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Abstract
As Internet of Things (IoT) devices become widely de-

ployed, they face numerous threats due to the inherent vulner-
abilities and interconnected nature of these devices. One effec-
tive approach to enhancing IoT security is the deployment of
honeypot systems, which can attract, engage, and deceive po-
tential attackers, thereby exposing their attack methodologies
and strategies. However, traditional honeypots often fail to
effectively deceive attackers due to their inability to emulate
the physical and network dependencies present in real-world
IoT environments. Consequently, attackers can easily detect
inconsistencies among the honeypots after launching attacks
from multiple sources, spanning both cyber and physical do-
mains, to verify device status. To address this challenge, we
propose a Cyber-Physical Deception System (CPDS) capa-
ble of mimicking the intricate cyber-physical connections
among IoT devices by coordinating various IoT honeypots.
Specifically, we model the vulnerabilities of individual IoT
devices by collecting and analyzing attack traces. We analyze
the physical and network dependencies among IoT devices
and formulate them as Prolog rules. Then, we coordinate
the honeypots based on the attacker’s actions and the de-
pendency rules, ensuring cross-layer consistency among the
honeypots. We implemented our deception system by lever-
aging software-defined networking, enhancing existing IoT
honeypots, and configuring them to work in concert. Through
online deployment, human evaluation on real attack scenario
and extensive simulation experiments, we have demonstrated
the effectiveness of CPDS in terms of fidelity and scalability.

1 Introduction

The past two decades have witnessed the widespread deploy-
ment of IoT systems. Popular commodity IoT platforms, such
as Samsung SmartThings [1], Apple Homekit [2], and Huawei
AI Life [3], connect and manage enormous IoT devices with
diverse physical functionalities. However, these devices are
subject to numerous threats due to their inherent vulnera-
bilities [4, 5, 6, 7, 8], stemming from outdated or broken

security modules, improper patch management, insufficient
access control, and inadequate physical security.

To address these issues, we turn to honeypots which are
valuable security tools widely used by practitioners to gain
insight into the dynamic threat landscape [9]. These decoy
systems are designed to attract, engage, and deceive potential
attackers by emulating services and devices in a controlled
environment. A successful honeypot efficiently attracts at-
tackers through various vulnerabilities, evades detection by
reconnaissance and honeypot identification tools, provides
convincing responses, deceives attackers into believing they
are interacting with real devices, and collects any attack traces
left by the attackers for future analysis. Thus, honeypots have
the potential to enhance the overall security of IoT systems.

Consider a smart home scenario: a thief aiming to steal
valuable assets gathers information about the target house.
Attackers might exploit software vulnerabilities in IoT cam-
eras [10] to access video streams and control the camera (e.g.,
pan, tilt, zoom) to surveil the property. They may also com-
promise other IoT devices, such as smart speakers [11], smart
thermostats, smart bulbs, or smart plugs, to check their device
statuses and sensor readings. In this context, IoT honeypots
can be deployed to deceive the attacker and mislead their
decision-making process. For example, a parked car visible
in the live video stream from a camera honeypot, an active
air conditioner shown in a smart thermostat honeypot, and
a switched-on smart bulb honeypot together might indicate
that the residents are at home, thereby deterring the thief from
further intrusion. In a military scenario, compromised sol-
dier mounted cameras and other sensors can help attackers
obtain tactical and battlefield information. Then, honeypots
(e.g., cameras and fake videos) can be employed to deceive
attackers with false battlefield information, such as fake troop
movement, leading them to make incorrect decisions.

However, deploying IoT honeypots for deception presents a
unique challenge. Unlike traditional cyberattacks that primar-
ily target individual servers, the threat landscape of the IoT
ecosystem extends to interconnected IoT devices [12, 13, 14].
Attackers can leverage information from multiple sources,



spanning both the cyber and physical domains, to verify de-
vice statuses, craft attack strategies, and ultimately achieve
their objectives. Any inconsistency among IoT honeypots,
such as a smart bulb indicating ‘on’ while a video feed shows
a dark room, could alert the attacker to the presence of honey-
pots and potential deception. The intricate connections among
IoT devices underscore the urgent need for a comprehensive
defense strategy that extends beyond isolated honeypots de-
signed for conventional servers or devices.

To address this challenge, we propose a Cyber-Physical
Deception System (CPDS) which can coordinate IoT honey-
pots, thereby mimicking the multifaceted nature of the IoT
ecosystem and creating a cohesive deception environment.
Specifically, we first model the vulnerabilities of individual
IoT devices by collecting and analyzing attack traces. Next,
we generate dependency Prolog rules based on the network
topology and device locations of the target IoT system we
aim to emulate. We then propose a coordinated algorithm to
ensure consistency among different honeypots at runtime.

The main contributions of this paper are as follows:

• We model the vulnerability of individual device by ana-
lyzing attack traces and formulate physical and network
dependencies among IoT devices as Prolog rules.

• We propose a honeypot coordination algorithm based
on the exploited vulnerabilities and dependency prolog
rules to ensure consistency among honeypots.

• We enhance existing IoT camera honeypots to improve
their adaptability to environmental changes, and imple-
ment CPDS using various IoT honeypots.

• Through a combinations of online deployments, real ex-
periments, and simulations, we validate the performance
and deception capability of CPDS.

2 Background and Related Work
2.1 Threat Model
In this paper, we focus on individual attackers aiming to infil-
trate IoT systems such as smart home. These IoT systems con-
sist of inter-connected IoT devices (e.g., cameras, smart plug,
smart bulb, etc.) that leverage short-range, low-power proto-
cols (e.g., WiFi) to communicate with each other. The IoT
devices may have software vulnerabilities, which are rooted
in the firmware [4, 15], as well as hardware vulnerabilities
that may be exploited via physical channels [7, 11, 16, 17].

We assume that attackers can locate IoT devices using
open-source or custom reconnaissance tools such as Nmap
[18] and Masscan [19]. Additionally, they may sniff network
traffic to extract IoT device characteristics, such as brand,
model, or firmware version. Once identified, attackers might
exploit device vulnerabilities to compromise these IoT de-
vices, potentially stealing sensitive data (e.g., video streams,

device logs), disabling the devices, or installing malwares for
subsequent attacks.

Given the general absence of firewalls or MAC address
filtering in most smart home or smart factory networks, we
assume that if attackers gain access to the IoT network, they
can transmit spoofed, handcrafted packets to any other device
on the same network to exploit its vulnerability. Additionally,
many off-the-shelf IoT products expose unprotected network
services to the home network, potentially enabling attackers
to utilize these services after compromising victim devices.
To achieve their ultimate goals, attackers may repeat the afore-
mentioned attacks across multiple devices, enabling them to
devise more sophisticated attacks.

2.2 Dependency
We identify and define two types of dependencies in a IoT
system: physical dependency, and network dependency.

Two devices are physically dependent if one can impact
the other through a physical medium. There are two types of
physical dependencies: direct and indirect. Direct physical
dependency occurs when one device is physically attached to
another, and changing the status of one device directly alters
the status of the other. The most common example of direct
physical dependency is electrical dependency, such as the
relationship between a smart plug and a smart bulb. The smart
bulb is directly physically dependent on the smart plug, as the
plug can turn off the bulb by cutting its power supply.

