide |Cn[Cn(M)]| bits. Thus in average, its capacity
C(U(n)) can be calculated:

C(U(n)) = ∑
x∈Cn

P[Cn[Cn(M)] = x] · |x|

= (n−2m) ·2−k · k+2m ·2−(k+1) · (k+1)

= k+m ·2−k.

Then,

H(U(n))−C(U(n)) = log2(n)− k+m ·2−k

= log2(1+
m
2k)−

m
2k = log2(1+ x)− x.

where x = m
2k < 1. And 0≤ log2(1+ x)− x < 0.0861, which

can be easily calculated. Thus:

H(U(n))≥C(U(n))> H(U(n))−0.0861. (2)

As a comparison, Figure 4 tests the actual capacities of
various provably secure steganography schemes [12, 22] and
uniform steganography (ours and [30]) under uniform distri-
butions. It is easy to see that Cyclic-shift Uniform Steganog-
raphy is near-optimal and surpasses all current schemes.

5.1.2 Optimal Scheme of Probability Recombination

Regarding the impact of Probability Recombination Mod-
ule on the capacity, we have obtained quite good theoreti-
cal results, summarized as follows: If there exists a uniform

steganography that its capacity achieves H(U(n)) = log2(n),
we can prove that Differential-Based Recombination has the
optimal capacity for all distributions D:

Lemma 1 (Optimal Scheme). Assume p1 ≥ p2 ≥ ·· · ≥ pn ≥
0, satisfying ∑

n
i=1 pi = 1. Given any recombination scheme

G = (DG = [|Ti| · qi]n,TG = {T1, · · · ,Tm}) The capacity of
this scheme is

C′ =
m

∑
j=1

q j|Tj| log2 |Tj|.

Then we have the following inequality:

C′ ≤
n

∑
i=1

(pi− pi+1)i log2 i,

where pn+1 := 0.

The right-hand side of the final inequality represents the
capacity of the Differential-Based Recombination. And we
can calculate the lower bound of this optimal capacity:

Lemma 2 (Lower Bound of Optimal Capacity). Assume p1 ≥
p2 ≥ ·· · ≥ pn ≥ 0, satisfying ∑

n
i=1 pi = 1. Denote:

C =
n

∑
i=1

(pi− pi+1)i log2 i, H =
n

∑
i=1

pi log2
1
pi
, (3)

where 0 · log2 0 := 0, pn+1 := 0. Then the following inequali-
ties hold:

H− log2(1+H · ln2)≤C ≤ H. (4)

We prove these 2 lemmas in the Appendix A and B. From
Equation 2 and Lemma 2, it is evident that provably se-
cure steganography derived from our framework, utilizing
Differential-Based Recombination and Cyclic-shift Uniform
Steganography, can achieve a lower bound of H− log2(1+
H · ln2)−0.0861, which classifies it as a near-optimal scheme
in our framework. This lower bound surpasses that of Me-
teor5 under all conditions, as illustrated in Figure 5. Thus, our
scheme currently has the best lower bound. Furthermore, this
clearly represents an asymptotically optimal lower bound.

5.2 Stability
Steganography, as a form of communication, should ensure
that the amount of secret information transmitted at each time
step is greater than zero, as embedding information consumes
computational resources, and each step should be as produc-
tive as possible to minimize unnecessary overhead. However,
due to the inherently probabilistic nature of steganographic

5Since Discop(Huffman) does not provide a precise lower bound, this is
the best-known lower bound.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Entropy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ca
pa

cit
y

Meteor
Differential-Based
Entropy

Figure 5: The lower bound of capacity of ours and Meteor.

encoding, even schemes with high capacity may still exhibit
a significant probability of embedding zero bits in certain
cases. For instance, a scheme might embed 0 bits with a 99%
probability and 10,000 bits with a 1% probability. While this
results in a high capacity (an average concept), the scheme
is nearly impractical in real-world scenarios. To address this
issue, we introduce the concept of “stability” to describe the
property of consistently embedding a non-zero amount of
information at each time step. This concept complements ca-
pacity and provides a more comprehensive characterization
of the performance of steganographic schemes, particularly
in scenarios where the cost of operations is high. To achieve
stability, a necessary condition related to the time-step dis-
tribution is that its minimum entropy log2(

1
pmax

) should be
at least 1 bit (⇔ pmax ≤ 0.5). This ensures that each token’s
information content log2(

1
pi
) is at least 1 bit. We consider a

scheme stable if it can guarantee the embedding of at least 1
bit for all distributions where the minimum entropy is greater
than or equal to 1 bit.

Currently, only the Discop(base) [12] scheme is stable. In
contrast, the scheme with higher capacity, like Meteor [22],
Discop(Huffman) [12] and the scheme with differential-based
recombination, cannot consistently achieve this (see Appendix
C for examples).

