
Efficient Multi-Party Private Set Union
Without Non-Collusion Assumptions

Minglang Dong1,2,3, Cong Zhang4, Yujie Bai1,2,3, and Yu Chen1,2,3(B)

1School of Cyber Science and Technology, Shandong University, Qingdao 266237, China
2Quan Cheng Laboratory, Jinan 250103, China

3Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Qingdao 266237, China
4Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China

{minglang_dong,baiyujie}@mail.sdu.edu.cn, zhangcong@mail.tsinghua.edu.cn, yuchen@sdu.edu.cn

Abstract
Multi-party private set union (MPSU) protocol enables m
(m > 2) parties, each holding a set, to collectively compute
the union of their sets without revealing any additional in-
formation to other parties. There are two main categories of
multi-party private set union (MPSU) protocols: The first cat-
egory builds on public-key techniques, where existing works
require a super-linear number of public-key operations, result-
ing in poor practical efficiency. The second category builds
on oblivious transfer and symmetric-key techniques. The only
work in this category, proposed by Liu and Gao (ASIACRYPT
2023), features the best concrete performance among all ex-
isting protocols, but still has super-linear computation and
communication. Moreover, it does not achieve the standard
semi-honest security, as it inherently relies on a non-collusion
assumption, which is unlikely to hold in practice.

There remain two significant open problems so far: no
MPSU protocol achieves semi-honest security based on obliv-
ious transfer and symmetric-key techniques, and no MPSU
protocol achieves both linear computation and linear commu-
nication complexity. In this work, we resolve both of them.

• We propose the first MPSU protocol based on oblivious
transfer and symmetric-key techniques in the standard
semi-honest model. This protocol’s online performance
is 3.9−10.0× faster than Liu and Gao in the LAN set-
ting. Concretely, our protocol requires only 4.4 seconds
in online phase for 3 parties with sets of 220 items each.

• We propose the first MPSU protocol achieving both lin-
ear computation and linear communication complexity,
based on public-key operations. This protocol has the
best total performance in the WAN settings, due to a
factor of 3.0−36.5× improvement in terms of overall
communication compared to Liu and Gao. Concretely,
on slow network (50 Mbps), their protocol takes approx-
imately 6.6 hours to run for 9 parties with sets of 218

items each, whereas ours only takes 47 minutes.

We implement our protocols and conduct extensive experi-
ments to compare the performance of our protocols and the

state-of-the-art. To the best of our knowledge, our code is the
first correct and secure implementation of MPSU that reports
on large-size experiments.

1 Introduction

Over the last decade, there has been growing interest in private
set operation (PSO), which consists of private set intersec-
tion (PSI), private set union (PSU), and private computing
on set intersection (PCSI), etc. Among these functionalities,
PSI, especially two-party PSI [47, 35, 43, 17, 44, 52, 49],
has made tremendous progress and become highly practical
with extremely fast and cryptographically secure implemen-
tations. Meanwhile, multi-party PSI [36, 41, 14, 7] is also
well-studied. In contrast, the advancement of PSU has been
sluggish until recently, several works proposed efficient two-
party PSU protocols [37, 27, 31, 55, 18, 32]. However, multi-
party PSU has still not been extensively studied. In this work,
we focus on PSU in the multi-party setting.

Multi-party private set union (MPSU) enables m (m > 2)
mutually untrusted parties, each holding a private set of el-
ements, to compute the union of their sets without reveal-
ing any additional information. MPSU and its variants have
numerous applications, such as information security risk as-
sessment [38], IP blacklist and vulnerability data aggrega-
tion [30], joint graph computation [12], distributed network
monitoring [34], building block for private DB supporting
full join [37], private ID [27], etc.

According to the underlying techniques, existing MPSU
protocols can be divided into two categories:1

• PK-MPSU: This category is primarily based on public-
key techniques, and has been explored in a series of
works [34, 25, 54, 26]. A common drawback of these
works is that each party has to perform a substantial num-
ber of public-key operations, leading to unsatisfactory

1We only consider the special-purpose solutions for MPSU, excluding
those based on circuit-based generic techniques of secure computation, due
to their unacceptable performance.

practical efficiency.

• SK-MPSU: This category is primarily based on
symmetric-key techniques, and includes only one ex-
isting work [39] to date. This work exhibits much better
performance than all prior works but fails to achieve stan-
dard semi-honest security due to its inherent reliance on
a non-collusion assumption, assuming the party who ob-
tains the union (we call it leader hereafter) not to collude
with other parties.

Both categories share one common limitation: neither of them
includes a protocol achieving linear computation and commu-
nication complexity.2 Motivated by the above, we raise the
following two questions:

Can we construct an MPSU protocol based on oblivious
transfer and symmetric-key operations, without any

non-collusion assumptions? Can we construct an MPSU
protocol with both linear computation and linear

communication complexity?

1.1 Our Contribution
In this work, we answer the above two questions affirmatively.
Our contributions are summarized as follows:

Efficient batch ssPMT. We present a new primitive called
batch secret-shared private membership test (batch ssPMT).
Compared to multi-query secret-shared private membership
test (mq-ssPMT), which is the technical core of the state-
of-the-art MPSU protocol [39] (hereafter referred to as LG),
batch ssPMT admits a much more efficient construction. Com-
bined with hashing-to-bins, batch ssPMT can replace mq-
ssPMT in the existing MPSU frameworks. Looking ahead,
batch ssPMT serves as a core building block in our two MPSU
protocols, significantly contributing to our speedup to LG.

SK-MPSU in standard semi-honest model. We generalize
random oblivious transfer (ROT) into multi-party setting and
present a new primitive called multi-party secret-shared ran-
dom oblivious transfer (mss-ROT). Based on batch ssPMT
and mss-ROT, we propose the first SK-MPSU in the stan-
dard semi-honest model. In addition to enhanced security,
our SK-MPSU has superior online / total performance with a
3.9−10.0× / 1.2−7.8× improvement in the LAN setting.

PK-MPSU with linear complexity. Based on batch ssPMT
and multi-key rerandomizable public-key encryption (MKR-
PKE) [26], we propose the first MPSU protocol with both
linear computation and communication. Our PK-MPSU has

2In the context of MPSU, linear complexity means that the complexity
per party scales linearly with the total size of all parties’ sets. In this paper,
we consider the balanced setting where each party holds sets of equal size,
thus linear complexity denotes the complexity per party to scale linearly with
both the number of parties m and the set size n. Meanwhile, following current
conventions, linear complexity only considers the online phase.

the lowest overall communication costs with a factor of
3.0− 36.5× improvement compared to LG, making it par-
ticularly excel in bandwidth-constrained networks. Along the
way, we find that the MPSU protocol of Gao et al. [26] is
insecure against arbitrary collusion and give a practical attack
to demonstrate that it necessitates non-collusion assumption.

Figure 1 depicts the technical overview of our new MPSU
framework. We will elaborate the details in Section 2.

Our SK-MPSU Our PK-MPSU

batch ssPMT

batch OPPRF ssPEQT

mss-ROTmulti-party secret-shared
shuffle

MKR-PKE

Figure 1: Technical overview of our MPSU framework. The
newly introduced primitives are marked with solid boxes. The
existing primitives are marked with dashed boxes.

1.2 Related Works

We review the existing semi-honest MPSU protocols below.

PK-MPSU. Kisser and Song [34] introduced the first MPSU
protocol, based on polynomial representations and additively
homomorphic encryption (AHE). This protocol requires a
substantial number of AHE operations and high-degree poly-
nomial calculations, so it is completely impractical.

Frikken [25] improved [34] by decreasing the polynomial
degree. However, the number of AHE operations remains
quadratic in the set size due to the necessity of performing
multi-point evaluations on the encrypted polynomials.

Vos et al. [54] proposed an MPSU protocol based on the bit-
vector representations, where the parties collectively compute
the union by performing the private OR operations on the bit-
vectors, using ElGamal encryption. It shows poor concrete
efficiency reported by [39] and the leader requires quadratic
computation and communication in the number of parties.

Recently, Gao et al. [26] proposed an MPSU protocol, rep-
resenting the most advanced MPSU in terms of asymptotic
complexity. Unfortunately, their protocol turns out to be inse-
cure against arbitrary collusion. We propose a practical attack
to show that it is vulnerable to the same colluding attack as
LG (see Appendix A for details).

SK-MPSU. Recently, Liu and Gao [39] proposed a practical
MPSU protocol based on oblivious transfer and symmetric-
key operations. This protocol is several orders of magnitude
faster than the prior works. For instance, when computing on
datasets of 210 element, it is 109× faster than [54]. However,
their protocol is not secure in the standard semi-honest model.

Other Related Works. Blanton et al. [9] proposed an MPSU
protocol based on oblivious sorting and generic multi-party
computation (MPC). The heavy dependency on general MPC
leads to inefficiency.

Table 1 provides a comprehensive theoretical comparison
between existing MPSU protocols and our proposed protocols.
Leader denotes the participant who obtains the union result.
Client refers to the remaining participants.

2 Technical Overview

2.1 LG Revisit
We start by abstracting the high-level idea of LG as a secret-
sharing based MPSU framework with two phases: The first
phase involves m−1 secret-sharing processes, where each Pj
(2≤ j≤m) somehow secret-shares Yj = X j \(X1∪·· ·∪X j−1)
among all parties. For each element in X j \Yj, the parties hold
a random secret-sharing. Since {X1,Y2, · · · ,Ym} is a partition
of X1∪·· ·∪Xm, at the end of these secret-sharing processes,
the parties hold secret shares of (X1 ∪ ·· · ∪Xm) \X1 in the
order of Y2, · · ·Ym, interspersed with random secret-sharings.
The second phase is to reconstruct all these secrets to P1. To
achieve the reconstruction, a straightforward approach is inse-
cure because P1 can identify which party each reconstructed
element originates from, based on the position of its secret-
sharing. The solution is to let the parties invoke multi-party
secret-shared shuffle to randomly permute and re-share all
secret-sharings. This ensures that any coalition of m−1 par-
ties has no knowledge of the permutation, thereby concealing
the correspondence between secret shares and individual dif-
ference sets Y2, · · ·Ym. Afterwards, each Pj sends their shuffled
shares to P1, who then reconstructs (X1∪ ·· ·∪Xm)\X1 and
obtains the union by appending the elements in X1.

LG utilizes two ingredients to realize the above secret-
sharing processes: (1) The secret-shared private membership
test (ssPMT) [19, 56], where the sender S inputs a set X , and
the receiver R inputs an element y. If y ∈ X , S and R receive
secret shares of 1, otherwise secret shares of 0. Liu and Gao
proposed multi-query ssPMT (mq-ssPMT), which supports
the receiver querying multiple elements’ memberships of
the sender’s set simultaneously. Namely, S inputs X , and
R inputs y1, · · · ,yn. S and R receive secret shares of a bit
vector of size n, where if yi ∈ X , the ith bit is 1, otherwise
0. (2) A two-choice-bit version of random oblivious transfer
(ROT), where the sender S and the receiver R each holds
a choice bit e0,e1. S receives two random messages r0,r1.
If e0⊕ e1 = 0, R receives r0, otherwise r1. However, their
construction has two main drawbacks: First, the only existing
instantiation of mq-ssPMT heavily relies on expensive general
MPC machinery, which becomes the bottleneck of the entire
protocol. Second, the resulting first phase introduces a non-
collusion assumption to ensure security. In the following

sections, we address these two drawbacks by presenting two
new primitives, batch ssPMT and mss-ROT, and making use
of them to redesign the secret-sharing processes and eliminate
the non-collusion assumption.

2.2 Efficient Batch ssPMT

The batch ssPMT is essentially the batched version of ssPMT:
The sender S inputs n disjoint sets X1, · · · ,Xn, and the receiver
R inputs n elements y1, · · · ,yn. S and R receive secret shares
of a bit vector of size n, where the ith bit is 1 if yi ∈ Xi, and 0
otherwise. Compared to mq-ssPMT, batch ssPMT enables the
testing of element membership across multiple distinct sets
rather than within a single common set. Their relationship is
analogous to that between batched oblivious pseudorandom
function (batch OPRF) [35] and multi-point oblivious pseudo-
random function (multi-point OPRF) [43, 17]. Thanks to its
batching nature, batch ssPMT admits a much more efficient
construction, lending it a superior alternative to mq-ssPMT
in the context of MPSU, by coupling with hashing-to-bins.

The alternative to mq-ssPMT works as follows: First, S and
R preprocess inputs through hashing-to-bins technique. R
uses hash functions h1,h2,h3 to assign y1, · · · ,yn to B bins via
Cuckoo hashing [42], ensuring that each bin accommodates at
most one element. At the same time, S assigns each x ∈ X to
all bins determined by h1(x),h2(x),h3(x). Then they invoke
B instances of ssPMT, where in the jth instance, S inputs the
subset X j ∈ X containing all elements mapped into its bin j,
while R inputs the sole element mapped into its bin j. If some
yi is mapped to bin j and yi ∈ X , then S certainly maps yi to
bin j (and other bins) as well, ensuring yi ∈ X j. Therefore, for
each bin j of R , if the inside element yi is in X , yi ∈ X j, S and
R receive shares of 1 from the ith instance of batch ssPMT.
Otherwise, yi /∈ X j, S and R receive shares of 0.

The functionality realized by the above construction differs
slightly from mq-ssPMT, as the query sequence of R is de-
termined by the Cuckoo hash positions of its input elements.
Since the Cuckoo hash positions depends on the entire input
set of R , and all shares is arranged according to the parties’
Cuckoo hash positions, a straightforward reconstruction may
leak information about the parties’ input sets to P1. There-
fore, we have to eliminate the dependence of shares’ order on
the parties’ Cuckoo hash positions during the reconstruction
phase. Our crucial insight is that the multi-party secret-shared
shuffle used in the reconstruction phase eliminates not only
the correspondence between secret shares and difference sets,
but also this dependence on the hash positions. As a result, our
construction can plug in the secret-sharing based framework
seamlessly, without introducing any information leakage or
additional overhead.