In contrast, indirect physical dependency arises when one
IoT device can change the surrounding environment, thereby
impacting other IoT devices. For instance, the video stream
of a camera may be affected if a smart bulb is turned on or off.
Similarly, a smart thermostat’s reading may gradually increase
if a smart heater is turned on. Indirect physical dependencies
typically requires two devices to be physically located in close
proximity. For example, the camera and the smart bulb in a
smart home need to be in the same room (e.g. both at the
entrance) to demonstrate an indirect physical dependency.

Network dependency, on the other hand, occurs when a IoT
devices impact other devices by sending packets through the
network. These physical and network dependencies can be
exploited by attackers to compromise target devices, verify
device status, or launch attacks.

2.3 Cross-layer Consistency
IoT devices within an IoT system often interact and influence
each other based on their physical and network dependencies,
as well as their functionalities. Attackers can exploit these
causal relationships among IoT devices for validation, and
any inconsistencies among honeypots can significantly reduce
the effectiveness of the deception. This presents a unique
challenge in deceiving attackers within the IoT ecosystem.

For example, Figure 1 illustrates a typical deception sce-
nario in a smart home environment. In the physical layer, we
emulate various IoT devices located in different rooms. Some



Figure 1: Cyber physical deception in a smart home scenario

devices are directly connected, as indicated by the solid ar-
rows (e.g., in the bedroom, the smart bulb is plugged into the
smart plug). The indirect physical dependencies among de-
vices are shown by the dotted arrows (e.g., at the entrance, the
smart bulb can affect the video content of the camera). In the
cyber layer, we utilize IoT honeypots to mimic the software
vulnerabilities and functionalities of various IoT devices, as
depicted in the attack graphs.

To effectively deceive attackers, it is crucial to maintain
consistency across all honeypots in both the cyber and phys-
ical layers. Specifically, the “cross-layer consistency (a)" in
Figure 1 represents a set of consistencies within a camera
honeypot. Attackers may exploit specific vulnerabilities to
manipulate the camera (e.g., pan, tilt, zoom) and verify their
attack effects by checking the video stream. To maintain
cross-layer consistency, a camera honeypot must not only em-
ulate vulnerabilities in the cyber layer and provide authentic
video streams in the physical layer but also support interactive
camera controls that realistically mimic a real camera.

On the other hand, “cross-layer consistency (b)" represents
a set of consistencies across three honeypots emulating a
smart speaker, a smart bulb, and an IoT camera. Certain func-
tionalities of an Amazon Echo honeypot and a smart bulb
honeypot may be interconnected if they are paired. For in-
stance, When an attacker interacts with the Amazon Echo and
sends a “turn on the light” voice command, the switch status
of the smart bulb should change to “on”. Additionally, if the
smart bulb and the camera are placed in the same room, alter-
ing the switch status of the smart bulb should logically impact
the video content generated by the camera honeypot. If the
smart bulb is turned on, the camera should display brighter
video footage, as if it were illuminated by the bulb.

To formalize this concept, we define “cross-layer consis-
tency" among a set of honeypots H = {h1,h2, ...,hn} as fol-
lows: ∀(hi,h j) ∈ H,∀t,R (St

hi
,St

h j
) = True, where t denotes

timestamp, S represents the state of a honeypot in either the
cyber or physical layer (e.g., switch on or off for a smart bulb)
and R is the set of Prolog rules that represent the dependen-
cies among different emulated devices. In other words, main-
taining “cross-layer consistency" among honeypots means

that, at any given time, the states of any two honeypots should
not conflict. More details will be introduced in Section 3.3.

2.4 Related Work
There has been considerable research [20, 21, 22, 23, 24, 25,
26, 27] in recent years on using honeypots to emulate vari-
ous types of IoT devices. Below, we provide details on these
honeypots, focusing on whether they can emulate the corre-
sponding IoT devices’ physical functionality, and whether
they have the potential to emulate the network and physical
dependencies.

IoTPOT [20] is the first honeypot specifically designed
for IoT devices. It is a low-interaction honeypot focusing on
emulating telnet services commonly used by IoT devices. Due
to its fixed response logic, IoTPOT can not emulate physical
functionalities or dependencies among IoT devices.

HoneyCloud [21] and Honeware[22] both leverage the
firmware image of IoT devices, QEMU and some hardware
like RaspberryPis to construct IoT honeypots. Through care-
ful customization, these hardware honeypots can emulate
physical functionality of IoT devices. However, deploying
and maintaining hardware based IoT honeypots are costly and
not scalable.

VPNhoneypot [28], IoTCMal [29] and Siphon [30] all con-
struct a hybird honeypot structure leveraging real IoT devices
at backend to handle attacker request. These type of honey-
pots can emulate physical functionality due to the real device
at backend but suffers from scalability and cost issues.

Hakim et al. [31] introduced U-POT, an IoT honeypot
framework specifically designed for the UPnP (Universal Plug
and Play) protocol which is widely used in smart home de-
vices. It uses device description files to automate honeypots
and provide fake responses. U-POT is able to emulate the
physical functionality of simple IoT devices such as smart
plug or smart bulb by crafting fake responses indicating their
device status has changed (i.e., switch on).

HoneyIoT [32] is an adaptive IoT honeypot that employs
reinforcement learning to analyze the interaction history be-
tween attackers and IoT devices. This allows it to select the
most appropriate response at run time. Additionally, Hon-



Figure 2: Our cyber-physical deception system (CPDS)

eyIoT utilizes a differential analysis-based method to mutate
responses, thus enhancing its authenticity.

HoneyCam [33] and SweetCam [34] are camera honey-
pots capable of providing interactive live video streams by
leveraging pre-recorded 360◦ video. They design methods to
map the 360◦ video to different fields of view according to
the attacker’s camera control commands, allowing them to
fully emulate the physical functionality of IoT cameras. How-
ever, these camera honeypots can not emulate the physical
dependencies between IoT cameras and other devices, such
as smart bulbs, as they are unable to respond to environment
changes. To address this issue, we further enhance Honeycam
in Section 4.2.

Existing research on honeypots has predominantly focused
on emulating individual IoT devices, often overlooking the
physical and network dependencies within IoT ecosystems.
This oversight significantly impacts the fidelity and effec-
tiveness of IoT honeypots in real-world deployments. In this
paper, we address this gap by coordinating diverse IoT hon-
eypots to ensure cross-layer consistency, thereby enhancing
the fidelity of the overall deception system.

3 System Design
3.1 System Overview

Figure 2 gives an overview of the proposed CPDS which
consists of four main modules: system configuration, vulnera-
bility modeling for individual devices, dependency analysis,
and honeypot coordination.

The system configuration serves as the input to CPDS and
is typically derived from the real IoT system intended for em-
ulation. For example, to emulate a smart home as illustrated
in Figure 1, the IoT devices may include surveillance cameras,
smart plugs, smart speakers, and smart thermostats, etc. The
physical environment component specifies the layout of these
IoT devices within the real system, such as the specific rooms
where they are located. The network configuration compo-
nent defines the communication links between these devices,
indicating whether they can interact with one another over the
network.

The Vulnerability Modeling for Individual Devices module
aims to conduct systematic and realistic analysis on the emu-
lated devices, and will be explained in detail in Section 3.2.