Note that for Cyclic-shift Uniform Steganography, embed-
ding 0 bits is equivalent to the Bin Sampling sample a bin
with only one block. Therefore, if we design a probability
recombination scheme such that no such bin exists when the
minimum entropy is greater than 1 bit, stable scheme can
be achieved. And since the property in Section 4.2.3, the
combination of Stability-Based Recombination scheme and
Cyclic-shift Uniform Steganography forms a stable steganog-
raphy scheme. And comparing to Discop(base) in Section 5.4,
our scheme has higher capacity.

Table 1: The main results of our proposed framework. C means average Capacity (bits per token). H means the average Entropy
(bits per token). C/H means the utilization of entropy. NR means the No-payload Rate (the frequency of embedding 0 bits). T
means average Time (second per token). Scenario A is conducted by Llama3 [34] model based on the history "Tell me something
about Steganography". Scenario B is conducted by Llama3 model based on the history "1+1=?". Scenario C and D are conducted
on uniform distribution channel with 10 and 1,000,000 tokens, respectively.

Scenario A Scenario B

C H C/H NR T

Meteor 0.372 0.697 0.534 0.820 0.0008
Meteor-reorder 0.438 0.709 0.618 0.798 2.116

Discop-base 0.343 0.700 0.489 0.687 0.0200
Discop-Huffman 0.518 0.691 0.749 0.691 0.0461

Binary-based 0.224 0.702 0.320 0.847 0.0033
Stability-based 0.366 0.701 0.523 0.686 0.0012

Differential-based 0.410 0.693 0.592 0.729 0.0025

random-sample 0.000 0.698 0.000 1.000 0.0003

C H C/H NR T

Meteor 0.283 0.875 0.323 0.764 0.0009
Meteor-reorder 0.661 0.872 0.758 0.660 3.3286

Discop-base 0.631 0.873 0.723 0.586 0.0198
Discop-Huffman 0.702 0.873 0.804 0.592 0.0701

Binary-based 0.490 0.872 0.562 0.723 0.0031
Stability-based 0.646 0.872 0.740 0.586 0.0012

Differential-based 0.670 0.875 0.766 0.610 0.0024

random-sample 0.000 0.873 0.000 1.000 0.0009

Scenario C Scenario D

C H C/H NR T

Meteor 1.804 3.322 0.543 0.100 0.0006
Meteor-reorder 1.804 3.322 0.543 0.100 0.0010

Discop-base 3.000 3.322 0.903 0.000 0.0006
Discop-Huffman 3.001 3.322 0.904 0.000 0.0005

Binary-based 3.247 3.322 0.978 0.000 0.0030
Stability-based 3.247 3.322 0.978 0.000 0.0009

Differential-based 3.247 3.322 0.978 0.000 0.0007

random-sample 0.000 3.322 0.000 1.000 0.0001

C H C/H NR T

Meteor 17.91 19.93 0.899 0.000 0.0009
Meteor-reorder >60

Discop-base >60
Discop-Huffman 19.77 19.93 0.992 0.000 0.3649

Binary-based 19.90 19.93 0.998 0.000 0.0061
Stability-based 19.90 19.93 0.998 0.000 0.0011

Differential-based 19.90 19.93 0.998 0.000 0.0056

random-sample 0.00 19.93 0.000 1.000 0.0003

5.3 Time Complexity

In steganography, the time complexity of time-step encoding
algorithm is a significant point of discussion (decoding al-
gorithms generally have a similar time complexity). Among
the various factors, the most important variable is the size
of the token vocabulary. Therefore, we ignore the total in-
put length and primarily focus on the time complexity with
respect to this variable. For instance, in text channels, the
number of tokens used to model the channel has increased
from 50k in the GPT-2 [28] era to 128k today for Llama3 [34],
which has made some schemes with higher time complexities
impractical for real-world applications [10].

For a given distribution, the time complexity of random
sampling according to probabilities is O(n), where n is the
size of the token vocabulary. Thus, O(n) should also be the
optimal of complexity for steganographic sampling. Within
our framework, we note that the time complexity of Cyclic-
shift Uniform Steganography does not exceed O(n). There-
fore, when combined with the Binary-Based Recombination
scheme with a time complexity of O(n) and a Bin Sampling

process that also does not exceed O(n), we can achieve a prov-
ably secure steganography scheme with a time complexity of
O(n).