Unlike mq-ssPMT, which heavily relies on general 2PC,
our batch ssPMT is built on two highly efficient primitives,
batched oblivious programmable pseudorandom function
(batch OPPRF) [36, 46] and secret-shared private equality

Protocol Computation Communication Round SecurityLeader Client Leader Client
[34] m2n3 pub m2n3 pub λm3n2 λm3n2 m ✓

[25] mn2 pub mn2 pub λmn λmn m ✓

[54] lm2n pub lmn pub λlm2n λlmn l ✓

[9] σmn logn+m2 sym σ2mn logn+σm2 logm ✓

[26] mn(logn/ log logn) pub (γ+λ)mn(logn/ log logn) logγ+m ✗

[39] (T + l +m)mn sym (T + l)mn sym (T + l)mn+ lm2n (T + l)mn log(l− logn)+m ✗

Our SK-MPSU m2n sym m2n sym γmn+ lm2n (γ+ l +m)mn logγ+m ✓

Our PK-MPSU mn pub mn pub (γ+λ)mn (γ+λ)mn logγ+m ✓

Table 1: Asymptotic communication (bits) and computation costs of MPSU protocols in the semi-honest setting. For the sake of
comparison, we omit the Big O notations and simplify the complexity by retaining only the dominant terms. We use ✓ to denote
protocols in the standard semi-honest model and ✗ to denote protocols requiring non-collusion assumption. pub: public-key
operations; sym: symmetric cryptographic operations. n is the set size. m is the number of parties. λ and σ are computational
and statistical security parameter. T is the number of AND gate in a SKE decryption circuit in [39]. l is the bit length of input
elements. γ is the output length of OPPRF. In the typical setting, n≤ 224, m≤ 32, λ = 128, σ = 40, T ≈ 600, l ≤ 128, γ≤ 64.

test (ssPEQT) [46, 15], where the former has an extremely
fast specialized instantiation through vector oblivious linear
evaluation (VOLE), while the later is composed of a small cir-
cuit, allowing for efficient implementation with general 2PC.
The batch ssPMT greatly reduces dependency on general 2PC,
leading to a substantial performance improvement.

2.3 SK-MPSU from Batch ssPMT and mss-
ROT

We present our SK-MPSU in an incremental way over the
secret-sharing based framework. Our first attempt to con-
struct a secret-sharing process for each Pj (2 ≤ j ≤ m) to
secret-share Yj is as follows: Let Pj preprocess X j via Cuckoo
hashing while each Pi (1≤ i < j) preprocesses Xi via simple
hashing. Pj acts as R and executes the batch ssPMT with each
Pi. For each bin, Pj and Pi receive shares e j,i and ei, j, respec-
tively. Then Pj acts as S and executes the two-choice-bit ROT
with each Pi, where Pj inputs e j,i and Pi inputs ei, j. Pj receives
r0

j,i,r
1
j,i. If e j,i⊕ei, j = 0, Pi receives r0

j,i, otherwise, Pi receives

r1
j,i. Pi sets the output r

e j,i⊕ei, j
j,i as its share s j,i. Pj sets its share

s j, j to be
⊕ j−1

i=1 r0
j,i⊕ x∥H(x), where x ∈ X j is the element in

Pj’s bin and the appended hash value H(x) is to distinguish
x and a random secret in the reconstruction. If x ∈ Yj, then
e j,i⊕ ei, j = 0 holds for all i, so we have

⊕ j
i=1 s j,i = x∥H(x),

i.e., the parties hold secret shares of x∥H(x). Otherwise, at
least one r0

j,i⊕ r1
j,i cannot be canceled out in the summation,

so the parties hold a random secret-sharing.
Integrating the above construction into the secret-sharing

based framework results in a more efficient MPSU protocol
compared to LG. However, this protocol remains vulnerable
to the same colluding attacks. For instance, consider the case
of P1 reconstructing a secret as r0

j,i′ ⊕ r1
j,i′ ⊕ x∥H(x) for some

1 ≤ i′ < j in the second phase. Since Pj receives r0
j,i′ ,r

1
j,i′

from the ROT execution with Pi′ , colluding with P1 allows
P1 to infer that e j,i⊕ ei, j = 0 holds for all i ̸= i′. Then they
can derive that x ∈ Xi′ and x /∈ Xi for all i ̸= i′, which reveals
information about P2, · · · ,Pj−1. Therefore, both the resulting
protocol and LG requires the non-collusion assumption that
P1 does not collude with other parties.

We identified that this vulnerability stems from the secrets
of random secret-sharings that are not uniformly random in
the view of P1 and other colluding parties. Furthermore, the
re-sharing of multi-party secret-shared shuffle in the second
phase retains these secrets. Therefore, to resist the collud-
ing attacks, our solution is to additively secret-share each
∆ ji = r0

j,i⊕ r1
j,i among {P2, · · · ,Pj}, so that each potential re-

maining component of the summation is uniformly random,
as long as there is at least one honest party in {P2, · · · ,Pj}.
To realize this additive secret-sharing, we generalize the two-
choice-bit ROT into multi-party setting, abstracting the notion
of multi-party secret-shared random oblivious transfer (mss-
ROT). Consider j parties engaging in the mss-ROT, where
there are two parties, denoted as Pch0 and Pch1 , possessing
the choice bits b0 and b1 respectively. There is a subset J
of all involved parties s.t. each Pj′ ∈ J holds ∆ j′ as input.
Each involved party Pi′ a random output ri′ s.t. if b0⊕b1 = 0,⊕ j

i′=1 ri′ = 0. Otherwise,
⊕ j

i′=1 ri′ =
⊕

j′∈J ∆ j′ .

Equipped with mss-ROT, the secret-sharing process of Pj
is revised as follows: For each bin, after Pj and Pi receiv-
ing shares e j,i and ei, j, they invoke mss-ROT instead of two-
choice-bit ROT, with J = {P2, · · · ,Pj} and each Pj′ ∈ J in-
putting a uniformly sampled ∆ j′, ji. Each involved party in
mss-ROT receives a random output. By the mss-ROT func-
tionality, if e j,i⊕ ei, j = 0, all these outputs XOR to 0, other-
wise, they XOR to

⊕ j
j′=2 ∆ j′, ji. At the end of the process, each

party XORs all received outputs from different invocations
of mss-ROT as its share. Pj additionally XORs x∥H(x). If
x ∈Yj, then e j,i⊕ei, j = 0 holds for all i, hence all the outputs

from mss-ROT XOR to 0, and the shares XOR to x∥H(x).
Otherwise, at least one random

⊕ j
j′=2 ∆ j′, ji remains, which

is additively secret-shared among {P2, · · · ,Pj}. Hence, the
parties hold a secret-sharing where the secret is uniformly
random, even in the view of P1 colluding with up to m− 2
parties in {P2, · · · ,Pj}. Given that any coalition without P1
cannot know the reconstructed secrets, the protocol is secure
against arbitrary collusion of m−1 parties.

2.4 PK-MPSU from Batch ssPMT and MKR-
PKE

There are no existing MPSU protocols with linear computa-
tion and communication complexity. Notably, it is impossible
to achieve this goal within the secret-sharing based frame-
work, given that P1 must reconstruct (m− 1)n secrets with
each secret comprising m shares. Therefore, we have to seek
for another technical route to construct MPSU.

Our start point is the existing work [26] with the best asymp-
totic complexity mn(logn/ log logn). We distill their proto-
col into a encryption-based framework (using a PKE vari-
ant MKR-PKE) with two phases: The first phase allows P1
to somehow obtain the encrypted Yj = X j \ (X1∪·· ·∪X j−1)
from each Pj (2≤ j≤m), interspersed with encrypted dummy
messages filling the positions of duplicate elements. If P1 de-
crypts these ciphertexts by itself, then it could associate each
reconstructed element with the specific party it originates
from. The second phase addresses this issue through a collab-
orative decryption and shuffle procedure, which enables P1 to
obtain all plaintexts in a random permutation, and prevents
any coalition of m−1 parties from knowing the permutation.

We identify that both the non-linear complexities and in-
security against arbitrary collusion of [26] arise from their
construction in the first phase. Therefore, the task of build-
ing a linear-complexity MPSU reduces to devising a linear-
complexity and secure construction for this phase.

We utilize the batch mq-ssPMT and two-choice-bit OT to
achieve this task. A rough idea is as follows: For 2≤ j ≤ m,
each Pj first encrypts the elements in X j and then engages
in a procedure sequentially with each Pi (1 < i < j), that
allows Pi to “obliviously” replace the encrypted elements in
X j ∩Xi with encrypted dummy messages. Specifically, after
preprocessing their inputs using hashing-to-bins as previous,
Pj acts as R and executes batch ssPMT with Pi. For each bin,
Pj and Pi receive shares e j,i and ei, j. If i = 2, Pj initializes m0
as the encrypted x (where x ∈ X j is the element in Pj’s bin)
and m1 as an encrypted dummy message. Pj acts as S and
executes two-choice-bit OT with Pi, where Pj and Pi input
e j,i and ei, j as choice bits. Pj inputs m0,m1 and Pi receives
ct= me j,i⊕ei, j . If x /∈ Xi, ct is the ciphertext of x; otherwise, ct
is the ciphertext of dummy message. Pi rerandomizes ct to ct′

and returns ct′ to Pj. Then Pj rerandomizes ct′, updates m0 to
ct′, and rerandomizes m1 before repeating the procedure with
the next party Pi+1. After interacting with all Pi (1 < i < j),

Pj retains an encrypted x in the final m0, only if x /∈ Xi holds
for all i. As a result, Pj holds the encrypted elements in X j \
(X2∪·· ·∪X j−1). Finally, replacing the encrypted elements in
X1 with dummy messages is handled in a similar manner at
the end of this procedure.

The linear complexities of our construction are attributed
to two key facts: First, this framework ensures that each in-
teraction between Pj and Pi only involves the input sets of
themselves. Second, our batch ssPMT protocol has linear
computation and communication complexity (cf. Section 4).

3 Preliminaries

3.1 Notation
Let m denote the number of participants. We write [m] to de-
note {1, · · · ,m}. We use Pi (i ∈ [m]) to denote participants, Xi
to represent the sets they hold, where each set has n l-bit ele-
ments. x∥y denotes the concatenation of two strings. We use
λ,σ as the computational and statistical security parameters re-
spectively, and use

s
≈ (resp.

c
≈) to denote that two distributions

are statistically (resp. computationally) indistinguishable. We
denote vectors by letters with a right arrow above and ai de-
notes the ith component of a⃗. a⃗⊕ b⃗ = (a1⊕b1, · · · ,an⊕bn).
π(⃗a) = (aπ(1), · · · ,aπ(n)), where π is a permutation over n
items. π = π1 ◦ · · · ◦πn represents applying the permutations
π1, · · · ,πn in sequence. x[i] denotes the ith bit of element x,
and X(i) denotes the ith element of set X .

3.2 Security Model
In this work, we consider a semi-honest and static adver-
sary A with the capability to corrupt an arbitrary subset
of t < m parties (i.e. the corruption threshold t = m− 1).
To define the standard semi-honest security as in [29, 13],
let f = (f1, · · · , fm) be a probabilistic polynomial-time m-
ary functionality and let Π be a m-party protocol for com-
puting f . The view of Pi (1 ≤ i ≤ m) during an execution
of Π on all parties’ inputs x = (x1, · · · ,xm) is denoted by
ViewΠ

i (x). The output of Pi during an execution of Π on
x is denoted by OutputΠ

i (x). The joint output of parties is
OutputΠ(x) = (OutputΠ

1 (x), · · · ,OutputΠ
m(x)).

Definition 1. We say that Π securely computes f in the
presence of A if there exists a PPT algorithm Sim s.t. for
every PA = {Pi1 , · · · ,Pit} ⊂ {P1, · · · ,Pm},

{Sim(PA ,xA , fA(x)), f (x)}x
c
≈ {ViewΠ

A(x),Output
Π(x)}x,

where xA = (xi1 , · · · ,xit), fA = (fi1 , · · · , fit),View
Π

A(x) =
(ViewΠ

i1(x), · · · ,View
Π
it (x)).

3.3 Multi-Party Private Set Union
The ideal functionality of MPSU is formalized in Figure 2.

Parameters. m parties P1, · · · ,Pm, where P1 is the leader.
Size n of input sets. The bit length l of set elements.

Functionality. On input Xi = {x1
i , · · · ,xn

i }⊆ {0,1}l from
Pi (i ∈ [m]), output

⋃m
i=1 Xi to P1.

Figure 2: Multi-party Private Set Union Functionality Fmpsu

3.4 Batch Oblivious Programmable Pseudo-
random Function

The (batch) oblivious programmable pseudorandom function
(OPPRF) [36, 46, 15, 52, 49] is an extension of (batch) obliv-
ious pseudorandom function (OPRF) [24, 35]. The batch
OPPRF functionality is given in Figure 3.

Parameters. Sender S . Receiver R . Batch size B. The
bit length l of keys. The bit length γ of values.

Sender’s inputs. S inputs B sets of key-value pairs in-
cluding:

• Disjoint key sets K1, · · · ,KB.

• The value sets V1, · · · ,VB, where |Ki|= |Vi|, i ∈ [B].

Receiver’s inputs. R inputs B queries x⃗⊆ ({0,1}l)B.

Functionality: On input (K1, · · · ,KB) and (V1, · · · ,VB)
from S and x⃗⊆ ({0,1}l)B from R ,

• Choose a uniform PPRF key ki, for i ∈ [B];

• Sample a PPRF F : {0,1}∗×{0,1}l→{0,1}γ such
that F(ki,Ki(j)) =Vi(j) for i ∈ [B],1≤ j ≤ |Ki|;

• Define fi = F(ki,xi), for i ∈ [B];

• Give vector f⃗ = (f1, · · · , fB) to R .

Figure 3: Batch OPPRF Functionality FbOPPRF

3.5 Hashing to Bins

The hashing-to-bins technique [47, 45] is used in PSO to
ensure that identical items across parties are assigned into
bins with identical indices. This alignment is achieved by
preprocessing input sets via simple hashing and Cuckoo hash-
ing [42].

We denote simple hashing with the following notation:

T 1, · · · ,T B← SimpleB
h1,h2,h3

(X)

This expression represents hashing items in X into B bins us-
ing simple hashing with hash functions h1,h2,h3 : {0,1}∗→
[B]. The output is a simple hash table denoted by T 1, · · · ,T B,
where for each x ∈ X we have T hi(x) ⊇ {x∥i|i = 1,2,3}.3

We denote Cuckoo hashing with the following notation:

C 1, · · · ,C B← CuckooB
h1,h2,h3

(X)

This expression represents hashing items in X into B bins
using Cuckoo hashing with hash functions h1,h2,h3. The
output is a Cuckoo hash table denoted by C 1, · · · ,C B, where
for each x ∈ X there is some i ∈ {1,2,3} s.t. C hi(x) = {x∥i}.

