
Await() a Second: Evading Control Flow Integrity by Hijacking C++ Coroutines

Marcos Bajo
CISPA Helmholtz Center
for Information Security

Christian Rossow
CISPA Helmholtz Center
for Information Security

Abstract
Code reuse attacks exploit legitimate code sequences in
a binary to execute malicious actions without introducing
new code. Control Flow Integrity (CFI) defenses mitigate
these attacks by restricting program execution to valid code
paths. However, new programming paradigms, like C++20
coroutines, expose gaps in current CFI protections. We
demonstrate that, despite rigorous standardization, C++ corou-
tines present new vulnerabilities that undermine both coarse-
grained and fine-grained CFI defenses. Coroutines, widely
used in asynchronous programming, store critical execution
data in writable heap memory, making them susceptible to ex-
ploitation. This paper introduces Coroutine Frame-Oriented
Programming (CFOP), a novel code reuse attack that lever-
ages these vulnerabilities across major compilers. We demon-
strate how CFOP allows attackers to hijack program execution
and manipulate data in CFI-protected environments. Through
a series of Proof of Concept (PoC) exploits, we show the prac-
tical impact of CFOP. We also propose defensive measures to
enhance coroutine security and address this emerging threat.

1 Introduction

Code reuse attacks exploit the existing (benign) instructions
within a binary to execute malicious operations without intro-
ducing new code in the system. The attacker begins by scan-
ning the binary to identify specific sequences of instructions,
known as gadgets, which can be chained together to mimic the
intended shellcode. This approach is feasible due to the typi-
cally large size of modern programs and libraries. Then, the
attacker redirects the program execution flow to ensure that
the gadgets are executed sequentially, ultimately achieving
arbitrary code execution. Code reuse attacks exist in multiple
forms, such as Return-Oriented Programming (ROP) [50],
Jump-Oriented Programming (JOP) [6], Sigreturn-Oriented
Programming (SROP) [7], and Counterfeit Object-Oriented
Programming (COOP) [45].

Control Flow Integrity (CFI) [2] schemes defend against
code reuse attacks. They aim to ensure the program’s execu-

tion flow is valid during runtime. For this, fine-grained CFI
schemes extract the program’s Control-Flow Graph [2], which
describes the intended possible code paths. Fine-grained CFI
schemes then enforce the rule that only such valid code paths
can be taken. Coarse-grained CFI schemes relax these restric-
tions by limiting control transfers to the start of any function
only; while offering reduced security, they have negligible
performance overheads [18]. Examples are Intel CET [27]
and Microsoft Control Flow Guard [35], which are widely
deployed in Linux and Windows, respectively.

CFI defenses systematically cover those programming
paradigms that were current at the moment of their creation.
Consequently, they protect vulnerable function pointers from
known concepts like callback functions or C++ virtual ta-
bles. However, naturally, CFI may only protect those point-
ers it knows. Programming languages evolve and add new
paradigms, often neglecting their security consequences. Fail-
ing to consider such new paradigms may leave function point-
ers unprotected, undermining CFI’s security.

In this paper, we study one such recent feature introduced
to C++20: coroutines [29]. Coroutines are functions that can
be suspended and resumed during their execution. Present in
many programming languages such as Python, C#, Golang,
and Kotlin (throughout the async/await pattern); they are
most typically used to implement asynchronous code (such
as non-blocking I/O operations) and algorithms used to lazily
generate infinite sequences of data. Despite their relatively
recent introduction in C++, all major compilers already sup-
port them in both Windows and Linux, including GCC (since
GCC 10), MSVC (since MSVC 19), and Clang (since Clang
8) [17]. Hence, C++ coroutines are already part of C++ soft-
ware, and were deployed to over 400 million devices even
before becoming a C++ standard [1]. We found coroutines
in 130+ unique popular GitHub repositories (500+ stars),
of which 24 have more than 10k stars. They have become a
fundamental paradigm for implementing databases (e.g., Scyl-
laDB [47], RocksDB [23], ArangoDB [4]), popular libraries
(e.g., asio [13]), and Windows software (e.g., PowerToys [37],
the Windows terminal [38]). Considering that compiler sup-

port was only recently added, we predict that the adoption of
coroutines will be even more widespread in the near future.

Unfortunately, despite having undergone a rigorous stan-
dardization effort, we find that C++ coroutines undermine all
existing CFI schemes. We show that C++ coroutines can be
exploited in code reuse attacks despite state-of-the-art CFI
defenses. This novel code reuse attack, which we call Corou-
tine Frame-Oriented Programming (CFOP), leverages the
insecure C++ coroutines implementation common to the three
major compilers both in Linux and Windows. In a nutshell, we
find that any program using C++ coroutines stores critical data
in heap memory. This data includes (1) memory addresses
pointing to program code, which are used during the corou-
tine execution as call and jump destinations and which are
CFI-unprotected; (2) pointers to coroutine heap structures and
other coroutine internal data; and (3) the value of arguments,
variables and other data accessed during a coroutine execution
and that usually would only be found in the stack. In all these
cases, this data is in writable memory and is subject to being
modified by an attacker capable of corrupting the program
memory. As a result, attackers can launch not only data-only
attacks that result in executing one or multiple coroutines
with corrupted data (e.g., hijacking the argument to a call to
system() that was already present in the coroutine code); but
also call arbitrary functions with controlled parameters (e.g., a
function in a linked shared library), while on a CFI-protected
program.

To the best of our knowledge, we are the first to study C++
coroutines from a security perspective and to highlight how
they can be exploited to bypass CFI protections. We imple-
ment a series of Proof of Concept (PoC) exploits that show-
case CFOP attacks against sample programs using coroutines.
Moreover, we prepare a PoC attack against two real programs
that use coroutines, exploiting ScyllaDB (13.2k+ stars on
GitHub) and SerenityOS (30k+ stars), compiled with Intel
CET enabled. To demonstrate the CFOP principles, we as-
sume a simple memory-corruption vulnerability in ScyllaDB,
equivalent to the ones needed to launch any other code reuse
attack such as ROP, whilst we port the CVE-2021-4327 vul-
nerability to SerenityOS. We show that using CFOP, we can
execute any functions and system calls with arbitrary argu-
ments. These attacks work when attackers are bound to only
call the start of functions due to coarse-grained CFI and even
extend to fine-grained CFI schemes as none of them accounts
for coroutines. Finally, we propose a series of implementa-
tion improvements and defenses that protect against CFOP
attacks in the future.

To summarize, our contributions are:

• We study C++ coroutines from a security perspective,
illustrating how an attacker can exploit all their existing
implementations for CFOP code reuse attacks.

• We show that CFI schemes do not consider C++ internal
semantics and structures of C++ coroutines. For this,

we find that none of the widely available and academic-
proposed CFI schemes sufficiently cover coroutines.

• We showcase our attack techniques by implementing ex-
ploits for two real CFI-enabled x86_64 Linux programs,
and a series of PoC exploits that showcase different at-
tacks against sample coroutine programs.

• We propose fundamental changes in the C++ coroutines
implementation to protect them against CFOP attacks.

2 Background

This section describes the most common use cases for C++
coroutines and provides a high-level overview of their func-
tionality. Additionally, we will present background informa-
tion on how CFI protects programs.

2.1 Coroutines
The typical workflow for a normal function in C++ is that (1)
the function is called by some other caller function; (2) the
function is executed from start to finish; and (3) the function
returns, reinstating the execution to the caller function.

In turn, coroutines are like normal functions, but they can
also be suspended during their execution so that some other
external code gets executed. They can later resume execution
from where they were previously paused. The typical work-
flow of a coroutine is as follows: (1) the coroutine is resumed
(instead of called), starting its execution from the beginning;
(2) during execution, the coroutine gets suspended, pausing it-
self and returning to the caller function; (3) the caller function
can then resume the coroutine again, continuing the execution
from the point it was paused; and (4) the coroutine returns
to the caller function once the complete coroutine body is
executed. Once the coroutine returns for a final time, it can
never be resumed again. Note that steps (2) and (3) may be
repeated any number of times, allowing the coroutine to be
suspended and resumed as needed during its execution. We
further explain the internal implementation of the resumption
and suspension of coroutines in § 3.2.

2.1.1 Suspension Point

Developers decide when a coroutine is suspended by setting
suspension points (SPs). There may be one or more SPs in
the coroutine, each of which can be reached multiple times
(e.g., when in a loop). The coroutines API defines three oper-
ators, which implicitly set an SP and allow for customizing
the coroutine’s actions when reached [29]. co_yield <value>
returns a value to the caller and suspends the coroutine (usu-
ally, to be resumed later). co_return returns and suspends
the coroutine for a final time. Finally, co_await <Awaitable>
evaluates an awaitable object.

1 task_fib fibonacci_gen() {
2 int f0 = 0, f1 = 1;
3 for(int ii = 0;; ++ii){
4 co_yield f0+f1;
5 int temp = f1;
6 f1 = f0 + f1;
7 f0 = temp;
8 }
9 }

10 void main(){
11 task_fib generator = fibonacci_gen();
12 std::cout << generator(); //prints ’1’
13 std::cout << generator(); //prints ’2’
14 std::cout << generator(); //prints ’3’
15 }

Listing 1: Program using a coroutine to print three numbers
of the Fibonacci series.

Next, we describe two of the most common use cases where
a coroutine-based implementation is ideal, showing how to
use co_yield and co_await respectively.

Generators: These are functions that continuously gener-
ate a sequence of elements—one each time the coroutine is
resumed. Listing 1 shows an example of generator, where a
coroutine uses the operator co_yield to return the values to
its caller. The coroutine is an infinite loop, which is resumed
every time we need a new number from the Fibonacci series
and then suspended until its next call.

Asynchronous Jobs and Awaitable Coroutines: The op-
erator co_await is used to transfer the control flow throughout
coroutines. Invoking co_await suspends the coroutine and
evaluates an awaitable object. Inside this awaitable, the de-
veloper implements an awaiter that will dictate the actions to
undertake next via three main functions executed in order: (1)
await_ready(), that determines whether the coroutine should
suspend itself; (2) await_suspend(), that evaluates the current
coroutine and decides how the control flow should continue
after it is suspended; and (3) await_resume(), that determines
the return value of the co_await call. Notably, the implementa-
tion of await_suspend() is highly variable between programs,
returning the control flow to the caller of the current coroutine,
resuming other coroutines, or executing some code.

We commonly find coroutines using co_await to implement
asynchronous jobs. Here, the coroutine calls co_await on
an awaitable object with an awaiter whose await_suspend()
function executes the asynchronous code; then resumes
the original coroutine. Another common use case for using
co_await is awaitable coroutines. In this case, the coroutine
calls co_await on another coroutine (which must implement
an awaitable); the function await_suspend() in the awaiter
resumes the new coroutine to be executed. Listing 2 shows a
simple program using awaitable coroutines, where coroutines
are nested, resuming and suspending each other.

Coroutine Schedulers: Another common use case for
coroutines is implementing programs that rely on cooperative

1 task_aw write_op(Socket s){ //c3
2 write(s, msg, msg.length()); //Send message
3 }
4 task_aw client_run(Socket s) { //c2
5 //Carry out multiple operations on client
6 co_await write_op(s);
7 co_await write_op(s);
8 }
9 task_aw launch_server() { //c1

10 while(true){ //Listen for clients
11 Socket s = servSocket.accept();
12 co_await client_run(s);
13 }
14 }
15 void main() {
16 std::coroutine_handle <> t = c1().handle;
17 t.resume();
18 }

Listing 2: Server program that uses co_await to address
multiple client connections, executing three nested coroutines.

multitasking. In this model, the program handles multiple
concurrent tasks, and a centralized scheduler is responsible
for allocating CPU time among them. Each task is represented
as a coroutine, which can yield control back to the scheduler
at any SP. The scheduler—typically implemented as a queue
or list of suspended coroutines—determines which coroutine
to resume next. When a coroutine runs, it executes until it
reaches a suspension point, at which point it re-enqueues it-
self in the scheduler’s queue. This approach enables multiple
tasks to run within a single thread, mimicking CPU context
switching at the application level.

