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Abstract
Currently, greybox fuzzing is a crucial technique for iden-
tifying software bugs. However, applying greybox fuzzing
to Commercial-Off-the-Shelf (COTS) binaries is still a diffi-
cult task because gathering code coverage data is challenging.
Existing methods for collecting code coverage in COTS bi-
naries often lead to program crashes, notable performance
reductions, and limited compatibility with various hardware
platforms. As a result, none of the current approaches can
effectively handle all COTS binaries.

This paper introduces a new feedback mechanism called
system call pattern coverage, which is designed to support bi-
naries that cannot be handled by existing approaches. Unlike
other methods, system call pattern coverage does not involve
rewriting binaries, using emulators, or relying on hardware
such as Intel-PT. As a result, it enables fuzzing of binaries
without the risk of breaking target applications, slow perfor-
mance, or the need for specific hardware. To demonstrate the
effectiveness of this mechanism, we developed fuzzers called
SPFuzz and SPFuzz++ and conducted an evaluation using 29
real-world benchmarks. The results of our evaluation show
that SPFuzz and SPFuzz++ perform comparably to conven-
tional code coverage guidance and are capable of identifying
new bugs even without access to the source code. In fact, we
discovered six new CVEs in commercial applications like
CUDA using SPFuzz.

1 Introduction

Greybox fuzzing, also known as guided fuzzing, has be-
come a crucial technique for identifying software bugs [65].
AFL, a well-known greybox fuzzer, has successfully detected
numerous CVEs in real-world software, such as the Heart-
bleed bug and other zero-day vulnerabilities [26, 47]. How-
ever, effectively applying greybox fuzzing to binary-only com-
mercial off-the-shelf (COTS) software remains a challeng-
ing issue due to the difficulty in obtaining code coverage
feedback [46]. Unlike open-source software, which can use

compilers to instrument probes and gather code coverage
information, binary-only programs are hard to instrument,
particularly when they are obfuscated [30]. Despite numer-
ous research efforts to collect code coverage information from
binary-only programs, they still struggle to cover all common
use scenarios [54].

Current approaches to fuzz binary-only COTS programs
often result in program crashes, significant slowdowns, and
limited applicability to different hardware platforms. Exist-
ing binary-only greybox fuzzers can be classified into three
categories: static rewriting-based, emulator-based, and Intel-
PT-based techniques. However, each of these approaches has
its limitations. Static rewriting-based approaches [30, 58]
can cause target programs to crash. Emulator-based tech-
niques [4,22,40] can slow the target program 6-10 times [53].
Besides, emulators often have difficulties handling the latest
hardware features. For example, we notice that the widely
used emulator, QEMU [22], cannot execute X86 programs
that contain AVX instructions [13]. Intel-PT-based tech-
niques [8] can introduce hardware dependencies, thus limiting
their scope of application. Furthermore, Intel-PT may gener-
ate a large number of events in a short period of time [14].
Processing too many events can substantially slow down the
fuzzing speed and exhaust the memory of the fuzzers [66].
Therefore, we can still observe Intel-PT based fuzzers crash
or run slowly on certain apps. In summary, it is necessary
to develop new fuzzing feedback mechanisms that can sup-
port all COTS binaries on different hardware platforms. Un-
fortunately, to our knowledge, there are no such feedback
mechanisms available in the community.

In this paper, we introduce a novel feedback mechanism
called the system call pattern coverage to address the limi-
tations in current approaches1. Unlike static rewriting-based
and emulator-based methods, our feedback mechanism can
support all COTS binaries that use system calls. Furthermore,
it does not significantly slow down the target programs as
emulators do. Our system call pattern coverage is not depen-

1In this paper, we use system call and syscall alternatively.



dent on Intel-PT, which means that it can support all major
CPUs and cloud platforms, providing a wider scope of ap-
plications. In summary, our system call pattern coverage can
enable greybox fuzzing for COTS binaries that cannot be sup-
ported by current approaches in different scenarios, making it
an efficient alternative when code coverage is not available.

Our main insight is that people can infer code coverage
information from system calls and their corresponding pa-
rameters. Programs require interactions with operating sys-
tems through various system calls to achieve their desired
functionalities. Therefore, system calls are situated in var-
ious positions and can function as covert instrumentation
points. By implementing an appropriate encoding and analy-
sis method, concealed execution information can be extracted
from system call sequences and reveal the code executed
during fuzzing.

Using system call patterns to guide greybox fuzzing ef-
fectively is not as straightforward as it may appear. There
are two main challenges that arise from this approach. First,
system call sequences are ambiguous. They do not have
a one-to-one correspondence with the code blocks. Differ-
ent code blocks can generate the same system call trace, and
the same code blocks can generate different system call se-
quences depending on the inputs. To resolve this ambiguity,
we would need to use heavy static analysis techniques such
as symbolic execution [45]. However, these techniques are
too slow for efficient fuzzing. Second, the effectiveness of
the system call parameters varies between different ap-
plications. A system call parameter that is useful for fuzzing
one application may cause instability(e.g. get random values)
for another application. Therefore, there is no fixed set of
parameters that can work well for all target programs.

We propose novel designs for system call pattern coverage
to address the two challenges mentioned above. To tackle the
first challenge, we introduce a novel N-gram system call pat-
tern that accurately reflects the changes in code paths during
fuzzing without depending on heavy static analysis techniques
to obtain precise code coverage data. Our key idea is that we
only need to know which lines of code are executed during
fuzzing rather than the exact code path. Therefore, we can use
the N-gram system call patterns to locate the code segments
that have been run. Moreover, we can quickly distinguish
different system call patterns by computing and comparing
their hash code, reducing the runtime overhead for fuzzing the
target program. To address the second challenge, we propose
an automated technique that eliminates parameters that cause
unstable fuzzing outcomes based on the execution of seeds.
In our evaluation, this technique ensures effectiveness while
also increasing fuzzing speed by up to 45 times.

We implemented fuzzers, SPFuzz (with AFL) and SP-
Fuzz++ (with AFL++), based on our system call pattern cov-
erage to evaluate its effectiveness. We perform a thorough
evaluation of SPFuzz and SPFuzz++ on 29 real-world appli-
cations, both open-source and closed-source. Our evaluation

shows that SPFuzz and SPFuzz++ are capable of fuzzing all
applications that use system calls. In comparison, six base-
line binary-only fuzzers, AFL-QEMU, AFL++QEMU, ZAFL,
AFL++Nyx, StochFuzz, and PTFuzzer, are unable to fuzz four
to 11 applications. Furthermore, SPFuzz is up to 41 times
faster than AFL-QEMU. Our evaluation also reveals that the
system call pattern coverage is as effective as traditional code
coverage in guiding the fuzzing process to discover new codes.
On average, a fuzzer guided by system call patterns achieves
up to 10.3% higher branch coverage than binary-only fuzzers
guided by conventional code coverage, for the same base
fuzzers. Using SPFuzz, we have discovered six new CVEs in
four applications, including one in the CUDA toolset. This
CVE cannot be detected by AFL-QEMU or ZAFL since they
cannot run the newest CUDA-nvdisasm efficiently. As for
SPFuzz++, it achieves comparable and even better coverage
and speed than all baselines, including AFL++QEMU and
AFL++Nyx. Overall, our evaluation demonstrates that sys-
tem call pattern coverage is a valuable alternative to code
coverage.

We summarize the contributions of this paper as follows:

• We are the first to propose system call pattern coverage,
which provides an effective alternative way to provide
feedback for greybox fuzzing when code coverage is not
available.

• We implemented the first binary-only fuzzers based on
this new coverage, SPFuzz and SPFuzz++, which can
fuzz more COTS binaries than existing approaches.

• We systematically evaluated SPFuzz with 18 realistic
open-source and 11 closed-source applications.

Open Science. Our code and data are available at https:
//github.com/Nova-xiao/SPFuzz or https:
//doi.org/10.5281/zenodo.14614073 and are
ready for continuous development by the community.
Ethics. We have reported all the vulnerabilities discovered by
SPFuzz to the authors/owners of the vulnerable software.

2 Background

2.1 Greybox Fuzzing
The process of greybox fuzzing or guided fuzzing [46]

involves using the running information of a target program
to generate input that can discover new code. Algorithm 1
outlines the general process of a guided fuzzer, which is essen-
tially a loop that takes in a target program p and a set of initial
inputs called seeds. Before running the loop, the algorithm
initializes the queue Q with the seeds (line 1). During each
iteration of the loop, the fuzzer fetches an input from Q, runs
it with the target program p, and collects the execution time
information (line 4). Based on this information, the fuzzer

https://github.com/Nova-xiao/SPFuzz
https://github.com/Nova-xiao/SPFuzz
https://doi.org/10.5281/zenodo.14614073
https://doi.org/10.5281/zenodo.14614073


assigns a priority score called energy to the input (line 5)
and mutates the current input to generate a new input (line
6). The higher the energy score, the more new inputs will be
generated from the current input. Finally, the new inputs are
added to Q, and the fuzzing loop repeats.

In modern guided fuzzers, the runtime information used is
code coverage [46]. This can be measured in various ways,
such as statement coverage [65] or branch coverage [50]. The
code coverage here is essentially a set of addresses or line
numbers that show which instructions have been executed
during runtime. Equation 1 summarizes this, where li repre-
sents the address or line number of an instruction that has
been executed.

CC = {l0, l1, ..., ln} (1)

Obtaining code coverage information can be done by instru-
menting probes to the target program. However, it is particu-
larly challenging to do this with binary-only COTS programs.
As a solution, our paper aims to propose a new method for
runtime information feedback that can be used instead of code
coverage when instrumentation is not an option.