5.4 Experiments
Setup We have compared the performance of several
schemes constructed based on our framework with other
schemes on the most commonly used channels: text chan-
nels and uniform distribution channels. We focused primarily
on metrics such as average capacity, average time, and stabil-
ity. Specifically, for experiments in text channels, we utilized
the large language model Llama-3-8B-Instruct 6 and various
prompts as historical information to construct different chan-
nels. The first channel with prompt “Tell me something about
steganography” is designed for long texts, while the second
channel with prompt “1+1=?” is suited for short texts. Exam-
ples of constructed text steganography are presented in the
appendix D. The maximum channel length was limited to 128.
For uniform distribution channels, we selected smaller scales

6https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

of 10 and larger scales of 1,000,000 for comparison. Unlike
low-entropy text channels, uniform distribution channels sim-
ulate highly random environments, providing a more accurate
reflection of the steganography scheme’s performance in high-
randomness settings. We implemented tests for the Meteor,
Meteor(reorder), Discop(base), and Discop(Huffman) based
on their source code repositories78. Notably, Discop(base)
and Discop(Huffman) were built and optimized using Cython,
while the remaining code was implemented only using the
PyTorch framework and Python programming language. All
of our provably secure steganography schemes are based on
the corresponding probability recombination scheme with
Cyclic-shift Uniform Steganography. The precision for all
schemes is set to 52 by default.

All our experiments were conducted on 1 × NVIDIA
A5000 GPU (32GB RAM) and 24 × Intel Xeon w5-3423
CPUs. Additionally, we implemented the PRG functionality
using HMAC_DRBG, same as in [22]. Main experimental
results are presented in Table 1.

Security To further validate the practical security of these
schemes, we conducted classic steganalysis experiments [41]
on our samples within text channels (Scenario A, B) and sta-
tistical analysis on samples in uniform channels (Scenario
C). The steganalysis is a task to detect stegotexts, and the
classification accuracy is our adopted metric. The statistical
analysis adopts Kullback-Leibler divergence (KLD) as the
metric, whose calculation can be found in Section 2.1. Table 4
in Appendix E reports a steganalysis accuracy score approach-
ing 50% and also reports a very low KLD. The experimental
results demonstrate that our schemes can maintain practical
security across these channels.

Capacity Regarding capacity, we focus on the Differential-
based scheme. We observed on the 2 text channels constructed
for the experiments (which have lower average entropy)
a distinct trend: Discop(Huffman) > Differential-based ≈
Meteor(reorder) > others. However, Discop(Huffman) and
Meteor(reorder) both exhibit significantly higher time con-
sumption, even Discop(Huffman) is implemented with
Cython optimization. In experiments on uniform channels
(with higher entropy), our method performs markedly bet-
ter, as suggested by the theoretical analysis in Equation 2.
Similarly, Figure 4 also demonstrates the same effect.

We emphasize that due to the variability of distributions and
channels, the capacity and conclusions of different methods
vary across channel types. We only present very few results,
and we also note that Discop(Huffman) indeed remains the
optimal method across nearly all experimental channels.

7https://meteorfrom.space
8https://github.com/comydream/Discop

Stability In the results, we also have measured the fre-
quency of embedding 0 bits across different channels, which
corresponds to the metric NR in the Table 1. We observed that
schemes which are stable, namely Discop(base) and Stability-
based, exhibit significantly lower frequencies. In contrast,
the unstable schemes, even those with high capacity such
as Discop(Huffman), show slightly weaker performance on
this metric. And compared to Discop(base) in Table 1, our
Stability-based scheme appears to have higher capacity.

Time The times reported in Table 1 refer to the average
time taken to sample a token for a given time-step distri-
bution D, excluding the time spent on calculating the time-
step distribution. We observe that Meteor remains the best-
performing method, nearly equivalent to random sampling.
On the other hand, despite optimizations using Cython, the
Discop(Huffman) scheme shows significantly poorer perfor-
mance, likely due to the inherent time required to construct a
Huffman tree. Meteor(reorder), meanwhile, exhibits notably
worse efficiency, a disparity that becomes more pronounced
as the number of tokens n in the channel increases. Regarding
our schemes, generally, they perform very well in terms of
time. Although the Binary-based scheme is O(n), it does not
necessarily outperform the O(n logn) schemes. This could
be due to better optimization of sorting algorithms internally
and the impact of larger constants — notably precision —
affecting the results.

We also note that different methods exhibit diverse effects
across various channels. This variability underscores the ne-
cessity of our framework, which can provide more options
when dealing with unpredictable distributions and channels.
Therefore, further research is warranted.

6 Conclusion

In this paper, we propose a framework for designing new
provably secure steganography schemes by decomposing the
whole design process into three sub-processes that can be
relatively easily achieved, namely Probability Recombination
Module, Bin Sampling and Uniform Steganography Module.
Under the guidance of this framework, we construct a series
of provably secure steganography schemes that exhibit theo-
retical advantages across various metrics. Experiments have
also confirmed that our schemes perform well in practical ap-
plications across these metrics. This framework not only aids
in developing schemes tailored for specific metrics but also
advances the field by making the design of provably secure
steganography schemes more convenient.