2.1.2 The Coroutine Handle, Promise and Awaiter

C++ coroutines are implemented in a coroutine object, usually
referred to as the task. This task (e.g., task_fib in Listing 1)
contains every element in the coroutine, including the promise
and awaiters, which we explain next; and a key element—the
coroutine handle—used to directly interact with the coroutine.
Through it, we can resume the coroutine (handle.resume()),
and destroy it, freeing its memory (handle.destroy()).

The promise is an object present in every coroutine that (1)
stores the coroutine return value and (2) controls the coroutine
behavior. When a coroutine returns or is suspended, it saves
its return value (set via co_yield or co_return), if any, in its
promise object. This value can then be subsequently queried
at any moment from a function or another coroutine.

The promise also controls the coroutine behavior via two
functions that return an awaiter. Firstly, initial_suspend() de-
cides the coroutine behavior after invoking it the first time.
Returning suspend_never implies that the coroutine has an ea-
ger start; as soon as we create a coroutine object, it is automat-
ically resumed for the first time. Returning suspend_always
dictates a lazy start; we need to explicitly resume the corou-
tine after a coroutine object is created for it to run. Secondly,

final_suspend() decides what happens after the coroutine
reaches the final SP; i.e., it can resume another coroutine,
return a special value, or run any other code. Again, there
are two settings: suspend_never assumes that the coroutine
will never be used (not even for accessing the return value)
after the final SP, so the coroutine object is destroyed; and
suspend_always assumes that the coroutine may be accessed
after the final suspension point, so it is just suspended but
not destroyed. In addition, programs commonly use a cus-
tom awaiter with final_suspend(). Inside its await_suspend()
method, developers usually place functionality to run after
the coroutine reaches its final SP.

We show in Appendix A an example of task definition that
corresponds to task_aw in Listing 2. Note that this is a sim-
plified example intended for illustration purposes; in a real
program, the coroutine implementation would typically in-
clude additional elements (e.g., execution in multiple threads).

2.2 Control Flow Integrity

CFI schemes aim to ensure that the program’s execution fol-
lows the intended flow. CFI strives to prevent attackers from
diverting the control flow to other areas, potentially executing
(“reusing”) arbitrary code by hijacking indirect pointers.

We distinguish between forward-edge and backward-edge
CFI. Forward-edge CFI protects indirect calls, including func-
tion pointers whose branch or call target values are computed
at runtime or other indirect control-flow transfers, such as
virtual functions. Backward-edge CFI protects the return ad-
dresses of functions that are saved in the program stack.

Irrespective of the CFI direction, schemes operate on dif-
ferent levels of protection. Fine-grained CFI closely approxi-
mates the program’s Control Flow Graph [2], while coarse-
grained CFI is less precise and works with relaxed versions
of the graph. While fine-grained CFI introduces more restric-
tive controls over the control flow and thus greater security,
coarse-grained CFI strives to find a balance between the level
of protection and the overhead introduced by the scheme [44].

The attacks described in this paper consider state-of-the-art
coarse-grained and fine-grained CFI schemes, as we detail in
§ 4.2. These include Intel’s Control-flow Enforcement Tech-
nology (CET) [27], a form of coarse-grained CFI with both
forward and backward CFI protections; Control Flow Guard
(CFG) [35], a more fine-grained CFI scheme widely avail-
able in Windows systems; and Clang CFI [14], a fine-grained
scheme readily incorporated in the Clang/LLVM compiler.
These policies prevent standard code-reuse techniques based
on indirect calls (like ROP and JOP) and vtable hijacking
(like COOP). Notably, Intel CET’s forward-edge protection,
Indirect Branch Tracking (IBT), enforces that functions can
only be executed from their entry point, i.e., it forbids the com-
mon code-reuse attack technique of jumping to the middle of
functions. This principle is also fundamental and shared by
all fine-grained schemes, including CFG and Clang CFI.

3 Attacking Coroutines

With our understanding of how C++ coroutines work from a
high-level perspective, we will now explore how they work
internally and how this can be exploited. For this, we will
study the low-level details of how coroutine code is compiled
and how their data is represented in memory at runtime.

Throughout this section, we will discuss the code gener-
ated by the (at the time) newest compiler versions GCC 13.2,
Clang/LLVM 18.1.8 and MSVC 19.39.33523. We will con-
sider code optimized using -O3, although our techniques also
work with other optimization levels.

3.1 Threat Model
We consider the typical threat model of CFI schemes, as-
suming a malicious actor that can (1) read arbitrary memory
data to learn the memory layout and bypass ASLR protec-
tions [31, 40]; and (2) write arbitrary data into arbitrary sec-
tions of memory [34]. Specifically, we allow an attacker to
abuse one or more information leak vulnerabilities to disclose
any necessary memory addresses and data, and to abuse a
single memory corruption vulnerability that results in a mem-
ory write with attacker-controlled data. We assume that the
vulnerable program has no pages marked both as writable
and executable (W ⊕X) and that the attacker cannot directly
modify the value of the program registers.

Additionally, we assume that attackers aiming for code-
reuse attacks can only reuse entire functions. That is, we as-
sume that CFI enforces that functions must be executed start-
ing from the beginning, as in Intel CET or CFG. Under this
setting, we aim to bypass both coarse-grained CFI schemes
(by leveraging the restricted but still controllable jump and
call targets) and fine-grained CFI implementations (as they
do not protect C++ coroutines; see § 4.2). Note that we focus
on bypassing forward-edge protections since backward-edge
CFI is orthogonal to our coroutine-based attacks (which do
not tamper with return addresses).

Finally, we assume the program features at least one C++
coroutine, which must be suspended or running when the
attacker exploits the arbitrary write vulnerability.

We further address relaxed versions of this threat model
in Appendix E (i.e., what happens if the attacker can only
overflow a buffer instead of an arbitrary memory write).

3.2 Coroutine Implementations
To evaluate the security of coroutines, it is vital that we un-
derstand how they are implemented. Once the compiler rec-
ognizes a coroutine, it performs a series of transformations
that transparently add the code necessary for the coroutine
functionality (e.g., suspending). In this subsection, we thus
systematically explore these transformations, identifying po-
tential security risks that we will explore in § 3.3.

3.2.1 The Coroutine Frame

Unlike in other programming languages (e.g., goroutines in
Go), coroutines in C++20 are stackless.

On the one hand, stackful coroutines can suspend them-
selves at any point during their execution (e.g., the corou-
tine may call another function and suspend itself from there.)
Therefore, they have their own program stack, which keeps
track of any arguments, local variables, and called functions
during the coroutine execution.

On the other hand, C++20 stackless coroutines may only be
suspended from the top-level coroutine function. This means
that if the coroutine calls a function during its execution, it
may not suspend itself until the function returns. This has low-
level memory implications since coroutines no longer need
to save the call stack and the variables from other functions,
only their local variables and arguments. In this case, it is not
optimal to assign a stack for every coroutine; all the data that
the coroutine needs to preserve its state after suspending is
allocated dynamically in the heap.

This chunk of heap data, unique for every coroutine, is
known as the coroutine frame. The frame is, in essence, the
compilation result of the coroutine task object—a struct that
holds the coroutine state during its whole lifetime, just like
all data needed during a normal function execution is stored
at the stack. The compiler decides the exact frame structure,
preparing a frame template that defines the type and organiza-
tion of the data needed for every coroutine.

resume ptr destroy ptr
promise object

coroutine index

parameters
local variables

0x000...0

0xFFF...F

Figure 1: Coroutine frame
structure in C++20.

Figure 1 shows the most
relevant data in the coroutine
frame. The resume pointer
is a pointer to the function
responsible for resuming the
coroutine after a suspended
state (the resume stub, see
§ 3.2.2). The destroy pointer
points to the function respon-
sible for deleting the corou-
tine frame from the heap, free-
ing its corresponding mem-
ory, after the coroutine returns (the destroy stub, see § 3.2.2).
The promise object incorporates the developer-defined
promise object. The parameters store any arguments that
the coroutines have been passed from a function or another
coroutine. Arguments passed by value get the value copied
into the frame, and those passed by reference get the pointer
stored in the frame. Local variables are variables that are used
during the coroutine execution (which in normal functions
would usually be found in the stack). Finally, the coroutine
index is a numerical value that indicates the last suspension
point (SP) reached by the coroutine.

Parameters and local variables are not simply saved into
the frame when the coroutine suspends; they actually reside
in the heap all the time (before, during, and after the coroutine

suspension). The compiler arranges them such that: (1) integer
local variables are stored by value in the frame; (2) if the
coroutine allocates an object (e.g., via new()), then a heap
chunk is allocated for the object, and only its pointer is saved
in the frame; and (3) if the coroutine uses a variable that
would commonly be stack-based (e.g., an array of chars), then
the compiler reserves enough space inside the frame for the
array, turning the array from a stack-based variable to heap-
based. Note that, just like with any other function, if an object
is allocated, its destructor is automatically called after the
coroutine returns (i.e., before calling final_suspend).

3.2.2 Coroutine Lifetime

Along with a coroutine frame for every declared coroutine,
the compiler generates a series of function stubs responsible
for managing the coroutine frame behind the scenes. These
stubs are automatically incorporated into the program and are
invoked when transferring the control flow from a function to
a coroutine or between coroutines.

Currently, compilers generate three stubs, which are called
by the function using the coroutine, as we illustrate in Fig-
ure 2. The creation stub, invoked when a coroutine is used for
the first time, is responsible for allocating memory in the heap
for the coroutine frame and initializing the resume and destroy
pointers. The coroutine then gets suspended, returning back
to the caller function. The resume stub, invoked when resum-
ing the coroutine, evaluates the coroutine index and makes
a direct jump to the corresponding SP. Finally, the destroy
stub, invoked for destroying the coroutine frame, frees the
frame memory. When a coroutine co_awaits another corou-
tine, these three stubs are used together with the evaluation
of the coroutine awaiter that we described in § 2.1.1. We
illustrate the combined process in Figure 8.

The resume and destroy pointers point to the resume and
destroy stubs, respectively. When the coroutine is resumed or
destroyed, the program makes an indirect jump using them.
We include, for reference, in Appendix B, the simplified as-
sembly code generated for creating, resuming, and destroying
coroutine c1 from function main corresponding to Listing 2.

One may wonder why coroutines follow such a complex
structure—having two dynamic pointers to the resume and
destroy stubs—instead of using a direct jump to the corre-
sponding stub address. Indeed, the resume and destroy point-
ers do not change once the coroutine frame is first created.
However, this architecture is necessary to support many of
the use cases of coroutines. For example, in many cases, a
coroutine will be created and saved for later execution, then
resumed from some other function blindly, using the handle,
without knowing which type of coroutine is being resumed.
Thus, the compiler may not always know which coroutine is
getting resumed or destroyed; hence, the frame must contain
information about how to resume and destroy the coroutine.

Creation stub
c1() Coroutine

frame

task
handle

promise
promise.initial_suspend()

lazy-start,
coroutine suspended

create &
initialize

returns

c1().resume()
Resume stub

resume & execute until SP

co_return
promise.return_void()

promise.final_suspend()

c1().destroy() Destroy stub
destroy coroutine frame

function f() coroutine c1()

Figure 2: Coroutine lifetime (when executed from a function).

3.3 Coroutine Attack Primitives

We will now use our knowledge of coroutines’ low-level in-
ternals to present their weaknesses and develop exploitation
techniques. We strive to achieve arbitrary code execution (i.e.,
running any number of coroutines or functions with controlled
arguments) while respecting the attacker capabilities in the
threat model at § 3.1. To this end, we first introduce two gen-
eral coroutine attack primitives, (1) frame manipulation and
(2) frame injection. These two primitives will allow us to craft
concrete attacks in the following subsections.

3.3.1 Frame Manipulation

The coroutine frame holds the current state and data from
the coroutine, therefore becoming a prime target if we aim to
influence the control flow. Since the frame is allocated at the
heap (marked with R+W permissions), it may be modified by
the attacker’s arbitrary write primitive.