Algorithm 1: The Main Loop of Guided Fuzzing
Input : the target program p and a set of seeds S

1 Q← S
2 while Q ̸= /0 do
3 q← Q.pop()
4 in f o← p(q)
5 e← Energy(in f o)
6 q′←Mutate(q,e)
7 if e > 0 then
8 Q.append(q′)
9 end

10 end

2.2 Binary-Only Fuzzing
One of the main challenges when it comes to binary-only

guided fuzzing is the necessary code coverage information.
To achieve this, there are currently three main techniques
that can be utilized: emulation [4, 22], static binary rewrit-
ing [54,58,67], and Intel-PT-assisted tracing [8,25]. However,
each of these methods comes with its own set of drawbacks
when it comes to realistic fuzzing tasks. In the following para-
graphs, we will briefly explore the limitations of each of these
approaches.
Emulation The key limitation of emulation-based approaches
is that they significantly slow down the target program by 6x
on average and up to 100x [53]. Note that this is a funda-
mental limitation for emulators, since they use software logic
to emulate hardware behaviors, which will inevitably slow
down the execution speed of programs. Furthermore, building

emulators for various hardware architectures is also challeng-
ing. It is difficult to ensure the soundness of emulators in
practice. For example, QEMU does not support x86 AVX
instructions [12]. Implementing QEMU that supports AVX in-
structions and migrating fuzzers, such as AFL-QEMU [4], is
labor intensive. In our experiments, many of our open-source
benchmarks will result in unexpected crashes in QEMU under
the default compilation configurations.
Static Rewriting. The main issue with static rewriting tech-
niques is their tendency to disrupt the logical flow of the
targeted programs [30]. This is mainly due to the absence of
an effective method for modeling the addresses of indirect
jumps. It is essential to accurately track the target of such
jumps in order to statically instrument binaries. However, ex-
isting static analysis techniques cannot achieve this objective.
Consequently, current static rewriting techniques frequently
result in the alteration of target binaries. For example, in
our evaluation, the state-of-the-art instrumentation-based ap-
proach, ZAFL [54], still caused crashes in 28% of the binaries
compiled from 18 open-source applications. We have reported
to ZAFL developers and confirmed that their base rewriter
Zipr [36] may run out of memory during analysis or fail to re-
solve stack pointers on large binaries. It is also confirmed that
Zipr may hit internal assertions and fail, or alter the seman-
tics of programs with reasonable sizes, such as changing the
dynamic exception specifications. Although RetroWrite [30]
claims to be able to handle the indirect jumps, it requires
the symbol table information and is therefore limited to non-
stripped binaries.
Intel-PT Assisted Tracing. A limitation of Intel-PT assisted
tracing is that it only works for binaries run on Intel CPUs.
However, many other CPU architectures, such as ARM and
RISC-V, are widely used today. For example, ARM [61] dom-
inates the smartphone market and has 15% of the PC market
share, according to a recent report [11]. Unfortunately, none of
the commercial ARM processors have implemented a mecha-
nism equivalent to Intel-PT. Similarly, RISC-V [63], another
emerging CPU architecture, does not provide such a mecha-
nism in its commercial implementations. Therefore, Intel-PT
assisted tracing cannot support the large amount of COTS
software for these non-Intel CPU architectures.

Furthermore, the use of Intel-PT can result in a significant
number of tracing events being generated within a short time
frame, causing inefficiencies in Intel-PT assisted fuzzers. In
practical scenarios, it is not uncommon for Intel-PT to gen-
erate trace data of several hundred megabytes per CPU core
per second [14]. Processing such a large volume of tracing
events within a limited period of time consumes a significant
amount of system resources, ultimately slowing down the
fuzzing process. Our experiments reveal that PTFuzzer, one
of the most commonly employed Intel-PT assisted fuzzers,
can experience a slowdown in fuzzing speed ranging from
20% to 84 times when compared to alternative approaches.
Additionally, the high number of tracing events can cause an



overflow of the event buffer in the fuzzer, resulting in crashes.
For example, our experiments indicate that PTFuzzer crashes
for 40% of the applications due to event buffer overflow, even
after enlarging the event buffer to 4GB.

3 A Motivating Example

The key insight of this paper is that people can infer the
code coverage by analyzing system calls and their correspond-
ing parameters. To utilize hardware and system resources,
modern user-level applications must execute system calls and
provide parameters. Patterns of these system calls and their
parameters can indicate how the application behaves while
running. By identifying patterns in the system call logs, we
can identify which code paths have been taken by an execu-
tion.

In this section, we will illustrate the insight and challenges
of our approach using a real-world example. Figure 1 displays
a simplified example from Xpdf, a well-known PDF viewing
toolkit, and one of the applications in our benchmark for
evaluation. The code snippet ➊ represents the main loop of
the Xpdf-pdftotext tool. Initially, it verifies the settings and
decides whether to print the debugging information or not
(Lines 10-14). Then, it uses the displayPage function to
manage each page (Lines 15-17). This function will read or
write the PDF content according to the content formats. After
this, the doneWithPage function will be invoked to perform
the post-processing task, such as closing the PDF file if the
end has been reached (Line 20).

The snippet ➋ in Figure 1 displays the potential system
calls that can be produced by each line of code in ➊. The Lines
column refers to the line number in ➊, while the column Pos-
sible System Calls indicates the corresponding system call
trace that can be generated. The symbol − represents the con-
nection between sequential system calls, whereas the symbol
? in the figure implies that the corresponding system call may
or may not appear based on different inputs. For example,
Line 15 can generate two possible system call sequences:
lseek→ write and lseek→ read→ write.

In the figure, snippets ➌ and ➍ display the system call
sequences of three different executions, along with their cor-
responding code paths in ➊. By analyzing these traces, we
can determine which code path is taken by different inputs. In
Syscall-trace 1, the fstat system call corresponds to Line 10 in
➊, while the three system calls lseek, read (ret = 0), and write
correspond to Line 15. From this information, we can infer
that the main loop is executed once and successfully displays
the image at Line 15, since the read system call returns 0.

Similarly, we can infer from Syscall-trace 2 that the main
loop was executed twice. This is because the fstat function
corresponds to Line 10, while the sequence of lseek→ write
corresponds to Line 15. Note that lseek→ write can respond
to Lines 11, 13, and 15. However, since Lines 11, 12, and 13
are in the same basic block, they must be executed together.

This means that if Line 11 or Line 13 is executed, the system
call trace should be lseek→ write→ write→ lseek→ write.
In our case, there is an fstat function, which corresponds
to Line 10, between the two sequences of lseek → write.
Therefore, the lseek, write sequence can only be generated by
Line 15 in two separate iterations.

In Syscall-trace 3, the parameters of system calls help dis-
tinguish execution results. An example of this is shown in
Line 18, which is a branch statement that depends on the
return status of Line 15. However, since Line 19 does not
generate any system calls, it is impossible for the system call
sequences to determine whether the path condition on Line
18 is true or false. To infer the path condition at Line 18, we
can rely on the return values and parameters of system calls.

It is important to note that the path condition "s == 0" can
only be true if displayPage returns zero at Line 15. The return
value of displayPage is inferred from the return value of the
read system call. When read returns -1, displayPage cannot
return zero because it fails to open the target file. Therefore,
in Syscall trace 3, since the return value of read is -1, we
conclude that the value of s cannot be zero, and Line 19
cannot be executed.

After analyzing the case studies mentioned above, we have
concluded that the system call patterns have the potential
to estimate the code coverage effectively. This discovery in-
spired us to create system call pattern coverage as a potential
alternative to traditional code coverage.
Challenges: When using system call patterns in greybox
fuzzing, the main difficulty lies in dealing with the uncertainty
surrounding system call sequences. This uncertainty can be
divided into two parts: uncertainty in system call sequences
and uncertainty in the parameters and return values of system
calls. When it comes to system call sequences, multiple lines
of code can generate the same system call sequences, while
one line of code can generate different system call sequences.
For example, as seen in Figure 1, Lines 11, 13, and 15 all
generate the same system call sequence. On the contrary, one
line of code can generate different system call sequences,
as seen with Lines 15. To accurately determine code paths
from system call sequences, heavy static analysis techniques
such as symbolic execution [38] must be used. However, such
techniques are not practical for fuzzing due to scalability
issues. Symbolic execution, for example, can take several
minutes to analyze a program [38], which is not efficient
enough for fuzzing as thousands of seeds need to be run to
find bugs.

When it comes to the parameters and return values of the
system calls, some of them are helpful for identifying differ-
ent code paths, while others can make the fuzzing process
unstable. For example, the return value of the read system
call is crucial in distinguishing between syscall-trace 1 and
syscall-trace 3 in ➌ of Figure 1. On the other hand, the return
value of mmap can be random, generating different values for
the same input. Thus, we need to carefully select which param-



void PDFDoc::displayPages(
OutputDev *out, int firstPage, int lastPage,
double hDPI, double vDPI, int rotate,
GBool useMediaBox, GBool crop, GBool printing,
GBool (*abortCheckCbk)(void *data),
void *abortCheckCbkData)

{
 int page=NULL, int cnt=0;
  for (page = firstPage; page <= lastPage; ++page) {
   if (globalParams->getPrintStatusInfo()) {
    fflush(stderr);
    printf("[processing page %d]\n", page);
    fflush(stdout);
   }
   s=displayPage(out, page, hDPI, vDPI, 
    rotate, useMediaBox, crop, printing,
    abortCheckCbk, abortCheckCbkData);

if(s==0) 
cnt++;

   catalog->doneWithPage(page);
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Xpdf Loop

syscall-trace 1 
getcwd("/home/xpdf-4.04") = 19
... # system calls by outer functions
fstat(4) = 0
lseek(3, 678, 0) = 678
read(3, 4096) = 0 (data=...)
write(4, 16) = 8 (data=...)
close(3) = 0
munmap(...) = 0

analysis 1
trace’s callsite:
...
fstat -> L10
lseek -> L15, 
read(ret =0) -> L15
write -> L15
close -> L20
munmap -> L20

code path:
L1-L8, L9-L10, 

L15-20, ...
conclusion:

the main loop is 
executed once

Different system call traces can reflect different 
code paths

Possible System calls

fstat()
lseek() - write()
write()
lseek() - write()
NULL
lseek() - read()? - write()
NULL
NULL
NULL
NULL
close() - munmap()

10
11
12
13
14
15
16
17
18
19
20

Lines

❶ ❷

syscall-trace 2 
getcwd("/home/xpdf-4.04") = 19
... # system calls by outer functions
fstat(4) = 0
lseek(3, 3028, 0) = 3028
write(4, 924) = 924 (data=...)
fstat(4) = 0
lseek(3, 3028, 0) = 3028
write(4, 924) = 924 (data=...)
close(3) = 0
munmap(...) = 0

analysis 2
trace’s callsite:
...
fstat -> L10
lseek -> L15
write -> L15
fstat -> L10
lseek -> L15
write -> L15
close -> L20
munmap -> L20

code path:
L1-L8, L9-L10, 
L15-20, L9-L10, 
L15-20, ... 
conclusion:
the main loop is 
executed twice

syscall-trace 3 
getcwd("/home/xpdf-4.04") = 19
... # system calls by outer functions
fstat(4) = 0
lseek(3, 678, 0) = 678
read(3, 4096) = -1 (data=...)
write(2, 12) = 8 (data=...)
close(3) = 0
munmap(...) = 0

analysis 3
trace’s callsite:
...
fstat -> L11
Lseek -> L16 
read(ret=-1) -> L16
write -> L16
close -> L19
munmap -> L19

code path:
L1-L8, L10-L11, 

L15-18, L20, ... 
conclusion:
the main loop is 
executed once but 
fails to read the 
file

❸

❹

Figure 1: A motivating example that shows how OS-level traces help identify different paths.

eters and return values should be included while generating
system call patterns.