Acknowledgments

This work was supported by the Natural Science Foundation
of China under Grants 62262002 and U2336208.

https://meteorfrom.space
https://github.com/comydream/Discop

7 Ethics considerations

We recognize that the steganography may be used to evade
legitimate scrutiny and provide convenience for some activi-
ties of malicious purposes. However, since there are already
some existing provably secure steganography constructions,
our work will not make this ethical concern (potential ma-
licious usages of steganography) much worse. Besides, our
work provides a novel framework and a mathematical analyti-
cal perspective for many (current and future) provably secure
steganography constructions, which we believe is necessary to
ensure that we have at our disposal the tools needed to prevent
steganography from being used for malicious purposes.

Apart from the aforementioned ethical concern, the authors
foresee no other ethical concerns with the work presented in
this paper.

8 Open science

Our work is in compliance with the Open Science Policy. The
source code for our work is available at https://zenodo.
org/records/14737116. This repository contains the full
implementation of the schemes discussed in the paper, along
with scripts and documentation to assist in running the work.

References

[1] R.J. Anderson and F.A.P. Petitcolas. On the limits of
steganography. IEEE Journal on Selected Areas in Com-
munications, 16(4):474–481, May 1998.

[2] Michael Backes and Christian Cachin. Public-Key
Steganography with Active Attacks. In David Hutchison,
Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friede-
mann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu
Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y.
Vardi, Gerhard Weikum, and Joe Kilian, editors, The-
ory of Cryptography, volume 3378, pages 210–226.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji
Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming
Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng
Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang,
Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu,
Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang,
Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jian-
wei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru
Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and
Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

[4] Sebastian Berndt and Maciej Liśkiewicz. Provable Se-
cure Universal Steganography of Optimal Rate: Prov-
ably Secure Steganography does not Necessarily Imply
One-Way Functions. In Proceedings of the 4th ACM
Workshop on Information Hiding and Multimedia Secu-
rity, pages 81–92, Vigo Galicia Spain, June 2016. ACM.

[5] Sebastian Berndt and Maciej Liśkiewicz. On the Gold
Standard for Security of Universal Steganography. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology – EUROCRYPT 2018, volume
10820, pages 29–60. Springer International Publishing,
Cham, 2018.

[6] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-
the-record communication, or, why not to use pgp. In
Proceedings of the 2004 ACM workshop on Privacy in
the electronic society, pages 77–84, 2004.

[7] Christian Cachin. An information-theoretic model for
steganography. In International Workshop on Informa-
tion Hiding, pages 306–318. Springer, 1998.

[8] Kejiang Chen, Hang Zhou, Yaofei Wang, Menghan Li,
Weiming Zhang, and Nenghai Yu. Cover reproducible
steganography via deep generative models. IEEE Trans-
actions on Dependable and Secure Computing, 2022.

https://zenodo.org/records/14737116
https://zenodo.org/records/14737116

[9] Falcon Dai and Zheng Cai. Towards near-imperceptible
steganographic text. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pages 4303–4308, 2019.

[10] Christian Schroeder de Witt, Samuel Sokota, J Zico
Kolter, Jakob Nicolaus Foerster, and Martin Strohmeier.
Perfectly secure steganography using minimum entropy
coupling. In The Eleventh International Conference on
Learning Representations, 2022.

[11] Mario Di Raimondo, Rosario Gennaro, and Hugo
Krawczyk. Secure off-the-record messaging. In Pro-
ceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, pages 81–89, 2005.

[12] Jinyang Ding, Kejiang Chen, Yaofei Wang, Na Zhao,
Weiming Zhang, and Nenghai Yu. Discop: Provably
Secure Steganography in Practice Based on “Distribu-
tion Copies”. In 2023 IEEE Symposium on Security
and Privacy (SP), pages 2238–2255. IEEE Computer
Society, 2023.

[13] Roger Dingledine, Nick Mathewson, Paul F Syverson,
et al. Tor: The second-generation onion router. In
USENIX security symposium, volume 4, pages 303–320,
2004.

[14] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm: General
language model pretraining with autoregressive blank
infilling. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 320–335, 2022.

[15] Tina Fang, Martin Jaggi, and Katerina Argyraki. Gener-
ating steganographic text with lstms. In Proceedings of
ACL 2017, Student Research Workshop, pages 100–106,
2017.

[16] John Bellamy Foster and Robert McChesney. Surveil-
lance capitalism. Monthly review, 66(3):1–31, 2014.

[17] Phillipa Gill, Masashi Crete-Nishihata, Jakub Dalek,
Sharon Goldberg, Adam Senft, and Greg Wiseman.
Characterizing web censorship worldwide: Another look
at the opennet initiative data. ACM Transactions on the
Web (TWEB), 9(1):1–29, 2015.

[18] Nicholas J Hopper. Toward a Theory of Steganography.

[19] Nicholas J Hopper and John Langford. Provably Secure
Steganography.

