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Abstract

Price manipulation attack is one of the notorious threats in de-
centralized finance (DeFi) applications, which allows attack-
ers to exchange tokens at an extensively deviated price from
the market. Existing efforts usually rely on reactive methods
to identify such kind of attacks after they have happened, e.g.,
detecting attack transactions in the post-attack stage, which
cannot mitigate or prevent price manipulation attacks timely.
From the perspective of attackers, they usually need to de-
ploy attack contracts in the pre-attack stage. Thus, if we can
identify these attack contracts in a proactive manner, we can
raise alarms and mitigate the threats. With the core idea in
mind, in this work, we shift our attention from the victims to
the attackers. Specifically, we propose SMARTCAT, a novel
approach for identifying price manipulation attacks in the pre-
attack stage proactively. For generality, it conducts analysis
on bytecode and does not require any source code and trans-
action data. For accuracy, it depicts the control- and data-flow
dependency relationships among function calls into a token
flow graph. For scalability, it filters out those suspicious paths,
in which it conducts inter-contract analysis as necessary. To
this end, SMARTCAT can pinpoint attacks in real time once
they have been deployed on a chain. The evaluation results
illustrate that SMARTCAT significantly outperforms existing
baselines with 91.6% recall and ∼100% precision. Moreover,
SMARTCAT also uncovers 616 attack contracts in-the-wild,
accounting for $9.25M financial losses, with only 19 cases
publicly reported. By applying SMARTCAT as a real-time
detector in Ethereum and Binance Smart Chain, it has raised
14 alarms 99 seconds after the corresponding deployment on
average. These attacks have already led to $641K financial
losses, and seven of them are still waiting for their ripe time.

1The full name of the author’s affiliation is Hubei Key Laboratory of
Distributed System Security, Hubei Engineering Research Center on Big Data
Security, School of Cyber Science and Engineering, Huazhong University of
Science and Technology.

1 Introduction

Since the emergence of Ethereum, smart contracts have been
its killer application, i.e., the feature distinguishes it from old-
school Bitcoin [57]. By decoupling complex interactions into
different smart contracts, developers are able to build Decen-
tralized Applications (DApps) [60], and even Decentralized
Finance (DeFi) [76], which specifically provides financial
services, like lending, exchanging, and even insurance, in a
decentralized manner [62]. In 2024, the total value locked,
one of the critical metrics to reflect the prosperity, in DeFi
protocols has surged to over $90 billion [13].

Unfortunately, due to the anonymity and immutability of
Ethereum smart contracts, numerous DeFi projects are ex-
ploited by unidentifiable accounts, leading to $473 million
financial losses in 2024 [14]. Among all vulnerabilities in
DeFi protocols, price manipulation must be one of the most
notorious ones [78]. In short, attackers can obtain massive
profits from token transfers or exchanges at a price far from
the market’s normal fluctuation. Various reasons could finally
lead to a price manipulation attack, e.g., incorrect slippage set-
tings, unprotected public functions, and reliance on untrusted
price oracles [55]. Furthermore, cunning attackers would take
advantage of the Flashloan mechanism [59] to conduct ex-
ploitation to ensure that the whole attack transaction can be
rolled back promptly if any condition is not met.

Existing studies against price manipulation are in two
forms, i.e., either reactively identifying attacks in the post-
attack stage according to transaction data or detecting if there
are price manipulation vulnerabilities in DeFi protocols. As
for the former one, DeFiRanger [71] constructs a cash flow
tree from transaction traces, while DeFiGuard [68] extracts
behavioral patterns from transactions and combines them with
a graph neural network. However, neither tool can mitigate
such attacks proactively. As for the latter form, FlashSyn [36]
uses a numerical approximation to synthesize transactions
for exploiting Flashloan-based price manipulation vulnera-
bilities, and DeFiTainter [50] detects vulnerabilities in DeFi
projects using generic rules. However, most price manipu-



lation attacks stem from poorly designed contract business
logic, which have to be manually modeled one by one in these
methods, significantly impacting their scalability.

In other words, current work cannot mitigate or prevent
price manipulation attacks effectively and timely. Therefore,
standing from the attackers’ perspective, in this work, we
proactively detect these attacks in the pre-attack stage. We
focus on newly deployed Ethereum contracts and uncover if
they possess such malicious intent. However, two main chal-
lenges arise. On the one hand, in Ethereum, only 2% contracts
are open-sourced [10]. Furthermore, to cover their malicious
intent, such attack contracts typically avoid releasing their
implementations. We have to precisely recover their behav-
ioral semantics without introducing too many false positives
and negatives. On the other hand, currently, there are around
39K newly deployed contracts a day in Ethereum [15]. We
have to precisely identify these attack contracts out of numer-
ous benign ones. Moreover, rational attackers must initiate
attacks once everything is settled down, which also requires
the timeliness of our detecting methods.

This Work. In this work, we propose SMARTCAT, a static
analysis framework to identify price manipulation attack con-
tracts. To recover the behavioral semantics, it extracts the
callee address and invoked function for each function call.
We also propose a data-flow-based heuristic arguments recov-
ery algorithm to recover the arguments for these function calls.
Based on the inter-procedural control flow graph (ICFG), we
construct cross-function callsite graph (xFCG) and token flow
graph (TFG) to depict the control- and data-flow dependency
relations among function calls. To enable efficient analysis,
we propose a sensitive path filtering method to selectively
conduct cross-contract analysis on the TFG. Additionally, we
formalize a set of rules to characterize two types of price
manipulation attack behaviors in a sound and precise manner.

In the evaluation, we construct a ground truth dataset con-
sisting of 84 price manipulation attack contracts and 8,000
benign contracts. The results show that SMARTCAT can
correctly identify 77 out of the 84 attack contracts, with a
negligible false positive rate, extensively outperforming the
existing three available baselines. We then apply SMARTCAT
on a large-scale dataset with over 77K real-world contracts.
It identifies 616 price manipulation attacks, where only 19
cases were reported previously, causing $9.25M financial
losses in total. Furthermore, to evaluate its timeliness, we
deploy SMARTCAT on Ethereum and Binance Smart Chain
for 50 days. In total, SMARTCAT has raised 14 alarms 99
seconds after the corresponding contract deployment on aver-
age. These attacks have led to $641K financial losses already,
and seven contracts are still waiting for the ripe time.

We summarize our contributions as follows:

• We propose SMARTCAT for identifying price manip-
ulation attack contracts through anomalous token flow.
To the best of our knowledge, this is the first work to

identify such attack contracts on the bytecode level.

• Based on an extensively constructed ground truth dataset,
the precision and recall of SMARTCAT are ∼100% and
91.6%, respectively, significantly outperforming existing
available baselines and demonstrating robustness against
obfuscation techniques.

• SMARTCAT have identified 616 price manipulation at-
tack contracts out of 770K real-world deployed contracts,
where only 19 were reported publicly. SMARTCAT can
analyze 99% cases within 40.6 seconds.

• As a real-time detector, SMARTCAT has raised alarms
14 times in Ethereum and BSC. These attacks have led
to $641K financial losses already.

2 Background

2.1 Smart Contracts & Decentralized Finance

Ethereum smart contracts are self-executing programs typi-
cally implemented in high-level languages like Solidity [38].
They are compiled into bytecode, deployed, and executed in
the Ethereum Virtual Machine (EVM) [48], a stack-based vir-
tual machine. The immutable nature of the blockchain makes
smart contracts susceptible to vulnerabilities once deployed.
To address this, smart contracts often utilize proxy mech-
anisms [5] for upgrading their logic or fixing bugs. Smart
contracts use three data structures to maintain data: Memory,
Storage, and Calldata. Memory holds temporary data required
during function execution, Storage stores data permanently
on-chain, and Calldata contains read-only function arguments
passed from external calls initiated by opcodes like CALL
and DELEGATECALL.

DeFi, an emerging financial ecosystem built on smart con-
tracts, showcases immense potential. We highlight some
widely-adopted DeFi protocols in the following.
Token. Except for the native token in Ethereum, accounts
are allowed to create and issue tokens by implementing some
standards, e.g., ERC-20 [1] and ERC-721 [3]. Moreover, DeFi
widely leverages stablecoins and liquidity provider (LP) to-
kens. Specifically, stablecoins can ensure price stability by
anchoring specific currencies, like USD, offering a reliable
medium for value exchange. LP tokens are issued by DeFi
projects to represent someone’s shares and benefits.
Decentralized Exchange. Decentralized exchange (DEX)
uses smart contracts for token exchange, ensuring trans-
parency, openness, and trustlessness. Lots of well-known
DEXes exist in Ethereum, like Uniswap [31]. DEX typically
employs the automated market maker (AMM) mechanism,
dynamically adjusting token prices based on the token reserve
in liquidity pools. Users can deposit tokens into DEXes to
provide liquidity and earn interest in an LP token form.
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Figure 1: Two types of price manipulation.

Flashloan. Flashloan is a form of uncollateralized loan
that must be taken and Protocols such as Aave [11] and
Uniswap [31] provide flashloan services, allowing users to
borrow large amounts without upfront collateral. Though
flashloan provides convenience, it has also led to various at-
tack incidents in recent years [59, 69].

2.2 Price Manipulation

Price manipulation in DeFi is basically achieved by exploiting
how DEXes calculate token prices. Typically, for a token in
a liquidity pool, the lower the supply, the higher the price.
When the supply balance between tokens is disrupted, price
deviations may occur. The existence of flashloan further wors-
ens this issue by enabling someone to borrow large amounts
of assets without collateral, i.e., causing rapid and significant
price fluctuation before the loan is repaid. Based on how
the victim contract is affected, it is divided into direct price
manipulation (DPM) and indirect price manipulation (IPM).
Direct Price Manipulation (DPM). By exploiting calcula-
tion errors or access control issues within the victim contract,
attackers can directly perform price manipulation in the liq-
uidity pools of DEXes. This typically involves three steps:
i) the attacker uses a large amount of token A to exchange
for token B in the liquidity pool, causing the price of token B
to increase; ii) the attacker further decreases the liquidity of
token B by exploiting the victim contract, e.g., let the victim
purchase a large amount of token B, driving up the price of
token B; and iii) the attacker sells the acquired token B and
profits from the price manipulation.