Additionally, the usefulness of a parameter or return value
can vary between different applications. For example, the buf
parameter of the system call getcwd contains the absolute
path name of the current working directory, which is useful
for pdftotext of Xpdf, since it tells which dynamic libraries
are selected to handle different PDF elements. However, in-
cluding the same parameter in nginx can reduce the stability
of the fuzzing, as it only contains a randomly generated folder
name. Therefore, we cannot rely on a static rule set to deter-
mine the usefulness of parameters for system calls, as they
can differ depending on the application.
Solutions: Our insight into addressing the first challenge is
that we can still effectively lead greybox fuzzing to discover
new code without accurately recovering which code path has

been executed. In guided fuzzers, code coverage is used to
indicate how many lines of new code are discovered by an
input. Thus, as long as we find an easy-to-compute feedback
that effectively approximates how many new codes an input
can discover, we may use it to guide greybox fuzzing.

Our insight in addressing the second challenge is that, for
a given target program, the usefulness of the parameters of
a system call is determined by the semantics of the code.
Thus, we can run a set of initial inputs (seeds) to get basic
information about the usefulness of the system call parameters.
Then, we can build an automated learning method to choose
useful parameters based on the information collected from
the seeds.



4 System Call Pattern Coverage

In this section, we present the concept of system call pattern
coverage, which is an effective feedback for greybox fuzzing
in situations where code coverage cannot be obtained. In order
to make greybox fuzzing effective, the feedback mechanism
needs to meet two requirements: (1) it should be easy-to-
compute so that the fuzzer does not become too slow; and
(2) it should give enough information about the code that is
executed by different inputs. To meet these goals, we propose
a novel N-gram system call pattern coverage.

Intuitively, we define our system call pattern coverage as
the set of various patterns of N-gram system call sequences
that occur during the execution of the target program. For-
mally, given a system call trace, S = ⟨s0,s1, ...,sl⟩, where si is
a system call event with its parameters and (l+1) is the trace
length, we define the N-gram system call pattern coverage
as Equation 2, in which h is a hash function, and N is the
length of the sliding window used in N-gram. Then we define
a system call pattern covered by the execution as a hash value
h(si, ...si+N−1)in Equation 2.

SPCN = {h(s0, ...,sN−1),h(s1, ...,sN), ...h(sl−(N−1), ...,sl)}
(2)

In order to determine the coverage of system call patterns,
we begin by collecting the system call sequences while run-
ning the specific program under analysis (as demonstrated in
Section 5.1). Next, we slide a window of size N-gram along
the trace (as shown in Section 4.1), computing the hash value
of the system calls and their corresponding parameters at each
step. Finally, we compute all the hash values obtained during
this procedure and regard them as the covered system call
patterns during execution.

SPC can be used similarly to the code coverage as demon-
strated in Equation 1. If the code coverage is not available,
SPC can be used instead to give feedback on the fuzzing. For
example, the number of newly discovered hash values of N-
gram system call patterns (h(si, ...,si+N−1)) can be used in
place of addresses to prioritize inputs.

4.1 Long-short System Call Pattern Coverage
When using the system call pattern coverage defined in

Equation 2, selecting the appropriate N for the N-gram sliding
window is a key challenge. Unlike the line number or address
used in code coverage, which is naturally unique for different
lines of code and ordered, our system call pattern coverage can
have conflicts. Note that the inner elements of SPCN are not
ordered, there may be instances where two different system
call sequences generate the same system call patterns, (e.g.
read,write,read,write and write,read,write,read with N = 2).
In such cases, when it comes to the number of system call
patterns, there are pros and cons in having a small or large
value for N. If N is too small, there may be more conflicts,

since the number of possible system call patterns is limited.
However, if N is too large, it may not effectively measure the
efficacy of input. For example, if N is set to the length of the
entire system call trace, the final SPCN set in Equation 2 will
only have one element. This means that the system call pattern
coverage can only determine if a new input can uncover new
codes, but not evaluate if one input can find more new codes
than another. Furthermore, a large N also means a large state
space for SPC, which may lead to the state explosion problem,
which can reduce the effectiveness of fuzzing.

To address this challenge, we have adopted a long-short
combined system call pattern coverage approach. Rather than
relying on a single N value, we use a combination of system
call patterns discovered by three different lengths of sliding
windows. The first length (and the shortest length) is indicated
by θ, which is the most stable feature that aims to capture
basic functional units in a program. We define a basic func-
tional unit as the smallest code block that performs a single
task in the program. It could be a function call, a library call,
or a series of basic code blocks. Note that in practice, the
length of a basic functional unit varies. Therefore, the length
of system calls generated by different basic functional units is
also different. θ only aims to capture the best length that can
reflect the basic functional units in a program. Therefore, θ

is different between applications. We will have an automated
method to find the best θ for each program, which we will
discuss later in this section.

The second length is 2θ, and it is used to evaluate the varia-
tions in the context of each basic functional unit. Some basic
functional units, such as a function, might be used in various
contexts. The 2θ window can help recognize whether a basic
functional unit is invoked in different contexts.

The third length is the full length of the system trace. This
is the bottom-line coverage that captures whether an input can
discover new code. Thus, in summary, the long-short system
call pattern coverage is defined in Equation 3, where SPCθ,
SPC2θ, and SPC f ull represent the system call pattern coverage
generated with window length θ, 2θ, and the full length of the
system call trace, respectively:

SPC = SPCθ

⋃
SPC2θ

⋃
SPC f ull . (3)

The value of θ is generated by a dynamic search algo-
rithm. The input to the algorithm, C , is a set of inputs that
should cover different usage scenarios of the targets. For-
mally, C = {seed1,seed2, ...seedn}, where seedk is the kth
fuzzing seed file and n is the size of C. This algorithm con-
sists of three steps. First, we construct sets C1 and C2 with
the form of {{seedi,seed j}...}, where seedi,seed j are from
C . We define C1 = {{seedi,seed j}|1 ≤ i, j ≤ n, i ̸= j}, and
C2 = {{seedm,seedm}|1≤m≤ n}. Second, we collect traces
by running the target program with the elements from C1 and
C2 and get system call sequences. Third, we set θ = 2 and
double it in every subsequent step until two conditions are



met at the same time. The first condition is that for any ele-
ment in C1, the generated SPCθ

⋃
SPC2θ are different. This

condition indicates that SPCθ

⋃
SPC2θ should be distinct for

different functionalities. The second condition is that for any
element in C2, the generated SPCθ

⋃
SPC2θ with two runs are

identical. This condition indicates that SPCθ

⋃
SPC2θ should

remain the same for identical inputs.

4.2 System Call Parameter Selection

When using our system call pattern coverage, another chal-
lenge is selecting the appropriate set of parameters for each
system call. As explained in Section 3, the usefulness of a
parameter or return value can differ depending on the applica-
tion being used. Therefore, a dynamic algorithm is required
to choose the set of system call parameters when generating
the system call patterns.

At a high level, our method is a learning-based algorithm
that gradually removes the parameters that cause instability
during the fuzzing process. We use the set of option-inputs
mentioned in Section 4.1 as input, and the output is a list of
reserved parameters.

The high-level idea of our algorithm is that unstable param-
eters produce different patterns for identical inputs. If every
syscall includes unstable parameters, the number of patterns
from two runs of C1 will be twice the size of C1. Conversely,
if the parameters are stable, the number of patterns from two
runs will match the size of C1. Therefore, the goal of this algo-
rithm is to prune parameters to ensure the number of patterns
matches the size of C1.

Our algorithm consists of three steps. In the first step, we
collect system call sequences by running the target program
with C1 twice and get the system call sequences with all pa-
rameters. In the second step, we analyze the traces from C1
by generating system call patterns. If the number of distinct
patterns is larger than the size of C1, it means that the fuzzing
process is unstable and we move to the third step. The third
step is a pruning process, and we prune the least stable param-
eter to make the fuzzing process stable. We repeat the above
steps until the deviation of the number of newly generated
system call patterns and the size of C1 is less than 5% to
ensure that the parameters are sensitive enough to find new
paths.

When using our parameter selection algorithm, we need to
address the problem of determining which parameter is least
stable and should be removed during the pruning process (the
third step). To address this problem, we have developed a
heuristic that evaluates the stability of the parameters.

Our heuristic is based on two key insights. First, complex
parameters are more likely to be unstable compared to sim-
pler ones. For instance, an array parameter is more prone
to instability compared to a boolean parameter. Second, the
parameters of a complex system call are also more likely to
be unstable. Therefore, we rank the parameters according to

their complexity and remove the parameter with the highest
complexity during the pruning process.

Specifically, the complexity of a parameter consists of two
parts. The first-order complexity is defined as the size of the
parameter. For example, an 8-bit integer has a complexity of
eight. A pointer has the highest first-order complexity. The
second-order complexity is defined as the complexity of the
corresponding system call of the parameter, and we define
the complexity of a system call as its number of parameters.
To rank two parameters, we first compare their first-order
complexity. If it is the same, we compare the second-order
complexity.

5 Implementation Details of SPFuzz

Based on the system call pattern coverage, we implement
the first guided fuzzer, SPFuzz, that satisfies all the following
design goals simultaneously:

• Feasibility: SPFuzz can support almost all COTS bina-
ries that use system calls because it does not require
rewriting (statically or dynamically) the target program.

• Efficiency: SPFuzz is as efficient as conventional
instrumentation-based guided fuzzers since it does not
require complex simulation.

• Effectiveness: SPFuzz can find magnitudes more code
paths than black-box fuzzers

• Hardware Independence: SPFuzz does not require ded-
icated hardware, such as Intel-PT. Therefore, it can be
run on all hardware platforms.

We have implemented SPFuzz using AFL (Version 2.57b)
as a foundation, to keep consistent with our evaluation base-
lines. Our implementation involves a kernel driver that cap-
tures the system calls of applications being fuzzed. The driver
consists of 3k lines of C/C++ code. We have integrated AFL
with the kernel driver and adjusted its code to incorporate the
coverage of the system call pattern.

The main alteration we made to AFL was to the input
prioritization function. AFL assesses the prioritization score
(energy) of an input by taking into account the number of
newly discovered basic block transition edges, its creation
time, and its execution time. On the contrary, SPFuzz uses
the same input prioritization function as AFL, except for one
difference. Instead of calculating the number of newly discov-
ered basic block transition edges, SPFuzz uses the number
of newly discovered system call patterns (the hash values),
as shown in Equation 3. Such an alteration is not easy since
we need to change the inner feedback structure of AFL and
handle the collecting issues (will be illustrated in Section 5.1)
to ensure that all the design goals are satisfied.

To prepare for the fuzzing loop, SPFuzz will execute the
seeds of the target program and collect the call traces of the



system. This is necessary to determine the appropriate system
call parameters for generating system call patterns for the
target program, as explained in Section 4.