[20] Yuting Hu, Yihua Huang, Zhongliang Yang, and
Yongfeng Huang. Detection of heterogeneous paral-
lel steganography for low bit-rate voip speech streams.
Neurocomputing, 419:70–79, 2021.

[21] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

[22] Gabriel Kaptchuk, Tushar M Jois, Matthew Green, and
Aviel D Rubin. Meteor: Cryptographically secure
steganography for realistic distributions. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1529–1548, 2021.

[23] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad
Saiful Islam Mamun, and Ali A Ghorbani. Characteriza-
tion of tor traffic using time based features. In Interna-
tional Conference on Information Systems Security and
Privacy, volume 2, pages 253–262. SciTePress, 2017.

[24] Zhen Ling, Junzhou Luo, Kui Wu, Wei Yu, and Xin-
wen Fu. Torward: Discovery, blocking, and traceback
of malicious traffic over tor. IEEE Transactions on In-
formation Forensics and Security, 10(12):2515–2530,
2015.

[25] David Lyon. Surveillance society. McGraw-Hill Educa-
tion (UK), 2001.

[26] Xuying Meng, Chungang Lin, Yequan Wang, and Yujun
Zhang. Netgpt: Generative pretrained transformer for
network traffic. arXiv preprint arXiv:2304.09513, 2023.

[27] Yuang Qi, Kejiang Chen, Kai Zeng, Weiming Zhang, and
Nenghai Yu. Provably secure disambiguating neural lin-
guistic steganography. arXiv preprint arXiv:2403.17524,
2024.

[28] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[29] Michael G Reed, Paul F Syverson, and David M Gold-
schlag. Anonymous connections and onion routing.
IEEE Journal on Selected areas in Communications,
16(4):482–494, 1998.

[30] Boris Ryabko and Daniil Ryabko. Information-theoretic
approach to steganographic systems. In 2007 IEEE
International Symposium on Information Theory, pages
2461–2464. IEEE, 2007.

[31] Ferry Astika Saputra, Isbat Uzzin Nadhori, and Ba-
lighani Fathul Barry. Detecting and blocking onion
router traffic using deep packet inspection. In 2016
International Electronics Symposium (IES), pages 283–
288. IEEE, 2016.

[32] Jiaming Shen, Heng Ji, and Jiawei Han. Near-
imperceptible neural linguistic steganography via self-
adjusting arithmetic coding. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 303–313, 2020.

[33] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls,
and Roya Ensafi. Censored planet: An internet-wide,
longitudinal censorship observatory. In proceedings of
the 2020 ACM SIGSAC conference on computer and
communications security, pages 49–66, 2020.

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[35] Tri Van Le. Efficient provably secure public key
steganography. Cryptology ePrint Archive, 2003.

[36] Peter Wayner. Mimic functions. Cryptologia, 16(3):193–
214, 1992.

[37] Hanzhou Wu, Biao Yi, Feng Ding, Guorui Feng, and
Xinpeng Zhang. Linguistic Steganalysis With Graph
Neural Networks. IEEE Signal Processing Letters,
28:558–562, 2021.

[38] Jinshuai Yang, Zhongliang Yang, Siyu Zhang, Haoqin
Tu, and Yongfeng Huang. SeSy: Linguistic Steganalysis
Framework Integrating Semantic and Syntactic Features.
IEEE Signal Processing Letters, 29:31–35, 2022.

[39] Jinshuai Yang, Zhongliang Yang, Jiajun Zou, Haoqin Tu,
and Yongfeng Huang. Linguistic Steganalysis Toward
Social Network. IEEE Transactions on Information
Forensics And Security, 18, 2023.

[40] Zhong-Liang Yang, Xiao-Qing Guo, Zi-Ming Chen,
Yong-Feng Huang, and Yu-Jin Zhang. RNN-Stega: Lin-
guistic Steganography Based on Recurrent Neural Net-
works. IEEE Transactions on Information Forensics
and Security, 14(5):1280–1295, 2019.

[41] Zhongliang Yang, Yongfeng Huang, and Yu-Jin Zhang.
TS-CSW: Text steganalysis and hidden capacity esti-
mation based on convolutional sliding windows. Multi-
media Tools and Applications, 79(25-26):18293–18316,
July 2020.

[42] Siyu Zhang, Zhongliang Yang, Jinshuai Yang, and
Yongfeng Huang. Provably secure generative linguis-
tic steganography. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pages
3046–3055, 2021.

[43] Zachary Ziegler, Yuntian Deng, and Alexander M Rush.
Neural linguistic steganography. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 1210–1215, 2019.

[44] Jiajun Zou, Zhongliang Yang, Siyu Zhang, Sadaqat Ur
Rehman, and Yongfeng Huang. High-Performance Lin-
guistic Steganalysis, Capacity Estimation and Stegano-
graphic Positioning. In Xianfeng Zhao, Yun-Qing Shi,
Alessandro Piva, and Hyoung Joong Kim, editors, Digi-
tal Forensics and Watermarking, volume 12617, pages
80–93. Springer International Publishing, Cham, 2021.