Figure 1(a) illustrates a real-world example of direct
price manipulation, where ElephantStatus was exploited on
Dec. 6th, 2023, resulting in approximately $165K finan-
cial losses [9]. As we can see, the attacker borrows a large
amount of BUSD tokens via flashloan (step ①), which are
then swapped to WBNB tokens (step ②). The attacker then
calls sweep in the victim contract (step ③), which transfers a
large amount of BUSD into the liquidity pool and withdraws
an equivalent value of WBNB from the pool (step ④). This
operation artificially inflates the price of WBNB in the liquid-
ity pool. Finally, the attacker swaps the previously acquired
WBNB back to BUSD (step ⑤), a stablecoin, obtaining prof-
its by such a direct price manipulation. Note that, there is a
variant of DPM, where attackers can also directly leverage

flashloans to significantly impact the asset reserves in the liq-
uidity pool, subsequently profiting from the price fluctuations.
In this situation, the victim is the liquidity pool itself.
Indirect Price Manipulation (IPM). Instead of directly ex-
ploiting the victim contract, attackers conduct indirect price
manipulation by disturbing token prices in DEXes, which are
adopted as price oracles by victim contracts. Specifically, it
generally consists of three steps: i) the attacker intentionally
creates an imbalance in the token reserves of a liquidity pool;
ii) the attacker interacts with the victim contract, which calcu-
lates the token prices in real-time based on the oracle exposed
by the liquidity pool. To this end, the attacker can sell or stake
tokens to the victim contract at an inflated price; and iii) the
attacker restores the balance of the liquidity pool.

Figure 1(b) illustrates a concrete example of an indirect
price manipulation, which occurred on Nov. 6th, 2020, leading
to financial losses of Cheese Bank estimated at $3.3M [6].
Specifically, the attacker first borrows a large amount of ETH
via flashloan (step ①). Then, the attacker deposits ETH and
CHEESE tokens to the liquidity pool in exchange for the
corresponding number of LP tokens (step ②). The attacker
further swaps a large amount of ETH for CHEESE tokens
(step ③). Since Cheese Bank calculates the price of LP tokens
based on the amount of ETH in the liquidity pool, through a
legitimate external call, the attacker drains the victim contract,
which is tricked into thinking that the price of LP tokens is
extremely high (step ④). Finally, the attacker redeems ETH
from the liquidity pool (step ⑤).

2.3 Threat Model
As for conducting price manipulation attacks, compared to
ordinary accounts in Ethereum, attackers have no other extra
privileges. All attack logic is embedded in the deployed con-
tract, and the attack is launched by initiating a transaction. As
illustrated in §2.2, both liquidity pools and contracts that have
the ability to interact with the pools can be potential victims.
Leveraging the time window between the attack contract de-
ployment and the attack launch is critical. In the real world,
attackers may delay the attack until certain conditions are met
or until the profit is maximized.

3 Motivation

In this section, we first demonstrate what a price manipulation
attack contract looks like. Then, we summarize the challenges
in identifying these contracts on the contract bytecode level
and illustrate our solution in a high-level manner.

3.1 Motivating Example
ULME project has been attacked in a DPM way on Oct. 25th,
2022, suffering from $50K financial losses [30]. Listing 1 il-
lustrates an attacker-defined private function, which is invoked



by the callback function once the attacker takes out a flashloan.
The function is shown in a simplified and decompiled way. As
we can see, the attacker first extracts the addresses of BUSDT
and ULME token from Storage, stores them into a newly ini-
tialized array, and then calls the token swap function in the
liquidity pool (L3 – L7).1 In this example, the attacker ex-
changes BUSDT for ULME token. Subsequently, the attacker
iterates array_9 (L8), consisting of pre-identified users who
have approved the BUSDT contract, to filter out those with
non-zero balances by calling allowance() and balance()
(L9 – L13). Unlike IPM, where the victim indirectly relies on
the liquidity pool as the oracle to calculate the price of ULME,
the attacker invokes buyMiner() of the ULME contract. This
step directly uses the victim’s BUSDT to swap out ULME
from the liquidity pool, sharply reducing its ULME supply
and further destabilizing the pool’s state. The attacker then
exchanges ULME back for BUSDT token (L17 – L21). Such
a swap obtains a large amount of BUSDT at an unfair price,
profiting from the imbalance in the pool.

1 function 0x9e1() private {
2 if (stor_a) {
3 v2 = new address[](2);
4 v2[0] = stor_2; v2[1] = stor_5;
5 v4 = new address[](v2.length);
6 // Step_1: exchange BUSDT for ULME
7 v11 = stor_4.swapExactTokensForXXX(stor_a, 0, v4,

address(this), block.timestamp + 1000, v12, stor_2
).gas(msg.gas);}

8 while (v13 < array_9.length){
9 v15, v16 = stor_2.allowance(address(array_9[v13]),

stor_5).gas(msg.gas);
10 if (v16) {
11 v17, v18 = stor_2.balanceOf(address(array_9[v13])).

gas(msg.gas);
12 v19 = v20 = v18 > 0;
13 if (v19) {
14 require(bool(stor_5.code.size));
15 // Step_2: manipulate users into swapping out their ULME
16 v22 = stor_5.buyMiner(address(array_9[v13]), v18

* 100/110 + ~0).gas(msg.gas);}}}
17 v26 = new address[](2);
18 v26[0] = stor_5; v26[1] = stor_2;
19 v28 = new address[](v26.length);
20 // Step_3: exchange ULME for BUSDT at an unfair price
21 v35 = stor_4.swapExactTokensForXXX(v25, 0, v28, address(

this), block.timestamp + 1000, v12, stor_5).gas(msg.gas
);

22 }

Listing 1: Attack contract against ULME.

3.2 Challenges & Solution
Through this example, we can find that attackers will leave
traces in their contracts, including token manipulation, the use
of Flashloan services, and interactions with liquidity pools.
Due to the transparency of the blockchain, these features
can be obtained at the time of contract deployment, allowing
us to promptly raise alarms for suspicious attack contracts.
However, two key challenges need to be addressed.
Challenge 1: Unclear semantics. Attack contracts are typi-
cally close-sourced to conceal their malicious intent, limiting

1L3 refers to the 3rd line, we adopt this notation in the following.

analysis to the bytecode level. To recover semantics, exist-
ing bytecode-based tools either elevate the bytecode to an
intermediate representation (IR) [41] or adopt static analysis
methods, like symbolic execution [4]. However, on the one
hand, the obtained IR is limited to the contract itself and does
not provide cross-contract semantics. On the other hand, the
complexity of cross-contract calls and state dependencies be-
tween contracts can lead to path explosion during symbolic
execution. As shown in Listing 1, recovering and identifying
semantics at both intra- and inter-contract function calls is
crucial for accurately determining the contract’s behavior.
Challenge 2: Scalability issue. Detecting price manipula-
tion attack contracts requires exploring the paths correspond-
ing to conducting attacks. In Listing 1, we only illustrate
the function that performs attacks and omits other auxiliary
functions, which could introduce complexity through loops,
conditional branches, and even inter-contract calls. Thus, we
have to thoroughly analyze all defined functions within the
contract and effectively identify the attack path among numer-
ous paths. Furthermore, as timeliness is crucial for avoiding
under-reporting, we must efficiently explore paths and mini-
mize interference from irrelevant ones.
Our Solution: Against Challenge 1, we first extract both
callee addresses and invoked functions from intra- and inter-
contract function calls, where we propose a fine-grained argu-
ment recovery algorithm to retrieve concrete values of their
arguments. Furthermore, we take advantage of the function
signature database and heuristic rules to capture the oper-
ational semantics of all function calls. As for Challenge 2,
rather than relying on machine learning or heuristic rule based
methods, we adopt a formal approach to model price manipu-
lation attack behaviors. To improve efficiency, we filter out
all suspicious sensitive paths based on characteristics of DeFi
attacks and limit the scope of cross-contract analysis.

4 Methodology

To identify attack contracts, we propose SMARTCAT, whose
workflow and architecture are shown in Figure 2. As we can
see, SMARTCAT is composed of three modules, i.e., Call In-
formation Extractor (short as Extractor), Token Flow Graph
Builder (short as Builder) and Anomalous Token Flow Detec-
tor (short as Detector). Specifically, Extractor is built upon
Gigahorse [41, 43], a well-known tool that can decompile
and produce intermediate representation (IR) in three-address
code format. Extractor takes the contract bytecode as input
and decompiles it to obtain the IR and control flow informa-
tion on the function level. To address Challenge 1, based on
the inter-procedural control flow graph, Extractor firstly con-
structs a cross-function callsite graph (xFCG) consisting of
nodes, each of which encompasses information of the callsite,
callee address, and invoked function signature. The generated
xFCG will be transmitted to Builder, which employs a data-
flow-based heuristic arguments recovery algorithm to retrieve
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Figure 2: Workflow and architecture of SMARTCAT.

arguments’ values of invoked functions. By combining the
token-flow-related semantics of involved functions, Builder
further builds a token flow graph (TFG). To address Chal-
lenge 2, Detector filters out and traverses those suspicious
sensitive paths in the TFG. By adopting a set of formal de-
tecting rules, Detector can finally identify price manipulation
attack contracts in an effective and efficient manner.