To give a better evaluation with AFL++Nyx and
AFL++QEMU, we also implemented SPFuzz++ based on
AFL++ (Version 4.10c). SPFuzz++ adopts the same feedback
mechanism as SPFuzz and only differs in the implementation
base.

5.1 System Call Trace Collection

One of the key challenges to collecting system call se-
quences is that existing auditing frameworks, such as Linux
Audit [51], Sysdig [24], eBPF [48], and LTTng [29], can
randomly drop system call events during fuzzing. This is par-
ticularly problematic, as these frameworks will drop 90% of
system calls during fuzzing, making it impossible to use the
system call patterns [41]. Furthermore, we find that there are
no straightforward solutions to fix the event-dropping prob-
lem. For example, we have tried to let the auditing frameworks
write the system call sequences to a file in the in-memory file
system and then read the file in the fuzzer. However, even if
we use the fast in-memory file system, the auditing frame-
works can still drop 90% of system call events.

Motivated by the related work [41], we adopt a distributed
kernel buffer strategy for SPFuzz and SPFuzz++ that natu-
rally provides isolation between processes. Instead of using
a single buffer, we allocate separate kernel buffers for each
fuzzing instance. This design will prevent data races that
arise due to the centralized architecture of existing auditing
frameworks. Additionally, our distributed kernel buffer will
allow SPFuzz to handle the system call sequences of different
fuzzing instances individually. This will enable us to have
better control over the generation speed of system calls for
each instance. For example, if one instance generates system
calls too quickly, SPFuzz and SPFuzz++ can block that in-
stance to prevent any system calls from being dropped without
interference with other instances.

5.2 Kernel Buffer Allocation

We adopt a dynamic buffer allocation strategy for SPFuzz
and SPFuzz++. At the beginning, we allocate one page (4KB)
of memory for each fuzzing instance. When the kernel buffer
is full, we automatically double the size of the buffer. We
choose this dynamic allocation approach because different
targets demand different buffer sizes, ranging from 1MB to
128MB in our experiments. This design ensures that SPFuzz
and SPFuzz++ are memory efficient and do not consume
too many resources, especially when there are many fuzzing
instances.

6 Evaluation

We focus on evaluating whether system call coverage
guides greybox fuzzers as effectively as conventional code
coverage guided approaches. In particular, we answer the
following research questions.

• RQ 1: Can SPFuzz and SPFuzz++ run more realistic
applications without causing errors?

• RQ 2: Can SPFuzz and SPFuzz++ cover new code as
effectively as conventional code coverage guided ap-
proaches?

• RQ 3: Can SPFuzz and SPFuzz++ find bugs as effec-
tively as conventional approaches?

• RQ 4: How well can the system call coverage approxi-
mate code coverage?

• RQ 5: Is the system call pattern coverage a stable feed-
back?

• RQ 6: How effective are the long-short system call cov-
erage and our parameter selection algorithm?

• RQ 7: How well can SPFuzz++ perform compared with
the source-code instrumented AFL++ (which should be
the upper bound)?

Due to space limits, we leave some extra figures (Figure
4) and tables (Tables 7-12) in our GitHub repo at https:
//github.com/Nova-xiao/SPFuzz.

6.1 Experiment Setup
Infrastructure: Our experiments were carried out on four
servers with Ubuntu 20.04 x86-64 OS. All these servers are
equipped with eight Intel Xeon Gold 5218R cores and 8 GB
of memory. For each fuzzing target program, we started four
fuzzing instances in parallel on one server and ran for 24 hours.
We repeat our experiment 10 times and report the average and
standard deviation.
Benchmark Selection: We design a benchmark with 29
applications that can cover common cases and worst cases for
SPFuzz. We used the same 13 Linux real-world benchmarks
from ZAFL [54] to make a fair comparison between
SPFuzz and baselines in common scenarios, including the
open-source readelf, tcpdump, bsdtar, cert-basic,
sfconvert, unrtf, jasper, clean_text and the
closed-source nconvert, nvdisasm, pngout, unrar,
idat64. Besides, we also add 16 extra applications to further
evaluate SPFuzz and SPFuzz++. To evaluate the performance
of SPFuzz and SPFuzz++ in the worst scenario, we select ap-
plications in the SPECCPU 17 Integer benchmark [44], which
are supposed to use fewer I/O system calls than real-world
applications and expected to make SPFuzz less effective.

https://github.com/Nova-xiao/SPFuzz
https://github.com/Nova-xiao/SPFuzz


Specifically, we selected five applications from the ten unique
applications in SPECCPU 17 Integer, namely perlbench_r,
mcf_r, omnetpp_r, cpuxalan_r, x264_r. We ignored
"cpugcc" since it requires structured inputs, the efforts on
the mutations are orthogonal to our work. We also ignored
three AI algorithms in SPECCPU 17 Integer because they
are not suitable for greybox fuzzing. Lastly, we ignored
“xz” since it takes a long time to execute and none of our
baselines can finish fuzzing effectively. Furthermore, besides
the five closed-source applications used by ZAFL, we
also included six Linux COTS closed-source applications,
cuobjdump, acroread, rar, kzip, zipmix, and
lzturbo, to evaluate whether SPFuzz and SPFuzz++ can
find bugs as effectively as its binary-only baselines. To
evaluate the performance of SPFuzz and SPFuzz++ on
complex binaries, we select five C/C++ benchmarks that are
not evaluated by previous works from OSSFuzz [57], namely
nginx, lua, gzip, pdftotext, z3, whose input file
formats and characteristics differ from ZAFL benchmarks
and the binary sizes are at least 1M. The description and
details of these applications can be found in Table 12 in our
GitHub repo. To give a sanity check for SPC feedback, we
also included the MAGMA [37] benchmark in RQ 7.
Baseline Selection: We chose baselines to thoroughly and
fairly compare system call coverage with other conven-
tional feedback mechanisms. We chose representative open-
source approaches from all three categories of greybox bi-
nary fuzzing techniques. For static rewriting-based tech-
niques, we chose ZAFL [54], which has the best feasibil-
ity for COTS binaries. For Intel-PT-based fuzzers, our first
baseline is AFL++Nyx [60], the state-of-the-art approach
that collects coverage feedback with Intel-PT. Besides, we
also chose to use the PT-fuzzer [5], which is one of the
most widely used fuzzers that is based on the vanilla ver-
sion of AFL. For emulator-based fuzzers, we chose AFL-
QEMU [4] and AFL++QEMU [12]. Specifically, we choose
the Biondo version of AFL-QEMU [23], which contains the
most recent engineering improvements. Lastly, we also in-
clude StochFuzz [68], which is based on static rewriting tech-
niques but combines a dynamic design to make sure the ap-
proach should be sound.

SPFuzz++, AFL++QEMU and AFL++Nyx are built on
AFL++, while SPFuzz and other baselines are built on AFL.
Therefore, SPFuzz++, AFL++QEMU and AFL++Nyx use
the same mutation strategy and share a large amount of in-
frastructure. The only main difference between them is the
feedback strategy. This also applies to SPFuzz and AFL-based
baselines.
Configuration: Since ZAFL did not publish its seeds, we
choose the protocol of RetroWrite to collect initial seeds
from the test cases in target source codes or releases [30]
except for nginx and z3 in our experiments, which lack test
cases. For nginx, we collect requests from the Phoronix Test
Suite [49], and for z3, we use scripts from the official z3Test

repository [55].
For all baselines, we try to expand the timeout and memory

parameters to 5000 ms and 8GB at most if they cannot fuzz
successfully under default configurations. If they still crash
during the calibration stage or are stuck on one execution for
a long time(>6h), we will report them as failures.

Following Klee et al’s [43] recommendation, we compute
Mann-Whitney U-tests with a 0.05 significance level for im-
portant metrics such as crash numbers, coverage, and speed,
and report them in the tables of the following RQs.

6.2 RQ 1: Feasibility

We report whether each application can run smoothly with
SPFuzz and different baselines in Table 1 (closed-source ap-
plications). For each fuzzer, we mark the failed applications
with ✗. Our evaluation shows that SPFuzz and SPFuzz++ can
support more applications than other binary-only approaches.

We further investigated the reasons for the failures and
discovered that they were caused by technical reasons in-
trinsic to different techniques. ZAFL and StochFuzz failed
to fuzz six and 11 applications, respectively. The first rea-
son for failures is that these static rewriters are unable to
precisely analyze the pointers. For example, ZAFL fails to
analyze the stack pointers for z3 in our experiments, similar
problems have been reported for other programs on the repo
of ZAFL [52]. The second reason for failures is that these
static rewriters may break the correctness of the program. For
example, nvdisasm crashes with normal inputs after being
instrumented by ZAFL, which breaks an indirect jump of the
program. Note that we are using a newer version of nvdisasm
(12.0 in our experiments), which results in an instrumentation
performance different from the ZAFL paper [54].

AFL-QEMU and AFL++Nyx failed to fuzz seven applica-
tions in the beginning because they rely on QEMU, which
cannot support AVX instructions. Therefore, we changed the
compilation to the very outdated core2 architecture, as the
AFL-QEMU document suggests [12]. AFL-QEMU works
well after these changes, but AFL++Nyx itself still crashes
when fuzzing three of them since it uses an even older QEMU
version (4.20). We mark the benchmarks with special compi-
lation settings with underlines in Table 1 and Table 2.

Finally, PT-fuzzer failed to fuzz 10 applications because
Intel-PT generated too many tracing events that overflowed
the event buffer of PT-fuzzer. We notice that simply increas-
ing the event buffer of the PT-fuzzer cannot address the buffer
overflow problem. In our experiment, we have increased the
event buffer from the default size of 128MB to the maximum
memory size of our hardware platform (8GB). However, we
still encounter the buffer overflow problem. This result indi-
cates that we need a more fundamental improvement over the
PT-fuzzer to make it more robust.



6.3 RQ 2: Code Coverage and Fuzzing Speed

We use branch coverage [27, 65], a widely adopted met-
ric in software testing, to evaluate whether SPFuzz and SP-
Fuzz++ can discover new code as effectively as conventional
approaches. It refers to the number of branches reached di-
vided by the total number of branches in the codebase [69]. At
the same time, we record the execution speed of all baselines.
We conducted 24-hour fuzzing ten times on each open-source
application using these tools and calculated the average cover-
age data. For SPFuzz, SPFuzz++ and other binary-only base-
lines, we saved the executed seeds and replayed them offline
using gcov instrumented applications to collect coverage data.
The results are shown in Table 2, which shows the average
coverage, speed, and standard deviation for ten iterations of
the experiment. We omit closed-source applications in this
section due to the difficulty of collecting branch coverage
data for them.