A Lower Bound of Capacity

Theorem 1. Assume p1 ≥ p2 ≥ ·· · ≥ pn ≥ 0, satisfying
∑

n
i=1 pi = 1. Denote:

C =
n

∑
i=1

(pi− pi+1)i log2 i, H =
n

∑
i=1

pi log2
1
pi
, (5)

where 0 · log2 0 := 0, pn+1 := 0. Then the following inequali-
ties hold:

H− log2(1+H · ln2)≤C ≤ H. (6)

Proof. We first claim that for any non-negative sequences
xi,yi,

n

∑
i=1

xi log2
yi

xi
≤

(
n

∑
i=1

xi

)
log2

∑
n
i=1 yi

∑
n
i=1 xi

. (7)

This follows from Jensen’s inequality and the fact that − log2
is a convex function. Therefore, we have

n

∑
i= j

(pi− pi+1) log2 i≤ p j log2
∑

n
i= j(pi− pi+1)i

p j
≤ p j log2

1
p j

.

Here we use the fact that

n

∑
i= j

(pi− pi+1)i = jp j +
n

∑
i= j+1

pi ≤
n

∑
i=1

pi ≤ 1.

And then it shows that

C =
n

∑
i=1

(pi− pi+1)i log2 i =
n

∑
j=1

n

∑
i= j

(pi− pi+1) log2 i

≤
n

∑
j=1

p j log2
1
p j

= H.

Hence the upper bound of (6) is proved.
For the lower bound of (6), it’s sufficient to prove

C−αH ≥ α

ln2
+ log2(1−α), ∀α ∈ (0,1), (8)

and the lower bound in (6) follows by taking α = H·ln2
1+H·ln2 in

the above inequality.
Define a function p : [0,n)→ R, p(x) = pi,∀x ∈ [i−1, i).

It’s easy to verify that p(x) is mesurable, and then all the
following integrals are Lebesgue Integrable. Further more,
the following equations also hold:∫ n

0
p(x)dx =

n

∑
i=1

pi = 1, (9)

H =−
∫ n

0
p(x) log2 p(x)dx. (10)

Meanwhile we have

C =
n

∑
i=1

(pi− pi+1)i log2 i=
n

∑
i=1

pi(i log2 i−(i−1) log2(i−1)).

(11)
Note that log2 x is absolutely integrable in [0,n], we have the
Newton-Leibniz formula

b log2 b−a log2 a =
∫ b

a

(
1

ln2
+ log2 x

)
dx, ∀0≤ a≤ b.

Hence (11) is equivalent to the following equation:

C =
n

∑
i=1

pi

∫ i

i−1

(
1

ln2
+ log2 x

)
dx

=
n

∑
i=1

∫ i

i−1
p(x)

(
1

ln2
+ log2 x

)
dx

=
∫ n

0
p(x)

(
1

ln2
+ log2 x

)
dx

=
1

ln2
+

∫ n

0
p(x) log2 xdx.

(12)

Here the last equality holds from (9). Therefore, combining
eqs. (10) and (12) gives

C−αH =
1

ln2
+

∫ n

0
p(x) log2(xp(x)α)dx. (13)

On the other hand, it’s obvious that log2 a=− 1
ln2

∫ 1
a

1
t dt holds

for any 0 < a≤ 1.
Substitute it into (13) gives

C−αH− 1
ln2
≥

∫ n

0
p(x) log2(min{xp(x)α,1})dx

=− 1
ln2

∫ n

0
p(x)

(∫ 1

min{xp(x)α,1}

1
t

dt
)

dx

=− 1
ln2

∫ 1

0

1
t

∫
{x|xp(x)α≤t}

p(x)dxdt.

(14)
Denote

S(t) =
∫ n

0
min

{
p(x),

(t
x

)1/α
}

dx

=
∫
{x|xp(x)α≤t}

p(x)dx+
∫
{x|xp(x)α>t}

(t
x

)1/α

dx.
(15)

Since pi ≤ 1, we have p(x)≤ 1, and then

S(t)≤
∫

∞

0
min

{
1,
(t

x

)1/α
}

dx

=
∫ t

0
1dx+

∫
∞

t

(t
x

)1/α

dx

= t +
α

α−1
t1/αx1−1/α

∣∣∣∣∞
t

=
t

1−α
.

On the other hand, we have S(t) ≤
∫ n

0 p(x)dx = 1, thus we
can tell

S(t)≤min
{

t
1−α

,1
}
. (16)

Combining eqs. (15) and (16) we get∫
{x|xp(x)α≤t}

p(x)dx≤min
{

t
1−α

,1
}
−
∫
{x|xp(x)α>t}

(t
x

)1/α

dx.