Figure 3: The testbed used for attack trace collection

The Dependency Analysis module takes the system configu-
ration as inputs to model the interactions among IoT devices.
It first generates a dependency graph based on the network
topology and device location, and then derives Prolog rules
representing various dependencies. The dependency analysis
module will be presented in Section 3.3. Subsequently, lever-
aging the results of vulnerability modeling and dependency
Prolog rules, we design a coordination algorithm to ensure
cross-layer consistency at runtime. The specifics of honeypot
coordination are detailed in Section 3.4.

3.2 Vulnerability Modeling for Individual De-
vices

Modeling IoT devices for security purposes is a complex and
widely studied challenge. Prior research has explored meth-
ods for intrusion detection, anomaly detection, and attack
simulation, with significant efforts focused on constructing
behavioral models that emulate device functionality and vul-
nerabilities [35, 36, 37]. However, the requirements of CPDS
differ significantly from these traditional IoT behavior model-
ing tasks.

CPDS requires honeypots to precisely replicate not only
the functionality of IoT devices but also their vulnerabilities.
This is particularly challenging given the heterogeneity of
IoT devices, where vulnerabilities vary significantly based on
factors such as brand, model, and firmware version. Accurate
modeling of these vulnerabilities is critical to predict the ef-
fects of potential exploits and to deceive attackers effectively.
Moreover, attackers often perform reconnaissance attacks
[18] to gather detailed information, such as firmware versions
or serial numbers, about target devices before initiating actual
attacks. Any inconsistency detected during reconnaissance
can reveal the honeypot, causing attackers to abandon fur-
ther actions. To address this, CPDS requires comprehensive
behavioral modeling of target IoT devices, ensuring fidelity
throughout the entire attack period, from reconnaissance to
subsequent interactions. These unique requirements set our
approach apart from conventional IoT modeling techniques.



Device Model Manufacture Device Type Vulnerability ID
NC220 TP-Link Camera CVE-2020-12109, etc.
RLC-410W Reolink Camera CVE-2021-44402, etc.
E1 Zoom Reolink Camera CVE-2021-40149
Home YI Camera CVE-2018-3928, etc.
DS-2CD2183G Hikvision Camera CVE-2021-36260
Insight Wemo Smart Plug CVE-2018-6692
Mini Wemo Smart Plug CVE-2018-6692
HS103-P4 TPlink Smart Plug CVE-2019-15745
VMB3000 Netgear Router CVE-2019-3949, etc.
DGN2220 Netgear Router CVE-2020-35577, etc.
TL-WR840N TP-Link Router CVE-2018-14336, etc.
DIR-3040 D-Link Router CVE-2021-21819, etc.
WS5200 Huawei Router CVE-2019-5268, etc.
WS7200 Huawei Router N/A
Hue Wifi Philips Smart Bulb CVE-2019-18980, etc.
Ring Amazon Doorbell CVE-2019-9483
Sonos Speakers Sonos Smart Speakers CVE-2018-11316
Echo Dot Amazon Smart Speakers CVE-2022-25809

Table 1: IoT devices used for trace collection

We will elaborate on our methodology in the following sub-
sections.

3.2.1 Attack Trace Collection

In order to learn how the attackers interact with IoT devices
and model their vulnerabilities, we first build a system to
collect attack traces. As shown in Figure 3, the system consists
of a frontend virtual machine running in the public internet, a
backend server for traffic forwarding and preliminary traffic
analysis, and a few IoT devices including various models of
IoT cameras, routers and smart plugs (The detailed list of IoT
devices is shown in Table 1).

The system interacts with the attacker by forwarding the
received packet to one of the IoT devices. Based on the at-
tacker’s request, the corresponding IoT device sends the nec-
essary files or responses so that the attacker can continue
to interact with the corresponding IoT device. This process
continues until the attacker exploits certain vulnerability of
the target device or stops interacting with the IoT device. We
also filter out any commands containing malware download
instructions such as Wget or Curl, and forward them to a
crawler in a sandbox to automatically collect malware from
the attacker’s control and command server. Our system main-
tains the log traces and may have to be rebooted in some cases
to recover from the attacks. Then, a new cycle starts which
may select a different IoT device for a different attacker. By
doing this, our system can obtain different attacker traces, tar-
geting different kinds of IoT devices. These attack traces will
then be further analyzed and used for vulnerability modeling.

3.2.2 Attack Graph Generation

We have implemented our attack trace collection system and
deployed on the public Internet for a duration of two months
starting from Sep. 2023, where the backend infrastructure
comprises a server and various IoT devices, as listed in Ta-
ble 1. Each IoT device within the backend ecosystem has

Figure 4: A partial attack graph generated based on the col-
lected attack trace against Reolink cameras

been profiled, and a dedicated database has been established
to store traces from each individual attack session. These
traces contain details such as attacker IP addresses, times-
tamps of attacks, the protocols used, targeted services, and
exploited vulnerabilities.

An initial analysis of the trace data reveals the presence of
remotely exploitable CVEs associated with these IoT devices.
To gain deeper insights into attacker behaviors against IoT
devices and model their vulnerabilities more comprehensively,
we have generated attack graphs for IoT devices based on the
interactions between attackers and the IoT devices.

Figure 4 shows an attack graph against Reolink camera
over the HTTP port. As the whole graph is too big, we only
show a partial attack graph emphasizing specific vulnerabili-
ties exploited and the attack behavior. In the attack graph, a
node represents the attacker’s action such as probing a direc-
tory, accessing a resource or exploiting a vulnerability. For
example, the node with ‘/’ indicates that the attacker probes
the root directory. The node with ‘/favicon.ico’ indicates that
the attacker tries to access the favicon file which is usually
a small icon indicating the device type or manufacturer. The
node with ‘CVE-2021-40149’ means that the attacker exploits
a specific vulnerability with Common Vulnerabilities and Ex-
posures (CVE) ID 2021-40149, i.e., a publicly disclosed IoT
security flaw on Reolink cameras where no security check is
enforced when the attacker acquires SSL private key through
the HTTP server. The edges connecting two nodes indicate
that some attackers have taken another action after receiving
the previous response from the IoT device.

From the attack graph, we can see that the attacker con-
ducts various pre-attack checks to gather information from
the remote host before launching attacks. For example, as
shown in Figure 4, some attackers first access the favicon file
to identify that this is a Reolink camera, by matching the MD5
hash of favicon or by analyzing its image. Then, they decide
to exploit the ‘CVE-2021-40149’ vulnerability by sending
various requests. On the other hand, if the attacker notices
that the remote host is not a Reolink camera (the MD5 hash
does not match), he may not proceed with follow up attacks.

To better model the potential impacts after an attacker ex-
ploits vulnerabilities, we categorize the attack impacts into
six categories as shown in Table 2. We also attach these at-



Attack Impacts Explanation
Root Attackers have root privilege of target

device, enabling them to execute all
following attacks. They can also leverage
victim device to send spoofed commands
to other IoT device on the same network

Function Control Attackers can manipulate specific functions
of the target device (i.e., camera movement,
light switches, etc.). However, the device
itself is not fully compromised.

Event Access Attackers can intercept events or status
information from IoT devices (i.e., device
power on or off, etc.).

Information Theft Attackers can obtain credential information
(i.e., Wifi credentials, keys, etc.) from
victim device.

Denial of Service
(Dos)

Attackers can disrupt the normal operation
of the target IoT device, rendering it
temporarily or permanently paralyzed.

