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Abstract
We present Shechi, an easy-to-use programming frame-
work for secure high-performance computing on distributed
datasets. Shechi automatically converts Pythonic code into a
secure distributed equivalent using multiparty homomorphic
encryption (MHE), combining homomorphic encryption (HE)
and secure multiparty computation (SMC) techniques to en-
able efficient distributed computation. Shechi abstracts away
considerations about the private and distributed aspects of the
input data from end users through a familiar Pythonic syntax.
Our framework introduces new data types for the efficient
handling of distributed data as well as systematic compiler
optimizations for cryptographic and distributed computations.
We evaluate Shechi on a wide range of applications, including
principal component analysis and complex genomic analysis
tasks. Our results demonstrate Shechi’s ability to uncover
optimizations missed even by expert developers, achieving up
to 15× runtime improvements over the prior state-of-the-art
solutions and a 40-fold improvement in code expressiveness
compared to code manually optimized by experts. Shechi rep-
resents the first MHE compiler, extending secure computation
frameworks to the analysis of sensitive distributed datasets.

1 Introduction

Analyzing large and diverse datasets distributed among multi-
ple stakeholders is crucial in numerous domains that involve
sensitive data, such as biomedical and financial information.
However, concerns about privacy and intellectual properties,
as well as legal frameworks [31, 39] that restrict the sharing
of sensitive data, have resulted in the creation of data silos
that significantly hamper data analytics [72].

Modern cryptographic techniques offer promising strate-
gies to address these concerns by allowing one to perform
computations securely over private data. These methods en-
able multiple institutions to jointly run analyses on combined
data through the exchange of encrypted information, typically
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leveraging fully homomorphic encryption (HE), secure multi-
party computation (SMC), or their combination in the form of
multiparty HE (MHE) to protect the privacy of each party’s
data [6, 18, 26–29, 42, 54, 74]. However, these methods come
with several challenges that prevent their widespread adop-
tion. In the case of HE, the computational overhead associated
with its cryptographic primitives often leads to impractical
runtimes on large datasets or necessitate the adoption of sim-
plified, less accurate variants of the desired analysis. On the
other hand, SMC involves interaction among multiple parties
and typically suffers from a high communication overhead
because all data must be shared and synchronized among the
parties during the execution.

Although a hybrid framework based on MHE can, in prin-
ciple, lead to a significant reduction in computational costs on
large-scale distributed datasets compared to existing methods
based on HE and SMC, to the best of our knowledge, there
does not exist a compiler for MHE that can streamline the
development of such protocols. As a result, secure distributed
software development currently demands profound expertise
in the often disparate domains of cryptography, distributed
algorithms, and domain-specific analytics. It typically entails
(i) manually designing a distributed yet equivalent version
of the original algorithm, (ii) developing a secure version of
this algorithm by manually integrating cryptographic primi-
tives while considering their capabilities and limitations, (iii)
implementing the algorithm using low-level cryptographic
libraries, and (iv) manually optimizing its performance. Each
of these steps can affect a solution’s runtime by several or-
ders of magnitude, making the difference between practical
and infeasible solutions [29]. Moreover, these steps typically
must be considered jointly, requiring intricate manual opti-
mizations and resulting in complex implementations whose
security is difficult to verify, either manually or automatically,
and challenging to maintain in the future.

Here, we introduce Shechi, the first programming frame-
work that automates the transformation of standard high-level
Pythonic code into an efficient and secure MHE equivalent for
execution on distributed datasets. Shechi enables end users



to write code in familiar syntax without needing prior cryp-
tography or distributed algorithms expertise. It functions as
an end-to-end ahead-of-time compiler that analyzes and com-
piles compatible Pythonic code and optimizes it through a
set of MHE-specific static and dynamic optimization passes.
It is built on top of Codon [65–67], an LLVM-powered [44]
ahead-of-time compiler that allows seamless integration of
domain-specific optimization passes on top of Pythonic code.
Shechi introduces new high-level code optimization strate-
gies that operate on top of secure expressions and leverage
the specific features of MHE to improve the performance
of evaluating such expressions. It notably implements vari-
ous compile-time and runtime code optimizations for parallel
computation over large encrypted vectors, effective workload
distribution among computing parties, and efficient local com-
putations on non-encrypted data. Shechi also introduces new
data types—local and distributed secure tensors—that encap-
sulate data partitioned among parties to orchestrate distributed
computations on top of them. To overcome the computational
limitations of HE and leverage the versatility of SMC com-
putations without sharing all input data, Shechi also handles
the dynamic orchestration between HE and SMC for specific
computations that allow it, thus enabling the writing of com-
plex applications that can handle large-scale private input data.
For example, Shechi supports essential matrix and vector op-
erations from the standard NumPy library [35] and provides a
range of machine learning routines, including linear and logis-
tic regression, support vector machines, and neural networks.