4.1 Call Information Extractor
As illustrated in §3.1, invoking functions in both intra- and
inter-contract manner is necessary for profiting from conduct-
ing price manipulation, making the extraction of call informa-
tion important. To achieve this, we leverage Gigahorse [41]
and introduce a Cross-Function Callsite Graph (xFCG) based
on the inter-procedural control flow graph to efficiently depict
and extract this information.

4.1.1 Address & Function Extraction

Extracting callee addresses for function calls is the prerequi-
site for the following analysis. In Ethereum, callee addresses
can be specified in three different data structures: Calldata,
Memory, and Storage (see §2.1). Since Calldata is provided
at runtime, which is unpredictable, we assign a placeholder in
the form of calldata_0xN, where 0xN corresponds to its off-
set in Calldata. For the other two cases, we leverage the facts
generated by Gigahorse based on the decompiled code. Specif-
ically, if the callee address is stored in Memory, we either
directly extract the address (when hard-encoded in bytecode)
or assign a placeholder, the same as Calldata. Otherwise, i.e.,
the callee address is stored in Storage, we extract the hard-
encoded callee address from the facts or retrieve it from a
slot number via the getStorageAt() API. Note that some
contracts adopt the proxy design pattern, where the actual
function resides in another contract that the proxy points to.

0x28cd 0x28cc 1st  arg

0x28cd 0x285f 2nd arg

0x28cd 0x28ba 3rd  arg

0x28cd 0x289b function selector
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nearest
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Figure 3: Extract function signature by Gigahorse and our
heuristic method.

Since EIP-1967 is the most widely-adopted proxy standard in
Ethereum [5], whose Storage structure is fixed, we heuristi-
cally investigate if the EIP-1967-specific slot exists [24]. If it
is, we take the current contract as a proxy and extract the real
callee address from the slot.

Instead of the callee address, we also need to identify the in-
voked function to recover the developers’ intent. In Ethereum
contract bytecode, each function call consists of the function
signature and its arguments. As shown in Figure 3(a), we
leverage the facts generated by Gigahorse to directly extract
the 4-byte function signature. However, Gigahorse may fail to
generate such facts when branch-dependent Memory read and
write operations obscure the exact Memory layout [41, 77].To
address this, we propose a heuristic method: backtracing the
control flow to extract the operand of the most recent PUSH4
opcode before the function call, treating it as the function sig-
nature. As shown in Figure 3(b), in this case, Gigahorse fails
in this MEV bot contract due to frequent branch jumps [12],
whereas our method correctly identifies the callee function as
swap(), confirmed by the transaction trace.

4.1.2 Cross-Function Callsite Graph Construction

To illustrate relationships among function calls, based on the
inter-procedural control flow graph (ICFG), we propose and
build the cross-function callsite graph (xFCG). Specifically,
we only consider the basic blocks that contain function calls.
We adopt a triplet to refer to each of them, defined as:

< callsite,callee_address, f unction_selector >

where callsite is the offset of the call-related opcode, and
callee_address and f unction_selector refer to the corre-
sponding information extracted in §4.1.1. For those basic
blocks without function calls, we directly remove them and
link their preceding and successive blocks. Note that both
intra-contract and inter-contract function calls are taken into
consideration in building xFCG, i.e., the callee_address
can be the address of the current or another contract. If an



inter-contract function call happens, a recursive inter-contract
xFCG build will only happen on those nodes located in suspi-
cious paths, whose selection rules will be detailed in §4.3.1.

4.2 Token Flow Graph Builder
Identifying the value of arguments in function calls can re-
cover the original intents more precisely. Thus, we propose
a data-flow-based heuristic arguments recovery algorithm.
Moreover, we focus on five types of token-flow related seman-
tics, e.g., swap token and add liquidity, which are combined
on nodes in xFCG to construct the token flow graph (TFG).

4.2.1 Argument Recovery

The xFCG we built can only reflect the control flow depen-
dency relationships among function calls. To more effectively
address Challenge 1, we will also recover data flow depen-
dency relationships, whose very first step is to recover the
values or variables associated with arguments in function
calls. In EVM bytecode, call instructions do not explicitly
declare them. Instead, it points a piece of bytes in Memory
through an offset and length. While we can obtain parame-
ter information through Gigahorse’s facts, as introduced in
§4.1.1, its limitations in handling complex Memory operations
can result in incomplete or inaccurate extraction [41, 77].

Algorithm 1: Data-flow-based heuristic arguments
recovery

Input: CS, the callsite of a function call
Output: Args, argument positions and values

1 PC← FreeMemPointer(CS)
2 base← GetBase(PC)
3 idx← 0,Args← []
4 for pc from PC to CS do
5 if isMSTORE(pc) then
6 (ptr, Var)← ParseMSTORE(pc)
7 offset← ptr - base
8 value, flag← DataFlowRecover(Var)
9 if !(offset = 0x4 and idx = 0) then

10 if f lag = True then
11 err← TypeCheck(idx, value)
12 if err ! = /0 then
13 ReportError(err)
14 continue

15 else
16 value← GetSymbolicValue()

17 Args.append((value, idx))

18 idx += 1

19 return Args

To address this, we present a data-flow-based heuristic ar-
guments recovery algorithm. The EVM manages Memory
using a free memory pointer, typically designating the offset

at position 0x40 as the pointer to the next available memory lo-
cation [28, 58]. Based on this heuristic, Algorithm 1 presents
the overview of how we extract arguments from Memory.
Specifically, given a function callsite, we backtrace to find
the nearest MLOAD instruction that loads a value from 0x40
(L1) and consider the loaded value as the base for arguments
(L2). Then, we traverse all MSTORE instructions between the
MLOAD and the callsite and extract the target position (ptr)
and the to-be-stored variable (Var) (L4 – L6). To this end,
we can extract the offset of the variable by subtracting base
from ptr (L7), and calculate the concrete value of the variable
through data flow analysis (L8). If this step fails due to com-
plex control flow, a unique symbolic value is assigned to the
argument to maintain its positional information (L16). How-
ever, due to stack operations and untyped Memory accesses
in the EVM [52], the algorithm may violate our assumptions,
resulting in mismatches between the recovered values and
their expected types. Therefore, we handle errors based on
type checking (L11 – L14), where we compare the recovered
argument types at the same index with those declared in the
function declaration. For example, if the type of the argument
calculated based on the offset is identified as address with
the length of 0x20, but should be uint256 with the length
of 0x32 in the function declaration, the types are considered
mismatched. Then an error is reported, and the recovery pro-
cess for the argument is skipped. Consequently, the remaining
function arguments are identified by their index positions and
returned (L17 and L19).

4.2.2 High-Level Semantics Combining

Current recovered information does not reveal the specific be-
havior of function calls. To identify attack intentions, we need
to incorporate high-level semantics to extract token-related op-
erations within the contract. We propose two complementary
approaches, i.e., 1) leveraging function signature templates
and 2) utilizing argument positional analysis.

As for the first approach, we heuristically consider that at-
tackers frequently interact with Flashloan and DEXes to con-
struct attack chains. To identify such interactions, we utilize
function signature templates associated with widely adopted
token standards, including ERC20 [1], ERC721 [3], and
ERC1155 [2]. Moreover, we extract and validate the seman-
tics of functions from commonly used Flashloan and DEXes
services based on total value locked (TVL) and transaction
volume [18], e.g., Aave [11], Pancake [25], and Uniswap [31],
by referring to their official documentation.

If no templates are matched, we take another heuristic, i.e.,
the order of involved tokens would be swapped in price manip-
ulation. Therefore, we adopt an argument positional analysis
to identify potential token swaps for cases where function
signature templates are unavailable, as illustrated in Figure 4.
Specifically, we consider whether the extracted xFCG has the
following features. There exist two nodes with identical callee



case i: intra-variable
<offset1, addr, sig>(…, [tkA, tkB, …], …)

<offset2, addr, sig>(…, [tkB, tkA, …], …)

…

case ii: inter-variable
<offset1, addr, sig>(…, tkA, tkB, …)

<offset2, addr, sig>(…, tkB, tkA, …)

…

<offset, tkA, balanceOf()>(attacker)

… …

swap swap

Figure 4: Heuristically infer potential token swap actions.

addresses and function selectors, while the order of any two
address-type variables is reversed. The reverse can happen
on the intra-variable (case i) or inter-variable (case ii) level.
We heuristically consider these two addresses to be involved
in a token swap. As a rational attacker, confirming whether
obtaining profits is necessary. We heuristically take the invo-
cation to balanceOf() of a swapped address as necessary in
the xFCG. If both above rules meet in the xFCG, we reckon
there exists a token swap of the involved two addresses.

Consequently, within all collected templates as well as
the identified token swap behaviors, we have summarized
five token action related semantics into consideration, i.e.,
transfer, flashloan, and liquidity-related operations, whose
formal definitions are shown in Figure 5:

• Transfer (Tr). Transfer a specified amount (amt) of a
token from one address ( f rom) to another one (to).

• Swap token (ST.) In a liquidity pool (pr), swap an
amount of input token (tk_in, amt_in) to output token
(tk_out, amt_out), which is sent to an address (to).

• Add liquidity (AL). Against a liquidity pool (pr), de-
posit some token (amt_in, tk_in) to mint some LP token
(amt_out, tk_out) to an address (to).

• Remove liquidity (RL). Against a liquidity pool (pr),
burn some LP token (amt_in, tk_in) to transfer some
token (amt_out, tk_out) to an address (to).

• Flashloan (FL). A flashloan pr lends a specific amount
(amt) of token to an account (to).