3.6 Secret-Shared Private Equality Test
The secret-shared private equality test protocol (ssPEQT) [46,
15] can be viewed as an extreme case of ssPMT when the
sender S ’s input set size is 1. Figure 4 defines its functionality.

Parameters. Two parties P1,P2. The input bit length γ.

Functionality. On input x from P1 and input y from
P2, sample two random bits a,b s.t. if x = y, a⊕ b = 1.
Otherwise a⊕b = 0. Give a to P1 and b to P2.

Figure 4: Secret-Shared Private Equality Test Functionality
FssPEQT

3.7 Random Oblivious Transfer
Oblivious transfer (OT) [48] is a foundational primitive in
MPC, the functionality of 1-out-of-2 random OT (ROT) is
given in Figure 5.

Parameters. Sender S , Receiver R . The message length
l.

Functionality. On input b ∈ {0,1} from R , sample
r0,r1←{0,1}l . Give (r0,r1) to S and give rb to R .

Figure 5: 1-out-of-2 Random OT Functionality Frot

3.8 Multi-Party Secret-Shared Shuffle
Multi-party secret-shared shuffle functionality works by ran-
domly permuting the share vectors of all parties and then
refreshing all shares, ensuring that the permutation remains
unknown to any coalition of m−1 parties. The formal func-
tionality is given in Figure 6.

3Appending the index of the hash function is helpful for dealing with edge
cases like h1(x) = h2(x) = i, which happen with non-negligible probability.

Parameters. m parties P1, · · ·Pm. The dimension of vec-
tor n. The item length l.

Functionality. On input x⃗i = (x1
i , · · · ,xn

i) from each Pi,
sample a random permutation π : [n]→ [n]. For 1≤ i≤m,
sample x⃗′i← ({0,1}l)n satisfying

⊕m
i=1 x⃗′i = π(

⊕m
i=1 x⃗i).

Give x⃗′i to Pi.

Figure 6: Multi-Party Secret-Shared Shuffle Functionality
Fms

3.9 Multi-Key Rerandomizable Public-Key En-
cryption

Gao et al. [26] introduced the concept of multi-key reran-
domizable public-key encryption (MKR-PKE), a variant of
PKE with several additional properties. Let SK denote the
space of secret keys, which forms an abelian group under
the operation +, and P K denote the space of public keys,
which forms an abelian group under the operation ·. M
denotes the space of plaintexts, and C denotes the space
of ciphertexts. MKR-PKE is a tuple of PPT algorithms
(Gen,Enc,ParDec,Dec,ReRand) such that:

• The key-generation algorithm Gen takes as input a secu-
rity parameter 1λ and outputs a pair of keys (pk,sk) ∈
P K ×SK .

• The encryption algorithm Enc takes as input a public key
pk ∈ P K and a plaintext message x ∈M , and outputs a
ciphertext ct ∈ C .

• The partial decryption algorithm ParDec takes as input
a secret key share sk ∈ SK and a ciphertext ct ∈ C , and
outputs another ciphertext ct′ ∈ C .

• The decryption algorithm Dec takes as input a secret
key sk ∈ SK and a ciphertext ct ∈ C , outputs a message
x ∈M or an error symbol ⊥.

• The rerandomization algorithm ReRand takes as input
a public key pk ∈ P K and a ciphertext ct ∈ C , outputs
another ciphertext ct′ ∈ C .

MKR-PKE is an IND-CPA secure PKE scheme that re-
quires the following additional properties:

Partially Decryptable. For any two pairs of keys
(sk1, pk1)← Gen(1λ),(sk2, pk2)← Gen(1λ) and any x ∈M ,

ParDec(sk1,Enc(pk1 · pk2,x))
s
≈ Enc(pk2,x)

Rerandomizable. For any pk ∈ P K and any x ∈M ,

ReRand(pk,Enc(pk,x))
s
≈ Enc(pk,x)

Gao et al. [26] make use of elliptic curve (EC) based ElGa-
mal encryption [22] to instantiate MKR-PKE. The concrete
EC MKR-PKE is described in Appendix B.2.

4 Batch Secret-Shared Private Membership
Test

The batch secret-shared private membership test (batch
ssPMT) is a central building block in our SK-MPSU and
PK-MPSU protocols. It is a two-party protocol that imple-
ments multiple instances of ssPMT between a sender S and a
receiver R . Given a batch size of B, S inputs B sets X1, · · · ,XB,
while R inputs B elements x1, · · · ,xB. As a result, S and R
receive secret shares of a bit vector of size B, where the ith bit
is 1 if xi ∈ Xi, 0 otherwise. The batch ssPMT functionality is
presented in Figure 7 and the construction is given in Figure 8,
built from batch OPPRF and ssPEQT.

Parameters. Sender S . Receiver R . Batch size B. The bit
length l of set elements. The output length γ of OPPRF.

Inputs. S inputs B disjoint sets X1, · · · ,XB and R inputs
x⃗⊆ ({0,1}l)B.

Functionality. On inputs X1, · · · ,XB from S and input x⃗
from R , for each i ∈ [B], sample two random bits ei

S,e
i
R

s.t. if xi ∈ Xi,ei
S⊕ ei

R = 1, otherwise ei
S⊕ ei

R = 0. Give
e⃗S = (e1

S, · · · ,eB
S) to S and e⃗R = (e1

R, · · · ,eB
R) to R .

Figure 7: Batch ssPMT Functionality FbssPMT

Theorem 1. Protocol ΠbssPMT securely realizes FbssPMT in
the (FbOPPRF,FssPEQT)-hybrid model.

Correctness. According to the batch OPPRF functionality, if
xi ∈ Xi, R receives ti = si. Then in the ith instance of ssPEQT,
since si = ti, ei

S⊕ ei
R = 1. Conversely, if xi /∈ Xi, R receives

a pseudorandom value ti. The probability that any ti = si
for i ∈ [B] is B · 2−γ. By setting γ ≥ σ+ logB, we have B ·
2−γ ≤ 2−σ, meaning the probability of any such collision is
negligible. After the invocation of ssPEQT, we have that if
xi /∈ Xi, ei

S⊕ ei
R = 0 with overwhelming probability.

Security. The security of the protocol follows immediately
from the security of batch OPPRF and ssPEQT functionalities.

In our MPSU protocols, the batch ssPMT is always com-
bined with the hashing-to-bins technique. The combined con-
struction has good efficiency, together with linear computa-
tion and communication in term of n, which mainly benefits
from the following technical advances: First, we follow the
paradigm in [46] to construct batch OPPRF from batch OPRF
and oblivious key-value store (OKVS) [44, 28, 49, 8]. By

Parameters. Sender S . Receiver R . Batch size B. The bit
length l of set elements. The output length γ of OPPRF.

Inputs. S inputs B disjoint sets X1, · · · ,XB and R inputs
x⃗⊆ ({0,1}l)B.

Protocol.

1. For each i ∈ [B], S chooses random si ← {0,1}γ

and computes a multiset Si comprising |Xi| repeated
elements that all equal to si.

2. The parties invoke FbOPPRF of batch size B. S acts
as sender and inputs X1, · · · ,XB as key sets and
S1, · · · ,SB as value sets. R acts as receiver with
input x⃗, and receives a vector t⃗ = (t1, · · · , tB).

3. The parties invoke B instances of FssPEQT, where in
the ith instance S inputs si and R inputs ti. In the
end, S and R receives ei

S,e
i
R ∈ {0,1} respectively.

Figure 8: Batch ssPMT ΠbssPMT

leveraging the technique to amortize communication, the to-
tal communication of computing B = O(n) instances of OP-
PRF is equal to the total number of items 3n. Second, we
utilize subfield vector oblivious linear evaluation (subfield-
VOLE) [10, 11, 50] to instantiate batch OPRF and the con-
struction in [49] to instantiate OKVS. This ensures the com-
putation complexity of batch OPPRF of size O(n) to scale
linearly with n.

5 MPSU from Symmetric-Key Techniques

In this section, we introduce a new primitive called multi-party
secret-shared random oblivious transfer (mss-ROT), then we
utilize it to build SK-MPSU based on oblivious transfer and
symmetric-key operations in the standard semi-honest model.

5.1 Multi-Party Secret-Shared Random Obliv-
ious Transfer

In Figure 5, the ROT functionality can be interpreted as r0⊕
rb = b ·∆, where ∆ = r0⊕ r1. As the aforementioned two-
choice-bit ROT, it can be consider to secret-share the choice
bit b between two parties and interpreted as r0⊕ rb = (b0⊕
b1) ·∆. We further extend this additive secret-sharing idea to
allow any non-empty subset of the involved parties to secret-
share ∆. The mss-ROT functionality is formally given in
Figure 9 with a construction in Figure 10.

As a matter of fact, the secret-sharing approach is com-
monly used in MPC. For instance, general MPC protocols
such as SPDZ [21, 20] and MASCOT [33] leverage secret-

Parameters. m parties P1, · · · ,Pm, where Pch0 and Pch1

provide inputs as shares of the choice bit, ch0,ch1 ∈ [m].
We use J = { j1, · · · , jd} to denote the set of indices for
the parties who provide inputs as shares of ∆, where
d ≤ m. The message length l.

Functionality. On input b0 ∈ {0,1} from Pch0 , b1 ∈
{0,1} from Pch1 , and ∆ j from each Pj where j ∈ J,

• Sample ri←{0,1}l and give ri to Pi for 2≤ i≤ m.

• If b0⊕b1 = 0, compute r1 =
⊕m

i=2 ri, else compute
r1 =

⊕m
i=2 ri⊕ (

⊕
j∈J ∆ j). Give r1 to P1.

Figure 9: Multi-Party Secret-Shared Random OT Functional-
ity Fmss-rot

Parameters. m parties P1, · · · ,Pm. where Pch0 and Pch1

provide inputs as shares of the choice bit, ch0,ch1 ∈ [m].
We use J = { j1, · · · , jd} to denote the set of indices for
the parties who provide inputs as shares of ∆, where
d ≤ m. The message length l.

Inputs. Pch0 has input b0 ∈ {0,1} and Pch1 has input
b1 ∈ {0,1}. Each Pj for j ∈ J has input ∆ j,

Protocol.

1. For 1 ≤ i ≤ m, Pi initializes ri = 0. If ch j=0,1 ∈ J,
Pch j sets rch j = b j ·∆ch j (· denotes bitwise-AND).

2. For j ∈ J: Pch0 and Pj invoke Frot where Pch0 acts as
receiver with input b0 and Pj as sender. Pch0 receives
ub0

j,ch0
∈ {0,1}l . Pj receives u0

j,ch0
,u1

j,ch0
∈ {0,1}l .

Pj updates r j = r j ⊕ u0
j,ch0

and sends ∆′j,ch0
=

u0
j,ch0
⊕ u1

j,ch0
⊕ ∆ j to Pch0 . Pch0 updates rch0 =

rch0 ⊕ub0
j,ch0
⊕b0 ·∆′j,ch0

.

3. For j ∈ J: Pch1 and Pj invoke Frot where Pch1 acts as
receiver with input b1 and Pj as sender. Pch1 receives
ub1

j,ch1
∈ {0,1}l . Pj receives u0

j,ch1
,u1

j,ch1
∈ {0,1}l .

Pj updates r j = r j ⊕ u0
j,ch1

and sends ∆′j,ch1
=

u0
j,ch1
⊕ u1

j,ch1
⊕ ∆ j to Pch1 . Pch1 updates rch1 =

rch1 ⊕ub1
j,ch1
⊕b1 ·∆′j,ch1

.

4. If |I = {ch0,ch1}∪ J|< m, each Pi (i ∈ I) samples
r′i,i′ and sends r′i,i′ to each Pi′ (i′ ∈ [m] \ I) and up-
dates ri = ri⊕ r′i,i′ . Pi′ updates ri′ = ri′ ⊕ r′i,i′ .

5. For 1≤ i≤ m, Pi outputs the final value of ri.

Figure 10: Multi-Party Secret-Shared Random OT Πmss-rot

sharing to construct authenticated values, which bears struc-
tural similarities to the mss-ROT functionality. However, since
mss-ROT is tailored to address the leakage caused by collu-
sion between P1 and other parties in the secret-sharing MPSU
framework, it has the following distinct requirements: (1) The
additive secret shares of ∆ is distributed among the parties
that could potentially collude with P1 and cause leakage in
each invocation. Since these colluding parties form a subset
of the involved parties, the allocation of additive secret shares
of ∆ is defined by a subset J. (2) The choice bit in mss-ROT
is secret-shared between only two parties to be plugged into
the secret-sharing framework. (3) Since all shares are recon-
structed in the final phase, the ∆ in mss-ROT cannot be reused
across multiple invocations.

Theorem 2. Protocol Πmss-rot securely implements Fmss-rot in
the presence of any semi-honest adversary corrupting t < m
parties in the Frot-hybrid model.

It is easy to see that our construction essentially boils down
to performing ROT pairwise. As one of the benefits, we can
utilize the derandomization technique [6] to bring most tasks
forward to the offline phase. And the correctness and security
of the mss-ROT protocol stems from the correctness and se-
curity of ROT. For the complete proof, refer to Appendix C.1.

5.2 Construction of Our SK-MPSU
We now turn our attention to construct SK-MPSU from batch
ssPMT and mss-ROT. The construction follows the secret-
sharing based framework outlined in Section 2.1 and 2.3, and
it is formally presented in Figure 11.

In the first phase, each Pj (2≤ j ≤ m) perform the secret-
sharing process: Pj assigns X j into B bins via Cuckoo hash-
ing. Each Pi (1 ≤ i < j) assigns Xi into B bins via sim-
ple hashing. Pj acts as R and executes the batch ssPMT
with each Pi. For each bin, Pj and Pi receive shares e j,i
and ei, j. Then {Pmin(2,i), · · · ,Pj} invoke mss-ROT, where Pj
and Pi act as Pch0 and Pch1 holding e j,i and ei, j respectively,
while each Pj′ ∈ {P2, · · · ,Pj} samples ∆ j′, ji uniformly as
input. Each Pi′ ∈ {Pmin(2,i), · · · ,Pj} receives ri′, ji. If e j,i ⊕
ei, j = 0,

⊕ j
i′=min(2,i) ri′, ji = 0, otherwise

⊕ j
i′=min(2,i) ri′, ji =⊕ j

j′=2 ∆ j′, ji. At the end of this process, P1 sets s1, j = r1, j1,

and each Pj′ sets s j′, j =
⊕ j−1

i=1 r j′, ji, except for Pj, who sets
s j, j =

⊕ j−1
i=1 r j, ji⊕x∥H(x), where x∈ X j is the element in Pj’s

bin. For those uninvolved parties, they set their corresponding
shares to 0. We have

⊕ j
i=1 si, j = (

⊕ j−1
i=1 (

⊕ j
i′=min(2,i) ri′, ji))⊕

x∥H(x). If x ∈ X j \ (X1 ∪ ·· · ∪X j−1), then e j,i⊕ ei, j = 0 and⊕ j
i′=min(2,i) ri′, ji = 0 hold for all i, hence

⊕ j
i=1 s j,i = x∥H(x).