Our evaluations show that Shechi achieves comparable
performance with low-level HE and SMC libraries and out-
performs other state-of-the-art high-level secure compilers.
We showcase the effectiveness of our solution through the
design and evaluation of various large-scale data analytics
workflows, including principal component analysis (PCA)
and complex tasks in genomics. We also integrated a special-
ized Keras-like [19] library into Shechi, enabling, for the first
time, the easy, flexible, and practical implementation and exe-
cution of neural network training in the MHE context. Many
of these workflows are too complex for existing solutions
to handle effectively due to their complexity and the scale
of the data they process. For all applications, our solution
led to easy-to-read, pseudocode-like Pythonic implementa-
tions of the algorithms and improved the expressiveness of
the existing secure solutions by up to 40× and achieved up
to 15× better runtime performance. Shechi also scales bet-
ter than other approaches as the number of parties and data
dimensions grows: we show that its runtime only increases
by a factor of 1.5 compared to 5.5 for a secret-sharing-based
SMC solution when the number of parties and data dimen-
sions are quadrupled. Shechi’s systematic approach enables it
to match or even surpass the performance of manually opti-
mized, expert-written code. Thus, our framework for secure
distributed computation enables practitioners to write secure
applications easily and constitutes an important step for the

design and adoption of secure distributed solutions.
In summary, here we present:

• Shechi, a new modular programming framework and com-
piler for secure distributed applications that leverage multi-
party homomorphic encryption.

• New data types and a set of associated libraries designed
to encapsulate data distributed among the parties and effec-
tively orchestrate distributed computation.

• A set of compile-time code analysis and runtime optimiza-
tion passes that enable translating standard Pythonic code
into efficient, secure distributed equivalents.

• Demonstration on real-world datasets and applications that
Shechi effectively translates conventional Pythonic code
into secure and performant distributed workflows, even for
complex tasks that cannot be practically instantiated with
the existing secure compilers.

Our software is open source and publicly available at
https://zenodo.org/records/14725520.

2 Problem Statement

In this work, we address the following problem: how to au-
tomatically transform a high-level Pythonic program that an-
alyzes private structured data (such as matrices) split across
multiple parties into a secure distributed equivalent with scal-
able performance, using multiparty cryptographic primitives
for security guarantees. The data-holding parties should ob-
tain only the final result and must not learn any other informa-
tion about the other parties’ data beyond what can be inferred
from the final result (i.e., input privacy must be respected) or
from the application code (which is considered public). We as-
sume that the data-holding parties are honest-but-curious and
non-colluding—in other words, they are willing to collaborate
faithfully but might try to infer information from the protocol
execution. Under this model, the parties execute the assigned
programs without modification and do not use artificial inputs
crafted to extract information about other parties’ data.

We focus on secure analytics in cross-silo settings where
each party holds a typically large-scale subset of the joint
dataset. We consider general-purpose programs that analyze
structured data (typically through vector and matrix opera-
tions), which are fundamental in many data-centric domains
(e.g., machine learning, statistical analysis and image process-
ing). An example of such code is shown in our lead example
in Fig. 1 where the user defines a forward pass of QR decom-
position [3]—an essential procedure in many data analytics
workflows such as dimension reduction through PCA—by
expressing it as a standard Numpy-backed Python procedure.
This procedure has to be executed on the dataset in the matrix
shape partitioned across multiple parties.

https://zenodo.org/records/14725520
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from shechi import mhe, SDT, forward_qr


env = mhe() # set crypto. multiparty environment

# Load data into a secure distributed tensor (SDT)

data = SDT.collective_load(env, ”path.csv”, 

    rows_local=32, cols=8192, dtype=float).T

forward_qr(env, data)

class SLT[ctype]:  
  # ctype is plain/cipher-text 
  data: list[ctype] 
  shape: list[int] 
  encoding: int # row/col./diag.