Table 2: Type of Attack Impacts on IoT devices

tack impacts to the attack graph right after the vulnerability
nodes. For instance, since ‘CVE-2021-40149’ discloses the
SSL private key to the attacker, its attack impact is categorized
as Information Theft. On the other hand, since the attacker
can turn off the camera by exploiting ‘CVE-2021-44402’, we
categorize its attack impact as Function Control. These at-
tack actions may propagate through both network dependency
and physical dependency, enabling attackers to perform cross-
layer validation. The modelled vulnerability for each device
is then translated to Prolog facts for dependency analysis and
honeypot coordination. For example, the fact presented in
Listing 1 means that vulnerability ‘CVE-2021-40149’ exists
on Reolink E1 Zoom cameras.

vulExists(reolink_E1_Zoom, ‘CVE-2021-40149’).
vulProperty(‘CVE-2021-40149’, informationTheft

).

Listing 1: Prolog fact for CVEs found on specific devices

3.3 Dependency Analysis

The dependency analysis module models the interactions
among IoT devices. It generates dependency graphs based
on the system configuration and then derive Prolog rules
for each dependency to further guide coordination among
honeypots. Algorithm 1 outlines the pseudocode for the de-
pendency graph generation process, and Figure 5 shows an
example dependency graph generated from the configuration
shown in Figure 1. Specifically, we represent direct physical
dependencies, indirect physical dependencies, and network
dependencies using Prolog rules.

Direct physical dependency occurs when one device is
physically connected to another, and changing the status of
one device directly affects the status of the other. Therefore,

Algorithm 1: Dependency Graph Generation
Input: (1) Device Set D

(2) Device Physical Connection Set C
(3) Network Topology T
(4) Device Location Set L

Output: Dependency Graph G for all IoT devices

1 Algorithm dependency_graph(D , L , C , T )
2 G = DiGraph (D) // Initialize G as a directed

graph

3 foreach physical connection c(da,db) in C do
4 G .add_edge (da, db, label = "Direct Physical")
5 foreach device da,db in D do
6 if L(da) = L(db) then
7 if da can affect db then
8 G.add_edge (da, db, label = "Indirect

Physical")
9 if db can affect da then

10 G.add_edge (db, da, label = "Indirect
Physical")

11 C = Union Find (T ) // Find connected components.

Each is a subgraph where any two nodes are

connected by a path.

12 foreach c in C do
13 foreach device da,db in c do
14 G.add_edge (da, db, label = "Network")
15 return G

direct physical dependency is predetermined by the defender
based on the floor plan in the system configuration. For ex-
ample, consider the bedroom in Figure 1. The smart bulb
is directly connected to the smart plug, and turning off the
smart plug will cut off the power supply to the smart bulb.
Thus, there exists a direct physical dependency between the
bedroom smart bulb and the bedroom smart plug. Since direct
physical dependencies remain static in the IoT system regard-
less of network topology and environment, we can hard code
Prolog rules to represent them, as shown in Listing 2.

off(Device) :-
pluginto(Device,Smartplug),
smartplug(Smartplug),
off(Smartplug).

Listing 2: Direct Physical Dependency

Indirect physical dependency occurs when an IoT device
changes the surrounding environment (e.g. light) , thereby
affecting other IoT devices. For instance, the video stream of a
surveillance camera may be affected if a smart bulb located in
the same room is turned on or off. The Prolog rules for indirect
physical dependencies are generated based on the device type,
device location, and environmental factors. Listing 3 provides
an example of Prolog rules for indirect physical dependencies.

on(Light) :-



Figure 5: Dependency Graph Example

on(Smartbulb),
smartbulb(Smartbulb).

switchVideo (Camera, Light, Room) :-
on(Light),
camera(Camera),
inRoom(Light, Room),
inRoom(Camera, Room).

Listing 3: Indirect Physical Dependency

Network dependency occurs when IoT devices in the sys-
tem interact with each other by sending packets through the
network. For example, if a smart speaker is paired with a
smart bulb, it can remotely turn the light on or off by sending
corresponding request packets to the smart bulb. The network
dependency is directly generated based on the network topol-
ogy in the network configuration file. Typically, most IoT
systems lack firewalls or MAC address filtering. Therefore,
if the network topology indicates that two devices are con-
nected, we assume they can exchange packets with each other.
Listing 4 provides an example of Prolog rules for network
dependencies.

connected(Device1, Device2) :-
network(Device1, Network),
network(Device2, Network).

Listing 4: Network Dependency

3.4 Honeypot Coordination
Coordination among multiple honeypots is essential to ac-
curately emulate the interactions between devices in an IoT
ecosystem. This coordination ensures that the honeypots can
faithfully mimic the interconnected functionalities of real-
world IoT devices, thereby maintaining cross-layer consis-
tency across CPDS.

To develop appropriate honeypot coordination policies for
a given IoT system, we begin by defining individual honey-
pots that emulate different IoT devices in the system. For
instance, a defender may establish a Prolog fact such as cam-
era (Honeypot1) to represent a camera honeypot in CPDS,
and then utilize the VulExists predicate from Listing 1 to de-
note the vulnerabilities it emulates. Defenders can leverage
the vulnerability analysis results (Figure 4) to incorporate
additional vulnerabilities into the camera honeypots, aligning

Algorithm 2: Honeypot Coordination Algorithm
Input: (1) Prolog Rules Set R

(2) Honeypot Set H
(3) Attacker Action A

Output: Ensure Consistency in H
1 Algorithm coordination(R , H , A)
2 finished = {}
3 ActionStack = [A]
4 while ActionStack ̸= /0 do
5 CurAction = ActionStack.pop()
6 if CurAction not in finished then
7 H .handle(CurAction)
8 foreach NextAction in R (A) do
9 if NextAction not in finished then

10 ActionStack.push(NextAction)

with their deception goals. To streamline the coordination
process, we abstract the core functionalities of each honeypot
into APIs. For example, camera honeypots may have APIs for
switching video, panning, tilting, and zooming, while smart
plug honeypots might have APIs for turning on and off. This
abstraction enables seamless interaction between honeypots.

At runtime, when an attack action triggers specific device
functionalities emulated by honeypots, our system executes
the coordination algorithm presented in Algorithm 2. This
algorithm employs a stack-based approach to handle attack ac-
tions and their effects across our system. It takes three inputs:
the set of Prolog rules extracted from device dependencies
(R ), the set of honeypots in the system (H ), and the attacker
action (A). The algorithm processes the attack action by invok-
ing relevant APIs of the affected honeypot and then explores
subsequent actions based on the Prolog rules. For instance,
if an attacker has turned on a smart bulb, the coordination
algorithm will first inform the smart bulb honeypot to change
its status through corresponding APIs. It will then check the
Prolog rules (i.e., Listing 3) and inform the camera honeypot
to switch its videos to align with the smart bulb honeypot’s
new state. This coordination process ensures that all direct
and indirect effects of an attack action are properly simulated
across the entire IoT system, providing a more realistic and
interconnected emulation of an IoT environment. We will
describe the implementation details in the next section.

4 Implementation

Our cyber physical deception system is mainly implemented
with Python. We also use Prolog to generate honeypot coordi-
nation policies, MySQL for database operations, Mininet for
SDN simulation, and Graphviz to visualize attack graphs and
dependency graphs.