Overwriting an existing frame is a very valuable primitive,
as the attacker may target its resume and destroy pointers,
hijacking subsequent calls to resume() and destroy(), or modi-
fying the data some coroutine is using. We will elaborate on
both these scenarios in § 3.4 and § 3.5.

The frame itself does not incorporate any security mech-
anisms against memory corruption. Moreover, the default
malloc implementation in glibc (ptmalloc [25]) does not in-
corporate any security mechanisms to prevent heap chunks
from overflowing (like stack canaries [16,52] to prevent stack
corruption across stack frames). Therefore, it is not only possi-
ble to corrupt the whole frame with a single contiguous mem-
ory write operation but also to overflow the corresponding
heap chunk of a frame, proceeding to overwrite any adjacent
memory (and frames) using a single memory write.

1 task coro(char* arg){
2 //SP1
3 char arr[10];
4 std::vector <int> vec;
5 co_await some_task;
6 //SP2
7 for(int ii=0; ii <3; ii++){
8 vec.push_back(ii);
9 co_await some_task;

10 //SP3
11 }
12 char arr2[] = "a_string";
13 std::cin.getline((char*)arr, 100);
14 /*arr, arr2 and vec are used somehow*/
15 system(arg);
16 }

Listing 3: Simple coroutine with three SPs and a vulnerability.

3.3.2 Frame Injection

It is not only possible to modify an existing frame; an attacker
may inject their own frames into the heap that are as valid as
any other created by the creation stub. The only thing needed
is that some coroutine references the injected frame, so that
the injected frame can be resumed or destroyed. At that point,
subsequent calls to resume() and destroy() on the injected
frame will use attacker-controlled code pointers.

As we explain in § 3.5, every coroutine program features
hijackable pointers we can redirect where needed, that we can
use to point to injected frames. In addition, functions using
coroutines save the coroutine handle in the stack, where it
is subject to being overwritten either by a stack-based buffer
overflow or an arbitrary write primitive before the next use.

3.4 Data-Only Attacks
Modifying the value of variables and arguments inside the
coroutine frame can result in the coroutine using this data
at runtime. Although such data-only attacks (DOAs) do not
directly hijack the control flow, they can influence the pro-
gram execution. Data-based attacks have shown to be a useful
primitive in code-reuse attacks [11, 26, 41].

For example, consider the coroutine in Listing 3. This vul-
nerable code—a buffer overflow in line 13—allows for several
DOAs using frame manipulations. Here, attackers can change
the number of times some_task is co_await-ed, and manipu-
late the command executed by system() by modifying arg.

However, it is essential to consider how the compiler uses
the variables in the frame to understand if they can actually be
leveraged in an exploit. During our testing, we have extracted
the following compiler behavior during coroutine compilation
(assume -O3 optimization): (1) Arguments are copied into
the frame during the creation stub, so their value is present
from the first coroutine resumption. (2) A variable is initial-
ized in the frame at the same SP where the variable is first
initialized. (3) Stack-based variables are saved into the heap

Table 1: Variables in the frame of the coroutine in Listing 3.
On a given SP, the variable may be uninitialized (U), getting
initialized (I), or its value can be hijacked (H).

Variable Creation stub SP1 SP2 SP3

arg I H H H
arr U U U I
vec U U I H
ii U U I H

arr2 (Stack-based)

frame; heap-based objects get a pointer to the object saved
in the frame. (4) If a variable is declared and used only at
the last SP, it is only saved at the stack since the coroutine
does not need to remember its value. (5) The compiler con-
siders coroutine parameters and local variables one group
and aligns them in the frame according to common buffer
overflow protections: overflowable buffers (e.g., an array) are
always positioned in higher memory addresses, preventing
them from ever overwriting a variable in the event of an over-
flow. (6) The coroutine index is always positioned after any
variable; it can always be overwritten with an overflow.

Therefore, as a general rule, modifying a variable in the
coroutine frame alters its value during the next SPs if it is
overwritten after the SP where it is initialized. However, we
are free to modify the value of coroutine arguments at any
point. For our example in Listing 3—a coroutine with three
SPs, one argument arg and four local variables—this implies
that (1) arg can be hijacked at any SP and then resume the
coroutine; (2) overwriting arr’s frame value never leads to
any change during execution; (3) vec is a pointer, which is
only put in the frame during SP2 (when it is first used) and
can only be hijacked for SP3; (4) ii’s value can be hijacked
for SP3 (e.g., we can run the loop as many times as we want);
and (5) arr2 is only initialized in SP3, so it is stack-based. We
summarize when variables can be hijacked in Table 1.

Since timely modification of variables in specific SPs is
relevant for DOAs, attackers may benefit from setting the SP
value themselves. Just like variables and pointers in the frame
are writable, an attacker can set the coroutine index to an
arbitrary value. By modifying the index, attackers can control
at which SP a coroutine resumes, as the resume stub uses this
index to decide at which SP the coroutine is resumed.

3.5 Control-Flow Hijacking

Control-flow hijacking using coroutines is possible using a
concept we dub Controlled Frame Pointers (CFP). We define
as a CFP any object which the attacker can control (over-
writable), and that is directly or indirectly used to issue a
resume() or destroy() call. We found three generic sources for
such CFPs: (1) the coroutine frame (§ 3.5.1), (2) schedulers
(§ 3.5.2), and (3) the awaiter object (§ 3.5.3).

3.5.1 Attacking the Pointers in the Frame

The weakest point in the frame is the resume and destroy
pointers. Both of these pointers qualify as a CFP, as they are
directly used to issue resume() and destroy() calls. The insecu-
rity of these function calls continues the history of vulnerable
code pointers found in writable memory, such as the return
addresses at the stack (that enable Ret2Libc [15], ROP at-
tacks), C++ virtual pointers, or code pointers in the Global
Offset Table (GOT) [24]. Any such pointer has needed its
own protection scheme to protect against memory corruption
attacks, introducing canaries and Shadow Stacks [12,27], CFI
for virtual pointers [43, 53], and RELRO for the GOT [30].

An attacker could modify the pointers in the coroutine
frame either by (1) directly overwriting them via an arbi-
trary write primitive, (2) overflowing a buffer in the heap,
which may even be a stack-based buffer used in another corou-
tine (turned into heap-based), or by (3) escalating another
(more limited) vulnerability within the program to corrupt
the pointer (e.g., a limited overflow in some other coroutine
frame that corrupts a heap-based object, leading to a con-
trolled write). Either way, these pointers are then used in call
and jmp operations when jumping to the resume and destroy
stubs, as we described in § 3.2.

In addition to the resume and destroy pointers, overwriting
any function pointers used by a coroutine—that are saved in
the frame—can lead to execution flow hijacking.

3.5.2 Attacking CFPs in Schedulers

A common design pattern in coroutine programs is a scheduler
that maintains a queue of awaiting coroutines, as described in
§ 2.1. The scheduler calls resume() on any enqueued corou-
tine, and destroy() when finished. Each coroutine runs until it
reaches an SP, then it enqueues again in the scheduler queue.

Each of the frames in the scheduler features at least two
CFPs since every coroutine frame in the scheduler queue will
be resumed and destroyed at some point: The CFP correspond-
ing to the resume pointer will be called once or more (since
the coroutine may be resumed multiple times), and the CFP
corresponding to the destroy pointer is called exactly once.

3.5.3 Attacking Awaiter CFPs in Awaitable Coroutines

Another common design pattern in coroutine programs is
finding coroutines that directly transfer the control flow from
one to another without needing a scheduler. In these programs,
we use the operator co_await and the coroutine awaiters,
which we explained in § 2.1. Depending on how the operators
are used and the implementation of the methods inside the
awaiters (e.g., in the await_suspend() function), we can find
that the compiler generates fundamentally different code. We
have detailed these differences in Appendix C.

Independently on the implementation differences, execu-
tion transfer between coroutines is commonly based on con-

c1 c2 c3
continuation

point
continuation

point

c2's task
object

c3's task
object

Figure 3: Internal objects that point to previous and next
coroutine frames in a program with three nested coroutines.

tinuation points. If we have a coroutine c1 and we want to
transfer execution flow to a lazy-start coroutine c2, and we
want coroutine c1 to be resumed back after c2 finishes, the
process goes as follows: (1) c1 co_awaits c2. The frame of c2
is created and then suspends due to its lazy start. (2) co_await
evaluates the awaitable from c2, running await_suspend().
During this function, c1 stores inside c2’s promise the handle
to c1’s frame—the so-called continuation point. Then, we re-
sume coroutine c2. (3) c2 completes its execution and reaches
the final SP. At this point, final_suspend is evaluated with a
custom awaiter. Inside, await_suspend(), we check whether
a continuation point has been set (maybe the coroutine was
called from a function, in which case it would not have one).
If there is a continuation point set, we call resume() on it.

A critical observation from this control flow transfer strat-
egy is that the frame will contain two internal pointers, as
shown in Figure 3. The first corresponds to the continuation
point—the coroutine to resume after the current one reaches
its final SP. Secondly, we find a pointer to the coroutine re-
sumed inside the other coroutine. This pointer exists because
if we co_await c2 from coroutine c1, then c2’s task object is
a local variable that must be stored inside c1’s frame.

This second task pointer is generally used to destroy the
coroutine after it returns. We find that, by convention, many
real-life coroutine programs resort to placing a destroy() call
in the destructor of the task object. Since the scope of the task
object is limited to the co_await call, the destructor of the
task is called right after the co_await call. At the assembly
level, we then find an indirect call instruction to the destroy
pointer of the awaited coroutine frame.

Considering this architecture, we identify that, firstly, con-
tinuation points are CFPs. If the awaiter uses continuation
points to issue a resume() or destroy() call, attackers may hi-
jack the execution flow by setting the continuation point to an
area of memory where an arbitrary resume or destroy pointer
is placed. Secondly, task objects saved in coroutine frames
are also CFPs. If a coroutine saves in the frame the task object
of another called coroutine and then uses it for subsequent op-
erations (e.g., to destroy the coroutine), attackers may hijack
the execution flow just as with continuation points.

Finally, we would like to point out that the existence of a
CFP does not necessarily always mean that the attacker may

be able to leverage it—just like a vulnerability may not be able
to be exploited. Awaitable coroutines are a perfect example
of this; we can take the program in Listing 2 as reference. If
we suppose an attacker can overwrite c2’s frame, we quickly
realize that the CFP corresponding to c3’s resume() call is out
of the attacker’s control. As we detailed previously, we need
to wait at least until the next SP after a variable is initialized
in order to hijack it successfully in the frame. Therefore, we
cannot overwrite the frame if it has not been created yet or
if the variable is being created at the same SP. In our exam-
ple, c2 creates the c3 coroutine in the first SP, resuming it
in the same SP. For this reason, in an awaitable coroutines
scenario, it is often not possible to count the initial call to
resume() as a useful CFP. On top of this, not every task object
saved in the frame qualifies as a CFP—some programs return
suspend_never from final_suspend(), immediately destroying
the coroutine, in which case there would later not be a call to
destroy() from the destructor. However, most awaitable corou-
tine programs return values or run code after the coroutine
returns (e.g., in await_suspend()), so they need to implement
a custom awaiter; in these cases the task is a CFP.

3.6 Coroutine Chaining Attacks
So far, we have described how to hijack the control flow to
execute a single arbitrary function. However, just like in other
code-reuse attacks such as ROP, attackers may potentially
call arbitrarily many functions—even if the attacker can just
write to memory once. The ability to call multiple attacker-
controlled functions depends highly on the coroutine program
at hand. During our study, however, we found that these pro-
grams use common patterns: either a scheduler is in charge of
organizing which coroutines are executed, or the coroutines
themselves await each other independently, or a combination
of both. Therefore, we will describe how to achieve multiple
arbitrary calls in these two common scenarios.

3.6.1 Multiple Arbitrary Calls With Scheduler

Schedulers maintain a queue of coroutines and iterate over it
to check for coroutines to resume. Unfortunately, this queue
can become a target for attackers aiming to hijack the control
flow. Due to their looping nature, attacks on schedulers can
result in multiple arbitrary calls. For this, the attacker could
(1) use frame manipulation over existing coroutine frames,
hijacking their resume and destroy pointers, and (2) overwrite/-
expand the scheduler queue with coroutine handles that point
to the injected frames. In consequence, the scheduler will
issue resume() and destroy() calls using the hijacked pointers.