@shechi 
def fqr(X): 
    u = copy(X[0]) 
    u[0] += u.norm() + u[0].sign() 
    u !" u.norm() 
    X -= X @ u.T @ u * 2 
    return X[1:, 1:] 

fqr(load(“X.csv”).T).reveal()

Input:Code:

from shechi import mhe, SDT, forward_qr


env = mhe() # set crypto. multiparty environment

# Load data into a secure distributed tensor (SDT)

data = SDT.collective_load(env, ”path.csv”, 

    rows_local=32, cols=8192, dtype=float).T

forward_qr(env, data)
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Figure 1: Example of high-level Pythonic code (left; for-
ward pass of QR decomposition) to be securely executed
on the input X split vertically among 3 parties (right). Man-
ually implementing this distributed procedure with existing
secure solutions either requires large code that breaks down
all steps and coordinates data among parties or results in non-
scalable executables.

3 Related Work

Non-secure federated frameworks (NSFFs) [25, 30, 55, 58]
typically distribute computations across multiple parties (i.e.,
workload distribution) to enable efficient and versatile opera-
tions on distributed datasets. However, they involve exchang-
ing non-protected intermediate results among parties, poten-
tially disclosing information about the input data [53, 76]. Ex-
isting secure solutions, on the other hand, usually require the
input data to be encrypted and then shared among computing
parties. Computations are then performed on the encrypted
data, leading to communication and computation overheads
that quickly grow with workflow complexity, number of com-
puting parties, and data scale. We summarize existing frame-
works and their comparisons with our approach in Table 1.

Several HE-based compilers have been proposed [32, 70]
to facilitate the development of applications on encrypted
datasets. They target tasks such as machine learning infer-
ence [2, 7–9, 11] or general analytics [20, 22, 71] and are typi-
cally built on top of HE schemes [10, 14] that enable efficient
vector arithmetic through encoding (or packing), where mul-
tiple values are encrypted within a single ciphertext. These
schemes support a limited number of multiplications due to
the lack of practical bootstrapping, an operation required after
a certain number of multiplications to ensure decryption cor-
rectness. Additionally, each multiplication must be followed
by ciphertext maintenance operations to manage ciphertext
size and scale. Existing compilers address these challenges at
different levels of granularity. EVA [20, 23] optimizes circuit
evaluation to reduce ciphertext maintenance overhead, while
HECO [71] introduces advanced optimizations for utilizing
encoding in programs requiring fine-grained access to vector
elements. These compilers typically add an extra layer on
top of existing low-level HE libraries, which allows them in
some cases to benefit from underlying improvements but also
limits the development of interlevel (or full-stack) optimiza-
tions. Furthermore, they focus primarily on vector operations,

lacking native support for matrix operations.

SMC compilers and frameworks [36] typically offer more
versatile computations compared to HE but require interac-
tions between computing parties. In SMC, the input data
are secret shared among multiple computing parties, which
interact to compute on the data without learning any infor-
mation about the data. Like HE solutions, SMC compilers
provide varying levels of abstraction to users. For example,
SMC frameworks such as MPyC [62], MP-SPDZ [41], and
Sequre [68] transform high-level Pythonic code into SMC-
enabled applications. The latter two also automatically opti-
mize the underlying source code at compile-time. However,
despite these and other developments in the SMC domain [36],
SMC pipelines still do not scale well with the growth of the
input data and the number of computing parties.

Hybrid solutions that extend HE techniques to a multiparty
setup [56] (MHE) have been proposed for specific applica-
tions such as machine learning [27, 61, 74], PCA [29] and
genomics [18]. These solutions leverage local, non-encrypted
computation by each party to improve the overall efficiency of
the protocol. However, developing practical MHE protocols
poses a significant challenge. Similarly to HE compilers, ef-
fective use of MHE requires selecting appropriate parameters,
managing multiplicative depth, ensuring correct decryption,
and exploiting ciphertext encoding for practical performance.
It also requires orchestrating computations across parties to
leverage efficient local operations while ensuring security by
encrypting any shared data and emulating a centralized execu-
tion by aggregating local intermediate results when needed.