As shown in Figure 7, the implementation has three com-
ponents: deception system configuration and Prolog rule gen-
eration (green box), honeypot selection for device emulation



Figure 6: Deception system deployment based on a configu-
ration template

(yellow box), and deception network setup (blue box). We
will give their details in the following subsections.

4.1 Deception System Configuration
The goal of CPDS is to provide a comprehensive emulation
of an IoT system, which requires a system configuration input
about the target IoT system to be emulated. This configuration
should contain information about the IoT devices in the tar-
get system, their physical layout (e.g., the rooms where they
are located, which will be used to compute indirect physical
dependencies), and the direct physical and network dependen-
cies among the devices. All this information is encapsulated
in a JSON-formatted configuration file.

For a fine-grained emulation, users must conduct a detailed
analysis of the target IoT system to extract this information.
For example, consider the smart home environment shown in
Figure 1, which consists of eight interconnected IoT devices,
including smart bulbs, cameras, smart plugs, and smart speak-
ers, distributed across three rooms (bedroom, living room,
and entrance). Users then model each IoT device using the
vulnerability analysis module (Section 3.2) to identify ex-
ploitable functionalities and analyze their interdependencies
(Section 3.3) to generate appropriate Prolog rules. Although
this process involves considerable manual effort, it ensures
the highest emulation quality by accurately modeling each
device, emulating the physical layout of the IoT system, and
capturing all physical and network dependencies between
devices.

In scenarios where efficiency and scalability are priori-
tized, users can utilize pre-defined configuration templates to
quickly deploy a CPDS without starting from scratch. These
templates include pre-modeled off-the-shelf devices, prede-
fined device layouts, and established physical and network
dependencies. Users can then modify the configuration file
by editing devices and dependencies as needed to align with
the specific IoT system they aim to emulate.

Figure 6 illustrates how a pre-defined configuration tem-
plate for the smart home in Figure 1 can be leveraged. For
example, when a camera is added in the living room to mon-
itor the backyard, the configuration template is updated by
including the corresponding device, as shown in Listing 5. If
the new camera is paired with the smart speaker in the living
room, users can add network dependencies between them,
and the system will automatically generate the corresponding

Figure 7: Major components in system implementation

Prolog rules. Similarly, users can remove specific devices
or dependencies from the CPDS by editing the configura-
tion file. This approach enables a more agile deployment of
CPDS, significantly reducing the amount of manual efforts
required for device modeling and Prolog rule computation,
while maintaining flexibility to customize the setup to specific
requirements.

"device": [
...
{"id": 8, "name": "LivingroomSmartCamera", "location

": "Livingroom", "type": "SmartCamera"}
]
...

Listing 5: IoT Device Configuration

4.2 Honeypot Selection for Device Emulation
Based on the deception system configuration, we identify
the devices to be emulated with honeypots. The selection,
customization, and enhancement of IoT honeypots to emulate
these devices is a crucial step, as it directly impacts the quality
of deception and the associated system deployment costs. In
our implementation, the honeypot selection process considers
several key factors:

1) Emulated Device Types: Unlike traditional IoT hon-
eypots such as IoTPot [20], which only emulate the Telnet
protocol, most state-of-the-art IoT honeypots specialize in em-
ulating specific device types. For example, HoneyCam [33]
and Siphon [30] can emulate IoT cameras by providing live
video streams. Therefore, choosing honeypots based on their
ability to accurately emulate the desired IoT device types is
essential.

2) Fidelity: Honeypots must accurately mimic real IoT de-
vices. High-fidelity honeypots significantly enhance the over-
all deception quality by making it more difficult for attackers
to differentiate them from genuine devices. In CPDS, we
prioritize honeypots capable of accurately emulating the phys-
ical functionality of devices. Moreover, to ensure cross-layer
consistency, we require honeypots to emulate certain func-
tionalities even if attackers may not directly perceive them.
For example, our camera honeypots not only need to provide



interactive video streams to the attacker, the video content
must also comply with the emulated devices’ surrounding
physical environment, including factors such as time of day
and weather conditions.

3) Scalability: To effectively emulate large-scale IoT sys-
tems, our deception system must strike a balance between
fidelity and resource requirements. We prioritize lightweight,
virtualized honeypot solutions over resource-intensive ap-
proaches, as long as they meet our deception goals. Thus,
we do not use real device-based honeypots, such as Siphon
[30] and VPNHoneypot [28], due to their high hardware re-
quirements and significant deployment costs. Instead, we opt
for virtualized honeypot solutions like HoneyCam [33] and
Cowrie [38]. These can be easily deployed and scaled without
relying on physical IoT devices, offering a more flexible and
cost-effective approach to large-scale IoT system emulation
while maintaining sufficient fidelity for our deception goals.

Based on the selection criteria outlined above, our imple-
mentation uses the following honeypots to emulate each type
of devices shown in Figure 1, enhancing or customizing them
for better deception capability.

Camera Honeypot: This honeypot is primarily achieved
through an enhanced version of HoneyCam [33]. HoneyCam
is a scalable high-interaction IoT camera honeypot based on
pre-recorded 360◦video. It provides interactive video streams
by mapping the video to different fields of view based on
the attacker’s camera control commands. However, in CPDS,
the camera honeypot must not only handle camera control
commands from attackers but also respond to environmental
changes. For example, outdoor surveillance cameras need to
provide video content that reflects current weather conditions
and time of day (details in Figure 11). Similarly, indoor cam-
eras must adjust their video content based on the status of
other IoT devices in the environment (details in Figure 12).

To satisfy these requirements, as shown in Figure 8, we
enhance HoneyCam through the following improvements: 1)
We prepare multiple pre-recorded 360◦videos captured un-
der various environmental conditions (e.g., different times of
day, smart bulb on/off states, etc.). 2) We implement an envi-
ronment module that dynamically switches between videos
based on status changes of dependent IoT devices and the
surrounding environment. The environment module retrieves
real-time weather information from the internet based on the
emulated camera’s location as defined by the defender. 3) We
utilize a stream overlay technique [39] to emulate weather
conditions that are challenging to pre-record (e.g., fog, rain).
We create overlay videos with corresponding weather effects
and transparent backgrounds, and then leverage FFmpeg to
incorporate these overlays on top of the generated interactive
video stream in real-time while pushing to the frontend.

These enhancements significantly improve the fidelity and
adaptability of our camera honeypots, making them more
responsive to both attacker interactions and environmental
changes.

Figure 8: HoneyCam Enhancement

Smart Plug Honeypot: This honeypot is primarily imple-
mented through a combination of HoneyIoT [32] and U-PoT
[31]. HoneyIoT is an adaptive IoT honeypot that employs rein-
forcement learning to analyze the interaction history between
attackers and IoT devices. This allows it to select the most
appropriate response from a database at runtime. Addition-
ally, HoneyIoT utilizes a differential analysis-based method to
mutate responses, enhancing their authenticity. In our imple-
mentation, we leverage the attack traces collected in Section
3.2 to train the reinforcement learning agent and construct the
response database. U-PoT [31] specializes in emulating the
UPnP (Universal Plug and Play) protocol. Given that most
smart plugs implement UPnP to provide remote control func-
tions, we utilize U-PoT to accurately emulate these UPnP
services. This is particularly important for maintaining the
illusion of genuine smart plugs that can be controlled even
when users are away from home.