3.6.2 Multiple Arbitrary Calls Without Scheduler

A program without a scheduler is far more challenging to ex-
ploit if the goal is to issue multiple arbitrary calls. In these pro-
grams, we find that coroutines transfer the execution flow via

tramp. frame 2
ptr. to call
target 2

c2 resume
pointer

c2 destroy
pointer

Resume
stub

Destroy
stub

c2
 c

on
tro

l f
ra

m
e

~task()
saved task

(c2') .destroy()

c2' resume
pointer

c2' destroy
pointer

Resume
stub

Destroy
stub

final_awaiterc2
' c

on
tro

l f
ra

m
e

~task()
saved task

(c2'') .destroy()

.resume()

c2'' resume
pointer

c2'' destroy
pointer

Resume
stub

Destroy
stub

final_awaiterc2
'' c

on
tro

l f
ra

m
e

.resume()

#SP1
co_await

#SP2

#SP1
co_await

#SP2

#SP1

continuation
(tr. frame 3)

continuation
(tr. frame 2)

~task()
saved task

(c2'') .destroy()

#SP2
co_await

final_awaiter

.resume()continuation
(tr. frame 4)

call target 1

call target 2

tramp. frame 3
ptr. to call
target 3

call target 3tramp. frame 4
ptr. to call
target 4

call target 4

1 2 3

4

5

6

7

8

9

10

Figure 4: ICC attack on the program at Listing 2, showing how
CFPs redirect the execution throughout the injected control
and trampoline frames.

co_await (awaitable coroutines). As we described in § 3.5.3,
this results in multiple CFPs in the form of continuation points
and task objects saved in the frame.

CFOP can also leverage this architecture. The general idea
is to create a chain of corrupted coroutines that will issue arbi-
trary calls during their execution, in a process we call Infinite
Coroutine Chaining (ICC). ICC consists of creating an arbi-
trarily long chain of coroutines that are called sequentially,
where each one is in charge of executing an attacker-defined
arbitrary call. We find that it is always possible to build an ICC
system if there exist two or more useful CFPs in a coroutine—
one CFP calls the next element in the chain, and the other
issues the arbitrary calls. Finding two CFPs is generally pos-
sible. While some CFPs are not exploitable (see § 3.5.3), we
usually find CFPs in continuation objects and task destructors.
These two CFPs are sufficient for ICC.

Figure 4 shows one possible setup that uses these two CFPs
to achieve four arbitrary calls via ICC, targeting coroutine c2
in our running example (Listing 2). The attacker first leverages
an arbitrary write vulnerability to corrupt the heap, injecting
multiple coroutine frames, twice as many as arbitrary calls
desired to be executed (minus one), followed by a series of
pointers, where each pointer points to one of the arbitrary calls
targets where to jump. At least one of the injected frames will
need to overwrite an existing one, in order to initially redirect
the execution to the ICC chain. Half of the injected frames
in ICC are trampoline frames, solely used as an indirection
to jump to the desired call targets and point to the call target
addresses. The other half are control frames, used to exploit
the CFPs of the vulnerable coroutine. Inside each of them,
the attacker puts (1) a continuation object that points to the
address of one of the trampoline frames; (2) a task object
that points to the next control frame in the chain; and (3)
a suspension index such that the coroutine, when resumed,
will start right at the destroy() call corresponding to the task
destructor. In a nutshell, the ICC exploit chains the execution

1 c2{
2 #SP1
3 co_await c3();
4 #SP2 <-- Coroutine index = SP2
5 ~task(){
6 destroy(); # call [rdi+0x8]
7 }
8 final_awaiter(){
9 continuation.resume(); # call [rdi]

10 } # ret
11 }

Listing 4: Pseudocode of each injected control frame in the
program at Figure 4 while launching an ICC attack.

of each control frame by leveraging one of their CFPs, while
the other CFP is used to resume a trampoline frame, jumping
to the desired call targets.

Starting from the injected c2, Listing 4 shows the code run
for every control frame injected by the attacker. The attack
proceeds as follows (each step corresponds to one step in
Figure 4): 1 c2 gets resumed at SP2 and, being at the end of
the function, calls destroy() on its task object, which points
to the c2’ control frame. Note how the attacker has set the
destroy pointer in c2’ as the normal resume pointer of c2’.
The result is that c2’ is resumed as if a normal resume() call
was issued from c2. 2 Once c2’ is resumed at SP2, it repeats
the same process of resuming the next control frame c2”: c2’
uses its task object, which points to c2”, to call destroy(),
resulting in a resume() call, since the destroy pointer of c2”
was set as its resume pointer. 3 4 Once c2” is resumed,
the chain starts with the next phase—executing the arbitrary
attacker-defined calls. Since the attacker introduced six frames
(three control and three trampoline frames), attackers achieve
(n/2)+1=4 arbitrary calls. Only the first call target can be
executed directly—the rest will use the trampoline frames.
The first step is to use the destroy call on the c2” task object
to issue the first call. For this, it sets the destroy pointer of c2”
to the address of the first call target to make. When the task is
destroyed, the call target is executed and then returns. 5 6
After the call target function returns, the execution continues
in c2” right after the previous destroy call. At this point,
the coroutine evaluates its continuation point to know which
coroutine to resume next. The c2” continuation point was set
to point to the first trampoline frame, whose resume pointer
points to the next call target to execute. As a result, resume()
is called on the trampoline frame, executing the second call
target, then returning. 7 8 9 10 After the second call target
returns, the coroutine reaches the end of its execution, and c2”
returns like any other function. The execution returns to c2’,
where its continuation point is evaluated. At this point, the
same process as with c2” is repeated for the remaining call
targets: we evaluate resume() on a trampoline frame whose
resume pointer points to the next call target. Every resume
call results in the execution of a call target.

call target ...

rdi

resume ptr. destroy ptr.

call [rdi] = call [call target]

arg0 = rdi = pointer to call target

argdata call target

rdi

resume ptr. destroy ptr.

call [rdi+0x8] = call [call target]

arg0 = rdi = pointer to argdata

resume()

destroy()

Figure 5: Hijacking of the call target and first argument via
the resume and destroy pointers.

One may question the necessity of using trampoline frames
at all—in the end, the attacker could move the call target
address from the trampoline frame to the resume pointer in
the same control frame. However, coroutines mark themselves
as done after reaching their last SP, right before reaching the
second CFP. Compilers implement this by zeroing the value
of the resume pointer, so any value saved there is unusable at
the time of executing the second CFP.

The previous ICC setup is independent of the implementa-
tion details of the coroutine execution transfer implementation
that we explained in Appendix C. For the readers interested
in this and other low-level differences while creating ICCs,
we have detailed them in Appendix D.

3.7 Passing Arbitrary Arguments

So far, we ignored how attackers can pass arguments to target
functions. To this end, attackers must control the values of the
registers used in the respective calling convention. Without
losing generality, we focus on Linux x64, where arguments
are passed using rdi, rsi, rdx, rcx, r8, r9, and the stack.

Controlling the first parameter is straightforward. Every
resume() or destroy() call will always set rdi to the corou-
tine’s frame pointer. Hence, if a CFP is based on hijacking
destroy(), we always pass a first parameter rdi=<pointer to
8 bytes>, where the bytes correspond to the section in the
frame where the resume pointer is stored, which the attacker
may corrupt. For resume(), we always pass a first parameter
rdi=<pointer to 8 bytes>, but the bytes are fixed to be
the resume pointer. Both setups are represented in Figure 5.

Controlling the subsequent arguments is more challenging.
In fact, all other registers’ values are mostly unpredictable
when any of the CFP is used. In rare situations, attackers
may find and simply reuse other (stub) functions that prepare
the exact arguments for them. Alternatively, attackers may
leverage DOAs (§ 3.3.1) to modify any coroutine variables
that the coroutine later uses when calling a desired target
function. For example, suppose a coroutine reads some data
from a file, and the arguments of the call (e.g., read(buffer,
bytes_to_read)) are local variables or coroutine parameters.
Still, attackers often do not find such attack requisites being

resume pointer destroy pointer

promise object

coroutine index

parameters

local variables

Class A Injected coroutine c1
int elem1

struct elemt_t b

char[] buf

int elem2

int elem3

int elem4

...
register loading data A

register loading data B

register loading data C

rdi

rdi + 0x80

rdi + 0x88

rdi + 0x90

(void*) fptr function call pointerrdi + 0x98

Figure 6: Use of a golden gadget at a member function to load
arbitrary register values from an injected coroutine frame.

met. In particular, the latter technique cannot call an arbitrary
function, so the attacker may only control the arguments of
existing calls within coroutines.

Seeing these limitations, we propose a generic technique to
pass arguments in a reliable way. The basic idea is to leverage
C++ member functions that use an attacker-controlled heap
object to set all argument registers. We call such functions
golden and silver gadgets, respectively. The only difference
between these two gadget types is that golden gadgets also
call the target function, while silver gadgets only prepare
function arguments and then return.

Golden gadgets. An attacker can use the controlled rdi
register to their advantage. In C++, rdi is used in functions
belonging to a class (member functions) to pass an implicit
first argument—the this object. This means that calling a
member function from a CFP results in executing the function
considering the attacker-controlled coroutine frame as the this
object. Many member functions do, naturally, access member
variables to perform operations with them. This results in mov
operations that load data from an offset at rdi since accessing
a member variable is equivalent to accessing data at an offset
of the start of the object. However, instead of loading data
from an actual C++ object into the target registers, this copies
data from the attacker-controlled coroutine frame. Therefore,
we define as a golden gadget any member function that (1)
loads data from a member variable into the desired registers
and does not corrupt these values before the final call, and (2)
uses a member variable to perform an indirect call/jump.

If an attacker finds a golden gadget, and a CFP is avail-
able, an arbitrary call with a controlled argument is generally
possible. The attack is as follows: (1) We inject a coroutine
frame that leads to a CFP hijack. (2) We use the CFP to call a
member function, which interprets rdi = frame as the this
pointer. (3) The member function operates on member vari-
ables, loading them from an offset of the coroutine frame to
the target registers (rsi, rdx, rcx, ...). These register values
must not be clobbered until the next step. (4) The member
function makes a call using a function pointer (or similar),

which is a member of the class, loading it from an offset of
the coroutine frame, too.

Figure 6 shows an example class (left) that could be the
basis for a golden gadget. Each object of the class has a mem-
ber at the same offset, including a function pointer. A golden
gadget arises when a member function moves these member
variables (elem2, elem3, ...) to the respective argument regis-
ters and then issues an indirect call using fptr. Since all such
members are loaded from an attacker-controlled fake object
(the frame), the attacker fully controls all member variables
and, hence, call target and arguments.

Silver gadgets. Although the existence of a golden gadget
in a program is convenient for the attacker, not all programs
will feature such functions. We thus relax the attack assump-
tions and define the concept of a silver gadget: a golden
gadget without the requirement of making an additional call.
Such silver gadgets are fairly common, as most member func-
tions operate over member variables. We set every register
to the desired values using the same technique as described
with golden gadgets (we need a CFP and inject a coroutine
frame with the data to load into the registers). Since silver
gadgets do not issue a controlled call, the target function has
to be called via a second CFP, using either two hijacked point-
ers (e.g., resume() and destroy()) or using one of the general
chaining techniques described in § 3.6. If two CFPs exist and
between both the argument-passing registers are not modified,
silver gadgets allow to call an arbitrary function with arbi-
trary arguments. Although this may sound uncommon, this is
usually the case for schedulers (that resume a coroutine and
then proceed to destroy it) and awaitable coroutines (the con-
tinuation point and destroyer CFPs that we described for the
ICC scenario can always be used to leverage a silver gadget).