Our evaluation shows that system call pattern coverage
can guide fuzzing almost as effectively as conventional ap-
proaches. Compared to other baselines, SPFuzz achieves
higher coverage than AFL-QEMU and PT-Fuzzer because the
execution speed of these two baselines is much lower than SP-
Fuzz. For example, AFL-QEMU runs nginx 24 times slower
than SPFuzz, leading to a much smaller coverage number.
This is consistent with our insight that improving execution
speed can improve code coverage in practice.

On benchmarks that are feasible to ZAFL, the difference
in the branch coverage achieved by ZAFL and SPFuzz is less
than 0.1% on average. With respect to speed, SPFuzz is 2%
slower than ZAFL on most benchmarks except cert-basic
and jasper. Due to their simple inner logic and small ba-
sic blocks, the instrumentation-pruning and instrumentation-
downgrading techniques adopted by ZAFL [54] are extraor-
dinarily effective for these two applications. For StochFuzz,
its speed is on average 8% less than SPFuzz, but its coverage
is on average 0.1% higher due to its sound instrumentation-
based feedback. Overall, SPFuzz has similar performance as
static rewriting-based approaches on most benchmarks, while
having higher feasibility.

Regarding SPFuzz++, it demonstrates superior coverage
and speed compared to all baseline tools on 11 out of 18
benchmarks. On the other benchmarks, SPFuzz++ maintains
coverage that is not statistically significantly different from
the best baseline tool. The exceptions to this performance are
cert-basic and jasper. ZAFL runs faster on cert-basic
and jasper due to specific optimizations mentioned earlier,
while StochFuzz is faster on readelf because its heuristic
algorithm is more effective for this particular target.

Specifically, SPFuzz++ achieves equal or better coverage
than both AFL++QEMU and AFL++Nyx across all bench-
marks, which can be attributed to its enhanced speed. Notably,
SPFuzz++ outperforms AFL++Nyx on nginx, a benchmark
that relies more heavily on syscalls.

Coverage Growth Speed. To demonstrate the details of how
fast SPFuzz and SPFuzz++ can find new code, we have in-
cluded a graph in Figure 2 that shows the growth in branch
coverage over time. The y-axis represents the number of cov-
ered branches, while the x-axis displays the execution time.

As shown in Figure 2, although the number of new branches
discovered by SPFuzz grows slower than ZAFL when it is fea-
sible, it still grows correspondingly. The growth speed of the
coverage of SPFuzz is also similar to other baselines. For SP-
Fuzz++, its coverage grows faster than most baselines on all
benchmarks except tcpdump and lua, where it starts to show
a significant advantage in the latter half. This result indicates
that system call path coverage can be an effective approxima-
tion for code coverage feedback when instrumentation is not
possible.

6.4 RQ 3: Bug Finding

To evaluate the bug-finding capacity of SPFuzz and SP-
Fuzz++, we report the number of triaged crashes that we
have discovered in our open-source applications for SPFuzz,
SPFuzz++ and its binary-only baselines. In addition, we
further evaluate whether SPFuzz and SPFuzz++ can find
bugs in realistic binaries in the seven COTS applications.
For COTS applications, we directly report the crashes dis-
covered in fuzzing. For open-source applications, we use
ASAN [59] to detect crashes. However, instead of directly
fuzzing the ASAN-sanitized binaries, we choose to do our
experiment in a post-mortem way: when the fuzzing cam-
paigns finish, we run all the saved test cases (i.e., queued,
hanged, and crashed ones) with ASAN-sanitized binaries and
add the found crashes to our results. This is because AFL-
QEMU [12], AFL++QEMU [12] and ZAFL have problems
in fuzzing ASAN-sanitized binaries. Nevertheless, our evalu-
ation can still faithfully evaluate how well can SPFuzz, SP-
Fuzz++ and baselines find bugs.
Crash Triage. Instead of counting the auto-allocated crash
ids, we follow the existing "fuzzy stack hashing" methodology
to triage all these crashes [1, 43]. We first collect stack traces
and errors with ASAN (for open-source) and GNU Debugger
(for closed-source), then hash each crash with the addresses
and errors in the top 6 entries of their stack traces. Table 1
includes the names of these applications, together with the
number of triaged crashes we found.

ZAFL and PTFuzzer do not support fuzzing acroread be-
cause these fuzzers can only fuzz 64-bit applications, while
acroread only has a 32-bit binary. Thus, we leave the corre-
sponding entries as N/A.

Our results show that SPFuzz and SPFuzz++ were effec-
tive in identifying crashes. Specifically, SPFuzz found more
crashes than AFL-QEMU and PTFuzzer in all applications. It
also found more crashes than ZAFL, AFL++Nyx, StochFuzz
in five to seven applications. As for SPFuzz++, it found iden-
tical or more crashes than all baselines. In particular, SP-



Table 1: The triaged crash numbers discovered in 24 hours. Column O/C indicates whether the application is open-source (O)
or closed-source (C). ✗ indicates a failed execution. N/A means that the fuzzer does not support running the application. We
report the average (avg) and standard deviation (std) of ten rounds of experiments in the form avg | std. We mark the data with +

or − if SPFuzz++ has a statistically distinguishable advantage or disadvantage over it with MWU test p-value less than 0.05,
respectively. We mark the benchmarks with special compilation settings with underlines. We also mark the item that shows a
statistically distinguishable advantage over most other baselines with bold.

O/C Benchmark SPFuzz++ AFL++QEMU SPFuzz AFL-QEMU ZAFL PTFuzzer AFL++Nyx StochFuzz

O nginx 1 | 0 1 | 0 1 | 0 1 | 0 ✗ ✗ 1 | 0 ✗

O lua 2 | 1 2 | 1 2 | 1 0+ | 0 1+ | 1 ✗ 2 | 1 ✗

O gzip 5 | 1 5 | 1 5 | 2 3+ | 1 ✗ 0+ | 0 4 | 1 3+ | 1
O pdftotext 35 | 3 24+ | 4 32+ | 6 6+ | 3 22+ | 11 0+ | 0 33 | 12 17+ | 5
O z3 30 | 11 2+ | 1 28+ | 10 0+ | 0 ✗ 0+ | 0 0+ | 0 ✗

O readelf 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0
O tcpdump 16 | 4 15 | 2 12+ | 2 5+ | 1 14 | 2 8+ | 8 16 | 16 ✗

O bsdtar 8 | 2 6+ | 1 7+ | 2 1+ | 0 8 | 3 0+ | 0 8 | 4 7 | 1
O cert-basic 10 | 1 10 | 1 8+ | 1 4+ | 1 10 | 2 ✗ 8+ | 1 2+ | 0
O sfconvert 2 | 0 2 | 0 2 | 0 1+ | 0 2 | 0 ✗ 2 | 0 0+ | 0
O unrtf 16 | 2 15 | 1 15+ | 2 7+ | 1 16 | 3 ✗ 12+ | 2 10+ | 1
O jasper 3 | 1 3 | 0 3 | 0 2+ | 0 3 | 0 1+ | 0 3 | 0 3 | 0
O clean_text 12 | 2 9+ | 1 6+ | 1 1+ | 0 5+ | 1 ✗ 11 | 1 3+ | 2
O perlbench_r 1 | 0 1 | 0 1 | 0 0+ | 0 1 | 0 0+ | 0 0+ | 0 ✗

O mcf_r 18 | 3 17 | 1 16+ | 2 13+ | 1 7+ | 5 1+ | 0 28− | 1 3+ | 1
O omnetpp_r 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0 ✗ ✗

O cpuxalan_r 1 | 0 1 | 0 1 | 0 1 | 0 ✗ ✗ ✗ ✗

O x264_r 1 | 1 1 | 0 1 | 1 0+ | 0 0+ | 0 ✗ ✗ ✗

C nconvert 5 | 0 3+ | 0 3+ | 0 0+ | 0 2+ | 0 0+ | 0 0+ | 0 0+ | 0
C nvdisasm 128 | 5 99+ | 12 121+ | 1 13+ | 9 ✗ 0+ | 0 42+ | 3 67+ | 23
C cuobjdump 151 | 38 150 | 35 147+ | 36 136+ | 28 150 | 22 0+ | 0 146 | 43 50+ | 2
C acroread 3 | 1 N/A N/A N/A N/A ✗ ✗ ✗

C pngout 4 | 1 4 | 1 4 | 1 0+ | 0 ✗ ✗ ✗ ✗

C unrar 10 | 1 9+ | 1 9+ | 1 10 | 1 10 | 1 ✗ 10 | 1 9+ | 0
C rar 3 | 2 3 | 1 3 | 2 3 | 1 3 | 0 ✗ 2+ | 1 2+ | 0
C idat64 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0 ✗ 1 | 0 ✗

C kzip 4 | 1 4 | 1 4 | 1 3+ | 0 5− | 1 1+ | 0 4 | 1 3+ | 0
C zipmix 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0 1 | 0
C lzturbo 2 | 1 2 | 0 2 | 0 2 | 0 2 | 1 ✗ 2 | 1 1+ | 0

Fuzzand SPFuzz++ can fuzz all applications without causing
errors, while ZAFL, AFL-QEMU, AFL++Nyx and StochFuzz
still crash or do not support a subset of applications, or require
special compilation settings.

We reported the valid crashes discovered by SPFuzz to the
developers of these applications. Developers have confirmed
13 of them. In particular, SPFuzz has obtained six new CVEs.
Among the six CVEs, we note that ZAFL cannot find a CVE in
nvdisasm since the transformed binary crashed with normal
inputs. Furthermore, AFL-QEMU is too slow to run in this
case. Holistically, our evaluation shows that a guided fuzzer
based on system call pattern coverage is effective in finding
new bugs in COTS binaries.

6.5 RQ 4: Approximating Code Coverage
The key insight of this paper is that system call pattern

coverage can approximate code coverage. In other words, we
assume that the system call patterns are statistically correlated
with the code coverage. For example, a higher system call
pattern coverage indicates a higher code coverage. In this

section, we aim to evaluate whether our insight is valid in our
experiments.

In order to validate our insight, we employ two types of
statistical correlation measure, namely Pearson’s r [56] and
Kendall’s τ [15]. Pearson’s r assesses the linear relationship
between two variables, while Kendall’s τ evaluates the posi-
tive correlation between two variables, even in the absence of
a linear relationship. Both Pearson’s r and Kendall’s τ range
from -1 to 1, where negative values indicate a negative rela-
tionship between the variables and positive values indicate
a positive relationship. To interpret the values of Pearson’s
r and Kendall’s τ, we follow the standard approach, where a
range of 0.4 - 0.6 signifies a moderate relationship between
the variables, and a range of 0.6 - 1 indicates a strong rela-
tionship [16].