Router Honeypots: This honeypot is primarily achieved
through a combination of HoneyIoT and Cowrie [38]. Cowrie
is a widely adopted, open-source, medium-interaction SSH
honeypot. Its lightweight design makes it ideal for emulating
IoT devices that support Telnet or SSH services. By config-
uring Cowrie, we can efficiently simulate the SSH services
provided by the router. Concurrently, we leverage HoneyIoT
to emulate other ports opened by the router.

Other Device Honeypots: Similar to the aforementioned
honeypots, other devices in smart home environments (e.g.,
smart bulbs, smart thermostats, etc) are emulated using a com-
bination of existing honeypots, depending on the services they
provide and the ports they open. For instance, for smart bulbs
that support UPnP services, we leverage U-PoT to construct
the corresponding smart bulb honeypot.

4.3 Deception Network Setup
Software-Defined Networking (SDN) has gained popularity
for addressing traditional network challenges by decoupling
the control plane from the data plane and centralizing net-
work control within a logically centralized controller. SDN is
well-suited for our system because it enables easy and flexi-
ble network management. Specifically, SDN allows network
administrators to configure, manage and optimize network



Table 3: Online Deployment Basic Statistics
Emulated Device Honeypot Used Total Attack Session Unique Attacker IP C&C Server detected Malware Collected

IoT Camera Enhanced HoneyCam 48532 4632 779 523
IoT Camera -> Real-camera [30] 53762 4473 0 0
Smart Plug HoneyIoT, UPot 17658 1438 237 163
Smart Plug -> Dionaea [40] 13790 836 26 19

Router HoneyIoT, Cowire 97894 6270 963 870
Router -> Kippo [41] 68591 4680 89 69

Smart Bulb HoneyIoT, UPoT 6850 531 67 52
Smart Bulb -> Glutton [42] 8274 610 18 14

Other HoneyIoT, etc 28642 2457 238 148

resources through software applications, streamlining the pro-
cess of honeypot deployment, management and revocation.
Moreover, the centralized control architecture provided by
SDN offers an ideal platform for executing our honeypot co-
ordination algorithm. When facing attacks, we can effectively
coordinate the behavior and status of deployed honeypots,
ensuring a consistent deception scenario.

Given these benefits, we have chosen to build our decep-
tion system on top of SDN. Specifically, we use mininet
[43] for network emulation as it allows us to easily simu-
late SDN networks running honeypot VMs and openflow
switches. We use Open Network Operating System (ONOS),
an open-source SDN controller that provides control plane
for managing honeypots. After analyzing the IoT system to
be emulated and generating the corresponding configuration
file, we use python scripts to automatically create and connect
honeypot VMs based on the network topology configuration
file.

To coordinate the honeypots and ensure consistency across
our deception system, we have devised a streamlined ap-
proach. We abstract the core functionalities of each honeypot
(e.g., Switch Video, Pan, Tilt, Zoom for camera honeypots,
Turn on/off for smart plug honeypots) into APIs. When an
attack action triggers specific honeypot functionalities at run-
time, CPDS utilizes the ONOS controller to execute the coor-
dination algorithm as shown in Algorithm 2. This algorithm
invokes the relevant APIs of the affected honeypots, prop-
agating the effects of the attack action across different IoT
honeypots. In this way, we can accurately emulate the cy-
ber and physical impacts of the attacks in the emulated IoT
system, ensuring cross-layer consistency.

5 Evaluations

In this section, we evaluate the performance of CPDS from
three perspectives. First, we implement and deploy the afore-
mentioned IoT honeypots that will be used in CPDS, as de-
tailed in Section 4.2, on the public internet to evaluate and
compare their performance in emulating various devices. Sec-
ond, to evaluate CPDS’s deception capability against human
attackers, we construct two real-life attack scenario demos.
These scenarios are powered by CPDS, a baseline version

of the system with no coordination module, or actual IoT
devices. We then recruit participants to interact with these
scenarios and identify whether they are engaging with real
devices or honeypots. The experiments have been approved
by our Institutional Review Board (IRB). Finally, we evaluate
the scalability, response time, and resource consumption of
CPDS through extensive simulations.

5.1 Online Deployment
The accurate emulation of IoT ecosystem hinges on the per-
formance of individual IoT honeypots emulating different IoT
devices within the system. As outlined in Section 4.2, we
implement and enhance existing IoT honeypots to emulate
various IoT devices. To evaluate the overall performance, we
deploy these honeypots on the public internet and exposing
them to real-world attack patterns.

5.1.1 Experiment Setup

As discussed in Section 4.2, we have enhanced HoneyCam in
order to emulate the IoT cameras in CPDS. Specifically, we
use Insta360 One X2 [44] to pre-record 360-degree video at
different time of the day. We then preprocess the pre-recorded
video using Insta studio to ensure no sensitive information
remains. To emulate different weather conditions for outdoor
camera, we prepare overlay videos with various weather ef-
fects such as fog and rain.

In our deployment, the frontend of our enhanced Honey-
Cam consists of virtual servers placed on the public internet.
Similar to real IoT cameras (as listed in Table 1), we open
some ports to provide video streams and control services.
Specifically, we open port 554 to allow attackers to access
streams through RTSP protocols. We also open port 80 and
provide web pages that are exact replicas of the TPlink NC220
camera, which provides live video stream and camera control
services. The backend server runs on a desktop with AMD
Ryzen 7 5800, 32GB RAM and an NVIDIA RTX 3080 GPU,
primarily serving live stream videos to the frontend honey-
pots.

For comparison purpose, we also deploy three other camera
Honeypots: 1) the original HoneyCam without enhancement,
2) a low-interaction recorded-video based camera honeypot



[45] that does not provide camera control functionality, 3) a
real-camera based honeypot similar to Siphon [30] using a
Reolink camera as the video source.

For other IoT devices (e.g., smart plugs, routers, etc.), we
configure and integrate various existing IoT honeypots to
emulate these devices, as detailed in Section 4.2. For com-
parison, we select several open-source honeypots to emulate
these devices, utilizing their capability to mimic the same
open ports and protocols. For example, Dionaea [40], which
supports emulation of the UPnP protocol, is customized to
emulate smart plugs. For each emulated device, we deploy
virtual servers running the designated honeypots on the public
internet across three geographic locations: the United States
(North Virginia), France (Paris), and Japan (Tokyo).

5.1.2 Basic Statistics

Table 3 summarizes the basic statistics of our online deploy-
ment. Different IoT devices support various services, operate
on different ports, and are emulated by different Honeypots,
resulting in varying volumes and types of attack traffic. For
example, the smart plug emulated by HoneyIoT and UPoT
received 17,658 attack sessions from 1,438 unique attacker
IPs, whereas the router honeypot emulated by HoneyIoT and
Cowire received 97,894 attack sessions from 6,270 unique
attacker IPs. This discrepancy is due to the different ports and
services supported by each device. For example, the router
honeypot opens port 80 for web services and port 22 for SSH
services, which are commonly targeted by attackers, while
smart plugs typically lack these services.

The performance of devices emulated by different hon-
eypots varies significantly. For example, router honeypots
emulated by the open-source honeypot Kippo [41] cannot
engage attackers effectively due to their fixed response logic
and identifiable fingerprints [46, 47]. As a result, it can not
effectively detect attacker’s command-and-control server or
collect malware. In contrast, Cowire and HoneyIoT, which are
medium to high interaction honeypots equipped with built-in
crawlers, can actively collect malware for further analysis.