This enables the parties to hold a secret-sharing of each el-
ement in Yj = X j \ (X1∪ ·· ·∪X j−1). Otherwise, at least one
random

⊕ j
i′=min(2,i) ri′, ji cannot be canceled out and is addi-

tively secret-shared among {P2, · · · ,Pj}. Therefore, for each

Parameters. m parties P1, · · · ,Pm. Size n of input sets.
The bit length l of set elements. Cuckoo hashing pa-
rameters: hash functions h1,h2,h3 and number of bins
B. A collision-resisitant hash function H(x) : {0,1}l →
{0,1}κ. Elem(C b) denotes the element in C b.

Inputs. Each party Pi inputs Xi = {x1
i , · · · ,xn

i } ⊆ {0,1}l .

Protocol.

1. P1 does T 1
1 , · · · ,T B

1 ← SimpleB
h1,h2,h3

(X1). For 1 <

j ≤ m, Pj does C 1
j , · · · ,C B

j ← CuckooB
h1,h2,h3

(X j)

and T 1
j , · · · ,T B

j ← SimpleB
h1,h2,h3

(X j).

2. For 1 < j ≤ m:

- For 1 ≤ i < j: Pi and Pj invoke FbssPMT of
batch size B, where Pi acts as sender with inputs
T 1

i , · · · ,T B
i and Pj acts as receiver with inputs

C 1
j , · · · ,C B

j . For the instance b ∈ [B], Pi receives
eb

i, j ∈ {0,1}, and Pj receives eb
j,i ∈ {0,1}.

3. For 1 < j ≤ m:

- For 1≤ i< j, for each bin b∈ [B]: Pmin(2,i), · · · ,Pj
invoke Fmss-rot where Pj acts as Pch0 with input
eb

j,i and Pi acts as Pch1 with input eb
i, j. For 1 <

j′ ≤ j, Pj′ samples ∆b
j′, ji←{0,1}

l+κ and inputs
∆b

j′, ji as shares of ∆. For min(2, i) ≤ i′ ≤ j, Pi′

receives rb
i′, ji ∈ {0,1}

l+κ.

- P1 sets s j,1 = r1, j1. For 1 < j′ < j, Pj′ com-
putes sb

j′, j =
⊕ j−1

i=1 rb
j′, ji. Pj computes sb

j, j =⊕ j−1
i=1 rb

j, ji⊕ (Elem(C b
j)∥H(Elem(C b

j))) if C b
j is

not corresponding to an empty bin, otherwise
chooses sb

j, j at random.

4. For 1≤ i≤m, Pi computes s⃗hi ∈ ({0,1}l+κ)(m−1)B

as follows: For max(2, i) ≤ j ≤ m,1 ≤ b ≤ B,
shi,(j−2)B+b = sb

i, j. Set all other positions to 0.

5. For 1≤ i≤ m, all parties Pi invoke Fms with input
s⃗hi. Pi receives s⃗h

′
i.

6. For 1 < j ≤ m, Pj sends s⃗h
′
j to P1.

7. P1 recovers v⃗=
⊕m

i=1 s⃗h
′
i and sets Y = /0. For 1≤ i≤

(m−1)B, if v′i = x∥H(x) holds for some x ∈ {0,1}l ,
adds x to Y . Outputs X1∪Y .

Figure 11: Our SK-MPSU ΠSK-MPSU

element in X j \Yj, the parties hold a random secret-sharing
whose secret reveals no information to P1 even if it colludes
with up to m−2 parties in {P2, · · · ,Pj}.

In the second phase, the parties invoke multi-party secret-
shared shuffle to randomly permute and re-share all secret-
sharings generated in the first phase. Afterwards, each Pj
sends their shuffled shares to P1, who reconstructs (X1∪·· ·∪
Xm)\X1, appends the elements in X1, and obtains the union.

Theorem 3. Protocol ΠSK-MPSU securely implements Fmpsu

against any semi-honest adversary corrupting t < m parties
in the (FbssPMT,Fmss-rot,Fms)-hybrid model.

The proof of Theorem 3 is in Appendix C.2.

6 MPSU from Public-Key Techniques

In this section, we describe how to construct PK-MPSU from
batch ssPMT and MKR-PKE. The construction follows the
encryption based framework outlined in Section 2.4 and is
formally presented in Figure 12.

In the first phase, each Pj (2 ≤ j ≤ m) first perform the
replacing procedure with each Pi (1 < i < j): (1) Pj assigns X j
into B bins via Cuckoo hashing. Pi assigns Xi into B bins via
simple hashing. Pj acts as R and executes batch ssPMT with
Pi. For each bin, Pj and Pi receive shares e j,i and ei, j. (2) If
i = 2, Pj encrypts x using MKR-PKE as the initial value of m0
and encrypts a dummy message using MKR-PKE as the initial
value of m1, where x∈X j is the element in Pj’s bin. (3) Pj acts
as S and executes two-choice-bit OT with Pi, where Pj and Pi
input e j,i and ei, j as choice bits respectively (The two-choice-
bit OT is identical to the standard 1-out-of-2 ROT, where the
choice bit of S indicates whether to swap the order of m0 and
m1). Pj inputs m0,m1 and Pi receives ct= me j,i⊕ei, j . If x /∈ Xi,
ct is the ciphertext of x; otherwise, the ciphertext of dummy
message. (4) Pi rerandomizes ct to ct′ and returns ct′ to Pj. (5)
Pj rerandomizes ct′, updates m0 to ct′, and rerandomizes m1
before repeating the procedure with the next party Pi+1. After
interacting with all Pi (1 < i < j), Pj retains an encrypted x in
the final m0, only if x /∈ Xi holds for all i. As a result, Pj holds
the encrypted elements in X j \ (X2∪·· ·∪X j−1).

To enable P1 to finally obtain the encrypted set X j \ (X1∪
·· · ∪X j−1), Pj and P1 engage in a similar procedure: After
P1 preprocessing X1 via simple hashing, Pj and P1 execute
batch ssPMT and receive secret shares as choice bits for the
subsequent executions of two-choice-bit OT. For each bin, Pi
acts as S and inputs the final m0 of the previous procedure
and an encrypted dummy message. If x /∈ X1, P1 receives the
final m0; otherwise, it receives the encrypted dummy message.
This removes the elements in X1 from the encrypted set X j \
(X2∪·· ·∪X j−1) and lets P1 obtain the resulting ciphertexts.

The second phase for collaborative decryption and shuf-
fle works as follows: P1 rerandomizes the ciphertexts from
the first phase, permutes them using a random permutation
π1, and sends these ciphertexts to P2. P2 performs a partial

decryption on the received ciphertexts, rerandomizes them,
permutes them using a random permutation π2, and forwards
these ciphertexts to P3. This iterative process continues un-
til the last party, Pm, returns its permuted partially decrypted
ciphertexts to P1. Finally, P1 fully decrypts the ciphertexts, fil-
ters out the dummy elements, retains the set X1∪·· ·∪Xm \X1,
and appends the elements in X1 to compute the union.

Theorem 4. Protocol ΠPK-MPSU securely implements Fmpsu

against any semi-honest adversary corrupting t < m parties
in the (FbssPMT,Frot)-hybrid model, assuming the rerandom-
izable property and indistinguishable multiple encryptions
(cf. Appendix B.1) of MKR-PKE scheme.

For the complete proof, refer to Appendix C.3.

7 Performance Evaluation

In this section, we provide the implementation details and ex-
perimental results for our works. For most previous works [34,
25, 9, 26] do not provide open-source code, and the proto-
col in [54] shows fairly inferior performance in compari-
son with the state-of-the-art LG, here we only compare our
protocols with LG, whose implementation is available on
https://github.com/lx-1234/MPSU.

During our experiments, we identify several issues with the
LG implementation:

1. The code is neither a complete nor a secure implemen-
tation for MPSU, as it lacks the offline share correla-
tion generation of the multi-party secret-shared shuf-
fle protocol [23]. Instead of adhering to the proto-
col specifications, the implementation designates one
party to generate and store some “fake” share cor-
relations [23] as local files during the offline phase,
while the other parties read these files and consume the
share correlations in the online phase (refer to the func-
tion ShareCorrelation::generate() in ShareCorre-
lationGen.cpp). This causes two serious consequences:

• The distributed execution is not supported.
• The security of multi-party secret-shared shuffle is

compromised, leading to information leakage.

To conduct a fair and complete comparison, we inte-
grated our correct version of the share correlation gener-
ation implementation into their code.

2. The code is not a correct implementation, as it produces
incorrect results when the set size n increases beyond a
certain threshold. We figure out that this issue arises from
the use of a fixed parameter (the variable batchsize in
line 30 of circuit/TripleGen.cpp) for generating Beaver
Triples in the offline phase, which leads to an insufficient
number of Beaver Triples for the online phase when n is
large. We modified their code to ensure correct execution
and mark the cases where the original code fails with ∗.

https://github.com/lx-1234/MPSU

Parameters. m parties P1, · · · ,Pm. Size n of input sets. The bit length l of set elements. Cuckoo hashing parameters: hash
functions h1,h2,h3 and number of bins B. A MKR-PKE scheme E = (Gen,Enc,ParDec,Dec,ReRand).

Inputs. Each party Pi has input Xi = {x1
i , · · · ,xn

i } ⊆ {0,1}l .

Protocol.

0. For 1≤ i≤m, Pi runs (pki,ski)←Gen(1λ), and distributes its public key pki to other parties. Define sk = sk1+ · · ·+skm
and all parties can compute the associated public key pk = ∏

m
i=1 pki.

1. P1 does T 1
1 , · · · ,T B

1 ← SimpleB
h1,h2,h3

(X1). For 1< j≤m, Pj does C 1
j , · · · ,C B

j ←CuckooB
h1,h2,h3

(X j) and T 1
j , · · · ,T B

j ←
SimpleB

h1,h2,h3
(X j).

2. For 1 < j ≤ m:

- For 1≤ i < j: Pi and Pj invoke FbssPMT of batch size B, where Pi acts as sender with inputs T 1
i , · · · ,T B

i and Pj acts
as receiver with inputs C 1

j , · · · ,C B
j . For the instance b ∈ [B], Pi receives eb

i, j ∈ {0,1}, and Pj receives eb
j,i ∈ {0,1}.

3. For 1 < j ≤ m, for each bin b ∈ [B]:

- Pj defines c⃗ j and sets cb
j = Enc(pk,Elem(C b

j)). Elem(C b
j) denotes the element in C b

j .

- For 1 < i < j:

- Pi and Pj invoke Frot where Pi acts as receiver with input eb
i, j and Pj acts as sender. Pi receives rb

i, j = rb
j,i,eb

i, j
∈{0,1}λ.

Pj receives rb
j,i,0,r

b
j,i,1 ∈ {0,1}λ. Pj computes ub

j,i,eb
j,i
= rb

j,i,eb
j,i
⊕ cb

j , ub
j,i,eb

j,i⊕1
= rb

j,i,eb
j,i⊕1
⊕Enc(pk,⊥), then sends

ub
j,i,0,u

b
j,i,1 to Pi.

- Pi defines vb
j,i = ub

j,i,eb
i, j
⊕ rb

i, j and sends v′bj,i = ReRand(pk,vb
j,i) to Pj. Pj updates cb

j = ReRand(pk,v′bj,i).

4. For 1 < j ≤ m, for each bin b ∈ [B]:

- P1 and Pj invoke Frot where P1 acts as receiver with input eb
1, j and Pj acts as sender. P1 receives rb

1, j = rb
j,1,eb

1, j
∈{0,1}λ.

Pj receives rb
j,1,0,r

b
j,1,1 ∈ {0,1}λ. Pj computes ub

j,1,eb
j,1
= rb

j,1,eb
j,1
⊕cb

j , ub
j,1,eb

j,1⊕1
= rb

j,1,eb
j,1⊕1
⊕Enc(pk,⊥), then sends

ub
j,1,0,u

b
j,1,1 to P1.

- P1 defines c⃗t′1 ∈ ({0,1}λ)(m−1)B, and sets ct′(j−2)B+b
1 = ReRand(pk,ub

j,1,eb
1, j
⊕ rb

1, j).

5. P1 samples π1 : [(m−1)B]→ [(m−1)B] and computes c⃗t′′1 = π1(c⃗t′1). P1 sends c⃗t′′1 to P2.

6. For 1 < j ≤ m:

- For 1≤ i≤ (m−1)B: Pj computes cti
j =ParDec(sk j,ct

′′i
j−1), pkA j = pk1 ·∏m

d= j+1 pkd , and ct′ij =ReRand(pkA j ,ct
i
j).

- Pj samples π j : [(m−1)B]→ [(m−1)B]. Pj defines c⃗t′j = (ct′1j , · · · ,ct
′(m−1)B
j) and computes c⃗t′′j = π j(c⃗t

′
j). If j ̸= m,

Pj sends c⃗t′′j to Pj+1; else, Pm sends c⃗t′′m to P1.

7. P1 sets Y = /0. For 1≤ i≤ (m−1)B, P1 computes pti = Dec(sk1,ct
′′i
m). If pti ̸=⊥, update Y = Y ∪{pti}. Output Y .

Figure 12: Our PK-MPSU ΠPK-MPSU

7.1 Experimental Setup
We conduct our experiments on an Alibaba Cloud virtual
machine with Intel(R) Xeon(R) 2.70GHz CPU (32 physical
cores) and 128 GB RAM. We emulate the network connec-
tions using Linux tc command. In the LAN setting, the band-
width is set to be 10 Gbps with 0.1 ms RTT latency. In the
WAN settings, we test on two different network bandwidths
400 Mbps and 50Mbps, with 80 ms RTT latency. We measure
the running time as the maximal time from protocol begin to
end, including messages transmission time, and the commu-
nication costs as the total data that leader sent and received.
For a fair comparison, we stick to the following settings:

• We test the balanced scenario by setting all m input sets
to be of equal size. In LG and our SK-MPSU, each party
holds n 64-bit strings. In our PK-MPSU, each party holds
n elements encoded as EC points in compressed form.