Automating CFOP attacks. Searching for golden and
silver gadgets can be challenging, since we must (1) find gad-
gets that fill the registers with attacker-controlled content; and
(2) identify which functions do not overwrite the registers
later with other data. The typically large number of member
functions in programs complicate manual analysis. Instead,
attackers may use automated analysis methods, such as taint
analysis or symbolic execution [32, 46]. We partially auto-
mated the gadget search for a large real program, as we show
in § 4.3.

Attackers can similarly automate the search for CFPs to
construct automatic CFOP payloads. By leveraging static
analysis tools, attackers can infer the structure of coroutine
frames and locate the CFPs. Once memory randomization
protections (e.g., ASLR) are bypassed, they can inject a pay-
load to hijack the CFPs, enabling arbitrary function calls with
controlled arguments.

4 Evaluation

This section evaluates how common coroutines are in real-
world programs, the feasibility of our exploitation techniques

when facing state-of-the-art CFI schemes, and PoC attacks
spanning exemplary (see § 8.2) and real programs.

4.1 Prevalence of Coroutines

We will first analyze the prevalence of coroutines in real pro-
grams. For this, we gathered statistics about the most popular
open-source projects in GitHub using C++ coroutines.

We found 131 repositories with more than 500 GitHub stars
(“popular”) using C++ coroutines. Moreover, 24 of these have
more than 10k GitHub stars (“very popular”). These include
well-known projects such as the Windows terminal (94k+
stars) [38], the SerenityOS operating system (30k+ stars) [49],
and Facebook projects such as RocksDB (28k+ stars) [23]
and HHVM (27k+ stars) [22]. In total, our search rendered
2.9k unique projects currently using coroutines in GitHub.

We find these numbers substantial, considering that corou-
tines were introduced only recently with C++20. Also, C++
coroutines are complex to use (due to their low-level nature)
and using them requires adjusting to a paradigm new in C++.
We expect that their adoption will increase over time.

We have identified that the community has used C++ corou-
tines for two main types of programs: First, databases are
asynchronous by nature, as operations may involve long wait-
ing times and require scheduling strategies. Examples in-
clude RocksDB (28k+ stars), FoundationDB (14k+ stars) [3],
ArangoDB (13k+ stars) [4], and ScyllaDB (13k+ stars) [47].
Second, we found them in frameworks and libraries, which
provide abstractions over C++ coroutines for easier program-
ming. Examples include the coroutine libraries CppCoro (3.3k
stars) [33] and ConcurrenCPP (2.2k stars) [19]; the large-
scale coroutine-based frameworks Seastar (8.2k stars) [48]
and Folly (27.8k stars) [21] that are used in ScyllaDB and
Facebook programs respectively; and other general-purpose
libraries that already incorporate coroutines, such as WinRT
(1.6k stars) [36] and asio (4.8k stars) [13].

Finally, we analyzed how coroutines were used by manually
inspecting the most popular 79 coroutine-based projects on
GitHub (i.e., ≥ 1k stars). 41 of them (52%) use continuation
points inside the coroutines, following a similar paradigm to
the one we described in Listing 2. Another 22 projects (28%)
use a scheduling strategy, where coroutines are enqueued and
managed by a scheduler. Relevant examples include Folly and
CppCoro, which feature continuation points, while WinRT
and Seastar are found with schedulers.

Overall, we have found that coroutines are a growing pres-
ence in a varied population of projects and are already a very
commonly used feature in some of them, such as databases.
This underlines the relevance of our study and the need for
defense strategies against coroutine-based exploitation at-
tacks. Moreover, the continued repetition of coroutine archi-
tectural patterns—schedulers and continuation-based await-
able coroutines—shows the easy applicability of our tech-
niques in the majority of coroutine programs.

Table 2: Considered CFI Schemes. A CFI scheme sup-
ports Linux () or Windows () systems; targets indirect
calls (I), backward jumps (B), or virtual pointers (V); uti-
lizes code instrumentation () or hardware enforcement
(); provides coarse-grained () or fine-grained () CFI;
offers full (), partial () or no protection () against
coroutines exploitation.

Name OS Features Prot.

IBT (Intel CET) I
ShadowStack (Intel CET) B
LLVM Clang CFI (Vcall) V
LLVM Clang CFI (Icall) I

KCFI I
Control Flow Guard (CFG) I

SafeDispatch V

4.2 CFI Guarantees for Coroutines

Next, we study the feasibility of CFOP when facing state-
of-the-art CFI defenses. To this end, we evaluated widely-
deployed CFI schemes and other academic-proposed schemes
with respect to coroutine coverage. For this, we tried to com-
pile simple programs using coroutines with each CFI scheme
and analyzed if the scheme supported compiling coroutines
and was aware of coroutine semantics.

We summarize the CFI schemes compatible with corou-
tines in Table 2. In short, our coroutine exploitation tech-
niques can bypass both the forward-edge and backward-edge
integrity protections present in programs compiled using both
fine-grained and coarse-grained CFI schemes. The main rea-
son is that all but two CFI schemes (CFG and CET’s IBT) omit
any protection for function pointers generated in C++ corou-
tines. That is, any indirect call using coroutine-internal func-
tion pointers can be hijacked, as we described throughout the
paper, by hijacking CFP objects. We could not further assess
additional 8 CFI schemes, which we did include in our evalu-
ation, as they either did not support coroutines or our corou-
tine program crashed (MCFI/piCFI [39], ReCFI [8], PathAr-
mor [51], CFIXX [9], PittyPat [20], VTrust [53], TyPro [5]
and VfGuard [43]).

Having said this, irrespective of not protecting coroutine
pointers, two of the CFI schemes still generally restrict the
targets of any indirect call/jump. In particular, Intel CET’s
IBT allows to jump to arbitrary destinations as long as it is the
start of a function; attackers need to leverage silver and golden
gadgets, instead of any arbitrary piece of code (e.g., ROP-style
gadgets). Still, it is possible to leverage the existing CFPs for
all CFOP attacks. CFG sets the same restrictions, with the
addition of preventing jumps to functions that are never the
target of indirect jumps during normal program execution.
Thus, CFG decreases the number of available silver and gold

gadgets, but still allows a wide range of jump targets (e.g.,
coroutine stubs, library APIs, functions jumped indirectly).

4.3 Real-World PoC Attacks
On top of the exemplary PoCs that showcase CFOP in dif-
ferent scenarios (see § 8.2), we extended our tests to two real
programs.

ScyllaDB PoC: We developed a PoC exploit for one of
the most popular databases using coroutines, ScyllaDB (13k+
stars). This is a NoSQL database that features an internal
coroutine-based scheduler known as Seastar. We picked
Scylla-2025.1.0-rc0, which is (at the time of writing) the latest
version of ScyllaDB. We used a Linux x86_64 executable,
compiled with Clang-18.1.8 and Intel CET enabled.

ScyllaDB users can interact with the database using
CQL [10]. Following our threat model, we introduce (1) an ar-
bitrary write vulnerability in the code part for receiving CQL
input, writing the payload to an attacker-chosen memory ad-
dress, and (2) a memory leak to bypass ASLR as a means to
obtain the memory location of one of the scheduler’s queues.

We aim for an exploit that executes an attacker-controlled
system call with three attacker-controlled arguments. Without
losing generality, we aim to execute execve("/bin/sh", "-c",
"/usr/bin/whoami"). We exploit one of the CFPs in the corou-
tine scheduler, specifically when it calls resume on a coroutine.
In this case, the coroutine frame in the scheduler queue is hi-
jacked so that the resume pointer points to a golden gadget.
This golden gadget sets the register values needed, then jumps
to the execve() call.

In a nutshell, the exploit uses frame manipulation to hijack
the coroutine frames in the scheduler (circular) queue. This
queue is periodically used to dispatch groups of operations,
including coroutines. We also hijack the pointers that mark
the beginning and end of the circular queue to ensure that the
coroutine gets executed exactly when the register rsi holds
an appropriate value—rdi is already fixed to the coroutine
frame. Both these registers are used from the golden gadget to
load attacker-supplied values, then issue the execve call. We
have described the full exploit details in our project repository.

To automate the tedious process of finding the necessary
gadgets, we developed a script leveraging radare2’s symbolic
execution framework. This tool extracts and evaluates every
function in a given program to determine if they satisfy two
key conditions: (1) The function loads a memory value from
an address using an offset from the rdi register (e.g., mov
rsi, [rdi+0x90]) and stores it in an argument-passing reg-
ister (rsi, rdx, rcx, etc.). (2) Once the value is loaded into the
argument-passing register, it remains unaltered until a ret or
jmp instruction is encountered. Using this tool, we identified
over 100 potential silver gadgets in ScyllaDB. After manual
inspection, we also uncovered several golden gadgets.

SerenityOS PoC: We also developed a PoC exploit for
the second most popular project currently using coroutines,

SerenityOS (30k+ stars), a Unix-like operating system. For
this PoC, we took the latest version of the project in GitHub
and reintroduced the old vulnerable code responsible for CVE-
2021-4327, an integer overflow vulnerability—that can be
exploited for an arbitrary memory write. We showcase an
exploit in the vulnerable Linux x86_64 (lagom) version of the
SerenityOS browser, Ladybird, compiled with GCC-13.3.0
and Intel CET enabled.

The CVE-2021-4327 vulnerability resides in the internal
LibJS library, which Ladybird uses for website JavaScript
parsing. Meanwhile, the browser and many other OS compo-
nents rely on LibCore, a core SerenityOS library providing
foundational functionality, in which developers are actively
integrating coroutines. Although Ladybird itself does not cur-
rently utilize these coroutines, the LibCore library is linked
to every binary. Thus, we exploit the CVE-2021-4327 vulner-
ability to inject malicious coroutine frames into memory, and
to redirect the execution flow to the LibCore coroutine code
responsible for parsing them. The result is the execution of
an ICC chain, leveraging coroutines to execute an arbitrary
number of functions indefinitely.

In a nutshell, our exploit consists of a malicious HTML
file—with embedded JavaScript code—that triggers the vul-
nerability in the browser when the website is visited. We
exploit the WebContent process of the browser, injecting mul-
tiple coroutine frames into the process memory. In addition,
a vtable pointer is overwritten to redirect the execution flow
to the LibCore coroutine function adopt_coroutine(), which
will parse the injected frames. Needing to overwrite a vtable
pointer will be obsolete as soon as the WebContent process
actively uses coroutines. The exploit then leverages the two
CFPs in the adopt_coroutine() function (a destroyer, and an
await_suspend() call) to launch an ICC chain. In this chain, an
infinite number of functions can be executed; without losing
generality, we execute system("whoami") three times.

5 Defenses

CFI schemes that use code instrumentation (see Table 2) can
be extended to account for coroutine-related indirect jumps
by restricting resume and destroy calls to their corresponding
coroutine code. Having said this, instead of relying on CFI,
we suggest to address the problem at its root. Drawing inspira-
tion from prior binary protections like Relocation Read-Only
(RELRO), which mitigates GOT overwrite attacks by marking
the Global Offset Table read-only, we advocate for a similar
approach to protect coroutine frames.

In this section, we propose conceptual changes to the corou-
tine implementation to mitigate control-flow hijacking attacks
(§ 5.1) and DOAs (§ 5.2). Our security requirements (SR) and
functionality requirements (FR) are as follows:

SR1: There must not exist any pointers in writable memory
that are used for issuing indirect calls or jumps.

coroutine
identifier

coroutine
index

local
variables

handler coroutine jumptable
(read-only)

coroA_ResumeStub

coroB_ResumeStub

coroC_ResumeStub

coroA_DestroyStub

coroB_DestroyStub

coroC_DestroyStub

coro_resume(handler){
 switch (handler.coroutine_identifier){
 case coroA:
 jmp coroA_ResumeStub(); break;
 case coro_B:
 jmp coroB_ResumeStub(); break;
 case coro_C:
 jmp coroC_ResumeStub(); break;
 default: exception();
 }
}

promise
object

parameters

Figure 7: Proposed CFOP defense, moving vulnerable point-
ers to read-only memory, referenced by a coroutine identifier.

SR2: A memory corruption attack must be limited to af-
fecting a single coroutine frame per attack.

SR3: The variables stored in the coroutine frame must have,
at a minimum, the same level of protection as the data saved
in the stack during the execution of normal functions.