4.2.3 Token Flow Graph Construction

With the identified semantics, we construct the token flow
graph (TFG) based on the xFCG to analyze the contract be-
havior. It helps guide the identification of critical execution
paths in attacks. To formally define TFG, we begin by the
following notations:

• N , the set of nodes in TFG, representing function calls
along with their recovered arguments and semantics.

• E , the set of edges in TFG, E ⊆N ×N , corresponding
to the control flow or data dependencies among nodes.

⟨addr⟩ ::= addresses
⟨arg⟩ ::= consts | vars
Op ::= ST | AL | RL

transfer ::= Tr (token: ⟨addr⟩, from: ⟨addr⟩, to: ⟨addr⟩,
amt: ⟨arg⟩)

flashloan ::= FL (pr: ⟨addr⟩, token: ⟨addr⟩, amt: ⟨arg⟩,
to: ⟨addr⟩)

liquidity ::= Op (pr: ⟨addr⟩, tk_in: ⟨addr⟩, tk_out: ⟨addr⟩,
amt_in: ⟨arg⟩, amt_out: ⟨arg⟩, to: ⟨addr⟩)

Figure 5: The definition of token action related semantics.

Entry

<0x97a, Pr, 0xd0a494e4>

CALL: ret = BUSD.balanceOf(AC)<0xa2d, BUSD, 0x70a08231>

<0xce2, LP, 0x5c11d795>

<0xc23, ULME, 0x8a43bb01>

<0xa6e, LP, 0x5c11d795>

Exit

CALL: ULME.buyMiner(array_9[v13], ta)

ST (LP, ULME, BUSD,amount_in,_,AC)

FL (Pr, BUSD, fa, AC)

ST (LP, BUSD, ULME, amount_in,_,AC)

TFG:xFCG:

Exit

Entry

Figure 6: The xFCG and TFG of the attack contract in the
ULME incident, where AC denotes the attack contract, and
the dotted and solid lines refer to control- and data-flow de-
pendencies, respectively.

• A , the token action related semantics label defined in
§4.2.2.

• T : N → A , a mapping function from nodes to the cor-
responding semantics labels.

Token flow graph is defined as G = (N ,E ,A ,T ). Figure 6
shows the generated TFG of the ULME incident introduced
in §3.1. As we can see, we retain the control flow dependency
relations in the original xFCG and extend nodes with their
corresponding token action related semantics. Additionally,
we parse the data flow dependencies among nodes, as the solid
line in Figure 6, representing the result of balanceOf is used
for swapped amount. Integrating data flow analysis enables us
to precisely track how token-related data propagates, offering
insights into the dependencies and effects of each token action.
For instance, this allows us to trace whether a user manipulates
the liquidity pool with borrowed funds following a Flashloan.

4.3 Anomalous Token Flow Detector
To improve the detection efficiency, we perform cross-
contract analysis as necessary. Thus, we propose a sensitive
path filtering method to avoid getting stuck in those mean-
ingless and recursive paths. Moreover, we design a set of



formal rules to robustly identify both direct and indirect price
manipulation behaviors introduced in §2.2.

4.3.1 Sensitive Path Filtering

As stated in Challenge 2, performing cross-contract analysis
for every external call is highly time-consuming and contra-
dicts the timeliness required for identifying attack contracts.
Therefore, we only initiate cross-contract analysis on those
suspicious sensitive paths. Based on previous empirical stud-
ies and analysis against DeFi attacks [64, 71, 79], a DeFi
attack typically consists of three stages, i.e., fund preparation,
token exchange, and fund transfer. Hence, when traversing
TFG, cross-contract analysis will only be conducted on the
corresponding nodes. For a clear illustration, we define the
following notations:

• Entry and Exit represent the starting and ending nodes
of TFG, respectively, to facilitate analysis.

• p = (N1, N2, ..., Nk), a k-tuple to represent a path in TFG,
where Ni ∈ N . For convenience, we adopt N ∈ p to
represent the node N is included in the path p. N1 ≺ N2
indicates that N1 is a predecessor of N2 in a path.

We use Sp to represent the set of sensitive paths and σ

denotes the sender address or contract address. Let p = (Nstart,
..., Nend), p⊆ Sp once if any the following conditions holds:

• Fund preparation: T (Nstart) = FL(_,_,_,σ) ∧ Nend = Exit.

• Token exchange: T (Nstart) = ST(_,_,_,_,_,_) ∧T (Nend)
= ST(_,_,_,_,_,_).

• Fund transfer: Nstart = Entry∧T (Nend) = Tr(_,_,σ,_).

The complexity of the naive implementation of identify-
ing sensitive paths is O(n2). Thus, to improve efficiency, we
only keep the longest path. That is, if ∀N ∈ p,N ∈ p′ and
p′ ⊆ Sp, only p′ will be kept. The cross-contract analysis will
be conducted on external calls in p′. For example, because
buyMiner() in Figure 6 lies on both the fund-preparation and
token-exchange sensitive paths, we will perform the cross-
contract analysis to the ULME contract.

4.3.2 Detecting Rules

According to the definition of price manipulation, as we illus-
trated in §2.2, we can identify the attack behavior based on
the following rules.
Rule 1: Pump-and-Dump. We first identify if there are two
ST actions interacting with an identical liquidity pool and
drain and deposit tokens to potentially manipulate the token
price. As shown in Rule 1, we use the predicate PPD to rep-
resent the path p along with the two related ST actions that

hold this property. Note that, a→ a′ indicates there is a data
flow dependency relationship from a to a′.

N1 ∈ p,N2 ∈ p,N1 ≺ N2,p⊆ Sp
T (N1) = ST(pr, _, t, _, a, _),T (N2) = ST(pr, t, _, a′, _, σ)

a→ a′

PPD(p, N1, N2)
(1)

Rule 2&3: Direct Price Manipulation. Based on Rule 1, we
can formally define how direct price manipulation is identified.
As shown in Rule 2, we adopt the predicate DPM to capture
the price of tokens (t and t ′) of which the liquidity pool (pr)
is manipulated. Such direct price manipulation should be
completed by taking advantage of flashloan services, where
the borrowed tokens will be directly used in N1.

PPD(p, N1, N2), N0 ∈ p, N0 ≺ N1
T (N0) = FL(t, _, σ, a),T (N1) = ST(pr, t, t’, a′, _, σ)

a→ a′

DPM(pr, t, t’)
(2)

Except for Rule 2, Rule 3 also demonstrates a type of di-
rect price manipulation. Their distinction exists in whether a
victim is involved (the entity shown in Figure 1(a) in §2.2). If
a victim exists, there will be another action between the two
in PPD. As shown in Rule 3, the victim should be involved
in a token swap between itself and the pool or add / remove
liquidity to / from the pool to manipulate the token price.
Finally, the DPM predicate records the victim address (vc)
and both involved tokens.

PPD(p, N1, N3), N2 ∈ p, N1 ≺ N2 ≺ N3
T (N1) = ST(pr, t, t’, _, a, _)

T (N2)=Tr(t, vc, pr,_)∨AL(pr,t,_,_,_,vc)∨RL(pr,_,t’,_,_,vc)
DPM(vc, t, t’)

(3)
Rule 4: Indirect Price Manipulation. As for indirect price
manipulation, we adopt IPM to capture its characteristics,
whose formal definition is shown in Rule 4. As we can see, it
looks similar to Rule 3. The difference is located on whether
the price fluctuation is caused by the victim address (vc) or
the attacker itself (σ).

PPD(p, N1, N3), N2 ∈ p, N1 ≺ N2 ≺ N3
T (N1) = ST(pr, t, t’, _, a, _)

T (N2)=Tr(_, vc, σ,_)∨AL(vc,t,_,_,_,σ)∨RL(vc,_,t’,_,_,σ)
IPM(vc, t, t’)

(4)

5 Implementation & Experimental Setup

Dataset. To comprehensively evaluate SMARTCAT, we have
collected two datasets, i.e., a ground-truth dataset (DG) and
a large-scale contracts dataset (DL). Specifically, DG con-
sists of two sub-datasets. DG1 comprises 84 attack events
labeled as price manipulation, sourced from various main-
stream platforms [17, 26, 27], the publicly released datasets
of FlashSyn [36] and DeFiRanger [71], and manually ver-
ified by two of our authors specializing in DeFi security2.

2Seven attack incidents labeled by FlashSyn and DeFiRanger are ex-
cluded. Please refer to Table 5 in Appendix for the reasons.



Moreover, we heuristically take the number of transactions
generated by a contract as the criterion to determine its benign
nature. Thus, we use APIs from Etherscan [19] and data from
TokenTerminal [29] to select the top 8,000 active contracts by
transaction volume as non-malicious cases (DG2). DL encom-
passes all contracts deployed in the recent two years, from
April 2022 to June 2024, covering over 770K contracts in
total. We deploy an Ethereum archive node using Geth [22] to
replay transactions and collect them. Finally, to demonstrate
SMARTCAT’s capability in real-time detection, we define
the attack time window as the period from the contract’s de-
ployment to the initiation of a price manipulation attack that
results in a profitable transaction against the victim contract.
Baseline Selection. To the best of our knowledge, there is
no tool that supports detecting price manipulation attack con-
tracts based solely on the contract bytecode. To evaluate the ef-
fectiveness of SMARTCAT, we select three the most relevant
state-of-the-art tools as baselines, i.e., DeFiRanger (DR) [71],
FlashSyn (FS) [36], and DeFiTainter (DT) [50]. Because DR
and FS are close-sourced and detect price manipulation based
on transaction data, we directly take the results from their
papers. Moreover, DT is an open-source tool that can detect
the potential victims of price manipulation on the bytecode
level. Thus, we provide all victims contract bytecode of inci-
dents in DG1 to evaluate its effectiveness. Note that though
DeFiGuard [68] claims it can extract behavioral features from
transactions and use graph neural networks to identify price
manipulation attacks, its model is close-sourced and it does
not release the corresponding dataset. Thus, we exclude De-
FiGuard from baselines.
Implementation. Based on the facts and IR generated from
Gigahorse [41], SMARTCAT is implemented in Python3,
comprising 1.8K lines of code. Additionally, SMARTCAT
utilizes custom declarative rules to obtain more detailed data
flow and call stack information, implemented through 500
lines of Datalog. All our experiments are conducted on a 96-
core server equipped with dual Intel(R) Xeon(R) Gold 6248R
CPUs and 256GB RAM running Ubuntu 22.04.1 LTS. The
timeout for Gigahorse decompilation is set to 120 seconds.
The recursive cross-contract analysis depth in SMARTCAT
is configurable and is set to three in the following evaluation.
Research Questions. We aim to explore the following re-
search questions (RQs):

RQ1 Is SMARTCAT effective and robust in identifying price
manipulation attack contracts on the bytecode level?