• Each party uses m−1 threads to interact simultaneously
with all other parties and 4 threads to perform share cor-
relation generation (in LG and our SK-MPSU), Beaver
Triple generation (in all three), parallel SKE encryption
(in LG), ciphertext rerandomization and partial decryp-
tion (in our PK-MPSU).

7.2 Implementation Details
Our protocols are written in C++, and we use the following
libraries in our implementation.

• VOLE: We use VOLE implemented in libOTe [51],
instantiating the code family with Expand-Convolute
codes [50].

• OKVS and GMW: We use the optimized OKVS con-
struction in [49].4 We re-use the OKVS implementation
in [5]. We re-use the GMW implementation in [5] to
construct ssPEQT.

• ROT: We use SoftSpokenOT [53] implemented in libOTe,
and set field bits to 5 to balance computation and com-
munication costs.

• Share Correlation: We re-use the implementation of Per-
mute+Share [40, 16] in [4] to build share correlation
generation for our SK-MPSU and LG.

• MKR-PKE: We implement MKR-PKE on top of the
curve NIST P-256 (also known as secp256r1 and
prime256v1) implementation from openssl [3].

• Additionally, we use the cryptoTools [2] library to com-
pute hash functions and PRNG calls, and we adopt Co-
proto [1] to realize network communication.

4Since the existence of suitable parameters for the new OKVS construc-
tion of the recent work [8] is unclear when the set size is less than 210, we
choose to use the OKVS construction of [49].

7.3 Choosing Parameters
We set the computational security parameter λ = 128 and the
statistical security parameter σ = 40. The other parameters:

Cuckoo hashing parameters. We use stash-less Cuckoo
hashing [46] with 3 hash functions. To render the failure
probability (failure is defined as the event where an item
cannot be stored in the table and must be stored in the stash)
less than 2−40, we set B = 1.27n.

OKVS parameters. We employ w = 3 scheme with a cluster
size of 214 in [49], where the expansion rate (the size of OKVS
divided by the number of encoding items) is 1.28.

The output length of OPPRF. In our SK-MPSU and PK-
MPSU, the batch OPPRF is invoked multiple times, and the
lower bound of γ is relevant to the total number of batch
OPPRF invocations. Specifically, for 1≤ i < j≤m, Pi and Pj
invoke batch OPPRF. Overall, there are 1+2+ · · ·+(m−1)=
(m2 −m)/2 invocations of batch OPPRF. Considering all
these invocations, we set γ ≥ σ+ log((m2−m)/2)+ log2 B,
so that the probability of any ti ̸= si occurring if x /∈ Xi, which
is ((m2−m)/2))B ·2−γ, is less than or equal to 2−σ.

7.4 Experimental Results
We conduct extensive experiments across various numbers
of parties {3,4,5,7,9,10} and a wide range of set sizes
{26,28,210,212,214,216,218,220} in the LAN and WAN set-
tings. The performance of protocols is evaluated from four
dimensions: online and total running time, and online and total
communication costs. The results for running time / commu-
nication costs are depicted in Table 2. As we can see in the
table, our protocols outperform LG in all the case studies,
even with enhanced security.

Online computation improvement. Our SK-MPSU achieves
a 3.9−10.0× speedup compared to LG in the LAN setting,
and a 1.1−2.1× / 1.1−2.6× speedup compared to LG in the
400 / 50 Mbps network. For example, in the online phase to
compute the union of 220-size sets among 3 parties, our SK-
MPSU runs in 4.4 seconds (LAN) and 33.1 / 121.1 seconds
(400 / 50 Mbps), which is 5.8× and 1.64× / 1.94× faster than
LG that takes 25.2 seconds (LAN) and 54.1 / 234.4 seconds
(400 / 50 Mbps), respectively.

Total computation improvement. Our SK-MPSU achieves
a 1.2− 7.8× speedup compared to LG in the LAN setting.
Our PK-MPSU achieves a 1.2−4.0× / 1.8−9.2× speedup
compared to LG in the 400 / 50 Mbps network. For example,
to compute the union of 220-size sets among 3 parties, our
SK-MPSU runs in 96.2 seconds overall (LAN), which is 6.4×
faster than LG that takes 610.8 seconds. To compute the union
of 218-size sets among 9 parties, our PK-MPSU runs in 38.4 /
47.2 minutes overall (400 / 50 Mbps), which is 2.8× / 8.5×
faster than LG that takes 106.4 / 396.9 minutes.

Online communication improvement. The online commu-
nication costs of our SK-MPSU is 1.2− 4.9× smaller than
LG. For example, in the online phase to compute the union of
220-size sets among 3 parties, our SK-MPSU requires 455.6
MB communication, which is a 2.0× improvement of LG that
requires 917.0 MB communication.

Total communication improvement. The total communica-
tion costs of our PK-MPSU is 3.0−36.5× smaller than LG.
For example, to compute the union of 218-size sets among 9
parties, our PK-MPSU requires 960.1 MB communication, a
34.8× improvement of LG that requires 33360 MB.

In conclusion, our protocols exhibit distinct advantages and
are suitable for different scenarios:

• Our SK-MPSU: This protocol has the best online perfor-
mance in both LAN and WAN settings. Notably, the on-
line phase takes only 4.4 seconds for 3 parties with sets
of 220 items each, and 7 seconds for 5 parties with sets of
220 items each in the LAN setting. In the WAN settings,
it achieves a larger improvement over LG on slower net-
work (50 Mbps), due to its lower online communication
cost. Additionally, it has the best total performance in
nearly all cases in the LAN setting. Therefore, our SK-
MPSU is the optimal choice when online performance
is the primary concern, or taking total performance into
consideration in high-bandwidth networks.

• Our PK-MPSU: This protocol has the best total per-
formance in the WAN settings, with a more significant
improvement over LG in the slower network (50 Mbps),
due to its lower total communication cost. Notably, in
the 50 Mbps network, LG takes approximately 6.6 hours
to run the entire protocol for 9 parties with sets of 218

items each, whereas our PK-MPSU only takes 47 min-
utes. This demonstrates that our PK-MPSU particularly
excels in bandwidth-constrained networks. Furthermore,
our PK-MPSU is the only protocol with the capability
of running among 10 parties with sets of 218 items each
in our experiments, which sufficiently indicates the su-
periority of its linear complexities.

Analysis of memory issues. In the offline phase, generating
share correlations or Beaver Triples requires substantial mem-
ory when emulating all parties on a single machine for large
m and n in both our protocols and LG. This leads to mem-
ory exhaustion in some trials, as indicated in Table 2. Take
the share correlation generation in the offline phase of our
SK-MPSU as an example: when m = 7,n = 220, each pair of
parties executes the Permute+Share with N = (m−1)∗1.27n
shares of 128 bits each. The communication cost is at least
C = 128∗N log2(N) = 128∗ (m−1)∗1.27n∗ log2((m−1)∗
1.27n) bits, approximately 2.73GB per pair. With m∗ (m−1)
pairs of parties, the total memory allocated for data sending
and receiving is m∗ (m−1)∗C, roughly 115GB. Considering

other intermediate variables in the code, the total memory
usage exceeds the 128GB capacity of our machine.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments. We also thank Jiahui Gao for the clarification of their
work. This work is supported by the National Natural Science
Foundation of China (No. 62272269 and No. 62402272), the
National Key Research and Development Program of China
(No. 2021YFA1000600), Taishan Scholar Program of Shan-
dong Province, Shandong Laboratories Project of Bureau of
Science & Technology of Shandong Province (SYS202201),
and Key Project of Quan Cheng Laboratory (QCLZD202302).

Ethics Considerations

This work adheres to the ethical guidelines outlined by
USENIX Security. All experiments in this paper are con-
ducted on publicly available datasets and do not involve per-
sonal or sensitive data, ensuring compliance with privacy and
data protection standards.

Open Science

We fully support the principles of the Open Science Policy.
The following artifacts have been made available:

• Implementation code of the proposed protocols.

• Detailed instructions for setting up the environment,
building the project and running the protocols.

These artifacts containing all components necessary for
reproduction have been published on Zenodo, a platform en-
suring persistent access, and are accessible at the following
DOI: https://doi.org/10.5281/zenodo.14694832. We
welcome feedback and collaboration to further validate and
enhance the reproducibility of our results.

References

[1] Coproto: C++ coroutine protocol library. https://
github.com/Visa-Research/coproto.git.

[2] cryptoTools. https://github.com/ladnir/
cryptoTools.git.

[3] OpenSSL: TLS/SSL and crypto library. https://
github.com/openssl/openssl.git.

[4] PSU. https://github.com/dujiajun/PSU.git.

[5] Vole-PSI. https://github.com/Visa-Research/
volepsi.git.

https://doi.org/10.5281/zenodo.14694832
https://github.com/Visa-Research/coproto.git
https://github.com/Visa-Research/coproto.git
https://github.com/ladnir/cryptoTools.git
https://github.com/ladnir/cryptoTools.git
https://github.com/openssl/openssl.git
https://github.com/openssl/openssl.git
https://github.com/dujiajun/PSU.git
https://github.com/Visa-Research/volepsi.git
https://github.com/Visa-Research/volepsi.git

Sett. m Protocol
Set size n

Online Total = Offline + Online
26 28 210 212 214 216 218 220 26 28 210 212 214 216 218 220

3
LG 0.050 0.058 0.069 0.143 0.425 1.582 6.219 25.16∗ 0.982 1.016 1.098 1.767 5.650 32.42 153.8 610.8∗

Our SK 0.005 0.007 0.009 0.017 0.050 0.213 1.005 4.352 0.361 0.386 0.395 0.489 1.170 4.534 19.77 96.233
Our PK 0.092 0.237 0.822 3.176 12.69 51.17 205.7 829.1 0.117 0.273 0.868 3.270 13.08 53.05 215.0 872.6

4
LG 0.069 0.076 0.093 0.162 0.478 1.637 6.375 25.79∗ 1.292 1.358 1.514 2.432 8.716 45.37 197.2 762.9∗

Our SK 0.008 0.010 0.013 0.023 0.071 0.286 1.393 5.645 0.639 0.665 0.696 0.917 2.597 10.94 50.25 237.84
Our PK 0.159 0.465 1.570 6.136 24.60 44.91 398.4 1604 0.196 0.505 1.643 6.299 25.45 48.95 417.5 1694

5
LG 0.107 0.109 0.126 0.190 0.541 1.998 7.588 31.33∗ 1.939 1.993 2.202 3.408 12.54 65.04 289.9 1152∗

Our SK 0.012 0.013 0.017 0.030 0.087 0.368 1.714 7.003 0.914 0.964 1.023 1.558 4.551 18.71 85.79 373.45
Our PK 0.232 0.693 2.487 9.858 39.33 158.1 637.5 2816 0.292 0.796 2.547 10.09 40.25 162.2 655.0 2979

7
LG 0.154 0.165 0.174 0.281 0.795 2.894 10.92 − 3.484 3.583 3.921 5.84 23.42 111.2 484.5 −

Our SK 0.019 0.021 0.028 0.048 0.156 0.607 2.817 − 2.051 2.079 2.214 3.470 12.92 56.50 245.6 −7
Our PK 0.463 1.365 5.030 19.43 77.22 310.0 1247 − 0.550 1.469 5.158 19.73 78.59 316.3 1276 −

9
LG 0.222 0.226 0.234 0.417 1.216 4.449 17.29 − 5.501 5.612 6.249 10.27 41.69 182.7 793.3 −

Our SK 0.027 0.031 0.039 0.075 0.230 0.970 4.293 − 3.363 3.402 3.895 7.161 30.09 126.3 678.8 −9
Our PK 0.764 2.271 8.074 31.64 126.7 507.0 2039 − 0.880 2.375 8.238 32.19 128.7 515.5 2080 −

10
LG 0.228 0.243 0.276 0.514 1.479 5.467 − − 6.736 6.846 8.335 13.56 55.58 238.3 − −

Our SK 0.031 0.036 0.043 0.088 0.286 1.183 − − 3.965 4.232 4.821 9.334 41.97 175.9 − −

Time.
(s)

LAN

10
Our PK 0.865 2.800 9.944 39.09 155.9 622.7 2503 − 0.970 2.912 10.11 39.58 158.4 634.6 2556 −

3
LG 4.502 4.505 4.522 4.914 6.272 8.744 17.78 54.13∗ 12.46 13.59 15.76 19.52 30.73 78.74 282.8 1188∗

Our SK 2.165 2.166 2.332 3.157 3.734 4.444 9.705 33.10 8.403 9.710 12.62 16.30 25.02 56.88 194.7 801.23
Our PK 4.419 4.555 5.553 7.984 18.21 59.77 226.3 900.3 5.168 5.306 6.472 8.968 19.65 62.73 237.3 946.1

4
LG 5.696 5.880 6.540 7.094 7.323 11.36 23.13 78.81∗ 17.94 20.99 27.63 32.69 50.59 145.7 554.7 2167∗

Our SK 2.967 2.969 3.298 3.976 4.618 6.507 17.10 59.21 11.46 13.93 20.21 26.77 47.49 133.2 520.0 21414
Our PK 5.622 5.899 7.929 12.17 32.40 113.8 440.9 1761 6.773 7.052 9.25 13.53 34.27 118.9 461.3 1857

5
LG 7.385 7.708 8.621 9.198 9.687 14.62 32.83 126.3∗ 23.64 26.82 37.39 48.48 88.32 263.3 1053 4394∗

Our SK 3.768 3.733 4.471 4.800 5.521 8.938 25.95 95.40 17.53 21.10 30.28 44.30 88.15 278.9 1119 48205
Our PK 6.849 7.928 10.50 17.08 49.75 179.8 703.3 2873 8.424 9.483 12.22 18.86 52.07 185.4 724.5 2980

7
LG 9.312 9.833 10.55 11.35 12.14 21.29 66.93 − 34.92 45.69 66.26 94.89 203.4 705.8 2898 −

Our SK 5.373 5.381 6.207 6.644 8.164 17.67 56.894 − 34.00 44.95 61.34 95.03 228.7 817.4 3506 −7
Our PK 9.504 12.32 15.14 29.73 92.66 348.5 1377.4 − 11.88 14.71 17.72 32.35 95.86 356.5 1409 −