FR1: A coroutine may be resumed or destroyed using just
its handle (e.g., a scheduler must be able to resume a coroutine
handle from a queue without knowing the coroutine type).

FR2: All the information about the coroutine must be con-
tained in the coroutine frame; the coroutine must be stackless.

5.1 Protecting Coroutine Pointers
Just like any other code pointer, the resume and destroy point-
ers should not be stored in writable memory, as this is the
basis of any control-flow hijacking attack. Therefore, in our
proposed coroutine implementation concept, and fulfilling
SR1, these pointers are therefore stored in read-only memory.

Figure 7 shows how the frame and other components look
like in this new concept. Firstly, the resume and destroy point-
ers of every coroutine are no longer stored in the correspond-
ing coroutine frame. Instead, they are moved into a list in
read-only memory. Since the resume and destroy pointers are
the same for every coroutine type (all instantiations of a corou-
tine type share the same frame template), the list includes a
single resume and a single destroy pointer per coroutine type.

Currently, the resume and destroy pointers are the only el-
ements of the frame that indicate which type of coroutine it
belongs to (since these pointers point to the resume stub and
destroy stub, respectively). In our new design, these pointers
are no longer in the frame, which in principle would not satisfy
FR1. Also, we would not satisfy FR2 because, from a corou-
tine handle, there would not exist a link to the corresponding
resume or destroy stubs. For this reason, we introduce a new
element in the frame: the coroutine identifier.

The coroutine identifier is an integer number unique for
each coroutine type (i.e., the compiler assigns the same iden-
tifier to each instantiation of coroutine coroA). It acts as the
link between the coroutine frame and the read-only list of
resume and destroy pointers. When a coroutine is resumed or
destroyed, the identifier is evaluated in a switch clause. Each
switch case corresponds to one of the possible identifiers, i.e.,

coroutine types used in the program. The program will use
the identifier as an offset to access the read-only jumptable of
resume and destroy pointers.

This new design prevents control-flow hijacking without
the need for additional CFI schemes. Attackers are now lim-
ited to overwriting the identifier instead of the resume and
destroy pointers. The best remaining attack is to alter which
coroutine gets resumed or destroyed, but it is impossible to
redirect the execution to an arbitrary code location.

5.2 Protecting Data in the Coroutine Frame
We have shown in § 3.4 how the data in the coroutine frame
can be one of the weakest links in the chain. Although its data
is protected against buffer overflows (via variable reordering),
frames are generally vulnerable to overflows from adjacent
frames. While a targeted write primitive can always modify
writable memory, we strive to offer a similar degree of security
as if the coroutine frame was in the stack.

We can draw inspiration from existing stack-based protec-
tions: (1) the compiler reorders the variables in a function
so that any potentially overflowing buffer is positioned in
higher memory addresses, where it cannot corrupt other vari-
ables; and (2) canaries protect stack frame boundaries. Both
defenses fulfill SR2 and SR3 and also apply to the coroutine
frames in the heap: (1) Programs can use heap allocators that
randomize the chunks in the heap. If every coroutine frame
is allocated next to each other, as in ptmalloc, this eases the
required memory leaking work by an attacker. (2) Programs
can use heap canaries that protect heap chunks so that a sin-
gle continuous memory write cannot corrupt more than one
coroutine frame—necessary in most CFOP attacks.

6 Discussion

This section reviews multiple aspects to bear in mind while
developing CFOP attacks, completing our guide on exploiting
the current implementation weaknesses of C++ coroutines.

6.1 ICC with Two Coroutines
In § 3.6, we describe an ICC scenario where we exploit a
program using three nested coroutines. Arguably, not every
program—even if using continuation points—will feature
three nested coroutines; more often, we would find two corou-
tines in a parent-child fashion. This does not necessarily mean
we can no longer attain the minimum of two CFPs needed
for CFP, contrary to what would be understood from Figure 3.
Firstly, the coroutine program could feature other useful CFPs
other than the continuation point and the saved task. Secondly,
both of these CFPs are usually still available in the parent
coroutine in a two-coroutine scenario. Since the awaiter im-
plementation is the same for the parent and child coroutine,
this means that if the child evaluates a continuation point, the

parent also features the same code for this. The continuation
would be set to NULL—as no coroutine called the parent—
, but an attacker can leverage this as a CFP by setting any
other value in the frame. Therefore, every parent coroutine
commonly features at least two CFPs, and ICC is possible.

6.2 Compilers and HALO
The coroutine implementation we have described in this paper
is common to the three major compilers: GCC, Clang and
MSVC implement coroutines following the same principles.
The main difference at the assembly level is the degree of
optimization applied to coroutines code. One such optimiza-
tion alters how coroutines work: Heap Allocation eLision
Optimization (HALO) [28]. HALO intends to eliminate the
individual dynamic allocations that take place every time a
coroutine is created, which can be resource-demanding.

When a coroutine is optimized under HALO, its frame is
moved from the heap to the stack but maintains the same
elements as usual. However, we find that, at the assembly
level, the program no longer uses the resume or destroy point-
ers. Instead, the call addresses are hardcoded into the call
instruction, ignoring the values in the frame and performing a
direct jump to the resume and destroy stubs, respectively. This
effectively renders control flow hijacking attacks impossible.
However, programs are still vulnerable to DOAs.

In practice, the HALO optimization is rarely present in
coroutine programs; the difficulty of its implementation and
the strict criteria that programs must meet to be eligible for
the optimization have limited its widespread availability. Cur-
rently, only the latest versions of Clang fully support HALO
for coroutine programs. In a nutshell, for HALO to be applied,
the compiler must have a high degree of information on the
coroutine, ensuring that its lifetime is limited to the scope of a
function, i.e., the coroutine is created, resumed, and destroyed
within a function scope. In addition, many of the coroutine-
related functions need to be inlinable (see Appendix F).

7 Conclusion

We found that all three major C++ compilers implement corou-
tines that are vulnerable to CFOP, a novel code reuse attack.
CFOP encompasses techniques for altering the data used dur-
ing program execution (DOAs) and executing arbitrary code
(CFP exploitation, ICC, argument passing techniques). CFOP
evades both coarse-grained and fine-grained CFI schemes. We
studied the general applicability of our techniques and the pop-
ulation of programs currently vulnerable to CFOP. We found
that coroutines gain popularity, particularly in databases, and
prepared PoC exploits for two popular programs. Finally, we
proposed an implementation alternative that would mitigate
and prevent CFOP attacks.

8 Ethics and Open Science

8.1 Ethics considerations
All experiments carried out in this paper were done in an
isolated manner against locally-hosted services. We did not
interact with real-world systems to avoid any damage.

Since this paper shows that the current implementation of
C++ coroutines in the three major compilers—Clang/LLVM,
GCC and MSVC—is vulnerable, we initiated a disclosure
process with the corresponding parties to raise awareness and
to provide developers the opportunity to implement our pro-
posed mitigations. We shared a copy of this paper with the
affected compiler developers in November 2024. The general
consensus was that this should not be classified as a security
vulnerability but rather as a hardening opportunity against a
novel exploitation technique. The Clang/LLVM developers
acknowledged the issue and are actively discussing the best
way to address it. The GCC developers have expressed their
desire to open an upstream bug report when the paper is pub-
lished. Meanwhile, the Microsoft Security Response Center
referred the matter to the MSVC developers, from which we
have not yet received further feedback.

We declare no conflicts of interest or other ethical issues.
We have not received funding from any of the affected parties.

8.2 Open Science
As part of our work, we have prepared a Proof of Concept
(PoC) in two real programs using coroutines (ScyllaDB and
SerenityOS, see § 4.3). On top of that, aiming for the repro-
ducibility of the different techniques in CFOP, we have pre-
pared a compilation of PoC exploits, each consisting of a vul-
nerable coroutine program and an exploit script—compiled
with CET or CFG. The PoCs exploits include multiple exam-
ples of ICC exploitation, showcasing how to chain coroutines
infinitely under any control flow transfer strategy (see Ap-
pendix C); DOAs, showing how they can be used to access
an arbitrary file and how to call a function with arbitrary
arguments using the frame; and a combination of ICC ex-
ploits and argument-passing techniques using a silver gadget,
showcasing how to spawn a shell and execute arbitrary code.

All the code, scripts and materials we mention
in this paper are available in our Zenodo record
(10.5281/zenodo.14738036) and our GitHub repository
(https://github.com/coroutine-cfop/cfop).

References

[1] Merge coroutines ts into c++20 working draft.
https://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2018/p0912r2.html. (04-09-2024).

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In Proceedings of the

12th ACM Conference on Computer and Communica-
tions Security, CCS ’05, page 340–353, New York, NY,
USA, 2005. Association for Computing Machinery.

[3] Apple. Foundationdb. https://github.com/apple/
foundationdb. (04-09-2024).

[4] ArangoDB. Arangodb. https://github.com/
arangodb/arangodb. (04-09-2024).

[5] Markus Bauer, Ilya Grishchenko, and Christian Rossow.
Typro: Forward cfi for c-style indirect function calls us-
ing type propagation. In Proceedings of the 38th Annual
Computer Security Applications Conference, ACSAC
’22, page 346–360, New York, NY, USA, 2022. Associ-
ation for Computing Machinery.

[6] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and
Zhenkai Liang. Jump-oriented programming: A new
class of code-reuse attack. In Proceedings of the ACM
Symposium on Information, Computer and Communica-
tions Security, ASIACCS, 2011.

[7] Erik Bosman and Herbert Bos. Framing signals - a
return to portable shellcode. In 2014 IEEE Symposium
on Security and Privacy, pages 243–258, 2014.

[8] Oliver Braunsdorf, Stefan Sessinghaus, and Julian
Horsch. Compiler-based attack origin tracking with dy-
namic taint analysis. In Information Security and Cryp-
tology – ICISC 2021: 24th International Conference,
Seoul, South Korea, December 1–3, 2021, Revised Se-
lected Papers, page 175–191, Berlin, Heidelberg, 2021.
Springer-Verlag.

[9] Nathan Burow, Derrick McKee, Scott Carr, and Mathias
Payer. Cfixx: Object type integrity for c++. In Pro-
ceedings of the Annual Network and Distributed System
Security Symposium (NDSS), 01 2018.

[10] Apache Cassandra. The cassandra query lan-
guage (cql). https://cassandra.apache.org/doc/
stable/cassandra/cql/. (04-09-2024).

[11] Long Cheng, Salman Ahmed, Hans Liljestrand, Thomas
Nyman, Haipeng Cai, Trent Jaeger, N. Asokan, and Dan-
feng (Daphne) Yao. Exploitation techniques for data-
oriented attacks with existing and potential defense ap-
proaches. ACM Trans. Priv. Secur., 24(4), sep 2021.

[12] Tzi-Cker Chiueh and Fu-Hau Hsu. Rad: a compile-time
solution to buffer overflow attacks. In Proceedings 21st
International Conference on Distributed Computing Sys-
tems, pages 409–417, 2001.

[13] chriskohlhoff. asio. https://github.com/
chriskohlhoff/asio. (04-09-2024).

https://doi.org/10.5281/zenodo.14738036
https://github.com/coroutine-cfop/cfop
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0912r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0912r2.html
https://github.com/apple/foundationdb
https://github.com/apple/foundationdb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://cassandra.apache.org/doc/stable/cassandra/cql/
https://cassandra.apache.org/doc/stable/cassandra/cql/
https://github.com/chriskohlhoff/asio
https://github.com/chriskohlhoff/asio

[14] Clang/LLVM. Control flow integrity design doc-
umentation. https://clang.llvm.org/docs/
ControlFlowIntegrityDesign.html. (04-09-2024).

[15] cOntext. Bypassing non-executable stack
during exploitation using return-to-libc.
http://staff.ustc.edu.cn/~bjhua/courses/
security/2014/readings/return-to-libc.pdf.
(04-09-2024).

[16] Crispin Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, Qian Zhang, and Heather Hinton. StackGuard:
Automatic adaptive detection and prevention of Buffer-
Overflow attacks. In 7th USENIX Security Symposium
(USENIX Security 98), San Antonio, TX, January 1998.
USENIX Association.