For example, the matrix X in Fig. 1 is distributed across
multiple parties where each party holds its own share as plain-
text. It is easy to select the first row of X (as u) efficiently
in plaintext without network delay. L2 norm (

√
u@uT ) of u

(u.norm) can be efficiently and securely evaluated via MHE
by computing the partial squared norms at each party hold-
ing a partition of u before aggregation under encryption. The
square root of the resulting squared norm can, on the other
hand, be evaluated with an SMC routine based on bitwise de-
composition that is usually more efficient, numerically stable
and easier to parametrize than the HE equivalent. In either
case, the exact order of the steps and, in turn, the performance
for computing X @ u.T @ u · 2 significantly depends on the
way X is distributed and encoded.

These interconnected design decisions are pivotal, and a
single change, such as encoding or aggregation methodology,
can significantly impact overall performance. In the current
state-of-the-art MHE methods, these decisions are made man-
ually by developers through an iterative and repetitive process,
often overlooking performance and security implications and
leading to convoluted codebases.
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NSFF ✗ ∼ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SMC (MP-SPDZ |MPyC | Sequre) ✓ ✓ ✗ ✓ ✓ | ✓ | ✓ ✓ | ✓ | ✓ ✓ | ✗ | ✓ ✓ | ✗ | ✓ ✓ | ✗ | ✓
HE (HEFac. | EVA | HECO) ✓ ✗ ✗ ✗ ✗ | ✗ | ✗ ✓ | ✓ | ✗ ✗ | ✗ | ✗ ✗ | ✗ | ✓ ✗ | ✗ | ✓
Our Approach ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Survey of the current strategies for non-secure and secure distributed computing. NSFF stands for non-secure federated
framework. End-to-end confidentiality ensures input data remains confidential throughout the protocol execution. Trust distribu-
tion means trust is shared among multiple parties. Computation versatility refers to the approach’s ability to support a wide range
of operations, similar to standard centralized data analysis. The rightmost columns indicate whether solutions natively support
operations at the matrix level, whether they allow code to be written in a high-level programming language and to be compiled
ahead of time, and whether the solutions can enforce strong typing.

4 Overview of Shechi

Shechi enables users without specialized expertise in cryp-
tography and distributed computing to write non-secure stan-
dard code in a Python-like manner designed for a single ma-
chine and execute it across partitioned data in an MHE setting
(Fig. 2) while maintaining data confidentiality. Partitioned
data remains unencrypted with each party for local compu-
tations and is encrypted only when shared across parties for
global calculations. This approach allows parties to leverage
efficient plaintext operations throughout the protocol. In the
end, only the final results are decrypted via collective decryp-
tion. For example, user can securely execute our lead example
in Fig. 1 on partitioned data (X) by sharing the code or the
executable compiled with Shechi with all parties and execut-
ing it with a single command without having to manually
optimize it or orchestrate across multiple parties (Fig. 13 in
Appendix G).

Figure 2: Shechi automatically translates standard central-
ized Pythonic code into a secure distributed workflow to be
executed in a multiparty setting.

Shechi integrates multiple optimization strategies in a com-
piler framework, which are systematically applied to auto-
matically translate high-level code into a secure distributed
equivalent. It consists of four main elements:

1. End-user Interface: Shechi uses Python’s syntax and se-
mantics to allow users to write performant secure solutions
via simple, pseudocode-like code.

2. Secure Data Types: Shechi introduces two new secure data
types, named secure distributed tensors and secure local
tensors, along with methods and protocols that orchestrate

secure computation on top of it. Through distributed ten-
sors, Shechi ensures the private data is kept locally at each
party in plaintext while encrypting any shared data.

3. Compiler Optimizations for Secure Distributed Computa-
tion: On top of its secure data types, Shechi introduces
optimization passes for analyzing and optimizing high-
level secure code both at compile time and runtime. These
passes enable Shechi to reduce the workload and optimize
secure computations.

4. Integrated MHE Libraries: Shechi re-implements cryp-
tographic libraries in its framework to enable low-level
compiler optimizations.

Shechi’s overall structure is depicted in Fig. 3 and we detail
its components in the following sections.
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Figure 3: Shechi’s overall structure. Shechi’s novel compo-
nents are highlighted in blue. Based on the Codon framework,
Shechi introduces novel programming components to stream-
line Python-based codebases for secure distributed workflows.