We employ Pearson’s r and Kendall’s τ to calculate the cor-
relation between system call pattern coverage and code cover-
age through the following procedure. Initially, we randomly
generated 400 pairs of inputs (i0, i1) for each open-source
application and executed them individually. These inputs, i0
and i1, are produced during the fuzzing process described



Table 2: The averages (left) and standard deviations (right) of the branch coverage and speed on different baselines after 24-hour
running. ✗ represents failures or jams. We report the average (avg) and standard deviation (std) of ten rounds of experiments in
the form avg|std. We mark the data with + or − if SPFuzz++ has a statistically distinguishable advantage or disadvantage over it
with MWU test p-value less than 0.05, respectively. We also mark the item that shows a statistically distinguishable advantage
over all other baselines with bold. We mark the benchmarks with special compilation settings with underlines.

Benchmark
SPFuzz++
coverage

SPFuzz++
speed

AFL++QEMU
coverage

AFL++QEMU
speed

AFL++Nyx
coverage

AFL++Nyx
speed

StochFuzz
coverage

StochFuzz
speed

nginx 21.1% | 0.2% 380 | 45 1.9%+ | 0.1% 88+ | 31 1.9%+ | 0.1% 339+ | 10 ✗ ✗

lua 89.2% | 3.0% 145 | 31 87.9%+ | 2.9% 129+ | 44 87.7%+ | 1.9% 130+ | 61 ✗ ✗

gzip 33.8% | 0.1% 196 | 4 33.0%+ | 0.1% 178+ | 4 26.0%+ | 0.6% 166+ | 33 25.8%+ | 0.0% 65+ | 45
pdftotext 29.9% | 0.1% 188 | 28 29.9% | 0.2% 196 | 17 22.2%+ | 0.2% 44+ | 3 29.6%+ | 0.0% 192 | 18

z3 8.3% | 0.1% 191 | 72 7.7%+ | 0.1% 20+ | 1 7.6%+ | 0.1% 14+ | 7 ✗ ✗

readelf 12.3% | 0.1% 290 | 19 11.0%+ | 0.1% 78+ | 5 12.3% | 0.1% 211+ | 31 9.9%+ | 0.9% 383− | 19
tcpdump 58.0% | 1.2% 180 | 32 57.9% | 0.8% 158+ | 35 50.7%+ | 0.2% 107+ | 11 ✗ ✗

bsdtar 7.9% | 1.0% 178 | 39 7.0%+ | 0.4% 123+ | 25 7.2%+ | 1.0% 160 | 116 7.0%+ | 0.1% 144+ | 11
cert-basic 66.2% | 0.1% 1154 | 23 66.2% | 0.1% 1142 | 41 22.2%+ | 0.2% 948+ | 35 64.4%+ | 0.0% 86+ | 16
sfconvert 39.9% | 0.1% 480 | 44 37.9%+ | 0.1% 51+ | 5 38.0%+ | 0.0% 55+ | 22 36.5%+ | 0.0% 14+ | 12

unrtf 1.2% | 0.0% 1045 | 22 1.2% | 0.0% 1008 | 30 1.1%+ | 0.0% 1021 | 436 1.1%+ | 0.0% 4+ | 1
jasper 30.3% | 0.3% 279 | 36 30.1% | 0.2% 140+ | 27 29.1%+ | 0.0% 129+ | 64 29.1%+ | 0.0% 87+ | 15

clean_text 26.9% | 0.1% 156 | 31 26.9% | 0.1% 148 | 49 26.8% | 0.2% 80+ | 21 19.9% + | 0.1% 16+ | 2
perlbench_r 18.3% | 0.5% 246 | 41 17.0%+ | 0.4% 192+ | 33 17.1%+ | 0.3% 230+ | 91 ✗ ✗

mcf_r 75.3% | 0.2% 248 | 20 75.3% | 0.0% 256 | 46 73.1%+ | 0.0% 33+ | 5 73.1%+ | 0.0% 196+ | 14
omnetpp_r 8.9% | 0.2% 391 | 56 7.1%+ | 0.1% 149+ | 32 ✗ ✗ ✗ ✗

cpuxalan_r 15.6% | 0.1% 189 | 29 9.1%+ | 0.1% 71+ | 13 ✗ ✗ ✗ ✗

x264_r 12.6% | 0.2% 236 | 41 11.6%+ | 0.0% 190+ | 35 ✗ ✗ ✗ ✗

Benchmark
SPFuzz
coverage

SPFuzz
speed

AFL-QEMU
coverage

AFL-QEMU
speed

ZAFL
coverage

ZAFL
speed

PTfuzzer
coverage

PTfuzzer
speed

nginx 18.5%+ | 0.0% 286+ | 52 1.0%+ | 0.1% 12+ | 4 ✗ ✗ ✗ ✗

lua 83.2%+ | 3.4% 134+ | 26 83.0%+ | 2.8% 116+ | 85 81.0%+ | 2.0% 109+ | 8 ✗ ✗

gzip 26.0%+ | 0.1% 125+ | 4 25.7%+ | 0.1% 91+ | 3 ✗ ✗ 24.6%+ | 0.6% 101+ | 29
pdftotext 28.4%+ | 0.0% 136+ | 20 21.0%+ | 0.1% 32+ | 15 29.8%− | 0.1% 150+ | 6 26.6%+ | 0.0% 111+ | 68

z3 8.0%+ | 0.1% 187+ | 65 7.7%+ | 0.1% 15+ | 5 ✗ ✗ 7.4%+ | 1.6% 8+ | 3
readelf 10.5%+ | 0.1% 241+ | 20 10.1%+ | 0.1% 12+ | 1 11.5%+ | 0.2% 283 | 6 7.5%+ | 0.4% 111+ | 68

tcpdump 49.1%+ | 0.2% 122+ | 23 47.8%+ | 0.4% 10+ | 2 50.1%+ | 0.7% 126+ | 26 48.4%+ | 1.5% 101+ | 8
bsdtar 7.2%+ | 0.8% 149+ | 31 5.0%+ | 0.0% 39+ | 7 7.2%+ | 1.0% 169 | 44 2.3%+ | 0.0% 2+ | 1

cert-basic 64.4%+ | 0.0% 62+ | 11 64.4%+ | 0.0% 42+ | 4 64.5%+ | 0.2% 1460− | 343 ✗ ✗

sfconvert 38.0%+ | 0.0% 461+ | 13 36.5%+ | 0.1% 9+ | 2 38.0%+ | 0.0% 126+ | 32 ✗ ✗

unrtf 1.1% | 0.0% 23+ | 12 1.1% | 0.0% 1+ | 0 1.1% | 0.0% 6+ | 2 ✗ ✗

jasper 29.1%+ | 0.2% 158+ | 23 29.0%+ | 0.0% 4+ | 1 29.1%+ | 0.2% 1041− | 111 28.1%+ | 0.0% 10+ | 1
clean_text 21.8%+ | 0.1% 63+ | 5 21.6% + | 0.0% 35 + | 7 20.4% + | 0.1% 128+ | 12 ✗ ✗

perlbench_r 17.8%+ | 0.6% 225+ | 39 12.0%+ | 0.2% 129+ | 12 17.8%+ | 0.1% 238 | 40 14.6%+ | 0.3% 8+ | 5
mcf_r 73.1%+ | 0.0% 228 | 21 73.1%+ | 0.0% 110+ | 60 73.1%+ | 0.0% 148+ | 13 ✗ ✗

omnetpp_r 8.3%+ | 0.1% 368 | 20 6.5%+ | 0.1% 57+ | 3 8.9% | 0.1% 291+ | 43 7.0%+ | 0.1% 55+ | 8
cpuxalan_r 15.2%+ | 0.0% 167+ | 12 8.9%+ | 0.1% 6+ | 1 ✗ ✗ 15.2%+ | 0.1% 109+ | 21

x264_r 11.5%+ | 0.1% 123+ | 24 1.1%+ | 0.0% 3+ | 1 ✗ ✗ 11.5%+ | 0.1% 2+ | 1

in Section 6.3. Subsequently, we compute the differences in
system call patterns and code coverage between running i1
and i0, denoted as ∆sys and ∆code, respectively. Finally, we
use Pearson’s r and Kendall’s τ to quantify the relationship
between ∆sys and ∆code.

Due to the page limit, we put the detailed result in Table 9
in our GitHub repo. All reported values have a p value below
0.01, indicating their statistical significance. Our evaluation
demonstrates that system call pattern coverage can serve as an
approximation for code coverage. Out of the 15 applications,
there exists a significant linear relationship between system
call pattern coverage and code coverage (r > 0.6). Only three
applications exhibit r values below 0.4. Nonetheless, all of
them exhibit Kendall values (τ) higher than 0.4. This indicates

that system call pattern coverage exhibits a moderate to strong
positive correlation with code coverage across all applications
in our experiment.

Moreover, for every open-source benchmark, we collect
the seeds saved by AFL in 24 hours and feed them to SPFuzz
to test if their system call feedbacks are different. Results
show that SPFuzz can distinguish over 95% test cases on
every benchmark. For SPFuzz++, the results are identical
since it utilizes the same feedback as SPFuzz. This indicates
that system call pattern coverage is enough to approximate
traditional code coverage.
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Figure 2: The covered branches after 24-hour running. In every subfigure, the x-axis represents the execution time, and the y-axis
represents the number of reached branches. The purple line with circles represents SPFuzz, the red line with circles represents
SPFuzz++, the cyan line with triangles represents AFL-QEMU, the green line with triangles represents AFL++QEMU, the
orange line with inverted triangles represents ZAFL, the pink line with diamonds represents PTfuzzer, the brown line with
pentagons represents AFL++Nyx, and the yellow line with octagons represents StochFuzz. We present only three of them due to
space limits, and others can be found in Figure 4 in our Github repo. Note that some lines can be missing in specific figures since
the corresponding baselines fail to work.

6.6 RQ 5: Stability

Stability is a measure of how effectively a feedback mech-
anism can differentiate between different inputs [10], which
is crucial for a feedback method. A feedback method is con-
sidered stable if it produces the same output for the same
inputs and different outputs for different inputs. To evalu-
ate the stability of SPFuzz and SPFuzz++, we follow the
standard procedure for measuring the stability of a feedback
method [6]: for each input in the initial corpus, we repeatedly
run the fuzzer (eight times in our implementation, the same
as AFL) and record the feedback. We then calculate the per-
centage of the feedback bitmap that remains unchanged for
identical inputs. Next, we evaluate how well the fuzzer can
differentiate between different inputs by comparing the edit-
ing distance of the system call sequences for the same input to
that of different inputs. The results of stability are presented
in Table 3, while the results of editing distance of the system
call sequences are shown in Table 10 in our GitHub repo due
to page limits.