[17] CppReference. C++20 core language features.
https://en.cppreference.com/w/cpp/compiler_
support#C.2B.2B20_features. (04-09-2024).

[18] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann,
and Fabian Monrose. Stitching the gadgets: On the in-
effectiveness of Coarse-Grained Control-Flow integrity
protection. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 401–416, San Diego, CA,
August 2014. USENIX Association.

[19] David-Haim. concurrencpp, the c++ concurrency library.
https://github.com/David-Haim/concurrencpp.
(04-09-2024).

[20] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris,
Taesoo Kim, and Wenke Lee. Efficient protection of
Path-Sensitive control security. In 26th USENIX Secu-
rity Symposium (USENIX Security 17), pages 131–148,
Vancouver, BC, August 2017. USENIX Association.

[21] Facebook. Folly: Facebook open-source library. https:
//github.com/facebook/folly. (04-09-2024).

[22] Facebook. Hhvm. https://github.com/facebook/
hhvm. (04-09-2024).

[23] Facebook. Rocksdb. https://github.com/
facebook/rocksdb. (04-09-2024).

[24] Linux Foundation. System V Application Binary Inter-
face AMD64 Architecture Processor Supplement, 2012.

[25] Wolfram Gloger. Wolfram gloger’s malloc home-
page. http://www.malloc.de/en/index.html. (04-
09-2024).

[26] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-oriented programming: On the expressiveness of

non-control data attacks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 969–986, 2016.

[27] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual., 2020.

[28] ISO/IEC. Halo: coroutine heap alloca-
tion elision optimization: the joint response.
https://open-std.org/jtc1/sc22/wg21/docs/
papers/2018/p0981r0.html. (04-09-2024).

[29] ISO/IEC. N4775: Working Draft, C++ Extensions for
Coroutines.

[30] Seunghoon Jeong, Jaejoon Hwang, Hyukjin Kwon, and
Dongkyoo Shin. A cfi countermeasure against got over-
write attacks. IEEE Access, 8:36267–36280, 2020.

[31] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun
Xu, and Peng Ning. Address space layout permutation
(aslp): Towards fine-grained randomization of commod-
ity software. In Proceedings of the 22nd Annual Com-
puter Security Applications Conference, ACSAC ’06,
page 339–348, USA, 2006. IEEE Computer Society.

[32] James C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, jul 1976.

[33] lewissbaker. Cppcoro - a coroutine library for c++.
https://github.com/lewissbaker/cppcoro. (04-
09-2024).

[34] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and
David Mazières. Ccfi: Cryptographically enforced con-
trol flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’15, page 941–951, New York, NY, USA,
2015. Association for Computing Machinery.

[35] Microsoft. Control flow guard for platform se-
curity. https://learn.microsoft.com/en-us/
windows/win32/secbp/control-flow-guard. (04-
09-2024).

[36] Microsoft. The c++/winrt language projection. https:
//github.com/microsoft/cppwinrt. (04-09-2024).

[37] Microsoft. Powertoys. https://github.com/
microsoft/PowerToys. (04-09-2024).

[38] Microsoft. terminal. https://github.com/
microsoft/terminal. (04-09-2024).

[39] Ben Niu and Gang Tan. Modular control-flow integrity.
SIGPLAN Not., 49(6):577–587, jun 2014.

[40] PaX. Address space randomization. https://
pax.grsecurity.net/docs/aslr.txt, 2003. (04-
09-2024).

https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
http://staff.ustc.edu.cn/~bjhua/courses/security/2014/readings/return-to-libc.pdf
http://staff.ustc.edu.cn/~bjhua/courses/security/2014/readings/return-to-libc.pdf
https://en.cppreference.com/w/cpp/compiler_support#C.2B.2B20_features
https://en.cppreference.com/w/cpp/compiler_support#C.2B.2B20_features
https://github.com/David-Haim/concurrencpp
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/facebook/hhvm
https://github.com/facebook/hhvm
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
http://www.malloc.de/en/index.html
https://open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
https://open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
https://github.com/lewissbaker/cppcoro
https://learn.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://learn.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://github.com/microsoft/cppwinrt
https://github.com/microsoft/cppwinrt
https://github.com/microsoft/PowerToys
https://github.com/microsoft/PowerToys
https://github.com/microsoft/terminal
https://github.com/microsoft/terminal
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt

[41] Jannik Pewny, Philipp Koppe, and Thorsten Holz.
Steroids for doped applications: A compiler for auto-
mated data-oriented programming. In 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
pages 111–126, 2019.

[42] Phantasmal Phantasmagoria. The malloc malefi-
carum. https://seclists.org/bugtraq/2005/
Oct/118. (04-09-2024).

[43] Aravind Prakash, Xunchao Hu, and Heng Yin. vfguard:
Strict protection for virtual function calls in cots c++
binaries. In Proceedings of the Annual Network and Dis-
tributed System Security Symposium (NDSS), 01 2015.

[44] Ahmad-Reza Sadeghi, Lucas Davi, and Per Larsen. Se-
curing legacy software against real-world code-reuse
exploits: Utopia, alchemy, or possible future? In Pro-
ceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS
’15, page 55–61, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[45] Felix Schuster, Thomas Tendyck, Christopher Liebchen,
Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz.
Counterfeit object-oriented programming: On the dif-
ficulty of preventing code reuse attacks in c++ appli-
cations. In Proceedings of the IEEE Symposium on
Security and Privacy, SP, 2015.

[46] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In 2010 IEEE Symposium on
Security and Privacy, pages 317–331, 2010.

[47] ScyllaDB. Scylladb. https://github.com/
scylladb/scylladb. (04-09-2024).

[48] ScyllaDB. Seastar. https://github.com/scylladb/
seastar. (04-09-2024).

[49] SerenityOS. Serenity. https://github.com/
SerenityOS/serenity. (04-09-2024).

[50] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the ACM conference on
Computer and Communications Security, CCS, 2007.

[51] Victor van der Veen, Dennis Andriesse, Enes Göktaş,
Ben Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos,
and Cristiano Giuffrida. Practical context-sensitive cfi.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15,
page 927–940, New York, NY, USA, 2015. Association
for Computing Machinery.

1 //The coroutine object
2 class task_aw {
3 public:
4 ///Omited other boilerplate code///
5 //Promise object
6 class promise_type {
7 public:
8 //Lazy-start coroutine
9 suspend_always initial_suspend() noexcept

{return {};}
10 //Custom awaiter for final_suspend
11 struct final_awaiter {
12 bool await_ready() noexcept {return

false;}
13 void await_suspend(coroutomine_handle <

promise_type > h) noexcept {
14 if(h.promise().cont){
15 h.promise().cont.resume();
16 }
17 }
18 void await_resume() noexcept {}
19 };
20 final_awaiter final_suspend() noexcept
21 {return {};}
22 coroutine_handle <> cont;
23 };
24
25 //Awaiter, evaluated by co_await
26 class awaiter {
27 public:
28 bool await_ready() noexcept {return false

;}
29 void await_suspend(coroutine_handle <> cont

) noexcept {
30 coro_.promise.cont = cont;
31 coro_.resume();
32 }
33 void await_resume() noexcept {}
34 };
35 ~task() {if (coro_)coro_.destroy();}
36 coroutine_handle <promise_type > coro_;
37 };

Listing 5: Definition of the coroutine task object
corresponding to the program shown in Listing 2.

[52] Perry Wagle, Crispin Cowan, and Immunix. Stackguard:
Simple stack smash protection for gcc. 2004.

[53] Chao Zhang, Scott A. Carr, Tongxin Li, Yu Ding,
Chenyu Song, Mathias Payer, and Dawn Song. Vtrust:
Regaining trust on virtual calls. In Proceedings of the
Annual Network and Distributed System Security Sym-
posium (NDSS), 2016.

A C++ Coroutines Task Definition

The code shown in Listing 5 corresponds to a simplified
definition of the task_aw object in Listing 2. As we have
explained throughout § 2.1.2, the task object always includes
the definition of the coroutine handle (line 36), the corou-
tine promise (lines 6-23), the awaiter used when invoking

https://seclists.org/bugtraq/2005/Oct/118
https://seclists.org/bugtraq/2005/Oct/118
https://github.com/scylladb/scylladb
https://github.com/scylladb/scylladb
https://github.com/scylladb/seastar
https://github.com/scylladb/seastar
https://github.com/SerenityOS/serenity
https://github.com/SerenityOS/serenity

Creation stub
Coroutine

frame

promise.initial_suspend()
lazy-start,

coroutine suspended

create &
initialize

Resume stub
resume & execute until SP

co_return
promise.return_void()

promise.final_suspend()

c1().destroy()
Destroy stub

destroy coroutine frame

coroutine c1() coroutine c2()

c1()

co_await task
awaiter =

get_awaiter(task)

co_await c1()

FALSE

awaiter.
awaiter_ready()

awaiter.
await_resume()

awaiter.
await_suspend()

task
handle

promise

returns

c1().resume()

~task()

TRUE

Figure 8: Coroutine lifetime (when a coroutine is co_await-ed
from another coroutine, as in the program at Listing 2).

co_await on the coroutine (lines 26-34) and—in this case—
the custom awaiter final_awaiter, evaluated when the function
reaches its final suspension point in final_suspend().

In this example, the implementation of the await_suspend()
functions in the awaiters allows the coroutines in Listing 2
to suspend and resume each other. This is the simplest case
of nested coroutine program; more complicated behaviors
(e.g., asynchronony with multi-threading) would similarly be
implemented in the awaiters and other parts of the task.

B Assembly Code in Coroutine Stubs

We show in Listing 6 the assembly code generated by a com-
piler during the transformations that take place once it detects
a coroutine. We can find the three different stubs—creation,
resume, and destroy stubs— and how the program always
uses indirect jumps to find the address of the last two.

C Transferring Execution Between Coroutines

In § 3.6.2, we describe how programs may use coroutines
to transfer the execution to one another via the awaiters and
the operator co_await. The C++ coroutines API is very flexi-
ble, enabling different implementation mechanisms inside the
awaiter (e.g., in the await_suspend() function). Depending on
the implementation, we can find that the compiler generates
fundamentally different code. These details should be consid-
ered when preparing CFOP attacks, although every technique
described in this paper is still applicable in every case.

Asymmetric transfer with void-returning
await_suspend(). This strategy is the one we detailed

1 c1.CreationStub:
2 call new() ;heap-based coroutine frame
3 mov rcx, <address of c1.ResumeStub >
4 mov [rax], rcx ;write to frame
5 mov rcx, <address of c1.DestroyStub >
6 mov [rax + 0x8], rcx ;write to frame
7 mov [rax + 0x30], 0x0 ;initial SP value
8 ...
9 c1.ResumeStub: ;rdi = ptr to coroutine frame

10 mov rax, [rdi+0x30] ;gets the SP
11 cmp rax, 0x0
12 je c1.ResumeStub.FirstSuspensionPoint
13 cmp rax, 0x1
14 je c2.ResumeStub.SecondSuspensionPoint
15 c1.ResumeStub.FirstSuspensionPoint:
16 ;executes code until co_awaiting c2
17 mov [rdi+0x30], 1 ;sets new SP
18 ...
19 c1.ResumeStub.SecondSuspensionPoint:
20 ;executes code right after co_awaiting c2
21 mov [rdi+0x30], 2 ;sets new SP
22 ...
23 c1.DestroyStub: ;rdi = ptr to coroutine frame
24 call delete() ;frees frame in the heap
25 ...
26 main:
27 call c1.CreationStub ;create coroutine c1
28 ;rdi holds ptr to created coroutine frame
29 call [rdi] ;resume() = call ResumeStub
30 call [rdi+8] ;destroy() = call DestroyStub

Listing 6: Assembly code used to create, resume and destroy
coroutine c1() from function main() in Listing 2.

in § 3.6.2. Taking Listing 2 as a reference, it works purely by
setting continuation points inside the awaited coroutine (c2).