Substitute it into (14), it shows

C−αH− 1
ln2

≥− 1
ln2

∫ 1

0

1
t

min
{

t
1−α

,1
}

dt

+
1

ln2

∫ 1

0

1
t

∫
{x|xp(x)α>t}

(t
x

)1/α

dxdt.

(17)

Meanwhile we have∫ 1

0

1
t

min
{

t
1−α

,1
}

dt =
∫ 1−α

0

1
1−α

dt +
∫ 1

1−α

1
t

dt

= 1− ln(1−α),

(18)

∫ 1

0

1
t

∫
{x|xp(x)α>t}

(t
x

)1/α

dxdt =
∫ n

0

∫ xp(x)α

0

t1/α−1

x1/α
dtdx

=
∫ n

0

αx1/α p(x)
x1/α

dx

= α

∫ n

0
p(x)dx = α.

(19)
Combining eqs. (17) to (19) we obtain (8):

C−αH ≥ 1− (1− ln(1−α))+α

ln2
=

α

ln2
+ log2(1−α).

By taking α = H·ln2
1+H·ln2 in (8), we finish the proof.

B Optimal of Capacity

Theorem 2. Assume p1 ≥ p2 ≥ ·· · ≥ pn ≥ 0, satisfying
∑

n
i=1 pi = 1. Given any recombination scheme: T1, · · · ,Tm,

where each Ti is a subset of {1, · · · ,n}, and the probability of
every block in Ti is qi. Define the capacity of this scheme by

C′ =
m

∑
j=1

q j|Tj| log2 |Tj|.

Then we have the following inequality:

C′ ≤
n

∑
i=1

(pi− pi+1)i log2 i,

where pn+1 := 0.

Proof. By definition, we have

pi = ∑
i∈Tj

q j. (20)

Since |Tj| takes value from {1,2, · · · ,n}, we denote rk =

∑|Tj |=k q j, and then

C′ =
n

∑
k=1

rkk log2 k.

Let f (x) =

{
x log2 x, x > 0;
0, x = 0.

, it’s obvious that f (x) is con-

vex. Then we have

C′ =
n

∑
k=1

rk f (k) =
n

∑
k=1

n

∑
j=k

r j(f (k)− f (k−1))

=
n

∑
k=1

n

∑
j=k

n

∑
i= j

ri [f (k)−2 f (k−1)+ f (k−2)]

=
n

∑
k=1

(
n

∑
j=k

(j− k+1)r j

)
[f (k)−2 f (k−1)+ f (k−2)] .

(21)
Here we denote f (−1) := 0. When k ≥ 2, by the convexity
of f , we have f (k)−2 f (k−1)+ f (k−2)≥ 0; when k = 1,
we have f (k)−2 f (k−1)+ f (k−2) = 0. Hence we have

f (k)−2 f (k−1)+ f (k−2)≥ 0, ∀k ≥ 1 (22)

In the following, we prove

n

∑
j=k

(j− k+1)r j ≤
n

∑
i=k

pi. (23)

Firstly, we have

n

∑
j=k

(j− k+1)r j =
n

∑
j=1

max{ j− k+1,0}r j

=
n

∑
j=1

jr j−
n

∑
j=1

min{k−1, j}r j.

(24)

Recall that r j = ∑|Tl |= j ql , we know

n

∑
j=1

jr j =
m

∑
l=1

ql |Tl |=
n

∑
i=1

∑
i∈Tl

ql =
n

∑
i=1

pi, (25)

where the last equality is due to (20). And

n

∑
j=1

min{k−1, j}r j =
m

∑
l=1

ql min{k−1, |Tl |}.

Denote [k] := {1,2, · · · ,k},∀k ≥ 1, [0] := /0. Since |Tl ∩ [k−
1]| ≤min{k−1, |Tl |}, we get

n

∑
j=1

min{k−1, j}r j ≥
m

∑
l=1

ql |Tl ∩ [k−1]|

=
n

∑
i=1

∑
i∈Tl∩[k−1]

ql

=
k−1

∑
i=1

pi,

(26)

where the last equality is due to (20). Combining Equa-
tions (24) to (26) gives (23).

Substitute (23) into (21) (notice that (22) holds), we get

C′ =
n

∑
k=1

(
n

∑
j=k

(j− k+1)r j

)
[f (k)−2 f (k−1)+ f (k−2)]

≤
n

∑
k=1

(
n

∑
i=k

pi

)
[f (k)−2 f (k−1)+ f (k−2)]

=
n

∑
k=1

pk (f (k)− f (k−1))

=
n

∑
k=1

(pk− pk−1) f (k).

This completes the proof.

C Stability of Meteor and Discop

Here, we demonstrate with illustrations why we say the Dis-
cop(Huffman) (Figure 6) and Meteor (Figure 7) are not stable.
In these shown situaiton, the Pmax ≤ 0.5 but Discop(Huffman)
and Meteor still may not embed any bits.