5 System Components

5.1 Codon Compiler Framework

Shechi builds on top of the Codon compilation frame-
work [67], a high-performance ahead-of-time compiler that
compiles Pythonic code to native machine code through sev-
eral steps: (i) parsing Pythonic code into an abstract syntax
tree (AST) representation; (ii) statically type-checking the
AST; (iii) generating a high-level intermediate representation
(IR) of the type-checked AST that is later subject to vari-
ous code analysis and optimization passes; and finally, (iv)
converting the IR to the machine code through the LLVM
compiler framework [44]. The Codon library also defines
multiple specialized modules that provide efficient implemen-
tations of Python standard libraries, such as NumPy [35],
and domain-specific optimizations [65], as well as standard
compiler optimizations such as dead code elimination. While
Codon provides a convenient framework for analyzing and op-
timizing Python code, it does not offer any native support for
cryptographic schemes for secure computation or distributed
computation, both of which are addressed by this work. Shechi
introduces new secure data types with new matrix-vector
arithmetic (Secure data types in Fig. 3), MHE-specific IR
optimization passes (Compiler passes) and MHE-specialized
modules (Integrated MHE Libraries).

5.2 Multiparty Homomorphic Encryption

MHE, first introduced as a distributed HE scheme [56] has
then been extended to a hybrid scheme allowing to switch
from data encrypted in HE under a collective key to secret-
shared data in SMC [18]. In our setting, the decryption key
is shared among the parties via n-out-of-n (additive) secret
sharing, while the corresponding encryption key is known
to all of them. Each party can independently compute in HE
under the public key, but decryption requires collaboration
from all parties. Interactive protocols can be used to replace
the expensive HE bootstrapping operation and to convert
HE ciphertexts into additive shares for SMC operations [18].
MHE can therefore be used to divide operations across HE
and SMC while leveraging the strengths of both schemes.

We instantiate MHE with the Cheon-Kim-Kim-Song
(CKKS) scheme [14] for distributed HE. In CKKS, plain-
texts (unencrypted) and ciphertexts (encrypted data) are rep-
resented by polynomials of degree up to N −1 (with N co-
efficients), each encoding a vector of up to t = N /2 floating-
point values. Security is based on the ring learning with errors
(RLWE) problem [50] and some noise is added directly in the
least significant bits of the encrypted values. CKKS supports
a limited number of operations on top of data: additions, mul-
tiplications and vector rotations. All vector-wide operations
are data-parallel and can be simultaneously executed on all
vector values. However, intra-vector operations are usually

costly as they require a sequence of HE operations. Additions
and multiplications with plaintexts are faster than ciphertexts
multiplications and rotations1. Furthermore, to maintain the ci-
phertext size and scale—values are scaled by a constant before
encryption to ensure a high level of precision—ciphertexts
have to be rescaled after any multiplication and relinearized
after multiplication with another ciphertext. After a certain
number of multiplications, the ciphertext also needs to be
refreshed through a bootstrapping procedure to ensure cor-
rect decryption. This operation is prohibitively expensive in
the standard CKKS scheme. To prevent information leakage
upon decryption [49], a fresh noise with a variance larger than
that of the ciphertext is added by each party before collective
decryption, known as smudging [15, 48, 56] (Appendix F).

For SMC, we rely on a linear, n-out-of-n secret-sharing
scheme [17, 18] in which private inputs are split into additive
shares encoded in a prime field. Each operation (e.g., addi-
tion, multiplication etc.) is distributed and may incur heavy
communication costs. Additions are simple share additions,
while multiplications utilize Beaver multiplication triples [4].
For efficiency, this scheme adopts a server-aided model of
preprocessing where a trusted third party generates the Beaver
triples to facilitate the main interactive computations. This
scheme enables a wide range of basic operations and no-
tably supports efficient bit decomposition routines to convert
secret shares into bitwise shares (i.e., in F2). It allows for
efficient bitwise computations such as comparisons, division
and square roots [51], which are not natively supported in HE.