Although programs built using this asymmetric transfer
version are perfectly functional and can be found in real-world
programs, they suffer from a fundamental flaw: Every time we
issue a resume() call to a continuation point, we are executing
an assembly call instruction equivalent to the one shown in
Listing 4. By design, when we execute a call instruction, the
return address is stored in the stack. Since we keep calling
resume() every time we execute a new coroutine, a program
where a pair of coroutines is suspended and resumed in a loop
could eventually grow the stack sufficiently to cause a stack
overflow. For this reason, and although many programs will
never face this problem, it is recommended to use any of the
other two control flow transfer strategies.

Asymmetric transfer with bool-returning
await_suspend(). This strategy intends to fix the stack
overflow problem of normal asymmetric transfer by altering
the awaiter: now the function await_suspend() can also
return a boolean value.

Assuming the same scenario with coroutine c1 co_awaiting
coroutine c2 as previously, we find that: (1) If await_suspend()
from c2’s awaiter returns true, then the coroutine is suspended
and the execution returns to c1. (2) If await_suspend() from
c2’s awaiter returns false, then c2 is resumed.

1 coroutine_handle <> final_awaiter::await_suspend(
coroutine_handle <promise_type > h) noexcept {

2 if(h.promise().cont){
3 return h.promise().cont; //jmp <cont>
4 }
5 return noop_coroutine(); //return to previous

coroutine
6 }
7 coroutine_handle <> awaiter::await_suspend(

coroutine_handle <> cont) noexcept {
8 coro_.promise().cont = cont;
9 return coro_; //jmp <coro_>

10 }

Listing 7: Awaiters using symmetric transfer, equivalent to
the asymmetric awaiters shown in Listing 2.

Unlike with the void-returning asymmetric transfer ver-
sion, where the continuation points may resume any arbitrary
coroutine, using this strategy, we are only allowed to either
return to the previous coroutine or continue with the same
one. The main benefit is that this transfer does not involve
any call instruction at all, but rather the coroutine issues a ret
instruction to come back to the previous coroutine, avoiding
the stack grow problem.

It is important to notice that, in real-life programs, pro-
grams using the boolean version of await_suspend() do not
simply use the boolean return value to control every execution
flow transfer between coroutines. Most commonly, programs
combine the boolean return value with continuation points
and calls to resume() and destroy() inside await_suspend() too.
In this way, they avoid growing the stack during the most com-
mon execution transfers while conserving the flexibility of be-
ing able to resume any other coroutine (e.g., lazy-start corou-
tines still include a call to resume() inside the await_suspend()
method even when using its boolean version).

Symmetric Transfer Symmetric transfer is the most rec-
ommended strategy for managing the control flow transfer
between coroutines. Instead of returning void or a boolean
from await_suspend(), we can now return a coroutine handle
from it. The compiler is then prepared to take this handle and
call resume() on it, but as an optimized tail-call, instead of
using the instruction call, it uses a jmp instruction. This pre-
vents the stack from growing altogether while it guarantees
maximum flexibility.

Listing 7 shows how awaiters return handles instead
of calling resume() on them. Note the existence of the
noop_coroutine handle; this is a dummy handle offered by
the coroutines API whose resume pointer points to a ret in-
struction. Therefore, it is used when we do not want to resume
another coroutine, but rather suspend the current one and re-
sume the previous. Notably, we found that the noop handler is
stored in writable memory and contains a code address used
to make a jump operation. Thus, attackers may corrupt this
pointer and easily redirect the execution flow to an arbitrary
address.

D ICC Details depending on Coroutine Con-
trol Flow Strategy

The ICC setup we describe in § 3.6 corresponds to a program
using asymmetric transfer (see Appendix C) to control corou-
tines execution flow. However, the same setup also works for
symmetric transfer, although the internal behavior is different.
As we explained, to use symmetric transfer means that the
compiler uses jmp instead of call instructions when trans-
ferring the execution flow inside the awaiter. Since a jmp
never returns, the compiler positions error code after the jmp
instruction, assuming that the code will never get executed.

The previous has implications for ICC since we can no
longer rely on the coroutine reaching the end of its body
and issuing a ret instruction. However, our technique still
works: since the call target the attacker wants to execute is
a function itself, it also includes a ret instruction at the end.
Therefore, since we never issued a call to get to the function
in the first place, the ret instruction takes the execution back
to the previous coroutine in the frame, as that was the last
instruction pointer saved in the stack.

Finally, a relevant aspect to consider while creating an ICC
chain is that the resume pointers of a coroutine may not be
usable depending on the moment we are trying to access the
frame. When a coroutine reaches its final SP, executes all code
belonging to it, and then finishes executing all code related
to the awaiter from final_suspend, then the coroutine marks
itself as "done". This is useful for developers to know from
a handler when the coroutine has finished its execution. At
a low level, we find that a coroutine marks itself as done by
zeroing out the resume pointer. This is relevant when develop-
ing an ICC chain, as we must be particularly cautious when
dealing with CFPs using resume, ensuring that the injected
frames are not in a finished state.

E Relaxation of the Threat Model

Throughout the paper, we have detailed multiple possible ex-
ploitation techniques under the threat model in § 3.1. This
model was not chosen arbitrarily but rather with the purpose
of presenting a realistic scenario with similar restrictions as
faced by any attacker looking to use code-reuse techniques
in a machine protected by state-of-the-art defenses. However,
it can be interesting to explore how the exploitation tech-
niques described here can be performed while lifting some
restrictions in the model.

Specifically, we will explore how the attacker may repro-
duce the exploitation techniques described while not having
access to an arbitrary memory write primitive. Instead, we
assume that the attacker may leverage a single buffer overflow
that results in overwriting the directly contiguous memory
with attacker-controlled data. We will distinguish between
stack-based and heap-based overflows.

E.1 Stack-based Buffer Overflow
We first consider a regular function that (1) is vulnerable to
a stack-based buffer overflow and (2) will use a coroutine or
has callers that will use coroutines after the overflow. Note
that we will discuss heap-based overflows, i.e., stack-based
overflows within a coroutine, in § E.1.1. Overflowing a buffer
on the stack is common for arrays and other types of variables
used to store user-supplied data. To mitigate this risk, com-
pilers typically position non-primitive (“risky”) variables at
the higher addresses such that an overflow does not overwrite
other (e.g., primitive) local variables. This provides some im-
plicit protection of the coroutine handle if we overwrite a
buffer in a function using a coroutine.

However, it is still possible to modify a handle if a function
creates a coroutine and then calls other—nested—functions:
(1) Some function A holding a coroutine handle, which is
later used, calls function B. (2) The attacker overwrites some
buffer used in function B. The attacker injects a fake corou-
tine frame into the stack and overwrites the coroutine handle
in function A to point to this newly injected frame. It uses
memory leaks to avoid changing the value of the return ad-
dress in the stack (so as not to trigger backward-edge CFI).
(3) Function B returns. Function A then uses the coroutine
handle, overwritten to the injected coroutine frame in the
stack, leading to arbitrary code.

E.1.1 Heap-based Buffer Overflow

The attacker may trigger a heap-based buffer overflow either
by overflowing a heap-based object or overflowing a typically
stack-based buffer used from a coroutine.

We first look at overflows within a coroutine. Similar to
stack-based overflows, the compiler positions potentially vul-
nerable buffers at the end of the coroutine frame. Hence,
regarding the frame layout (Figure 1), an attacker may (1)
overwrite the coroutine index; (2) overwrite other coroutine
frames positioned in higher memory addresses; (3) corrupt
other heap-based objects, such as the chunks where the value
of objects used from a coroutine are saved.

If the attacker overflows some other coroutine-unrelated
heap-based object, it may similarly overwrite coroutine
frames positioned in higher memory addresses and corrupt
other heap-based objects. In practice, this translates to the
same capabilities as in the case of an arbitrary memory write.

E.2 Escalating a Limited Vulnerability
A limited arbitrary write vulnerability may not be sufficient
for an attacker to carry out an exploit (e.g., because this is a
heap-based buffer overflow that does not overwrite the resume
or destroy pointers). In these cases, it can be interesting to
explore how the attacker may use a vulnerability to pivot to
other attack primitives. We find that the variables saved as
pointers inside the coroutine frame are helpful for this.

Firstly, it is possible to modify a pointer so that when a
value is assigned to the variable, it leads to an arbitrary write:
(1) The attacker modifies the pointer in a coroutine frame to
an arbitrary memory address. (2) The coroutine is resumed.
During its execution, it reads an arbitrary value (potentially
attacker-controlled) into the object whose pointer was modi-
fied. (3) The value is written to the attacker-set position.

Secondly, an attacker can tinker with heap structures using
the coroutine frames. In many heap allocator implementa-
tions (such as the widespread ptmalloc), the heap presents a
series of structures known as the bins, where heap chunks are
saved after their deallocation for optimization purposes. These
chunks are later retrieved in successive allocations. Histori-
cally, a wide range of heap-based exploitation techniques have
existed that target this and other features of the heap allocator.
With coroutines, we can reproduce some of these heap-based
attacks, such as the House of Spirit [42]: (1) The attacker uses
a limited buffer overflow to forge a valid coroutine frame,
including the corresponding ptmalloc heap headers. (2) The
attacker also overwrites a coroutine frame with a variable
saved as a pointer. The pointer is set to point to the previously
forged coroutine frame, and the resume index is set to the last
one possible of the execution. (3) The coroutine gets resumed
and, at the end of its execution, calls free() on every object
variable, which corresponds to the overwritten pointer. This
deallocates the memory corresponding to the forged heap
frame. (4) When the forged heap frame is deallocated, it goes
to the corresponding bin from the heap allocator, such as the
tcache. (5) Any subsequent call to malloc with the same size
as the forged heap frame will return the attacker-controlled
chunk from the tcache.

F Application of HALO

The HALO optimization is only applied when a coroutine’s
lifetime (including creation, resuming, and destruction) is lim-
ited to one function scope. For the compiler to know this, it
needs to inline most of the function stubs belonging to the
coroutine in the function. This includes the resume() and de-
stroy() functions, the constructor and destructor of the corou-
tine task object, and other boilerplate functions (e.g., the in-
ternal awaiter functions, such as await_suspend()). Any of
these functions may result in being non-inlinable for various
reasons: (1) the use of indirect calls inside the coroutine (e.g.,
a call to a vptr), since the compiler does not know at com-
pile time the type of function being called and thus cannot
calculate the stack space to reserve for the coroutine frame;
(2) function definitions being at a different compilation unit
(e.g., the coroutine declaration in a header file imported and
used by multiple implementations), although this can be par-
tially solved by the use of Link Time Optimization (LTO);
and (3) the program interacting with coroutine objects outside
the scope of the coroutine (e.g., a program accessing a value
returned by a coroutine after it has finished).

	Introduction
	Background
	Coroutines
	Suspension Point
	The Coroutine Handle, Promise and Awaiter

	Control Flow Integrity

	Attacking Coroutines
	Threat Model
	Coroutine Implementations
	The Coroutine Frame
	Coroutine Lifetime

	Coroutine Attack Primitives
	Frame Manipulation
	Frame Injection

	Data-Only Attacks
	Control-Flow Hijacking
	Attacking the Pointers in the Frame
	Attacking CFPs in Schedulers
	Attacking Awaiter CFPs in Awaitable Coroutines

	Coroutine Chaining Attacks
	Multiple Arbitrary Calls With Scheduler
	Multiple Arbitrary Calls Without Scheduler

	Passing Arbitrary Arguments

	Evaluation
	Prevalence of Coroutines
	CFI Guarantees for Coroutines
	Real-World PoC Attacks

	Defenses
	Protecting Coroutine Pointers
	Protecting Data in the Coroutine Frame

	Discussion
	ICC with Two Coroutines
	Compilers and HALO

	Conclusion
	Ethics and Open Science
	Ethics considerations
	Open Science

	C++ Coroutines Task Definition
	Assembly Code in Coroutine Stubs
	Transferring Execution Between Coroutines
	ICC Details depending on Coroutine Control Flow Strategy
	Relaxation of the Threat Model
	Stack-based Buffer Overflow
	Heap-based Buffer Overflow

	Escalating a Limited Vulnerability

	Application of HALO