D Demo of Steganography Text

We show some demo stegotext produced by existing prov-
ably secure generative steganography and ours constructions,
under different history, see Table 2 and 3.

Table 2: Resulting stegotext based on the history: “Tell me something about Steganography”

stegotext hidden bits

Meteor Steganography! It’s a fascinating and less well-known branch of cryptography... 01100110...
Meteor-reorder Steganography! It’s a fascinating field that combines art and science... 01100110...

Discop-base Steganography! It’s a fascinating field that combines cryptography and computer science... 01100110...
Discop-Huffman Steganography!\n\nSteganography is the practice of hiding secret information... 01100110...

Binary-based Steganography! It’s a fascinating and ancient concept that has been used to conceal messages... 01100110...
Stability-based Steganography!\n\nSteganography is the art of hiding secret information... 01100110...

Differential-based A fascinating topic! Steganography is an ancient technique of hiding secret messages... 01100110...

random-sample Steganography! A fascinating field that combines cryptography and computer science...

0.34 0.34 0.32

0.34 0.34 0.32

0.34 0.32

𝜬	(𝒃𝒊𝒕 = 𝟎) ≠ 𝟎

𝜬	(𝒃𝒊𝒕 = 𝟎) ≠ 𝟎

𝑷𝒎𝒂𝒙 < 𝟎. 𝟓

𝒓𝟎𝒌 = 𝟎. 𝟒 𝒓𝟏𝒌 = 𝟎. 𝟗

𝒓𝟎
(𝒌%𝟏) = 𝟎. 𝟎𝟎𝟓 𝒓𝟏

(𝒌%𝟏) = 𝟎. 𝟑𝟑𝟓

Figure 6: An illustration that Discop(Huffman) is not stable.

0.4 0.3 0.3

0.5

𝑺⊕𝑴

𝑷𝒎𝒂𝒙 < 𝟎. 𝟓

𝜬	(𝒃𝒊𝒕 = 𝟎) ≠ 𝟎

Figure 7: An illustration that Meteor is not stable.

E Experiments in security

We conducted experiments to verify the security of proposed
schemes from steganalysis and KLD perspective9 in Table 4.

Here the used steganalysis tool came from a classical and
powerful work [41] for lingusitic steganalysis. We trained the
classifier on a dataset using default settings and evaluated its
performance on a test set, ultimately reporting the average
results from ten repeated experiments. An accuracy range of
45% to 55% suggests that the steganalysis tool can hardly
have crucial advantages against steganography. We also com-
puted the frequency of stegotext under a uniform distribution
and calculated the KLD between this and the expected distri-
bution. The KLD approaching 0 suggests that the distribution
of the stegotext is very close to that of the covertext, making
it indistinguishable to an adversary.

9Meteor’s notable difference in KLD comes from the source code default-
ing to discarding the least probable token.

Table 3: Resulting stegotext based on the history: “1+1=?”

stegotext hidden bits

Meteor The answer is 2! 0
Meteor-reorder The answer is 2! 0

Discop-base The answer is... 2! 01
Discop-Huffman The answer is 2! 01

Binary-based The answer is 2! 0
Stability-based The answer is 2! 01

Differential-based 2 0

random-sample The answer is 2!

Table 4: Experiments in security. Scenario A and B is tested
by steganalysis tool (average accuracy and corresponding
variance), while the Scenario C is tested by the KLD.

Scenario A Scenario B Scenario C

Meteor 54.9413.24% 54.126.10% 0.0337614
Meteor-reorder 55.8614.09% 53.525.87% 0.0337614

Discop-base 50.002.75% 51.805.64% 0.0000356
Discop-Huffman 49.952.76% 51.864.20% 0.0000357

Binary 49.832.53% 51.413.79% 0.0000497
Stability 49.732.58% 52.124.67% 0.0000497

Differential 49.662.67% 53.005.51% 0.0000497

random-sample 0.0000435

	Introduction
	Background and Related Work
	Classic Steganography Model
	Provably Secure Steganography
	Definition
	Practical Schemes

	Our Framework and Its Security Proofs
	Probability Recombination Module
	Bin Sampling
	Uniform Steganography Module
	Integration of Modules
	Security Proofs

	Typical Implementations of the Framework
	Notation
	Probability Recombination Schemes
	Differential-Based Recombination
	Binary-Based Recombination
	Stability-Based Recombination

	Uniform Steganography
	Discop Revisited

	Optimal Schemes Within Our Framework
	Capacity
	Optimal Capacity of Universal Steganography
	Optimal Scheme of Probability Recombination

	Stability
	Time Complexity
	Experiments

	Conclusion
	Ethics considerations
	Open science
	Lower Bound of Capacity
	Optimal of Capacity
	Stability of Meteor and Discop
	Demo of Steganography Text
	Experiments in security