6 Shechi’s End-User Interface

Shechi takes as an input standard Pythonic code and con-
verts it into fast executables that operate on top of distributed
data (Fig. 2). Shechi enables users to run the Pythonic pro-
cedure (fqr) from Fig. 1 in MHE setup by simply preceding
it with a specialized function decorator (@shechi). Shechi
adopts NumPy’s conventions and API calls to enable users
to quickly write arithmetic expressions on top of both non-
encrypted cleartext and encrypted distributed data. For in-
stance, to perform secure matrix multiplication, it suffices
to write a single operator @ (Fig. 1), and leave all necessary
secure and distributed computations to Shechi to be handled
behind the scenes. In addition to the elementary operations
between encrypted tensors (i.e., matrices and vectors), Shechi
provides a set of low-level cryptographic primitives (e.g., en-
cryption and basic arithmetic), secure equivalents of most of
Python’s built-in functions and popular NumPy operations,
and built-in secure linear algebra routines. Finally, Shechi
includes a machine learning module with secure regression
analysis and neural networks library that implements the pop-
ular Keras’s [19] API to facilitate secure machine learning
workflows on distributed data.

1Up to 7× times faster in our experiments; see Appendix F.



For efficient MHE operations, Shechi introduces specific
optimizations (compiler passes step in Fig. 3) at different
compiler levels through both Codon’s and LLVM’s inter-
mediate representations and applies them not only to the
user’s codebase but also within internal libraries and low-
level cryptographic modules. Additionally, Shechi inherits
Codon’s generic compile-time optimizations such as dead
code elimination, canonicalization, and common subexpres-
sion elimination, and benefits from its other features, such
as performant equivalents of Python’s built-in modules and
popular libraries for the execution of non-secure code blocks
(without the @shechi decorator).

As an ahead-of-time, static compiler, Shechi does not sup-
port some of Python’s runtime (dynamic) features, such as
monkey patching or heterogeneous collections (which are rare
in secure programs). Also, similar to other secure compilers,
Shechi does not support generic conditional branching on
top of encrypted operands but does support conditionals that
can be expressed in a branchless fashion through masking
or secure multiplexer [71]. Thus, while Shechi aims to be a
drop-in replacement for the existing Python pipelines, users
still need to account for these differences.

7 Shechi’s Secure Data Types

In a distributed scenario, multiple parties hold the input data
(e.g., X in Fig. 1) in cleartext. Computations on this data can
result in new partially-encrypted operands. For example, the
multiplication X @ X.T where X is split among two parties
would result in a hybrid new matrix in which some parts are
kept locally in cleartext, and some are encrypted (Fig. 4).
Maintaining cleartext partitions is critical for performance,
especially in a cross-silo setting where the input data are often
of large scale. However, keeping track of the state of the data
quickly becomes difficult when complex operations and a
higher number of parties are introduced. Moreover, all collec-
tive operations (such as collective bootstrapping or switching
to secret shares) must be carefully orchestrated on top of
encrypted portions of the matrix and synchronized between
the parties. To facilitate optimizations that jointly considers
these issues, Shechi introduces two data types to streamline
operations on secure distributed datasets: secure local and
distributed tensors (Fig.4) and targeted optimizations (§.8).

7.1 Secure Local Tensors
Secure local tensors are n-dimensional array structures (either
in cleartext or encrypted) that store a portion of the shared
data residing at a single party. For example, each matrix par-
tition (blue and yellow, dotted sections) in Fig. 4 is a local
tensor. Similar to conventional tensor implementations like
NumPy [35], Shechi keeps the n-dimensional data in a sin-
gle, contiguous vector and lazily tracks the data dimensions
(shape attribute in LocalTensor class in Fig. 4). This approach

- Stores list of secure local tensors
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- Enables high-level distributed arithmetic  

(+, *, @, [], …)

- Stores a portion of a global matrix
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Figure 4: Secure distributed tensor example and defini-
tion. Matrix multiplication X@X⊤ is split among two parties.
The data held locally at each party (bright parts) are used to
compute the majority of the result in cleartext. Only a fraction
of the data needs to be encrypted (parts with a lock). A secure
distributed tensor (X , XT or XXT ) is a list of secure local
tensors and has global information about the partitioned data,
i.e., all partitions’ sizes (SLTs_sizes) and partitioning format.

enables the expensive HE tensor primitives, like transposing
encrypted matrix, to be done in a lazy manner by simply
adjusting the encoding attribute while, at the same time, al-
lowing efficient execution of any operation on non-encrypted
portion through efficient Codon’s Numpy methods.