We have also crawled malware from attacker’s malware
distribution server and utilized VirusTotal [48] for malware
classification and analysis. Figure 9 illustrates the malware
collected by different honeypots across various geographic
locations based on their signatures. Taking the malware col-
lected by the Enhanced HoneyCam in US as an example,
about 58.8% of the samples were identified as botnet mal-
ware. The majority of these are variants and successors of
the well-known Mirai botnet [49], of which we collected 69
samples. We also gathered 7 Mozi malware samples, which
partially reuse Mirai’s source code. Unlike Mirai, which typi-
cally brute-forces open ports with password cracking, Mozi
exploits well-known vulnerabilities in the web servers of IoT
devices. Other samples include 8 Sora and 27 Sparc malware
variants, both of which belong to the Mirai botnet family.

The router honeypot offering SSH services captures some

(a) (b)

Figure 9: Malware collected by honeypots emulating differ-
ent IoT devices in the United States, France, and Japan. (a)
Malware collected by honeypots customized or utilized by
CPDS. (b) Malware collected by other open-source honeypots
capable of emulating these IoT devices.

different botnet malware such as m68k. VirusTotal analysis of
m68k reveals signatures characteristic of both Gafgyt [50] and
Mirai malware, suggesting that attackers have merged these
two well-known malware families to create a new, hybrid
threat. Furthermore, we have collected a substantial amount of
cryptocurrency mining malware, such as Redtail [51], which
targets vulnerabilities in off-the-shelf devices (e.g., TP-Link
routers) to exploit their computational resources for min-
ing cryptocurrency. A small portion of the samples remains
unidentified by VirusTotal and are categorized as “other."

Smart plug honeypots collect fewer attack traces and mal-
ware samples than other honeypots, likely due to their lim-
ited exposure to widely targeted services like Telnet, SSH,
or HTTP. For example, smart plug honeypots emulated by
HoneyIoT and UPoT in the US collected 23 botnet malware
samples (including Mirai, Sora, Sshd, and Sparc), 32 cryp-
tocurrency mining malware samples (including Redtail), and
5 “other" samples.

As shown in Figure 9 (b), we also analyzed malware sam-
ples collected by other open-source honeypots capable of
emulating IoT devices over similar protocols. For example,
we customized the Dionaea honeypot [40] to open the same
ports as a smart plug. When deployed in the United States,
the Dionaea honeypot collected only eight botnet malware
samples, primarily outdated Mirai variants. This suggests that
more sophisticated attackers may fingerprint [46, 47] and
bypass Dionaea honeypots during their scanning and attack
processes. To address this, we rely on more adaptive and
high-interaction honeypots, such as Cowrie and HoneyIoT, to
support CPDS effectively.

5.1.3 Enhanced HoneyCam

Figure 10 illustrates the cumulative distribution function
(CDF) of attackers’ video access times for four camera honey-
pots: recorded-video, real-camera, original HoneyCam, and
our enhanced HoneyCam. The results show that most attack-
ers quickly lost interest in the recorded-video based camera



Figure 10: CDF of attacker video accessing time

Figure 11: Real demo attack scenario (a). Our enhanced Hon-
eyCam, which emulates the outdoor camera, switches to ap-
propriate video as time changes and overlays corresponding
weather effects in response to weather changes.

honeypot. In contrast, HoneyCam, our enhanced HoneyCam,
and the real camera all engaged attackers for significantly
longer periods. Notably, we observed more frequent repeated
visits to our enhanced HoneyCam and the real-camera based
honeypot, resulting in longer overall video access times com-
pared to the original HoneyCam in some instances. Some
attackers even spent a cumulative time of over an hour inter-
acting with our enhanced HoneyCam. These findings demon-
strate that our enhanced HoneyCam exhibits a high deception
capability comparable to that of a real camera-based honeypot.
The extended engagement times and repeated visits suggest
that our enhancements have significantly improved Honey-
Cam’s ability to mimic genuine camera behavior, thereby
increasing its effectiveness in deception.

5.2 Real Demo

To evaluate the deception quality of CPDS against human
attackers, we construct two typical scenarios:

Figure 12: Real demo attack scenario (b). Attackers leverage
the Alexa vs Alexa (AvA) Attack to remotely control the smart
bulb’s on/off state. Accordingly, our enhanced HoneyCam
adjusts its video stream based on the smart bulb’s status.

• Scenario (a): The attacker has compromised a surveil-
lance camera. The attacker can obtain the live video
stream, and send camera control commands (e.g., pan, tilt
and zoom) to change the viewport. Scenario (a) aims to
evaluate the effectiveness of maintaining “Cross-Layer
Consistency (a)" shown in Figure 1.

• Scenario (b): The attacker has launched voice command
injection attack (i.e., Alexa vs Alexa Attack [11], Barrier-
Bypass [17], etc.) and can control the smart bulb through
injected commands. The attacker has also compromised
a smart camera and is able to see the smart bulb through
the video stream. This scenario aims to evaluate the
effectiveness of maintaining “Cross-Layer Consistency
(b)" shown in Figure 1.

For comparison, we emulate these scenarios with three dif-
ferent system set ups: our CPDS, Real Device, and Baseline.
In the Real Device setup, actual IoT devices are deployed to
implement these scenarios, while the Baseline setup uses a
simplified version of our deception system where each honey-
pot operates independently without coordination. To simulate
real-world interactions, we recruit human participants to act
as attackers. They send attack commands and monitor device
statuses across all setups.

In scenario (a), CPDS utilize a modified version of Hon-
eyCam [33] to serve as the video source. Given the specific
requirements of this scenario, such as emulating an outdoor
surveillance camera, we need to simulate potential environ-
mental changes (e.g., time of day, weather changes, etc.). To
achieve this, we enhance the video processing unit module
of HoneyCam by integrating a stream overlay function. This
allows us to superimpose additional overlay videos, repre-
senting fog or rain, onto the generated video stream based
on the current weather conditions, as shown in Figure 11. To



Figure 13: Survey webpage for scenario (a). Users may view
the video stream and control the camera through the buttons
below, or through the ssh session on the right.

simulate time changes, we prepare multiple video streams
recorded during different time periods of the day and select
the appropriate stream based on the current time. For the real
device setup, the video stream is sourced directly from a real
IoT camera, similar to Siphon [30]. For baseline, we simply
utilize a traditional recorded-video based camera honeypot
[45] which repeatedly play a one-hour long video footage.
To ensure privacy, we review all prepared video streams in
HoneyCam and set the resolution of the live video stream to
360p.

For scenario (b), as shown in Figure 12, we assume that
the attacker launches voice command injection attack and
sends turn on or off command to a connected smart bulb.
Meanwhile, the attacker has compromised a smart camera
and is able to see the smart bulb through the video stream.
To simplify the demo, we aggregate the attack actions into
a single attack button on the monitoring web page. We also
provide a live video stream window, camera control buttons,
and smart bulb status on the monitoring web page. For CPDS,
we model the vulnerability, perform dependency analysis,
and set up corresponding coordination policies. Similar to
scenario (a), we use HoneyCam to emulate the smart camera.
We use a combination of HoneyIoT and UPoT to emulate the
smart bulb and a combination of HoneyIoT and Cowire to
emulate the smart speaker. For the real device-based demo,
the video stream is sourced from an IoT camera, and the
attack button directly controls the smart speaker to change
the switch status of the smart bulb. For the baseline setup, we
simply remove the coordination module where the smart bulb
honeypot, smart camera honeypot and smart speaker honeypot
work independently.