RQ1.1 What about the performance improvements of
SMARTCAT over baselines?

RQ1.2 Do the introduced methods, i.e., argument recov-
ery algorithm and sensitive path filtering module,
contribute positively to the final results?

RQ1.3 How robust is SMARTCAT against obfuscation?

Table 1: Comparison of detecting results on DG among
SMARTCAT and baselines. ST represents our tool SMART-
CAT, ST w/o R, ST w/o S, and ST w/o B excludes the argu-
ment recovery algorithm module, the sensitive path module,
and both of them, respectively.

Metrics #Detect DG1 DG2

TP FN Recall Time (s) #Alert FP Precision

ST 79 77 7 91.7% 32.18 68 2 99.975%
ST w/o R 49 47 37 56.0% 28.79 40 2 99.975%
ST w/o S 83 77 7 91.7% 86.36 52 6 99.925%
ST w/o B 53 47 37 56.0% 79.59 30 6 99.925%

DR 23 23 19 54.8% N/A N/A N/A N/A
FS 9 9 12 42.9% N/A N/A N/A N/A
DT 60 14 70 16.7% N/A N/A 46 99.425%

RQ2 How many price manipulation attack contracts exist in
the wild? What are their characteristics?

RQ3 Can SMARTCAT be taken as a real-time detector?

6 RQ1: Effectiveness and Robustness

To answer RQ1, we apply SMARTCAT and other baselines
on DG to quantitatively evaluate their effectiveness. We also
conduct an ablation study to evaluate the contribution of the
argument recovery algorithm and sensitive path filtering to
the final results. Finally, we assess SMARTCAT’s robustness
by applying it to obfuscated smart contracts.

6.1 RQ1.1: Comparison with Baselines

Overall Results. Table 1 illustrates the overall results of
SMARTCAT and the other three baselines on DG

3. Because
both DR and FS are close-sourced, we can only evaluate
their performance according to the results in their papers.
According to their data, out of 42 and 21 incidents, DR and
FS only detect 23 and 9 ones, respectively. As for DT, it can
only detect 14 vulnerable contracts out of 84 cases in DG1.
We observe that DT cannot deal with recent attack incidents
(see Table 6 in Appendix). We speculate the reason is that
it relies on manually crafted expert knowledge, while these
new cases integrate more advanced and complicated busi-
ness logic. In contrast, SMARTCAT successfully identifies
77 price manipulation attack contracts and demonstrates its
effectiveness on recent attack incidents. In other words, in
terms of recall, SMARTCAT (91.7%) outperforms the other
three baselines (54.8%, 42.9%, and 16.7%) significantly. As
for the efficiency, the average detection time of SMARTCAT
is only 32.18 seconds. According to the results, SMARTCAT
can alert the attack within the attack time window for 68 out
of 84 cases (81.0%). For the remaining 16 cases, 7 are due to
detection failures, while the other 9 have an attack window
of less than 20 seconds, which poses further challenges to

3The detailed results are in Table 6 in Appendix.



detection efficiency and also points out our future research
direction.

As for DG2, among 8,000 benign contracts, SMARTCAT
only generates 2 false positives. DT, however, produces 46
false positives. A manual review confirmed that these con-
tracts do not contain vulnerabilities detected by DT. This is
because DT only considers the token balance of external ad-
dresses as a taint source without accounting for constraints
such as slippage protection or maximum swap limits, lead-
ing to a higher rate of false positives. Overall, SMARTCAT
demonstrates a higher precision (99.975% vs. 99.425%) com-
pared to the state-of-the-art baseline.
False Negative Analysis. We manually investigate seven
false negatives in DG1 and summarize three root causes. First,
SMARTCAT relies on the decompilation results of Gigahorse,
which have inherent limitations. As its authors said [41], Gi-
gahorse cannot decompile all valid Ethereum contracts. For
example, case #14 is written in Vyper [32], another valid pro-
gramming language for Ethereum contracts but not widely-
adopted, which is not supported by Gigahorse. Moreover,
Gigahorse cannot correctly decompile case #51 even if we
extend the timeout to 60 minutes. Second, SMARTCAT de-
pends on accurately recovering function calls and arguments.
In cases #19 and #48, the attack contracts adopt obfuscation
techniques in MEV bots [23], dynamically passing offset val-
ues from Calldata and calculating function selectors with
predefined magic numbers, which invalidate SMARTCAT. In
case #18, the function arguments involve complex dynamic
types or custom structures, which render our heuristic argu-
ment recovery algorithm ineffective, leading to the failure to
correctly identify the semantics. Third, SMARTCAT does not
consider those attacks that require multiple transactions. In
case #23, the attacker completes the attack through two trans-
actions, i.e., calling stake() to deposit and exchange tokens
and then calling harvest() to execute the attack. Case #28
is similar. SMARTCAT fails to detect these attacks because it
focuses on those attack contracts that embed their logic within
a single transaction for rapid exploitation. We further discuss
these limitations in §9.

1 function swapTokenForFund(uint256 tokenAmount) private {
2 path[0] = address(this);
3 path[1] = usdt;
4 _swapRouter.swapExactTokensForXXX(amount1, 0, path,

tokenDistributor);
5 uint256 usdtBalance = USDT.balanceOf(tokenDistributor);
6 USDT.transferFrom(tokenDistributor, address(this),

usdtBalance);
7 ...
8 uint256 rewardUsdt = usdtBalance-fundUsdt-lpUsdt;
9 if (rewardUsdt > 0 && usdt != _rewardToken) {

10 path[0] = usdt;
11 path[1] = _rewardToken;
12 _swapRouter.swapExactTokensForXXX(rewardUsdt,0,path,

address(this));}
13 }

Listing 2: The swapTokenForFund() function.
4Indexed in Table 6 in Appendix, same notations hereafter.

False Positive Analysis. As for the two false positives in DG2,
further investigation reveals that both contracts implement the
swapTokenForFund() function, as shown in Listing 2. Its to-
ken flow aligns with the indirect price manipulation behavior
(step i to iii in §2.2). Specifically, the function first executes a
swap operation to exchange for USDT tokens (L2-L4), which
might affect its price in the liquidity pool (step i). It then trans-
fers USDT from a third-party address to the contract (L5),
potentially staking the tokens at an unfairly calculated price
(step ii). Finally, the function calculates the reward tokens to
be returned to the caller based on a predefined fee ratio (L7-
L10) and returns a portion of the USDT to the liquidity pool
(L12) (step iii). Consequently, SMARTCAT mistakenly identi-
fies it as an attack contract. The original intent of this function
is to distribute the incoming tokenAmount by converting it to
USDT, allocating portions to designated addresses, managing
liquidity, and finally swapping any remaining USDT back
to the contract. Though we can add extra rules to eliminate
such false positives, it may lead to other unexpected false
negatives. As a detector specifically designed for identifying
attack contracts with timely alerts, we choose to accept false
alarms to mitigate possible attacks more proactively.

6.2 RQ1.2: Ablation Study
We perform an ablation study by removing the argument re-
covery algorithm (see §4.2.1) and the sensitive path filtering
module (see §4.3.1) to evaluate their contributions. As shown
in Table 1, ST w/o R can only detect 47 attack contracts out
of 84 cases in DG1, mainly due to its inability to accurately
identify token actions for specific function calls, resulting
in an incomplete TFG. This means that integrating the argu-
ment recovery algorithm introduces 63.8% more true positive
cases, while only introducing the runtime overhead of 3.4
seconds. As for ST w/o S, the number of detected attacks on
DG1 is consistent with SMARTCAT. However, removing it
dramatically increases the average detection time by 1.7×,
i.e., 16 attacks cannot be alerted in time. Moreover, on DG2,
ST w/o S introduces 4 additional false positives. We find that
these four cases invoke the two false positives identified by
SMARTCAT. Since all execution paths are treated as poten-
tially sensitive paths, the cross-contract operations are also
incorrectly considered part of the attack. This demonstrates
that the sensitive path filtering module helps our tool focus on
suspicious paths, significantly reducing cross-contract analy-
sis time. Intuitively, ST w/o B, which does not integrate both
modules, performs poorly in terms of efficiency, precision,
and recall, underlining the significance of integrating these
two modules in SMARTCAT.

6.3 RQ1.3: Robustness
We further evaluate the robustness of SMARTCAT against
code obfuscation. Currently, two mature obfuscators for



Table 2: Performance of SMARTCAT under obfuscation.