When encrypted, local tensors can be encoded either row-
wise, column-wise or diagonal-wise. Different encodings re-
quire different algebraic procedures to be invoked for each
arithmetic operation. Shechi provides such procedures (e.g.,
matrix multiplication) for local tensors of arbitrary shapes
and encoding, and applies optimization passes to select the
optimal encoding for each local tensor (§.8).

7.2 Secure Distributed Tensors
Secure distributed tensors represent vectors and matrices se-
curely shared and distributed across multiple parties. They
can be partitioned (or split) horizontally, vertically, or addi-
tively between the parties (i.e., each party holds some rows,
columns, or additive shares of the original matrix; Fig. 4).
Each share of a secure distributed tensor is a secure local
tensor that is stored separately at each party together with
auxiliary information such as dimensions of other shares and
partitioning type. Auxiliary information is shared in clear-
text among the parties. For example, matrix X in Fig. 4 is
partitioned horizontally while its transpose X.T is partitioned
vertically between two parties. Both parties see only their
local non-encrypted partitions of X and X.T. Each operation
on a distributed tensor is automatically translated into a series
of operations on the underlying secure local tensors.

All operations are decoupled into local and global oper-
ations. Local operations, such as any element-wise opera-
tions on matrices, can be computed independently at each



party without sharing any data. For example, any operation
on the matrix X in Fig. 4 of the form β1X + · · ·+βnX , where
β1, . . . ,βn are scalars, can be evaluated independently at each
party. Global operations on secure distributed tensors often
require data exchange because they interact with local tensors
stored at different parties. In Fig. 6 (Step 2), this happens
when Xu⊤ (composed of secure local tensors Xiu⊤i at each
party i) is multiplied with the partitioned vector u. In contrast,
Step 1 (X@u⊤) can be computed solely through local multi-
plications between local tensors at each party. When needed,
to distribute the workload and leverage efficient operations
involving local non-encrypted data, Shechi first aggregates
one operand among all parties (e.g., either Xu⊤ or u in Step
2) and then splits the computation into local operations be-
tween secure tensors and the aggregated distributed tensor at
each party. The results of these operations remain encrypted
throughout the computation. The amount of encrypted data
in the result, as well as the partitioning type of the result,
depends on which operand is aggregated. This choice impacts
the performance of this operation and of all related down-
stream operations. Shechi analyzes the code block at compile
time to select the operand to be encrypted and thus minimizes
the cost of the overall distributed computation (§.8).

Both kinds of tensors are either encrypted with HE or se-
cretly shared for SMC, and can be converted between the two
representations depending on the operation (§. 8.3).

8 Shechi’s Compiler Optimizations

Shechi’s code optimizations start with code analysis, where
the information on high-level code structure is captured, and
proceed to compiler passes, where code is transformed into
optimized counterparts. MHE-specific optimizations are then
applied at runtime for an efficient and secure execution of the
generated code.

8.1 Code Analysis & Optimization Workflow
To effectively orchestrate secure distributed computations
while leveraging fast local operations and maintaining cor-
rectness, Shechi relies on insights from both the static code
structure, available only at compile-time, and also at the dy-
namic information, such as data dimensions, available only
at runtime. As finding good aggregation strategies for secure
distributed tensors and encoding strategies for secure local
tensors that effectively leverage MHE while minimizing com-
putation is crucial for the performance of MHE programs,
Shechi introduces a set of compiler passes that can address
these (and similar) optimization problems in an MHE context.
An overview of these optimizations applied to the expression
X @ u.T @ u*2 (Fig. 1) is shown in Figs. 5 and 6.

Shechi begins by analyzing the abstract syntax tree of each
secure procedure at compile time to generate a secure ex-
pression tree (Step 1 in Fig. 5). This tree encapsulates each

expression operating on top of secure data and is used for
the subsequent analysis and optimization of such expressions.
Each leaf node in the tree corresponds to an operand, while
inner nodes correspond to arithmetic operations. Shechi au-
tomatically marks data resulting from collaborative compu-
tations as encrypted (e.g., u in Fig. 5), while other variables
are labeled as cleartext. Before interactive operations, any
cleartext variables that need to be shared are automatically
encrypted at runtime. Additional static metadata, such as a
data type, can also be stored in the tree. For optimizations
that do not depend on runtime information, an optimization
pass analyzes the secure expression tree and applies the neces-
sary code transformation immediately at compile time (Step
2 in Fig. 5). Such passes include prioritization of lightweight
plaintext over ciphertext computing and multiplicative redun-
dancy minimization of secure expressions (detailed later in
this section).