Figure 13 shows an example of the survey webpage for
the outdoor smart camera, which includes a live video stream,
camera control buttons, and a reverse shell session. A similar
web interface exists for attack scenario (b). We provide users
with comprehensive information about the available shell
commands for the smart camera, including their usage syntax
and sample outputs. Users can view the video stream and
control the camera using the buttons below or via the SSH
session on the right for as long as they want.

Users are informed in advance that there is a 50% chance
that the provided device status and video stream are from
real devices, and a 50% chance that they are generated by

User Identify System As
Scenario System Type Real System Fake System

Scenario (a)
Real Device 23 6

CPDS 21 5
Baseline 10 14

Scenario (b)
Real Device 19 3

CPDS 18 5
Baseline 3 21

Table 4: Survey Results

honeypots and therefore fake. Upon completion, participants
fill out a brief survey assessing whether they believe they
are interacting with genuine IoT devices or honeypots. The
survey results fall into four categories:

• True Positive: The scenario is set up by real IoT devices,
and human users correctly identify it as such.

• True Negative: The scenario is set up by honeypots (e.g,
CPDS or baseline system), and human users correctly
identify it as such.

• False Positive: The scenario is set up by honeypots (e.g,
CPDS or baseline system), and human users falsely iden-
tify it as being from real IoT devices.

• False Negative: The scenario is set up by real IoT de-
vices, and human users falsely identify it as being from
honeypots (e.g, CPDS or baseline system).

We collected all survey responses from users who remained
on the monitoring webpage for more than one minute. For
scenario (a), 79 valid surveys were collected, comprising 29
surveys from setups using real IoT devices, 26 from CPDS
setups, and 28 from the baseline. As shown in Table 4, the
real IoT device setup resulted in 23 true positive cases and
6 false negative cases, resulting in an overall True Positive
Rate (TPR) of 79.3%. The TPR reflects the rate of correct
user identification when the scenario was established using
real devices. For the CPDS setup, there were 21 false positive
cases and 5 true negative cases, resulting in an overall False
Positive Rate (FPR) of 80.7%. This FPR represents the rate
at which users incorrectly identified CPDS as real, signifying
the success rate of CPDS in deceiving users. For the baseline
setup, there were 10 false positive cases and 14 true negative
cases, leading to an overall FPR of 41.7%.

To further analyze the deception capabilities of CPDS com-
pared to real IoT devices and the baseline, we classify users
based on their video access time (i.e., the time spent on the
monitoring webpage). Figure 14 shows the accumulated TPR
and FPR over time, categorized at one-minute intervals. The
trends for the blue line (TPR for scenario setup by real device)
and the orange line (FPR for scenario setup by CPDS) are
highly similar, indicating that users behave similarly regard-
less of whether the scenario is set up with real IoT devices
or CPDS. In contrast, the green line (FPR for scenario setup



(a) Scenario (a) (b) Scenario (b)

Figure 14: True (and False) Positive Rate over video access-
ing time, which shows that users cannot differentiate between
scenarios created by real IoT devices and CPDS, but can eas-
ily identify scenarios set up by baseline.

by baseline) is way lower, indicating that users notice that
they interact with fake IoT cameras especially when watching
video for a longer time.

For scenario (b), there are 69 valid surveys, with 21 set
up by real IoT devices, 23 by CPDS, and 24 by baseline. As
shown in Table 4, we observe a total of 19 true positive cases
and 3 false negative cases, resulting in an overall TPR of
86.3% with real device. For comparison, when the scenario is
setup by CPDS, there are 18 false positive cases and 5 true
negative cases, leading to an overall FPR of 78.2%. When
the scenario is setup by baseline, there are 3 false positive
cases and 21 true negative cases, leading to an overall FPR of
12.5%. The trends of FPR and TPR over video accessing time
are shown in Figure 14 (b). The FPR in the baseline setup (the
green line) clearly shows that most users can quickly identify
that they are interacting with a fake IoT system, likely because
the video remain unchanged when they turn off the light.

The similarity between the TPR in the real device setup and
the FPR in CPDS across both scenarios suggests that users
cannot differentiate whether they are interacting with real IoT
devices or CPDS. This indicates that CPDS effectively emu-
lates real-world IoT environments, achieving a high level of
fidelity comparable to genuine IoT devices in both scenarios.

5.3 Scalability
To evaluate the scalability of our deception system, we de-
sign a simulation experiment. We prepare 20 distinct IoT
system setups (similar to Figure 1) for our deception system
to emulate. These setups vary in the number and types of
IoT devices, physical environments (e.g., floor plans, device
locations), and network typologies.

For each IoT system, we follow the implementation steps
discussed in Section 4. The simulation was conducted on our
backend server described in Section 5.1.1. We also prepared
25GB of video files for our enhanced HoneyCam.

Figure 15 illustrates the average response delay with re-
spect to honeypot density, defined as the average number of
emulated devices located in the same room. Here, the response

Figure 15: Response delay
against one attack action

Figure 16: Resource con-
sumption distribution

delay for CPDS includes the honeypot processing time (cov-
ering our enhanced HoneyCam, HoneyIoT, UPoT, Cowrie,
etc.), the coordination module processing time, and the simu-
lated network delay during coordination. As honeypot density
increases, attack actions are likely to affect more honeypots,
leading to an increase in average response delay. Breaking
down the delay further, a significant portion is attributed to
the generation of interactive video streams to emulate the
physical functionalities of IoT cameras. In contrast, the delay
introduced by our coordination module is at the millisecond
level and thus negligible.

Figure 16 presents the estimated CPU usage of CPDS con-
sisting of different honeypots. For all simulation cases, we
have one enhanced HoneyCam instance emulating an IoT
camera and multiple HoneyIoT, Cowrie, and UPoT instances
emulating other IoT devices. We observe that the majority of
CPU usage is consumed while generating interactive videos,
and our coordination module consumes few resources even
when coordinating 30 honeypots.

These results show that our coordination module introduces
negligible cost while emulating physical dependencies and co-
ordinating individual IoT honeypots. This finding underscores
the feasibility and scalability of our deception system.

6 Conclusions
In this paper, we addressed the pressing need for a comprehen-
sive defense strategy that extends beyond isolated honeypots,
given the interconnected nature of IoT devices. To meet this
challenge, we designed, implemented, and evaluated a cyber-
physical deception system (CPDS) capable of mimicking the
intricate cyber-physical connections among IoT devices by
coordinating various IoT honeypots. Our approach involved
modeling the vulnerabilities of individual IoT devices through
collection and analysis of attack traces, analyzing physical
and network dependencies among IoT devices and formulat-
ing them as Prolog rules, and coordinating honeypots based
on attacker actions and dependency rules to ensure cross-layer
consistency. We implemented CPDS by leveraging software-
defined networking, enhancing existing IoT honeypots, and
configuring them to work in concert. Extensive online de-
ployments, human evaluations, and simulation results have
validated the effectiveness of CPDS in terms of both scalabil-
ity and fidelity.
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