Mode None LAO DFO LDO

FN 0 / 20 0 / 20 0 / 20 0 / 20
Avg. Time (s) 45.1 45.8 47.2 47.5

Ethereum smart contracts are available, i.e., BOSC [75] and
BiAn [77]. As BOSC performs on the deployed bytecode but
does not guarantee the deployability after obfuscation, we
adopt BiAn as the obfuscator. To be specific, BiAn performs
source-level obfuscation with three modes: Layout Obfusca-
tion (LAO), Data Flow Obfuscation (DFO), and Control Flow
Obfuscation (CFO). We note that 1) the replaceVarName
option of LAO changes external interface definitions, causing
mismatched function selectors of cross-contract calls; and 2)
the maintainer has also acknowledged that CFO is not yet
functional [7]. Thus, to ensure the contract functionality, we
only consider LAO, DFO, and LDO (combined with LAO and
DFO) as the obfuscation methods, consistent with a previous
work [35]. Since most attack contracts are only available as
bytecode, we construct a dataset of 20 contracts by i.e., 1)
reverse-engineering the bytecode of detected attack cases to
reproduce their source code; and 2) modifying PoCs of attacks
reported by security platforms [17]. We use Foundry [21] to
deploy the obfuscated contracts on a forked private chain,
simulating on-chain real-time detection scenarios. Note that
the environment is reinitialized before testing each case to
prevent caching from disturbing the final results. As shown
in Table 2, SMARTCAT accurately identifies all contracts
obfuscated by all three modes with acceptable runtime over-
head. Such robustness can be explained by two factors, i.e.,
1) LAO’s variable name replacement does not affect byte-
code analysis; and 2) Gigahorse provides a robust data flow
analysis, while SMARTCAT focuses on semantic informa-
tion that remains unchanged during DFO. We further discuss
conducting obfuscation on attack contracts in §9.

Answer to RQ1

Based on our comprehensive dataset, SMARTCAT outper-
forms all state-of-the-art baselines, effectively identifying
price manipulation attack contracts with 91.6% recall and
∼100% precision. Additionally, it can alert 81.0% of at-
tack contracts within the attack window and demonstrate
robustness against obfuscation techniques. The ablation
study confirms the significant role of the argument recov-
ery algorithm and sensitive path filtering module.

7 RQ2: Real-world Price Manipulation

To answer RQ2, we apply SMARTCAT on over 770K con-
tracts in DL, and characterize the financial impacts of identi-
fied attack contracts. Moreover, we also quantify the efficiency
of SMARTCAT on a large-scale experiment.
Overall Results. In total, we have identified 616 price manip-

ulation attack contracts, none of which are linked with source
code on Etherscan. We utilized auxiliary information, like
transaction traces and account labels to confirm the detection
results. Specifically, we tracked whether transactions involved
in any swap token operations and profited from price fluctua-
tions. We also take advantage of labels on Etherscan [19] and
reports from security service platforms [17, 26, 27].

Among them, till May 2024, 214 have already launched
the corresponding attack, accounting for 34.7%, where 19 of
them were reported in public. SMARTCAT can promptly raise
alerts within the attack window for 195 cases (91.1%), with
an average detection time of 27.6 seconds. Interestingly, out
of 214 cases, we have investigated 40 failed attack contracts
and 8 successful but no-profit contracts. After investigating
their decompiled bytecode and transactions, we identified two
primary reasons, i.e., 1) insufficient prerequisite conditions,
such as inadequate funds to destabilize liquidity pools or lack
of access control permissions, and 2) changes in on-chain
states that caused attackers to miss profit opportunities.

For the remaining 402 cases without initiating attack trans-
actions, to further analyze the effectiveness of our tool, we ran-
domly sampled 20 contracts. Taking advantage of an online
tool [16], we obtained the decompiled code of these contracts
for examination. Inspired by previous studies [20, 61], we
also consider flashloan services, deployer information, byte-
code length, and function signatures. Ultimately, among the
20 sampled contracts, we confirmed 16 as price manipulation
attack contracts as they demonstrated clear attack intent, such
as implementing functions related to flashloan callback, asset
transfer, and interaction with liquidity pool. The remaining
4 are inconclusive because either their code is obfuscated or
there is no additional information about the deployer. We
speculate there are two reasons why so many attack contracts
remain in the pre-attack stage. On the one hand, to ensure
timeliness and profitability, many attack contracts may deploy
attack templates in advance, allowing attackers to initiate ex-
ploitation at any time by passing in the address of the target
liquidity pool. On the other hand, we found delayed attacks
in DG1, where one case occurred 44 days after deployment.
Thus, we speculate attackers may have missed the opportunity
or are still waiting for the ripe time to maximize their profits.
Financial Impacts. In total, attackers have obtained $9.25M
in profits through 166 price manipulation attack contracts5,
out of which $0.96M are not reported at all (related to 147
successful contracts). Though the reported attacks have ac-
counted for 89.6% of financial losses, we cannot neglect the
impact of unreported ones. Figure 7(a) illustrates the distri-
bution of attack profits. As we can see, price manipulation
attacks have persisted alongside the growth of Ethereum, in-
dicating that attackers have consistently targeted potential
vulnerabilities in the DeFi ecosystem with the intent to steal
funds. There is a noticeable trough in late-2022, which may

5214 cases without 40 failed and 8 no-profit cases.
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Figure 7: Distribution of attack profits by deployment time.
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Figure 8: Distribution of contract runtimes.

be linked to the collapse of the FTX project and the increased
scrutiny by the U.S. Securities and Exchange Commission
on crypto institutions [8]. This has led to a more conserva-
tive approach to the development of the DeFi ecosystem. It
reflects that the activity level of price manipulation attacks is
closely related to the growth and evolution of DeFi. Addition-
ally, Figure 7(b) illustrates the number and profitability of the
two types of price manipulation attacks. In total, 136 direct
price manipulation (DPM) attack contracts generated a profit
of $8.60M, far exceeding the $0.65M from 30 indirect price
manipulation (IPM) attack contracts. This disparity arises be-
cause attackers often use flashloans to directly manipulate the
number of tokens in liquidity pools, causing price fluctuations.
In contrast, IPM attacks interact with third-party addresses,
requiring more effort and costs for attackers.
Efficiency. We further analyze the efficiency of SMARTCAT
on DL. We sampled 15K contracts from DL, assigning a sep-
arate process to each contract for analysis. The distribution
of the used time is shown in Figure 8. As we can see, 98.1%
contracts can be finished within 25 seconds. If we extend the
runtime to 40.6 seconds, 99% of the contracts can be covered.
Our statistics further show that the average time for a contract
is only 12.1 seconds. Figure 9 illustrates the relationship be-
tween the consumed time and the length of the bytecode based
on randomly sampled 1,000 contracts. We can observe that
there is no exponential relationship between these two metrics.
This is because SMARTCAT only performs cross-contract
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Figure 9: The relationship between the consumed time and
the length of the bytecode on each case.

analysis on nodes within sensitive paths during execution (see
§4.3.1), thereby reducing the time overhead and improving its
scalability. For the top-left outliner that takes 226 seconds6,
we find that SMARTCAT does not perform additional cross-
contract analysis. Instead, 158 seconds are spent on Gigahorse
inlining small functions to produce a higher-level IR, and 65
seconds are used for generating facts for client execution. The
correlation analysis only illustrates the weak linear relation-
ship between them, where r is 0.306 with p < 0.001, further
proving the efficiency of SMARTCAT.

Answer to RQ2

SMARTCAT has identified 616 price manipulation at-
tack contracts in total, accounting for $9.25M in financial
losses, where only 19 cases were reported publicly. More-
over, SMARTCAT can analyze 98.1% of cases within 25
seconds, and there is only a weak linear relationship be-
tween the consumed time and bytecode length (r = 0.306
with p < 0.001), demonstrating the efficiency and scala-
bility of SMARTCAT on real-world tasks.

8 RQ3: Real-time Detection

To answer RQ3, we have deployed SMARTCAT on Ethereum
and Binance Smart Chain (BSC) as a real-time detector since
July 11th, 2024. We monitor the latest blocks using Geth
RPC nodes [22] and extract contract bytecode from contract
creation transactions. To accelerate the analysis, we have
deployed 15 instances in parallel. Additionally, the number
of deployed instances can be dynamically scaled based on the
volume of newly created contracts.
Overall Results. In total, SMARTCAT has reported 14 cases,
as shown in Table 3 and Table 4, illustrating the completed
attacks and failed/unfinished ones, respectively.

As we can see from Table 3, three successful cases were
all performed on BSC. Compared to their corresponding at-
tack window, we can conclude that SMARTCAT is efficient
enough to identify contracts’ semantics and raise alarms for
the upcoming price manipulation attack. According to our
statistics, these three cases have resulted in financial losses
worth more than $641K.

Moreover, Table 4 illustrates four failed and seven unfin-
ished price manipulation attempts. We manually investigated

6Contract address: 0xA5C0D0CAf243697143ed9f06b259050A77cE5887



Table 3: Successfully conducted price manipulation attacks alerted by SMARTCAT. All times are in 2024 and are presented in
UTC. Numbers in parenthesis are time windows since deployment in seconds.

Victim DApp Type Deploy Time Alert Time Attack Time Loss ($) Attack Transaction Hash

UPS (BSC) IPM 07/12 11:09:12 07/12 11:10:32 (80) 07/12 11:12:24 (192) 521K 0x1ddf415a4b18d25e87459ad1416077fe7398d5504171d4ca36e757b1a889f604
TokenStake (BSC) DPM 08/05 18:52:25 08/05 18:55:02 (157) 08/05 19:11:49 (1,164) 110K 0x94ff0c3f3177a6ffd3365652ae2dc1f0a4ecf5f5758df1fdc3339303992a2ae4

FXS (BSC) DPM 08/21 11:56:43 08/21 11:57:21 (38) 08/21 11:58:04 (81) 10K 0xa479ae7d0b53ec8049de7f4556aa9b1d406f51dacd027ebe60f9f45788b7deb2

Table 4: Failed and unfinished price manipulation attempts
detected by SMARTCAT. Same notations with Table 3.