9
LG 11.41 12.21 13.34 14.41 15.09 33.84 115.5 − 56.65 75.24 104.1 169.1 406.0 1503 6387 −

Our SK 6.977 7.068 7.830 8.387 12.24 29.20 105.7 − 58.81 84.80 107.6 182.0 502.5 1915 8137 −9
Our PK 13.67 18.84 22.96 45.54 148.2 570.9 − − 16.87 22.04 26.31 48.98 152.3 581.5 2034 −

10
LG 11.77 12.24 15.80 16.49 17.48 45.20 − − 66.19 92.22 125.1 219.8 582.1 2179 − −

Our SK 7.780 8.032 8.635 9.203 14.54 38.31 − − 71.58 109.2 132.7 242.7 684.0 2687 − −

Time.
(s)

400Mbps

10
Our PK 16.32 23.05 28.66 59.79 184.8 708.5 2792 − 19.90 26.66 32.44 63.66 189.3 720.9 2846 −

3
LG 4.596 4.736 4.834 5.287 7.476 19.29 60.58 234.4∗ 13.05 14.54 18.58 25.31 46.49 149.4 610.0 2549∗

Our SK 2.169 2.339 2.379 3.333 4.537 9.940 31.60 121.1 8.689 10.33 13.38 20.15 46.80 148.6 611.4 27663
Our PK 4.849 5.004 6.001 8.936 21.35 71.57 322.7 1120 5.603 5.762 6.929 9.904 22.71 74.20 332.1 1163

4
LG 5.653 5.900 6.205 6.932 11.88 32.10 119.4 470.2∗ 18.05 21.43 29.09 42.78 102.2 367.5 1544 6812∗

Our SK 3.131 3.147 3.372 4.271 6.979 18.83 69.46 269.7 12.26 15.16 22.27 39.99 110.1 411.1 1768 80784
Our PK 6.393 6.664 8.348 14.20 38.71 138.4 536.9 2136 7.549 7.832 9.683 15.57 40.48 142.76 554.6 2215

5
LG 7.183 7.916 8.283 10.51 15.59 51.78 198.8 − 24.56 29.00 40.27 72.24 194.9 763.6 3308 −

Our SK 3.859 3.961 4.587 5.462 10.46 32.89 127.7 − 18.60 23.31 36.40 75.50 236.7 945.9 4105 −5
Our PK 7.966 9.237 11.69 20.91 60.92 220.9 864.3 − 9.523 10.82 13.45 22.69 63.12 225.8 864.9 −

7
LG 9.08 9.415 10.68 14.18 29.47 108.4 418.0 − 38.05 51.56 88.41 182.2 585.0 2423 10444 −

Our SK 5.471 5.594 6.468 8.883 22.92 80.96 318.9 − 36.57 49.54 83.742 201.8 714.3 2962 13265 −7
Our PK 12.87 14.95 19.03 38.14 115.5 429.6 1693 − 15.25 17.38 21.60 40.75 118.6 437.0 1721 −

9
LG 10.39 10.55 12.76 17.29 48.80 184.8 718.5 − 66.62 90.76 156.9 371.7 1314 5504 23814 −

Our SK 7.094 7.23 8.429 14.12 42.34 160.3 636.8 − 62.51 95.48 159.0 452.3 1708 7294 32303 −9
Our PK 19.41 25.02 30.69 61.53 189.8 704.8 2793 − 22.67 28.34 34.13 65.06 193.8 714.4 2831 −

10
LG 11.04 11.37 15.05 20.73 60.73 230.4 − − 81.15 124.3 208.7 530.5 1921 8083 − −

Our SK 7.826 8.222 9.636 17.56 55.45 214.5 − − 76.53 122.1 211.7 620.8 2415 10418 − −

Time.
(s)

50Mbps

10
Our PK 23.9 28.84 37.78 77.75 232.7 866.9 3440 − 27.61 32.53 41.67 81.74 237.2 878.9 3489 −

3
LG 0.157 0.284 0.962 3.662 14.43 57.58 229.8 917.0∗ 6.311 7.904 13.37 32.58 114.6 474.3 2052 8973∗

Our SK 0.032 0.111 0.426 1.690 6.788 27.87 112.7 455.6 2.542 3.582 8.529 30.91 132.7 588.8 2614 115293
Our PK 1.815 1.983 2.655 5.418 16.36 60.78 239.3 959.5 2.084 2.325 3.073 5.908 16.92 61.41 240.0 960.3

4
LG 0.242 0.449 1.536 5.868 23.15 92.38 368.6 1471∗ 9.591 12.44 23.89 67.25 253.7 1074 4674 20419∗

Our SK 0.058 0.204 0.791 3.145 12.81 51.69 208.8 843.7 3.941 6.385 16.96 66.89 293.9 1312 5834 257514
Our PK 2.723 2.975 3.983 8.126 24.54 101.9 359.0 1439 3.127 3.488 4.610 8.861 25.38 102.8 360.1 1440

5
LG 0.330 0.630 2.173 8.325 32.86 131.2 523.5 2090∗ 12.92 17.75 36.48 110.7 435.2 1868 8228 35737∗

Our SK 0.090 0.323 1.257 5.007 20.36 82.11 331.5 1339 5.504 10.18 30.44 124.7 548.9 2445 10832 476355
Our PK 3.630 3.967 5.311 10.84 32.72 121.6 478.7 1919 4.169 4.650 6.147 11.82 33.84 122.8 480.1 1921

7
LG 0.519 1.038 3.635 13.99 55.29 220.8 881.3 − 19.92 29.90 41.59 243.3 997.9 4326 18924 −

Our SK 0.172 0.634 2.489 10.03 40.31 162.5 655.4 − 8.827 18.80 64.76 275.4 1226 5474 24275 −7
Our PK 5.445 5.950 7.966 16.25 49.07 182.3 718.0 − 6.253 6.98 9.220 17.72 50.76 184.2 720.1 −

9
LG 0.723 1.509 5.347 20.65 81.72 326.3 1303 − 28.15 44.74 115.0 415.33 1742 7609 33360 −

Our SK 0.279 1.046 4.122 16.60 66.76 269.0 1084 − 13.99 33.04 119.9 516.3 2295 10207 45079 −9
Our PK 7.260 7.933 10.62 21.67 65.43 243.1 957.3 − 8.338 9.300 12.29 23.63 67.68 245.6 960.1 −

10
LG 0.831 1.768 6.296 24.36 96.43 385.1 − − 32.32 54.34 148.7 549.4 2314 10081 − −

Our SK 0.341 1.288 5.086 20.48 82.39 332.0 − − 16.21 40.56 149.9 651.6 2901 12908 − −

Comm.
(MB)

10
Our PK 8.168 8.925 11.95 24.38 73.61 273.5 1077 − 9.380 10.46 13.83 26.59 76.14 276.3 1080 −

Table 2: Online and total running time / communication costs of LG and our protocols in LAN and WAN settings. m is the
number of parties. Our SK /PK denotes our SK-MPSU / PK-MPSU protocol. Cells with ∗ denotes trials that the original LG code
will give wrong results. Cells with − denotes trials that ran out of memory. The best protocol within a setting is marked in blue.

[6] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In Advances in Cryptology -
CRYPTO 1991, pages 420–432. Springer, 1991.

[7] Aner Ben-Efraim, Olga Nissenbaum, Eran Omri, and
Anat Paskin-Cherniavsky. Psimple: Practical multiparty
maliciously-secure private set intersection. In ASIA CCS
2022, pages 1098–1112. ACM, 2022.

[8] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and
Kevin Yeo. Near-Optimal oblivious Key-Value stores
for efficient PSI, PSU and Volume-Hiding Multi-Maps.
In USENIX Security 2023, pages 301–318, 2023.

[9] Marina Blanton and Everaldo Aguiar. Private and oblivi-
ous set and multiset operations. In 7th ACM Symposium
on Information, Compuer and Communications Security,
ASIACCS 2012, pages 40–41. ACM, 2012.

[10] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, Peter Rindal, and Peter Scholl. Efficient two-
round OT extension and silent non-interactive secure
computation. In CCS 2019, pages 291–308. ACM, 2019.

[11] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, and Peter Scholl. Efficient pseudorandom
correlation generators: Silent OT extension and more.
In CRYPTO 2019. Springer, 2019.

[12] Justin Brickell and Vitaly Shmatikov. Privacy-
Preserving graph algorithms in the semi-honest model.
In ASIACRYPT 2005, pages 236–252. Springer, 2005.

[13] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS 2001,
pages 136–145. IEEE Computer Society, 2001.

[14] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai
Lakshmi Bhavana Obbattu, Sruthi Sekar, and Akash
Shah. Efficient linear multiparty PSI and extensions to
circuit/quorum PSI. In CCS ’21. ACM, 2021.

[15] Nishanth Chandran, Divya Gupta, and Akash Shah.
Circuit-PSI with linear complexity via relaxed batch
OPPRF. Proc. Priv. Enhancing Technol., 2022.

[16] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya.
Secret-shared shuffle. In Advances in Cryptology - ASI-
ACRYPT 2020, pages 342–372. Springer, 2020.

[17] Melissa Chase and Peihan Miao. Private set intersection
in the internet setting from lightweight oblivious PRF.
In CRYPTO 2020, pages 34–63. Springer, 2020.

[18] Yu Chen, Min Zhang, Cong Zhang, Minglang Dong,
and Weiran Liu. Private set operations from multi-query
reverse private membership test. In Public-Key Cryptog-
raphy - PKC 2024. Springer, 2024.

[19] Michele Ciampi and Claudio Orlandi. Combining pri-
vate set-intersection with secure two-party computation.
In Security and Cryptography for Networks, SCN 2018,
pages 464–482. Springer, 2018.

[20] Ivan Damgård, Marcel Keller, Enrique Larraia, Vale-
rio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure MPC for dishonest majority - or: Break-
ing the SPDZ limits. In ESORICS 2013. Springer, 2013.

[21] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In CRYPTO 2012, pages 643–
662. Springer, 2012.

[22] Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory, 31:469–472, 1985.

[23] Saba Eskandarian and Dan Boneh. Clarion: Anonymous
communication from multiparty shuffling protocols. In
NDSS 2022. The Internet Society, 2022.

[24] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseudo-
random functions. In TCC 2005. Springer, 2005.

[25] Keith B. Frikken. Privacy-preserving set union. In Ap-
plied Cryptography and Network Security, ACNS 2007,
pages 237–252. Springer, 2007.

[26] Jiahui Gao, Son Nguyen, and Ni Trieu. Toward
a practical multi-party private set union. Cryptol-
ogy ePrint Archive, Paper 2023/1930, 2023. Ver-
sion: 20240316:210303, https://eprint.iacr.org/
archive/2023/1930/20240316:210303.

[27] Gayathri Garimella, Payman Mohassel, Mike Rosulek,
Saeed Sadeghian, and Jaspal Singh. Private set opera-
tions from oblivious switching. In PKC 2021, pages
591–617. Springer, 2021.

[28] Gayathri Garimella, Benny Pinkas, Mike Rosulek,
Ni Trieu, and Avishay Yanai. Oblivious key-value
stores and amplification for private set intersection. In
CRYPTO 2021, pages 395–425. Springer, 2021.

[29] Oded Goldreich. The Foundations of Cryptography -
Volume 2: Basic Applications. Cambridge University
Press, 2004.

[30] Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen,
David Stott, Sophia Yakoubov, and Arkady Yerukhi-
movich. Secure multiparty computation for cooperative
cyber risk assessment. In IEEE Cybersecurity Develop-
ment, 2016. IEEE Computer Society, 2016.

https://eprint.iacr.org/archive/2023/1930/20240316:210303
https://eprint.iacr.org/archive/2023/1930/20240316:210303

[31] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du,
and Dawu Gu. Shuffle-based private set union: Faster
and more secure. In USENIX 2022, 2022.

[32] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, and Dawu
Gu. Scalable private set union, with stronger security.
In USENIX Security 2024. USENIX Association, 2024.

[33] Marcel Keller, Emmanuela Orsini, and Peter Scholl.
MASCOT: faster malicious arithmetic secure computa-
tion with oblivious transfer. In CCS 2016. ACM, 2016.

[34] Lea Kissner and Dawn Xiaodong Song. Privacy-
preserving set operations. In Advances in Cryptology -
CRYPTO 2005, pages 241–257. Springer, 2005.

[35] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient batched oblivious PRF with
applications to private set intersection. In CCS 2016,
pages 818–829. ACM, 2016.

[36] Vladimir Kolesnikov, Naor Matania, Benny Pinkas,
Mike Rosulek, and Ni Trieu. Practical multi-party pri-
vate set intersection from symmetric-key techniques. In
CCS 2017, pages 1257–1272. ACM, 2017.

[37] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao
Wang. Scalable private set union from symmetric-key
techniques. In ASIACRYPT 2019. Springer, 2019.

[38] Arjen K. Lenstra and Tim Voss. Information security
risk assessment, aggregation, and mitigation. In Informa-
tion Security and Privacy, ACISP 2004, pages 391–401.
Springer, 2004.

[39] Xiang Liu and Ying Gao. Scalable multi-party private
set union from multi-query secret-shared private mem-
bership test. In ASIACRYPT 2023. Springer, 2023.

[40] Payman Mohassel and Seyed Saeed Sadeghian. How to
hide circuits in MPC an efficient framework for private
function evaluation. In EUROCRYPT 2013, pages 557–
574. Springer, 2013.

[41] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast
malicious multiparty private set intersection. In CCS
2021, pages 1151–1165. ACM, 2021.

[42] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. Journal of Algorithms, 51(2):122–144, 2004.

[43] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Spot-light: Lightweight private set intersection
from sparse OT extension. In CRYPTO 2019, pages
401–431. Springer, 2019.

[44] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. PSI from PaXoS: Fast, malicious private set
intersection. In EUROCRYPT 2020. Springer, 2020.

[45] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security 2015,
pages 515–530. USENIX Association, 2015.

[46] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-
based PSI with linear communication. In EUROCRYPT
2019, pages 122–153. Springer, 2019.

[47] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension. In
USENIX Security 2014. USENIX Association, 2014.

[48] Michael O. Rabin. How to exchange secrets with obliv-
ious transfer. IACR Cryptol. ePrint Arch., page 187,
2005. http://eprint.iacr.org/2005/187.

[49] Srinivasan Raghuraman and Peter Rindal. Blazing fast
PSI from improved OKVS and subfield VOLE. In CCS
2022. ACM, 2022.