Our evaluation demonstrates that the system call pattern
serves as a reliable feedback method. SPFuzz and SPFuzz++
both achieve a stability rate of 100% across all applications. In
other words, when provided with two identical inputs, the sys-
tem will generate identical system call sequences for all appli-
cations. This is akin to the feedback obtained from code cov-
erage. The editing distances between system call sequences
of identical inputs are found to be 0. Conversely, the editing
distances for different inputs are non-zero values. This out-
come indicates that SPFuzz and SPFuzz++ can effectively
differentiate between different inputs, thereby ensuring an
effective feedback mechanism.

6.7 RQ 6: Effectiveness of Optimizations

In this section, we evaluate the effectiveness of the opti-
mizations we made in Section 4.

Table 3: The impacts of parameter selection when applying
system call trace guided fuzzing. In the context of system call
trace guided fuzzing, path refers to SPC found by the fuzzer.

Benchmark New Path(SPC) Stability

No SPFuzz &
SPFuzz++ All No SPFuzz &

SPFuzz++ All

nginx ✗ ✓ ✓ 100.00% 100.00% 0.44%
lua ✗ ✓ ✓ 100.00% 100.00% 0.42%

gzip ✓ ✓ ✓ 100.00% 100.00% 0.17%
pdftotext ✓ ✓ ✓ 100.00% 100.00% 0.84%

z3 ✓ ✓ ✓ 100.00% 100.00% 2.88%
tcpdump ✓ ✓ ✓ 100.00% 100.00% 0.48%
readelf ✓ ✓ ✓ 100.00% 100.00% 0.15%
bsdtar ✓ ✓ ✓ 100.00% 100.00% 0.61%

cert-basic ✗ ✓ ✓ 100.00% 100.00% 3.64%
sfconvert ✓ ✓ ✓ 100.00% 100.00% 0.11%

unrtf ✗ ✓ ✓ 100.00% 100.00% 2.70%
jasper ✓ ✓ ✓ 100.00% 100.00% 0.14%

perlbench_r ✓ ✓ ✓ 100.00% 100.00% 0.03%
mcf_r ✗ ✓ ✓ 100.00% 100.00% 0.23%

omnetpp_r ✗ ✓ ✓ 100.00% 100.00% 0.28%
cpuxalan_r ✓ ✓ ✓ 100.00% 100.00% 3.75%

x264_r ✓ ✓ ✓ 100.00% 100.00% 0.88%

Time to get θ: In order to evaluate the efficiency of the
algorithm to get θ in Section 4, we have recorded the time
from prompting with LLMs to the time we get θ for every
benchmark in our experiments. We repeat the experiments for
10 times and calculate average time costs and the standard
deviations. We show the average and standard deviations
of the time to arrive at θ in Table 11 (in our GitHub repo).
For all benchmarks, the time to arrive at θ is less than five
minutes, which is acceptable since the reasonable and widely
adopted time of a fuzzing campaign should be at least 24
hours [43, 46, 65].
Long-short system call pattern coverage: In order to eval-
uate the effects of long-short system call pattern coverage,
we compare the branch coverage by solely using system call
sequences of length θ (SPCθ), 2θ (SPC2θ), and the complete
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Figure 3: The comparison of branch coverage under different syscall guidance. We normalize the coverage data by SPFuzz as
one.

system call sequences (SPC f ull) with SPFuzz (SPC). We use
the same benchmarks as discussed in Section 6.3 and present
the coverage data for the 18 open-source applications in Fig-
ure 3. In this figure, we have standardized the coverage using
the combined SPC as 1.

Our experimental results demonstrate that the utilization
of the combined SPC leads to an improvement in branch cov-
erage compared to SPCθ, SPC2θ, and SPC f ull by a maximum
of 238%, 243%, and 2641%, respectively. This finding high-
lights the effectiveness of incorporating long-short system call
pattern coverage into the fuzzing process. This conclusion
also applies to SPFuzz++ since it shares the same feedback
mechanism with SPFuzz. The new mutation and seed selec-
tion algorithms of AFL++ are orthogonal with the changes in
feedback information.
Parameter selection: In order to demonstrate the effective-
ness of our parameter selection algorithm, we conducted two
baseline experiments. In the first baseline, we completely
omitted the parameter selection algorithm, while in the sec-
ond baseline, we used all available parameters. Our focus
was on two specific metrics: the number of new paths (i.e.
new SPCs for SPFuzz and SPFuzz++) discovered in the ini-
tial round of fuzzing, and the stability of the feedback data.
In the context of fuzzing, the initial round refers to the first
set of mutations applied to the initial input seeds. If no new
paths are discovered in this round, an error indicator will be
displayed on the AFL or AFL++ panel, indicating that the
fuzzer is generally unable to explore further [32, 65]. During
the initial round, all mutation methods are applied to all initial
input seeds. Therefore, the absence of new paths in this round
suggests that the feedback mechanism is unable to identify
different paths.

Table 3 demonstrates that the system call coverage pat-
terns without parameters do not accurately represent the in-
ner logic of benchmarks like cert-basic when parameter
recording is not used. As a consequence, no new paths are dis-

covered, rendering fuzzing ineffective. In contrast, recording
all parameters can result in the generation of numerous new
paths. However, randomly modifying parameters can have
a detrimental effect on stability by contaminating feedback
information. Consequently, these brute force methods are not
applicable, and the parameter selection method of SPFuzz
and SPFuzz++ is a necessary approach that is sensitive and
stable enough to facilitate effective greybox fuzzing.

Furthermore, we have identified that our parameter selec-
tion algorithm has the potential to improve fuzzing efficiency
compared to the approach of recording all parameters. The
results presented in Table 7 (in our GitHub repo) illustrate that
our algorithm can increase the speed of fuzzing by a factor of
up to 45. This improvement can be attributed to the reduction
in the number of parameters that need to be stored in the ker-
nel buffer, leading to a decrease in the overhead associated
with extending the kernel buffers. In summary, our evalua-
tion validates the effectiveness of our parameter selection
algorithm in enhancing system call pattern coverage-guided
fuzzing.

6.8 RQ 7: Sanity Check

To give a sanity check for the SPC feedback mechanism,
we choose to evaluate the performance of SPFuzz++ and
AFL++ [32] on the MAGMA benchmark [37]. We follow
the former evaluation protocol to conduct experiments under
the default configuration of MAGMA. AFL++ and SPFuzz++
are feasible on all binaries except php-unserialize, whose
initial corpus provided by MAGMA contains no available
seeds (all caused crashes). We have reported this problem to
the MAGMA maintainer and removed it from Table 4.

As Table 4 shows, SPFuzz++ achieves identical cover-
age with AFL++ on six benchmarks since it gains similar
speeds, and the SPC feedback also works well on these tar-
gets. The coverage difference of SPFuzz++ and AFL++ is



Table 4: The averages (left) and standard deviations (right)
of the branch coverage and speed of the source-code instru-
mented AFL++ and SPFuzz++ after 24-hour running. We
report the average (avg) and standard deviation (std) of ten
rounds of experiments in the form avg|std. We mark the data
with bold if it has a statistically distinguishable advantage
with MWU test p-value less than 0.05.

Benchmark
AFL++
coverage

AFL++
speed

SPFuzz++
coverage

SPFuzz++
speed

libpng_read_fuzzer 12.4% | 0.1% 1292 | 301 12.2% | 0.1% 766 | 135
sndfile_fuzzer 17.5% | 0.1% 1148 | 189 16.3% | 0.1% 234 | 41

tiff_read_rgba_fuzzer 6.6% | 0.1% 1138 | 176 6.4% | 0.1% 435 | 45
tiffcp 44.8% | 0.8% 403 | 96 34.9% | 1.1% 221 | 40

xml_read_memory_fuzzer 14.7% | 0.2% 939 | 135 14.3% | 0.2% 354 | 61
xmllint 17.9% | 0.2% 257 | 76 14.4% | 0.2% 272 | 44

lua 94.3% | 2.3% 266 | 45 89.2% | 3.0% 145 | 31
openssl_asn1 4.5% | 0% 45 | 2 4.5% | 0% 36 | 4

openssl_asn1parse 1.9% | 0% 183 | 34 1.9% | 0% 195 | 53
openssl_bignum 2.0% | 0% 397 | 78 2.0% | 0% 388 | 56
openssl_server 18.3% | 0.1% 251 | 32 18.3% | 0.2% 239 | 54
openssl_client 5.0% | 0% 76 | 5 5.0% | 0% 68 | 8
openssl_x509 12.6% | 0.2% 355 | 17 12.3% | 0.4% 258 | 30

php_json 6.3% | 0% 96 | 4 6.3% | 0.1% 74 | 5
php_exif 6.8% | 0.1% 95 | 4 6.5% | 0.1% 81 | 5

php_parser 14.2% | 0.1% 94 | 4 14.1% | 0.1% 75 | 10
pdf_fuzzer 28.1% | 0.1% 906 | 53 27.9% | 0.1% 630 | 42
pdfimages 44.5% | 0.3% 45 | 9 40.8% | 1.5% 41 | 16
pdftoppm 32.4% | 0.2% 26 | 10 31.2% | 0.3% 22 | 8

sqlite3_fuzz 5.9% | 0.1% 1282 | 233 5.8% | 0.1% 801 | 189

less than 1% on nine benchmarks, where SPFuzz++ still
keeps a comparable speed. For the other six benchmarks,
the coverage of AFL++ is 1.2% to 9.9% better than SPFuzz++
since AFL++ gains an advantage from the more accurate
and faster source-code instrumentation. Specifically, AFL++
gains a tremendous advantage on tiffcp. Upon closer exam-
ination, we found that the branches in its tif_tile.c component
contain nearly no syscalls, which is very rare since normal
computation-intense codes should at least contain memory-
related syscalls. Though affected by this extreme situation,
SPFuzz++ is still capable of exploring the other parts of this
target normally. Overall, compared to the theoretical upper
bound, AFL++, SPFuzz++ performs similarly across most
benchmarks, with significant deviations occurring only in rare
cases.

7 Discussion

7.1 Runtime Overhead

In Section 6.3 we reported that ZAFL and SPFuzz have
comparable fuzzing speeds on most benchmarks. This is in-
teresting because SPFuzz is an instrumentation-free approach,
which means that it can not instrument the forkservers into
the target programs. Since forkserver provides a significant
improvement over fuzzing speed, we aim to explain why the
fuzzing speed of SPFuzz is comparable to ZAFL.

We argue that the reason for the efficiency of SPFuzz is

avoiding the runtime overhead introduced by instrumented
probes that collect coverage data. To prove this argument,
we measure the percentage of fuzzing speed improvement of
forkserver and the runtime overhead of instrumented probes
in AFL.

To measure the overhead of instrumented probes, we first
run the AFL-Dumb mode with instrumented binaries with
the initial fuzzing seeds, then run the AFL-Dumb mode with
uninstrumented binaries and compare their execution speeds.
To measure the optimization effects of forkservers, we run the
normal AFL mode and compare their speeds with the speeds
of instrumented binaries under AFL-Dumb mode. Note that
we only run the initial seeds in this experiment, thus the inputs
are identical for AFL-Dumb and AFL, eliminating possible
biases introduced by different inputs from mutations.