Status Address Type Deploy Time Alert Time Chain

Failed
(4)

0xDd02... DPM 07/26 06:50:35 07/26 06:52:05 (90) BSC
0xE39b... IPM 08/02 18:37:06 08/02 18:37:32 (26) BSC
0x5dB0... IPM 08/16 16:26:11 08/16 16:28:02 (111) ETH
0xbc3E... DPM 08/25 08:14:38 08/25 08:16:43 (125) BSC

Unfinished
(7)

0x0EBD... DPM 07/17 05:41:52 07/17 05:42:39 (47) BSC
0x7707... DPM 08/05 19:17:58 08/05 19:19:56 (118) BSC
0xd270... DPM 08/13 11:15:59 08/13 11:16:50 (51) ETH
0x2F6C... DPM 08/13 15:26:45 08/13 15:31:14 (269) BSC
0x85Ea... DPM 08/16 08:16:47 08/16 08:17:49 (62) BSC
0x02F8... DPM 08/17 09:01:02 08/17 09:03:53 (171) BSC
0x35Be... DPM 08/21 11:59:55 08/21 12:00:36 (41) BSC

the bytecode and transaction of four failed attempts. We found
that three of them reverted due to an inability to repay the
flashloan, and one was due to running out of gas as a result
of multiple transfer loops within the transaction. As for all
seven unfinished ones, we have observed explicit attack in-
tent, as the ones we stated in the Overall Results part in
RQ2. Interestingly, we have noticed that the unfinished case
located at 0xd270 has another contract (0xb7f2) with identi-
cal bytecode that is reported by Etherscan. We have noticed
that 0xb7f2 is involved in a real-world price manipulation at-
tack7 which is identified in RQ2. The attack was launched 110
days after the contract deployment and led to around $1.1M
in financial losses. 0xd270 is deployed six minutes after the
attack. Thus, we infer that 0xd270 is either another try from
the same team and waiting for the ripe time, or a test contract
used by the victim to analyze the cause of the attack.

1 // Step_0: use flashloan to borrow BUSD token
2 function pancakeV3FlashCallback(uint256 varg0, uint256 varg1,

bytes _) public nonPayable {
3 v1 = BUSD.balanceOf(address(this));
4 // Step_1: swap BUSD to UPS
5 v2, v3 = sto_2.swapExactTokensForTokens(v1, 1, [BUSD, UPS],

address(this), _);
6 v4 = UPS.balanceOf(address(sto_0));
7 // Step_2: Get UPS token from another contract
8 UPS.transferFrom(sto_0, address(this), v4);
9 v5 = UPS.balanceOf(address(sto_5));

10 // Calculate swap amount for price manipulation
11 v6 = (v5 - 1) * 20 / 19;
12 // step_3: swap UPS to BUSD at a very low price
13 v7, v8 = sto_2.swapExactTokensForTokens(v6, 1, [UPS, BUSD],

address(this), _);
14 BUSD.transfer(sto_9, varg1 + 1000);
15 v9 = BUSD.balanceOf(address(this));
16 BUSD.transfer(msg.sender, v9);
17 }

Listing 3: Attack contract against UPS.

Case Study. To better illustrate the effectiveness of SMART-
CAT, we conducted a case study of the attack against UPS on

7Attack transaction hash: link

BSC (first data row in Table 3), which has led to $521K finan-
cial losses. Since the contract does not release its source code,
we use an online tool [16] to obtain its decompiled represen-
tation, as shown in Listing 3. We perform some necessary
simplifications to clearly demonstrate the attack.

The attacker first borrows a large amount of BUSD to-
kens through a flashloan and then executes the attack logic in
pancakeV3FlashCallback() (L2). The attacker swaps the
borrowed BUSD tokens to UPS tokens and transfers them to
the attack contract itself (L6). Another bunch of UPS tokens
are transferred from a third-party address to the attack con-
tract (L9). Finally, the attacker swaps all UPS tokens back to
BUSD and transfers them to the call sender (L15 – L19). This
matches the pattern of indirect price manipulation (see §2.2),
thus SMARTCAT raises the alarm and marks the UPS token
as the manipulated token.

1 function _update(address from, address to, uint256 amount)
internal virtual override {

2 if (inSwapAndLiquify || whiteMap[from] || whiteMap[to] || !(
from == pairAddress || to == pairAddress)) {

3 super._update(from, to, amount);
4 ...
5 } else if (to == pairAddress) {
6 uint256 fee = amount * 5 / 100;
7 if (!inSwapAndLiquify) {
8 // Vulnerable point.
9 _swapBurn(amount - fee);}}

10 ...
11 }

Listing 4: Vulnerable _update() in UPS.

To analyze the root cause of this attack, we have
tracked to a customized _update() function in the UPS’s
transferFrom() function, whose source code is shown in
Listing 4. Specifically, it calculates the number of UPS to-
ken needed to burn based on an externally provided amount
(L9). This operation affects the contract’s reserve calculations,
thereby manipulating the token exchange price. In this case,
the attacker passed a predetermined number of UPS tokens, as
shown at L13 in Listing 3. This operation has led to the reser-
vation of UPS token dropping to 1 during the second token
exchange. As a result, the attacker exchanges a large amount
of BUSD by taking advantage of indirect price manipulation.

Answer to RQ3

Within 50 days, SMARTCAT has raised 14 alarms about
potential price manipulation attacks on Ethereum and BSC
99 seconds after the corresponding contract deployment on
average. Notably, these attacks have already led to $641K
financial losses, and seven of them are still waiting for
their ripe time.

https://etherscan.io/tx/0x758efef41e60c0f218682e2fa027c54d8b67029d193dd7277d6a881a24b9a561


9 Discussion

In this section, we will discuss some limitations of our work.
Firstly, SMARTCAT does not consider path feasibility,

which may lead to false positives when raising alarms. How-
ever, deploying contracts requires gas fees, and attackers gen-
erally aim for profit. It is unlikely that attackers would intro-
duce dead loops or unreachable code in their attack contracts.
Therefore, we assume that attackers maintain full control over
their contracts and ensure all branches are reachable to exe-
cute the attack effectively.

Secondly, SMARTCAT utilizes function signature tem-
plates combined with heuristic rules to extract token flow
related semantics in §4.2.2, which is unable to infer those
uncommon function signatures. However, attack contracts
typically rely on well-established and widely-used DEXes,
which lowers the chances of such oversights. Additionally,
integrating large language models in future work could help
in identifying the semantics and parameter information of
these external calls more accurately as illustrated in [70].

Thirdly, SMARTCAT relies on accurate decompilation and
argument recovery, where complex obfuscation techniques
may cause Gigahorse to fail. Attackers may also employ un-
known evasion techniques to bypass detection. Since attackers
rarely disclose their obfuscation methods, existing research
in this area is limited. However, attack contracts are typi-
cally one-time-use and lack reusability, making obfuscated
attack contracts rare. Moreover, adopting obfuscation incurs
extra gas costs, further reducing attackers’ willingness to use
them. Additionally, SMARTCAT may struggle to recover ar-
guments correctly when dealing with complex dynamic types
or custom structures. Due to the EVM stack and low-level
operations, recovering function arguments and types remains
an open challenge, as highlighted by VarLifter [52].

Another limitation is that SMARTCAT does not account for
attacks conducted across multiple transactions. However, it is
intuitive that attackers prefer quick attacks executed within
a single transaction to avoid state changes in the victim con-
tracts. We admit that some attackers would perform deploy-
ment and attack within the same block, resulting in an ex-
tremely short attack window. Due to the current time con-
straints of SMARTCAT in detecting attacks, it may fail to
issue timely alerts for such cases, as it relies on Gigahorse
for decompiling bytecode, which is time-consuming. In the
future, we plan to accelerate analysis by simulating the EVM
stack directly and filtering out long or irrelevant paths that do
not match attack patterns for faster detection.

10 Related work

Smart Contract Vulnerability Detection. Various studies
and tools have been proposed to detect hidden vulnerabili-
ties in smart contracts to prevent asset loss for users. Static
analysis tools like Slither [39], SAILFISH [33], Securify [67],

VETEOS [51], and Ethainter [34] analyze source code or byte-
code. Gigahorse [41, 43] and MadMax [42] offer a decom-
pilation framework that translates bytecode to a custom IR.
AVVERIFIER [65] performs taint analysis by simulating the
process of EVM stack execution. Symbolic execution tools
like Mythril [4], Oyente [53], ETHBMC [40], EOSAFE [46]
and Manticore [56] explore potentially vulnerable paths us-
ing constraint solvers. Dynamic analysis approaches, such
as fuzzing tools [37, 44, 45, 49, 54, 63, 72, 74], generate
random inputs or reorder historical transaction sequences to
test contracts. Furthermore, GPTScan [66] leverages large
language models [47] to localize vulnerabilities by defining
vulnerability scenarios.
Price Manipulation Detection. Price manipulation attacks
have long posed a serious threat to the DeFi ecosystem. Ex-
isting tools like DeFiRange[71], DeFiGuard [68], and Flash-
Syn [36] detect such attacks based on transaction information.
DeFiTainter [50] starts from contract bytecode, using cross-
contract taint analysis to explore all execution paths and locate
entry points of vulnerable functions.
Attack Contract Identification. Attackers increasingly pre-
fer to launch attacks through contracts. Su et al. [64] col-
lect key threat intelligence related to DApp attack incidents
through measurements and implement an automated tool
for large-scale discovery of attack incidents. Forta [20] and
Lookahead [61] extract statistical features of attack contracts
and train machine learning models to develop classifiers. Yang
et al. [73] construct call chains from attack contracts to vic-
tim contracts and locate vulnerable functions based on the
characteristics of reentrancy attacks.