[50] Srinivasan Raghuraman, Peter Rindal, and Titouan Tan-
guy. Expand-convolute codes for pseudorandom corre-
lation generators from LPN. In CRYPTO 2023, pages
602–632. Springer, 2023.

[51] Peter Rindal. libOTe: an efficient, portable, and easy
to use Oblivious Transfer Library. https://github.
com/osu-crypto/libOTe.git.

[52] Peter Rindal and Phillipp Schoppmann. VOLE-PSI:
fast OPRF and circuit-psi from vector-OLE. In EURO-
CRYPT 2021, pages 901–930. Springer, 2021.

[53] Lawrence Roy. SoftSpokenOT: Quieter OT extension
from small-field silent VOLE in the minicrypt model.
In CRYPTO 2022. Springer, 2022.

[54] Jelle Vos, Mauro Conti, and Zekeriya Erkin. Fast multi-
party private set operations in the star topology from
secure ands and ors. IACR Cryptol. ePrint Arch., page
721, 2022. https://eprint.iacr.org/2022/721.

[55] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and
Dongdai Lin. Optimal private set union from multi-
query reverse private membership test. In USENIX 2023.
USENIX Association, 2023.

[56] Shengnan Zhao, Ming Ma, Xiangfu Song, Han Jiang,
Yunxue Yan, and Qiuliang Xu. Lightweight threshold
private set intersection via oblivious transfer. In Wire-
less Algorithms, Systems, and Applications, WASA 2021.
Springer, 2021.

http://eprint.iacr.org/2005/187
https://github.com/osu-crypto/libOTe.git
https://github.com/osu-crypto/libOTe.git
https://eprint.iacr.org/2022/721

A Leakage Analysis of [26]

The MPSU protocol in [26] is claimed to be secure in the
presence of arbitrary colluding participants. However, our
analysis would suggest that the protocol fails to achieve this
security, and also requires the non-collusion assumption as
LG. First, we give a brief review of the protocol.

Apart from MKR-PKE, their protocol utilizes two new
ingredients: 1) The conditional oblivious pseudorandom func-
tion (cOPRF), an extension they develop on the OPRF, where
the sender S additionally inputs a set Y . If x /∈ Y , R receives
Fk(x), else R receives a random value sampled by S . 2) The
membership Oblivious Transfer (mOT), where S inputs an
element y and two messages u0,u1, while R inputs a set X
and receives u, one of u0,u1. If y ∈ X , u = u0, else u = u1.

To illustrate insecurity of their protocol, we consider a
three-party case where P1 and P3 each possess a single item
X1 = {x1} and X3 = {x3} respectively, while P2 possesses a
set X2. We assume that x1 = x3. According to the protocol
(cf. Figure 8 in their paper), in step 3.(a), P1 and P2 invoke
the OPRF where P1 acts as R inputting x1 and P2 acts as S
inputting its PRF key k2. P1 receives the PRF value Fk2(x1).
Meanwhile, in step 3.(c), P2 and P3 invoke the cOPRF where
P3 acts as R inputting x3, and P2 acts as S inputting its PRF
key k2 and the set X2. P3 receives the output w from the
cOPRF. By the definition of cOPRF functionality, if x3 /∈ X2,
w = Fk2(x3), otherwise w is a random value.

If P1 and P3 collude, they can distinguish the cases where
x3 ∈ X2 and x3 /∈ X2 by comparing P1’s output Fk2(x1) from
the OPRF and P3’s output w from the cOPRF for equality.
To elaborate, we recall that x1 = x3, so Fk2(x1) = Fk2(x3). If
Fk2(x1) = w, it implies that P3 receives Fk2(x3) from the cO-
PRF, so the coalition learns that x3 /∈ X2; On the contrary, if
Fk2(x1) ̸= w, it implies that P3’s output from the cOPRF is not
Fk2(x3), so it is a random value, then the coalition learns that
x3 ∈ X2. More generally, as long as P1 and P3 collude, they
can identify whether each element x ∈ X1∩X3 belongs to X2
or not, by comparing the PRF value Fk(x) from the OPRF
between P1 and P2 and the cPRF value (whose condition de-
pends on x ∈ X2 or not) from the cOPRF between P2 and P3.
This acquired knowledge is information leakage in MPSU.
Therefore, the non-collusion assumption is required.

B MKR-PKE Appendix

B.1 Indistinguishable Multiple Encryptions

The IND-CPA security of PKE implies security for encryption
of multiple messages whose definition is as follows:

Definition 2. A public-key encryption scheme E =
(Gen,Enc,Dec) has indistinguishable multiple encryptions
if for all PPT adversaries A s.t. any tuples (m1, · · · ,mq) and

(m′1, · · · ,m′q) chosen by A (where q is polynomial in λ):

{Enc(pk,m1), · · · ,Enc(pk,mq) : (pk,sk)← Gen(1λ)}
c
≈

{Enc(pk,m′1), · · · ,Enc(pk,m′q) : (pk,sk)← Gen(1λ)}

B.2 Construction from ElGamal

A MKR-PKE with IND-CPA security can be instantiated with
ElGamal encryption as follows:

• The key-generation algorithm Gen takes as input the
security parameter 1λ and generates (G,g, p), where G
is a cyclic group, g is the generator and q is the order.
Outputs sk and pk = gsk.

• The randomized encryption algorithm Enc takes as input
a public key pk and a plaintext message x ∈G, samples
r← Zq, and outputs ct= (ct1,ct2) = (gr,x · pkr).

• The partial decryption algorithm ParDec takes as input
a secret key share sk and a ciphertext ct= (ct1,ct2), and
outputs ct′ = (ct1,ct2 · ct−sk

1).

• The decryption algorithm Dec takes as input a secret
key sk and a ciphertext ct= (ct1,ct2), and outputs x =
ct2 · ct−sk

1 .

• The rerandomization algorithm ReRand takes as input
pk and a ciphertext ct= (ct1,ct2), samples r← Zq, and
outputs ct′ = (ct1 ·gr′ ,ct2 · pkr′).

C Missing Security Proofs

C.1 The Proof of Theorem 2

We consider the case that ch0 = 1 and ch1 = m, and J =
{1, · · · ,m}. Let P1 and Pm input b1 ∈ {0,1} and bm ∈ {0,1},
and Pi (1≤ i≤ m) input ∆i respectively. We turn to proving
the correctness and security of the protocol in Figure 10 in
this particular case. Note that in the different cases, the proof
is essentially the same.

Correctness. From the description of the protocol, we have
the following equations:

r1 =
m⊕

j=2

(rb1
j,1⊕b1 ·u j,1)⊕ r0

1,m⊕b1 ·∆1, (1)

ri = r0
i,1⊕ r0

i,m,1 < i < m, (2)

rm =
m−1⊕
j=1

(rbm
j,m⊕bm ·u j,m)⊕ r0

m,1⊕bm ·∆m, (3)

u j,1 = ∆ j⊕ r0
j,1⊕ r1

j,1,u j,m = ∆ j⊕ r0
j,m⊕ r1

j,m (4)

From the definition of Random OT functionality (Figure 5),
we have the following equations:

rb1
j,1 = r0

j,1⊕b1 · (r0
j,1⊕ r1

j,1), (5)

rbm
j,m = r0

j,m⊕bm · (r0
j,m⊕ r1

j,m), (6)

Substitute Equation 4, 5, 6 into Equation 1, 2, 2 and cancel
out the same terms, we obtain:

r1 =
m⊕

j=2

(rb1
j,1⊕b1 ·∆ j)⊕ r0

1,m⊕b1 ·∆1, (7)

rm =
m−1⊕
j=1

(rbm
j,m⊕bm ·∆ j)⊕ r0

m,1⊕bm ·∆m, (8)

Substitute Equation 2, 7, 8 into r1⊕ (
⊕m−1

j=2 r j)⊕ rm, we have
r1⊕ (

⊕m−1
j=2 r j)⊕ rm =

⊕m
i=1(b1⊕bm) ·∆i. Then we can sum-

marize that if b1 ⊕ bm = 0, r1 =
⊕m

j=2 r j, else r1 = ∆1 ⊕
(
⊕m

j=2(r j⊕∆ j)). This is exactly the functionality Fmss-rot.

Security. We now prove the security of the protocol.

Proof. Let Corr denote the set of all corrupted parties and H
denote the set of all honest parties. |Corr|= t.

Intuitively, the protocol is secure because all things the
parties do are invoking Frot and receiving random messages.
The simulator can easily simulate these outputs from Frot and
protocol messages by generating random values, which are
independent of honest parties’ inputs.

To elaborate, in the case that P1 /∈ Corr and Pm /∈ Corr,
simulator receives all outputs rc of Pc ∈ Corr and needs to
emulate each Pc’s view, including its private input ∆c, out-
puts (r0

c,1,r
1
c,1) and (r0

c,m,r
1
c,m) from Frot. The simulator for

corrupted Pc runs the protocol honestly except that it sim-
ulates uniform outputs from Frot under the constraint that
r0

c,1⊕ r0
c,m = rc. Clearly, the joint distribution of all outputs rc

of Pc ∈ Corr, along with their view emulated by simulator, is
indistinguishable from that in the real process.

In the case that P1 ∈ Corr or Pm ∈ Corr, since the protocol
is symmetric with respect to the roles of P1 and Pm, we focus
on the case of corrupted P1. The simulator receives all outputs
rc of Pc ∈ Corr. For P1, its view consists of the choice bit
b1, its private input ∆1, outputs (r0

1,m,r
1
1,m), {r

b1
j,1}1< j≤m from

Frot and protocol messages {u j,1}1< j≤m from Pj. For each
Pc(c ̸= 1), its view consists of its private input ∆c, outputs
(r0

c,1,r
1
c,1) and (r0

c,m,r
1
c,m) from Frot.

For P1’s view, the simulator runs the protocol honestly ex-
cept that it simulates uniform outputs (r0

1,m,r
1
1,m), rb1

i,1 from
Frot and uniformly random messages ui,1 from Pi under the
constraint

⊕m
j=2(r

b1
j,1⊕b1 ·u j,1)⊕ r0

1,m⊕b1 ·∆1 = r1, where
Pi ∈ H . For other corrupted parties’ view, it runs the proto-
col honestly except that it sets r0

c,m = r0
c,1⊕ rc and simulates

uniform output r1
c,m from Frot.

In the real execution, P1 receives ui,1 =∆i⊕r0
i,1⊕r1

i,1. From
the definition of ROT functionality, r0

i,1 (when b1 = 0) or
r1

i,1(when b1 = 0) is uniform and independent of P1’s view.
Therefore, ui,1 is uniformly at random from the perspective of
P1. Clearly, the joint distribution of all outputs rc of Pc ∈ Corr,
along with their view emulated by simulator, is indistinguish-
able from that in the real process.

In the case that P1 ∈ Corr and Pm ∈ Corr, the simulator
receives all outputs rc of Pc ∈ Corr. For P1, its view consists
of the choice bit b1, its private input ∆1, outputs (r0

1,m,r
1
1,m),

{rb1
j,1}1< j≤m from Frot and protocol messages {u j,1}1< j≤m

from Pj. For each Pc(c ̸= 1,c ̸= m), its view consists of its pri-
vate input ∆c, outputs (r0

c,1,r
1
c,1) and (r0

c,m,r
1
c,m) from Frot.

For Pm, its view consists of its private input ∆m, outputs
(r0

m,1,r
1
m,1), {r

bm
j,m}1≤ j<m from Frot and protocol messages

{u j,m}1≤ j<m from Pj.
For P1’s view, the simulator runs the protocol honestly ex-

cept that it simulates uniform outputs rb1
i,1 from Frot and uni-

formly random messages ui,1 from Pi under the constraint⊕m
j=2(r

b1
j,1⊕b1 ·u j,1)⊕r0

1,m⊕b1 ·∆1 = r1, where Pi ∈H . For
the view of Pc(c ̸= 1,c ̸= m), it runs the protocol honestly ex-
cept that it sets r0

c,m = r0
c,1⊕ rc and simulates uniform output

r1
c,m from Frot. For Pm’s view, it runs the protocol honestly

with the following changes:

• It simulates uniform outputs rbm
i,m from Frot and uniform

messages ui,m from Pi under the constraint
⊕m−1

j=1 (r
bm
j,m⊕

bm ·u j,m)⊕ r0
m,1⊕bm ·∆m = rm, where Pi ∈H .

• It sets the output rbm
c,m from Frot to be consistent with the

partial view (r0
c,m,r

1
c,m) of each corrupted Pc in preceding

simulation, where c ̸= 1 and c ̸= m.

Clearly, the joint distribution of all outputs rc of Pc ∈ Corr,
along with their view emulated by simulator, is indistinguish-
able from that in the real process.

C.2 The Proof of Theorem 3

Proof. This proof is supposed to be divided into two cases in
terms of whether P1 ∈ Corr, since this determines whether
the adversary has knowledge of the output. Nevertheless, the
simulation of these two cases merely differ in the output
reconstruction stage, thus we combine them together for the
sake of simplicity. Specifically, the simulator receives the
input Xc of Pc ∈ Corr and the output

⋃m
i=1 Xi if P1 ∈ Corr.

For each Pc, its view consists of its input Xc, outputs from
FbssPMT, Fmss-rot, output s⃗h

′
c from Fms as its share, sampled

values as shares of ∆ for Fmss-rot and m− 1 sets of shares
{s⃗h
′
i}1<i≤m(Pi’s output from Fms) from Pi if c = 1. The simu-

lator emulates each Pc’s view by running the protocol honestly
with the following changes:

• In step 2, it simulates uniform outputs {eb
c, j}c< j≤m and

{eb
c,i}1≤i<c from FbssPMT, on condition that Pi,Pj ∈H .

• In step 3, it simulates uniform outputs {rb
c, ji}c< j≤m,1≤i< j

from Fmss-rot, on condition that ∃min(2, i)≤ d ≤ j,Pd ∈
H . If c ̸= 1, it simulates uniform {∆b

c, ji}c< j≤m,1≤i< j as
Pc’s random tapes.

• In step 4, it simulates uniformly output s⃗h
′
c from Fms.

Now we discuss the case when P1 ∈ Corr. In step 4
and 5, it computes Y =

⋃m
i=1 Xi \ X1 and constructs v⃗ ∈

({0,1}l+κ)(m−1)B as follows:

• For ∀xi ∈ Y , vi = xi∥H(x), 1≤ i≤ |Y |.

• For |Y |< i≤ (m−1)B, samples vi←{0,1}l+κ.