The results in Table 5 demonstrate that the overhead of SP-
Fuzz can be better than the optimized instrumentation method,
especially when the target binary is big or complicated. Over-
all, our results show that the overhead of instrumented probes
is comparable to the optimization of forkservers. This re-
sult explains the performance data in Table 2. For applica-
tions, such as mcf_r and omnetpp_r, that have higher instru-
mentation overheads, the fuzzing speed of SPFuzz is higher
than ZAFL. Otherwise, ZAFL has a higher or similar fuzzing
speed.

Table 5: The profiling of how instrumentation and forkserver
influence the actual execution speeds.

Benchmarks
Instrumentation

Overhead
Forkserver

Optimization

nginx 10% 42%
lua 33% 21%

gzip 16% 9%
pdftotext 53% 42%

z3 15% 6%
tcpdump 373% 224%
readelf 1% 17%
bsdtar 28% 60%

cert-basic 298% 325%
sfconvert 40% 47%

unrtf 84% 30%
jasper 14% 43%

clean_text 1% 1%
perlbench_r 83% 5%

mcf_r 28% 8%
omnetpp_r 60% 33%
cpuxalan_r 306% 2%

x264_r 84% 34%

7.2 Computational Intensive Applications

SPFuzz and SPFuzz++ face a notable challenge when it
comes to computation-intensive applications, as they typically



have fewer calls compared to IO-intensive applications. How-
ever, our evaluation statistics show that SPFuzz and SPFuzz++
remain effective for computation-intensive applications such
as gzip, bsdtar, omnetpp, etc. Upon closer examination,
we have discovered that even though computation-intensive
applications may not frequently use IO-related syscalls like
read and write, they still rely on memory-related system calls
such as brk. For instance, in gzip, we found that 77% of its if
statements contain system calls in at least one branch. This
indicates that system calls can determine the outcomes of
77% of branches in gzip. As a result, SPFuzz and SPFuzz++
can still successfully fuzz computation-intensive applications.
Moreover, we also evaluated the performance of AFL-Dumb,
a totally black-box fuzzer. As the data in Table 8 (in our
GitHub repo) shows, SPFuzz outperforms AFL-Dumb on all
benchmarks with at most 45% branch coverage advantage,
demonstrating that the SPC feedback is effective. The con-
clusion for SPFuzz++ and AFL++-Dumb is the same since
they only changed the fuzzer base, which mainly consists of
the mutation and selection algorithms and does not affect this
examination for the upper feedback mechanism.

To evaluate the performance of SPFuzz and SPFuzz++ in
the worst case, we crafted a challenging target that only takes
a file with a fixed length and calculates hashes with different
hashing algorithms according to the content. We carefully
removed the lines with syscalls from the branch statements,
then SPFuzz and SPFuzz++did find no new patterns during the
fuzzing process. We need to acknowledge that such specified
targets are more suitable for traditional fuzzers. We will leave
these extreme targets to future work.

7.3 External Libraries

An issue that could potentially undermine our approach is
the fact that system calls are frequently encapsulated within
libraries like glibc. Consequently, the system call sequences
may not accurately represent the code executed by a program
but rather the code executed within external libraries. Addi-
tionally, libraries may possess intricate internal logic, which
could result in unstable system call patterns during fuzzing.
For instance, different system call paths may be generated for
the same input.

According to our evaluation, system call patterns are effec-
tive and stable approximations for code coverage in real-world
applications that rely heavily on external libraries. The effec-
tiveness of system call coverage is not compromised by the
use of external libraries because we can determine which ex-
ternal library function is being called and, thus, reconstruct
the code path executed of the program based on system call
sequences using symbolic execution [45]. Although our ap-
proach does not explicitly recover the executed code path,
the changes in the system call patterns are still sufficient to
reflect the changes in executed code paths. Additionally, ex-
ternal libraries do not compromise the stability of fuzzing

because most library functions are deterministic when the
system environment remains constant. Even if these functions
are wrapped in library calls, we can still obtain stable system
call sequences.

7.4 SPC Collisions
Compared to traditional branch/edge-based code paths,

syscall patterns have more collisions since several differ-
ent syscall patterns may refer to one identical code path.
Therefore, we recorded the number of syscall patterns from
SPFuzz++ and traditional code paths from AFL++QEMU
(which should be theoretically sound) when both reached the
same branch coverage. This coverage was defined as the min-
imum coverage achieved by either after 24 hours of fuzzing,
ensuring that corresponding data was available for compar-
ison. As shown in Table 6, the numbers of syscall patterns
are, on average, approximately twice as traditional AFL code
paths. However, this does not suggest that SPFuzz and SP-
Fuzz++ need a doubled efficiency to reach identical results.
As concluded in Section 6.5, the distances between SPCs are
positively correlated with the corresponding code coverage.
Therefore, the distances between collided SPCs, i.e., SPCs
representing identical code paths, are significantly smaller
than those between the other SPCs and the collided ones.
This leads to a lower priority for seeds whose SPCs collide
with those already in the queue. Consequently, during the
execution stage, seeds with higher priority for handling and
mutation by SPFuzz and SPFuzz++ typically exhibit a lower
collision rate.

In most situations, SPC collisions with significant distances
(which is rare according to Section 6.5) undermine the fuzzing
efficiency since the instrumentation-based feedback is more
accurate. However, things can be different occasionally, where
the SPC feedback captures details that escape from the ob-
servation of instrumentation-based feedback. For example,
as shown in Figure 2 (b), SPFuzz++ gained a drastic cov-
erage increase after about three hours since it prioritized a
seed with frequent network-related syscalls but no new cover-
age and reached a key path through the mutations from this
seed. This did not happen for AFL++QEMU even after ac-
counting for the difference in execution speeds because the
instrumentation-based feedback deprioritized the seed since
it brought no new coverage and was bigger.

7.5 Specific Syscalls
Among the 300+ system calls available in Linux, some

specific syscalls may bring uncertainty or meaningless infor-
mation to the syscall sequence. Researchers of kernel fuzzing
found that if a system call is invoked through ioctl, it be-
comes challenging to distinguish the sequence of system
calls [42]. However, unlike kernel fuzzing, we focus more
on real-world targets, where sequences containing frequent



Table 6: The average number of syscall patterns (from SP-
Fuzz++) and the average number of traditional code paths
(from AFL++QEMU) under the same branch coverage.

Benchmark SPC Patterns AFL Paths Benchmark SPC Patterns AFL Paths
nginx 5669 4195 lua 9452 4918
gzip 1548 483 pdftotext 9342 5241
z3 10842 4440 tcpdump 15239 15529

readelf 5731 1800 bsdtar 190 121
cert-basic 680 103 sfconvert 469 389

unrtf 3389 1363 jasper 24 22
clean_text 189 105 perlbench_r 28800 11034

mcf_r 569 484 omnetpp_r 5123 2102
cpuxalan_r 1320 984 x264_r 442 109

identical syscalls(such as the aforementioned ioctl) are rare.
Moreover, according to Section 4, unstable parameters will
be pruned before the fuzzing campaigns start. Therefore, SP-
Fuzz and SPFuzz++ can distinguish ioctl calls from remaining
parameters such as cmd. This also applies to other similar
syscalls.

7.6 Cross-Platform and Cross-Language
Fuzzing

Though the main implementation and evaluations are done
mainly on the Linux OS, system call pattern coverage is gen-
eral to all OSes. Besides, although our implementation of
SPFuzz and SPFuzz++ are for C/C++ programs, it makes
no difference for SPFuzz and SPFuzz++to support other lan-
guages that generate native binaries, such as Go and Rust.

For languages that use runtimes, such as Java and Python,
system call patterns may not be as effective as in native bina-
ries because the runtime itself may add randomness in calling
system calls. However, we can apply a similar idea of sys-
tem call patterns to the runtime API calls. For example, we
can use the Java API call patterns to fuzz Java binaries. We
will leave the idea of fuzzing runtime-based languages in our
future work.

7.7 Debugger-Based Method
Linux Strace [3], which is used by debuggers, is another

approach for gathering code coverage without code instrumen-
tation and not disrupting the program. However, researchers
found that such a method suffers from overhead as high as
19 times [34] since it is based on the ptrace function of
Linux [28]. Since ptrace uses system interruptions to get
the runtime information of the program, its overhead can not
be easily reduced [2].

8 Related Work

Fuzzing has become a widely adopted automatic software
testing method [7–9, 35, 50, 67]. The most popular method
of fuzzing currently is the instrumentation-based grey-box
fuzzing [65]. However, this method requires access to source

code for instrumentation and is therefore not directly avail-
able for Commercial Off-The-Shelf (COTS) programs. To
address this limitation, researchers have proposed binary-only
fuzzing techniques [4,8,21,30,39,40,58,65]. However, these
techniques all suffer from the limitations we mentioned in
Section 2.

Auditing frameworks, such as LTTng [29], Retrofitting [17],
and Trustworthy [20], have been widely used in various
security tasks. These tasks include APT attack investiga-
tion [33, 62] and stealthy behavior detection [18, 64]. Most
current frameworks are not effective for fuzzing since they
will randomly drop system calls when the system is busy.
Thereby, we adopt the latest framework, NoDrop, that ensures
the integrity of syscall collection [41]. System calls can also
be used by developers to gather debugging information [3],
maintainers to monitor system status [31], and security ex-
perts for forensics on malicious activities or to reconstruct
the cybercrime scenario after an attack [18–20]. These ap-
proaches inspired our work but can not be directly applied to
binary-only fuzzing.

9 Conclusion
This paper introduces a novel approach called system call

pattern coverage, which offers an alternative method for pro-
viding feedback in greybox fuzzing. This approach is particu-
larly useful in situations where code coverage is not available,
such as when dealing with closed-source binaries that are
protected. Compared to existing feedback approaches, system
call pattern coverage does not require static rewriting, emu-
lation, or hardware support. Therefore, system call pattern
coverage does not face the risks of breaking the logic of target
applications, having too slow fuzzing speed, or introducing
dependency on specific hardware. To validate the effective-
ness of this feedback mechanism, we developed binary-only
fuzzers called SPFuzz and SPFuzz++, which are capable of
fuzzing a more significant number of (COTS) binaries com-
pared to existing approaches. We conducted an evaluation of
SPFuzz and SPFuzz++ using 29 real-world applications and
found that they achieve levels of fuzzing effectiveness similar
to those of the traditional code coverage guidance. In partic-
ular, during our evaluation, SPFuzz successfully identified
six previously unknown Common Vulnerabilities and Expo-
sures (CVEs), thus demonstrating its practical bug-hunting
capabilities.
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