11 Conclusion

In this work, we propose SMARTCAT, an effective and effi-
cient static analyzer to identify price manipulation attack con-
tracts solely on the bytecode level. Based on the decompiled
intermediate representation, with the help of the data-flow-
based heuristic arguments recovery algorithm and sensitive
path filtering method, SMARTCAT successively builds the
cross-function callsite graph and token flow graph to char-
acterize the control- and data-flow dependency relationships
among function calls. According to the formally defined rules,
SMARTCAT can achieve 91.6% recall and ∼100% precision
on a ground truth dataset, while also demonstrating robust-
ness against obfuscation techniques. Furthermore, SMART-
CAT has revealed 616 potential price manipulation attack
contracts, accounting for $9.25M financial losses, where only
19 cases were reported publicly. By adopting SMARTCAT on
Ethereum and BSC, SMARTCAT has raised 14 alarms 99 sec-
onds after the corresponding deployment on average. These
alarmed ones have already led to $641K financial losses, while
seven of them are still waiting for their ripe time.



Ethical Consideration

In RQ1, both DG and DL used in our study are sourced from
publicly available blockchain service platforms or social me-
dia. The attack contracts in DG have already been thoroughly
verified by security professionals and are no longer capable
of causing further economic harm to the DeFi ecosystem.

During our large-scale analysis of deployed contracts in
RQ2, SMARTCAT successfully identified 616 attack con-
tracts, where only 19 cases were reported previously. We
tested these contracts on a private blockchain and confirmed
that some of them still have the potential to launch profitable
attacks. We are in the process of contacting the relevant
project teams through various channels, including project
websites and community platforms. Considering that publicly
disclosing the addresses of these attack contracts could attract
malicious attempts, this part of the data is excluded from our
open-sourced dataset.

In RQ3, during the real-time monitoring of the Ethereum
and Binance Smart Chain, SMARTCAT has successfully
raised 14 alerts. Unfortunately, due to the short window be-
tween contract deployment and attack execution for the three
cases in Table 3, attackers were able to launch and obtain prof-
its before we could establish contact with the project teams.
As for the seven unfinished ones, we have contacted the rele-
vant project teams once after the alarm is raised. We strongly
encourage stakeholders in the community to integrate tools
like SMARTCAT to prevent or mitigate such kinds of threats.

Data Availability

We have released SMARTCAT and the ground-truth
dataset (DG) at https://figshare.com/articles/
online_resource/SMARTCAT_Artifact/28192028.
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APPENDIX

A Detailed Detection Results

Table 5: The attack incidents that are in the released datasets
of FlashSyn and DeFiRanger but are not selected.

Dataset Chain App Reason

FlashSyn

ETH Eminence Design Flaw
ETH Yearn Design Flaw
ETH bearFi Design Flaw
BSC AutoShark Non-Contract
BSC ElevenFi Design Flaw

DeFiRanger ETH Dracula Undisclosed
BSC Belt Finance Non-Contract

Table 5 lists seven attack events that are included in the
released datasets of FlashSyn and DeFiRanger but are not
selected by this study. We summarize the following three
reasons:

• Design Flaw: the incident, which is exclusively the focus
of FlashSyn, differs from price manipulation. It arises
from flawed logic in one or more functions of the victim
contracts, leading to highly specific vulnerabilities.

• Non-Contract: the incident is initiated by an EOA in-
stead of a smart contract, which is out of our scope.

• Undisclosed: the incident is not reported on any
blockchain security platforms/forums or other social me-
dia, which cannot 100% guarantee its existence.



Table 6: Detecting results for different tools on DG1, where ✓indicates the corresponding attack/vulnerable contract can be
detected. DR, FS, DT, and SC refer to DeFiRanger, FlashSyn, DeFiTainter, and SMARTCAT, respectively.

# Victim App Attack Time Loss Chain DR∗ FS∗ DT SC # Victim App Attack Time Loss Chain DR∗ FS∗ DT SC

1 bZx 2020/02/18 350.0K ETH ✓ ✓ 43 MCC 2023/05/09 19.0K BSC ✓
2 Balancer 2020/06/28 447.0K ETH ✓ ✓ 44 HODLCapital 2023/05/09 4.3K ETH ✓
3 Loopring 2020/09/30 29.0K ETH ✓ ✓ 45 SellToken 2023/05/11 95.0K BSC ✓
4 Harvest 2020/10/26 21.5M ETH ✓ ✓ ✓ ✓ 46 LW 2023/05/12 50.0K BSC ✓
5 PloutoFinance 2020/10/29 650.0K ETH ✓ ✓ 47 CS 2023/05/23 714.0K BSC ✓
6 CheeseBank 2020/11/06 3.3M ETH ✓ ✓ ✓ ✓ 48 EBPools 2023/05/31 111.0K ETH
7 ValueDefi 2020/11/24 6.0M ETH ✓ ✓ ✓ 49 Cellframe 2023/06/01 76.0K BSC ✓ ✓
8 SealFinance 2020/11/15 4.3K ETH ✓ ✓ 50 VINU 2023/06/06 6.0K ETH ✓
9 WarpFinance 2020/12/17 7.8M ETH ✓ ✓ ✓ ✓ 51 UN 2023/06/06 26.0K BSC
10 ApeRocket 2021/07/14 1.3M BSC ✓ ✓ ✓ 52 SellToken 2023/06/11 106.0K BSC ✓
11 ArrayFinance 2021/07/18 516.0K ETH ✓ ✓ 53 CFC 2023/06/15 16.0K BSC ✓
12 Zenon 2021/11/20 1.0M BSC ✓ ✓ 54 IPO 2023/06/20 483.0K BSC ✓
13 CollectCoin 2021/12/01 1.0M BSC ✓ ✓ 55 SHIDO 2023/06/23 230.0K BSC ✓
14 IVM 2021/12/17 1.0M BSC ✓ ✓ 56 LUSD 2023/07/07 16.0K BSC ✓
15 MIGE 2022/02/09 42 BSC ✓ ✓ 57 WGPT 2023/07/12 80.0K BSC ✓
16 OneRing 2022/03/21 1.5M FTM ✓ ✓ 58 ApeDAO 2023/07/18 7.0K BSC ✓
17 WienerDOGE 2022/04/25 30.0K BSC ✓ ✓ ✓ 59 ConicFinance 2023/07/23 934.0K ETH ✓
18 bDollar 2022/05/21 2.3K BSC ✓ 60 Uwerx 2023/08/02 324.0K ETH ✓
19 Novo 2022/05/29 89.6K BSC ✓ ✓ 61 Zunami 2023/08/14 2.0M ETH ✓
20 Fswap 2022/06/13 432K BSC ✓ ✓ 62 BTC20 2023/08/19 30.0K ETH ✓
21 InverseFi 2022/06/16 1.3M ETH ✓ ✓ ✓ ✓ 63 EHIVE 2023/08/21 15.0K BSC ✓
22 SpaceGodzilla 2022/07/13 25.0K BSC ✓ ✓ 64 GSS 2023/08/24 24.8K BSC ✓
23 EGDFinance 2022/08/07 36.0K BSC ✓ 65 EAC 2023/08/29 6.3K BSC ✓
24 ZFinance 2022/09/05 61.0K BSC ✓ 66 JumpFarm 2023/09/05 4.0K ETH ✓
25 NewFreeDAO 2022/09/08 1.9M BSC ✓ ✓ 67 HCT 2023/09/07 6.5K BSC ✓
26 BXH 2022/09/28 40.0K BSC ✓ ✓ 68 UniclyNFT 2023/09/16 6.0K ETH ✓
27 TempleDao 2022/10/11 2.3M ETH ✓ 69 KubSplit 2023/09/24 78.0K BSC ✓
28 ATK 2022/10/12 127.0K BSC 70 BH 2023/10/11 1.3M BSC ✓
29 MToken 2022/10/16 1.0M BSC ✓ ✓ 71 MicDao 2023/10/18 13.0K BSC ✓
30 PlantWorld 2022/10/17 24.5K BSC ✓ 72 UniverseToken 2023/10/27 1.5M BSC ✓
31 HEALTH 2022/10/20 8.8K BSC ✓ ✓ 73 OnyxProtocol 2023/11/01 2.0M ETH ✓
32 Market 2022/10/24 65.0K POL ✓ 74 3913Token 2023/11/02 31.3K BSC ✓
33 n00dleswap 2022/10/25 31.0K ETH ✓ ✓ 75 Grok 2023/11/10 56.0K ETH ✓
34 ULME 2022/10/25 50.0K BSC ✓ ✓ 76 Token8633 2023/11/17 52.0K BSC ✓
35 VTFToken 2022/10/27 111.0K BSC ✓ 77 ElephantStatus 2023/12/06 165.0K BSC ✓
36 UPSToken 2023/01/18 405.0K ETH ✓ ✓ 78 BurnsDefi 2024/02/05 67.0K BSC ✓
37 BscAnt3 2023/01/19 426K BSC ✓ ✓ 79 GAIN 2024/02/21 18.0K ETH ✓
38 SHEEP 2023/02/10 3.0K BSC ✓ 80 WSM 2024/04/04 18.0K BSC ✓
39 DYNA 2023/02/22 23.0K BSC ✓ 81 UPS 2024/04/09 28.0K BSC ✓
40 AToken 2023/03/21 28.4K BSC ✓ 82 MARS 2024/04/16 100.0K BSC ✓
41 BIGFI 2023/03/22 30.0K BSC ✓ 83 SATX 2024/04/16 27.6K BSC ✓
42 SFM 2023/03/28 8.0M BSC ✓ ✓ 84 Z123 2024/04/22 135.0K BSC ✓
∗ Due to their closed-source nature, DeFiRanger and FlashSyn cannot be tested on incidents occurring after 2023/3/28 and 2022/6/16, respectively.
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