Then it samples a random permutation π : [(m−1)B]→ [(m−
1)B] and computes v⃗′ = π(⃗v). For 1≤ i≤ m, it samples share
s⃗h
′
i← ({0,1}l+κ)(m−1)B, which satisfies

⊕m
i=1 s⃗h

′
i = v⃗′ and is

consistent with the previous sampled s⃗h
′
c for each corrupted

Pc. Add all s⃗h
′
i to P1’s view and s⃗h

′
c′ to each corrupted Pc′’s

view(c′ ̸= 1) as its output from Fms, respectively.
The changes of outputs from FbssPMT and Fmss-rot have

no impact on Pc’s view, for the following reasons. By the
definition of FbssPMT, each output eb

c, j and eb
c,i from FbssPMT

is uniformly distributed as a secret-share between Pc and
Pj, or Pi and Pc, where Pi,Pj ∈ H . By the definition of
Fmss-rot, each output rb

c, ji from Fmss-rot is a secret-share of
0 among Pmin(2,i), · · · ,Pj if eb

i, j ⊕ eb
j,i = 0, or a secret-share

of
⊕ j

d=2 ∆b
d, ji if eb

i, j ⊕ eb
j,i = 1. Therefore, even if Pc col-

ludes with others, rb
c, ji is still uniformly random from the

perspective of adversary, since there always exists a party
Pd ∈H (min(2, i)≤ d ≤ j) holding one share.

It remains to demonstrate that the output s⃗h
′
c from Fms(P1 /∈

Corr) or all outputs {s⃗h
′
i}1≤i≤m from Fms(P1 ∈ Corr) does

not leak any other information except for the union. The for-
mer case is easier to tackle with. The output s⃗h

′
c is distributed

as a secret-share among all parties, so it is uniformly dis-
tributed from the perspective of adversary.

We now proceed to explain the latter case. For all 1< j≤m,
consider an element x∈ X j and x is placed in the bth bin by Pj.
In the real protocol, if there is no Xi(1≤ i < j) s.t. x∈ Xi, then
for all 1≤ i < j, ey

i, j⊕ ey
j,i = 0. By the Fmss-rot functionality

in Figure 9, each rb
d, ji is uniform in {0,1}l+κ conditioned

on
⊕ j

d=min(2,i) rb
d, ji = 0. From the protocol specifications, we

derive that each ub
d, j is uniform in {0,1}l+κ conditioned on⊕ j

d=min(2,i) ub
d, j = x∥H(x), namely, they are additive shares of

x∥H(x) among parties. This is exactly identical to simulation.
If there exists some Xi(1 ≤ i < j) s.t. x ∈ Xi, then eb

i, j ⊕
eb

j,i = 1. By the Fmss-rot functionality in Figure 9, each rb
d, ji

is uniform conditioned on
⊕ j

d=min(2,i) rb
d, ji =

⊕ j
j′=2 ∆b

j′, ji,

where each ∆b
j′, ji is uniformly held by Pj′ (1 < j′ ≤ j).

From the descriptions of the protocol, We derive that each
ub

d, j is uniform conditioned on
⊕ j

d=min(2,i) ub
d, j = x∥H(x)⊕⊕ j

j′=2 ∆b
j′, ji⊕ r, where r is the sum of remaining terms. Then,

even if P1 colludes with others,
⊕ j

d=min(2,i) ub
d, j is still uni-

formly random from the perspective of adversary, since there
always exists a party Pj′ ∈ H (1 < j′ ≤ j) holding one uni-
form ∆b

j′, ji and independent of all honest parties’ inputs. For
all empty bins, ub

d, j is chosen uniformly random, so the cor-

responding
⊕ j

d=1 ub
d, j is also uniformly at random, which is

identical to the simulation. By the definition of Fms, all par-
ties additively share

⊕ j
d=1 ub

d, j in a random permutation that
maintains privacy against a coalition of arbitrary corrupted
parties, and receive back {s⃗h

′
i}, respectively. We conclude

that all outputs {s⃗h
′
i}1≤i≤m from Fms distribute identically

between the real and ideal executions.

C.3 The Proof of Theorem 4

Proof. The simulator receives the input Xc of Pc ∈ Corr and
the output

⋃m
i=1 Xi if P1 ∈ Corr.

For each Pc, its view consists of its input Xc, out-
puts from FbssPMT and Frot, protocol messages
{ub

j,c,0}c< j≤m,{ub
j,c,1}c< j≤m from Pj, rerandomization

messages {v′bc,i}1<i<c from Pi, πc, permuted partial decryption
messages c⃗t′′c−1 from Pc−1 if c > 1, or c⃗t′′m from Pm if c = 1.
The simulator emulates each Pc’s view by running the
protocol honestly with the following changes:

• In step 2, it simulates uniform outputs {eb
c, j}c< j≤m and

{eb
c,i}1≤i<c from FbssPMT, on condition that Pi,Pj ∈H .

• In step 3, it simulates uniform outputs {rb
c,i,0}1≤i<c,

{rb
c,i,1}1≤i<c from Frot, and {rb

j,c,eb
c, j
}c< j≤m from Frot,

on condition that Pi,Pj ∈H . For c < j ≤m, it computes
ub

j,c,eb
c, j

= rb
j,c,eb

c, j
⊕Enc(pk,⊥) and simulates ub

j,c,eb
c, j⊕1

uniformly at random, on condition that Pj ∈ H . For
1 < i < c, it simulates v′bc,i = Enc(pk,⊥), on condition
that Pi ∈H .

• If P1 /∈ Corr, in step 4, for 1 ≤ i ≤ (m− 1)B, it com-
putes ct′ic−1 = Enc(pk,⊥), and then simulates the vector
c⃗t
′′
c−1 = π(c⃗t

′
c−1) from Pc−1, where π is sampled uni-

formly random and Pc−1 ∈H .

Now we discuss the case when P1 ∈ Corr. In step 4, assume
d is the largest number that Pd ∈H , namely, Pd+1, · · · ,Pm ∈
Corr. The simulator emulates the partial decryption messages
c⃗t
′′
d from Pd in the view of Pd+1 as follows:

• For ∀xi ∈ Y =
⋃m

j=1 X j, ct′id = Enc(pkA,xi), 1≤ i≤ |Y |.

• For |Y |< i≤ (m−1)B, sets ct′id = Enc(pkA,⊥).

where pkAd = pk1 ·∏m
j=d+1 pk j. Then it samples a random per-

mutation π : [(m−1)B]→ [(m−1)B] and sets c⃗t′′d = π(c⃗t
′
d).

For other corrupted Pd′+1 ∈ {P2, · · · ,Pd−1}, if Pd′ ∈H , it
simulates each partial decryption message ct′id′ = Enc(pk,⊥)
for 1 ≤ i ≤ (m− 1)B, and then computes the vector c⃗t′′d′ =
π(c⃗t

′
d′) from Pd′ , where πd′ is sampled uniformly random.

Append c⃗t
′′
d′ to the view of Pd′+1.

The changes of outputs from FbssPMT and Frot have no
impact on Pc’s view, for similar reasons in Theorem 3.

Indeed, ub
j,c,eb

c, j⊕1
is uniform in the real process, as rb

j,c,eb
c, j⊕1

(which is one of Pj’s output from Frot hidden from Pc, and is
used to mask the encrypted message in ub

j,c,eb
c, j⊕1

) is uniform

and independent of rb
j,c,eb

c, j
from Pc’s perspective.

It’s evident from the descriptions of the protocol and
the simulation that the simulated ub

j,c,eb
c, j

is identically dis-

tributed to that in the real process, conditioned on the event
eb

c, j⊕ eb
j,c = 1. The analysis in the case of eb

c, j⊕ eb
j,c = 0 can

be further divided into two subcases, c ̸= 1 and c = 1. We
first argue that when c ̸= 1, ub

j,c,eb
c, j

emulated by simulator is

indistinguishable from that in the real process.
In the real process, for 1 < c < j ≤ m,1 ≤ b ≤ B, if

Elem(C b
j) ∈ X j \ (X2 ∪ ·· · ∪Xc−1), cb

j = Enc(pk,Elem(C b
j)),

ub
j,c,eb

c, j
= rb

j,c,eb
c, j
⊕Enc(pk,Elem(C b

j)); else cb
j = Enc(pk,⊥),

ub
j,c,eb

c, j
= rb

j,c,eb
c, j
⊕Enc(pk,⊥). In the real process, for 1 <

c < j≤m,1≤ b≤ B, ub
j,c,eb

c, j
= rb

j,c,eb
c, j
⊕Enc(pk,⊥). If there

exists an algorithm that distinguishes these two process, it
implies the existence of an algorithm that can distinguish two
lists of encrypted messages, with no knowledge of sk (since
sk is secret-shared among m parties, it is uniformly distributed
for any coalition of m−1 parties). Consequently, this implies
the existence of a adversary to break the indistinguishable
multiple encryptions of E in Definition 2.

When c = 1, ub
j,eb

1, j
emulated by simulator is indistinguish-

able from that in the real process for the similar reason as the
above analysis when c > 1.

Next, we start demonstrating that all v′bc,i = Enc(pk,⊥) em-
ulated by simulator are indistinguishable from the real ones
via the sequences of hybrids:

Hyb0. The real interaction. For 1 < i < c,1 ≤ b ≤ B: If
Elem(C b

c) ∈ Xc \ (X1 ∪ ·· · ∪ Xi), vb
c,i = Enc(pk,Elem(C b

c));
else vb

c,i = Enc(pk,⊥). v′bc,i = ReRand(pk,vb
c,i).

Hyb1. For 1 < i < c,1≤ b≤ B: If Elem(C b
c)∈ Xc \(X1∪·· ·∪

Xi), v′bc,i = Enc(pk,Elem(C b
c)); else v′bc,i = Enc(pk,⊥). This

change is indistinguishable by the rerandomizable property
of E .

Hyb2. For 1 < i < c,1 ≤ b ≤ B: v′bc,i = Enc(pk,⊥). This
change is indistinguishable by the indistinguishable multi-
ple encryptions of E .

When P1 ∈ Corr, we prove that c⃗t′′d emulated by simula-
tor is indistinguishable from that in the real process via the
sequences of hybrids:

Hyb0. The real interaction. c⃗t
′′
1 = π1(c⃗t

′
1). For 2 ≤

j ≤ d,1 ≤ i ≤ (m− 1)B: cti
j = ParDec(sk j,ct

′′i
j−1),ct

′i
j =

ReRand(pkA j ,ct
i
j), c⃗t

′′
j = π j(c⃗t

′
j).

Hyb1. For 2 ≤ j ≤ d,1 ≤ i ≤ (m − 1)B: cti
j =

ParDec(sk j,ct
i
j−1). c⃗t

′
d = ReRand(pkAd , c⃗td), c⃗t

′′
d = π(c⃗t

′
d),

where π = π1 ◦ · · · ◦πd . Hyb1 is identical to Hyb0.
Hyb2 c⃗t1 is replaced by the following:

• For ∀xi ∈ Y =
⋃m

j=1 X j, cti
1 = Enc(pk,xi), 1≤ i≤ |Y |.

• For |Y |< i≤ (m−1)B, sets cti
1 = Enc(pk,⊥).

Hyb2 rearranges c⃗t1 and it is identical to Hyb1 as the adversary
is unaware of πd s.t. the order of elements in c⃗t1 has no effect
on the result of c⃗t′′d .
Hyb3 c⃗td is replaced by the following:

• For ∀xi ∈Y =
⋃m

j=1 X j, cti
d = Enc(pkAd ,xi), 1≤ i≤ |Y |.

• For |Y |< i≤ (m−1)B, sets cti
d = Enc(pkAd ,⊥).

The indistinguishability between Hyb3 and Hyb2 is implied
by the partially decryptable property of E .
Hyb4 c⃗t

′
d is replaced by the following:

• For ∀xi ∈Y =
⋃m

j=1 X j, ct′id = Enc(pkAd ,xi), 1≤ i≤ |Y |.

• For |Y |< i≤ (m−1)B, sets ct′id = Enc(pkAd ,⊥).
Hyb4 is indistinguishable to Hyb3 because of the rerandomiz-
able property of E .
Hyb5 The only change in Hyb5 is that π are sampled uniformly
by the simulator. Hyb5 generates the same c⃗t′′d as in simulation.
Given that πd is uniform in the adversary’s perspective, the
same holds for π, so Hyb5 is identical to Hyb4.

When P1 /∈ Corr, the simulator is unaware of the final
union, so it has to emulate the partial decryption messages
c⃗t
′′
c−1 as permuted Enc(pk,⊥) in the view of Pc. Compared

to the above hybrid argument, we only need to add one addi-
tional hybrid after Hyb4 to replace all rerandomized partial
decryption messages c⃗t′c−1 with Enc(pk,⊥). This change is
indistinguishable by the indistinguishable multiple encryp-
tions of E , as the adversary cannot distinguish two lists
of messages with no knowledge of the partial secret key
skAc−1 = sk1 + skc + · · ·+ skm (it is unaware of sk1).

The same applies for the simulation of the partial decryp-
tion messages c⃗t

′′
d′ in the view of corrupted Pd′+1 (d′ ̸= d)

when P1 ∈ Corr. c⃗t′′d′ is also emulated by permuted Enc(pk,⊥
). To avoid repetition, we omit the analysis here.

	Introduction
	Our Contribution
	Related Works

	Technical Overview
	LG Revisit
	Efficient Batch ssPMT
	SK-MPSU from Batch ssPMT and mss-ROT
	PK-MPSU from Batch ssPMT and MKR-PKE

	Preliminaries
	Notation
	Security Model
	Multi-Party Private Set Union
	Batch Oblivious Programmable Pseudorandom Function
	Hashing to Bins
	Secret-Shared Private Equality Test
	Random Oblivious Transfer
	Multi-Party Secret-Shared Shuffle
	Multi-Key Rerandomizable Public-Key Encryption

	Batch Secret-Shared Private Membership Test
	MPSU from Symmetric-Key Techniques
	Multi-Party Secret-Shared Random Oblivious Transfer
	Construction of Our SK-MPSU

	MPSU from Public-Key Techniques
	Performance Evaluation
	Experimental Setup
	Implementation Details
	Choosing Parameters
	Experimental Results

	Leakage Analysis of GNT-eprint-2023
	MKR-PKE Appendix
	Indistinguishable Multiple Encryptions
	Construction from ElGamal

	Missing Security Proofs
	The Proof of Theorem 2
	The Proof of Theorem 3
	The Proof of Theorem 4