For decisions that require runtime information, Shechi en-
codes the secure expression tree as a dynamic object that can
be accessed at runtime (Step 3 and tree in code snippet in
Fig. 5). This runtime object includes the auxiliary informa-
tion, such as data dimensions and partitioning type of the
distributed tensors, encoding of the underlying local tensors,
and other metadata required to facilitate the optimization.
Optimizations at this stage typically generate a code that as-
sesses various potential configurations at runtime and selects
the best course of action. Note that this tree structure and the
associated metadata format are general and thus suitable for
additional optimization strategies in the future.

8.2 Compiler Passes

Aggregation & encoding optimization. Shechi executes
all operations on secure distributed tensors through a com-
bination of local and distributed operations. Element-wise
operations (e.g., * 2 in Fig. 1) and item selection (e.g., u[0])
are executed locally by the parties. Data reductions (such as
summing all elements in a vector to compute u.norm()) are
performed locally, with results aggregated among the parties
as needed (e.g., summing local norms to obtain the global
norm). Matrix multiplications, however, require more analy-
sis, as their cost depends not only on how the data is combined
across parties (i.e., which operands are aggregated first), but
also on the dimensions of the operands and the encoding of
underlying secure local tensors. The aggregation choice also
determines the partitioning of the result, which in turn impacts
the performance of downstream operations. For example, a
subsequent multiplication of the result of X @ u.T with u (Step
2 in Fig.6) is executed either on a single partitioned matrix
with the left aggregation strategy (Aggregate: left), or on a
full matrix shared additively at each party (Aggregate: right).
In this case, the latter is less efficient. Similarly, the choice of
encoding for an unencrypted secure local tensor determines
the encoding of the output and the cost of all subsequent op-
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Figure 5: Shechi’s code analysis and optimization passes.
Shechi begins by generating a secure expression tree (Step
1). Optimizations on this tree can be either static (left) or
dynamic (right). Compile-time (static) optimizations rewrite
expressions for optimal MHE performance (Step 2). Runtime
(dynamic) optimizations encode this tree as a runtime object
(Step 3) and use it to optimize computations on secure data
types, i.e., selecting an optimal aggregation and encoding
strategy (Step 4). This part helps to distinguish between the
local cleartext and global encrypted computing (each aggre-
gation choice defines the encrypted portion of the data). This
step is further explained in Fig. 6. The tree structure includes
basic information about the code structure (such as the order
of operations and variable types), as well as runtime metadata
(such as matrix dimensions and encoding types).

erations. For example, in X @ u.T, the local partitions of X are
not encrypted at this point, while the partitions of u.T have
been encrypted in earlier steps. The choice of tensor encoding
for X will impact the cost of computing the remaining matrix
operations (both Step 1 and Step 2 in Fig. 6).

Finding the optimal aggregation and encoding strategies
is a combinatorial problem that can significantly impact a
solution’s runtime, particularly in complex workflows with
large-scale inputs (§.10.4). The input data is initially kept in
cleartext by each party, allowing arbitrary encoding upon en-
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Figure 6: Aggregation & encoding Optimization. The per-
formance of multiplication X @ u.T @ u depends on the choice
of encoding of the non-encrypted operand (X) and the choice
of aggregation strategy. In this example, Shechi first calcu-
lates X @ u.T (Step 1). As the shares of X are non-encrypted,
the best encoding for local tensor X is chosen among all pos-
sible encodings (in this case, diagonal encoding). No operand
needs to be aggregated in Step 1 and the output is encoded
as a single vector. Afterwards, because multiplication with u
requires communication between parties, Shechi selects the
optimal aggregation strategy for distributed tensors (Step 2).
Here, Shechi chooses the left aggregation strategy over the
right. Both operands are already encoded from previous steps.

cryption as needed. This provides flexibility to the encoding
optimization algorithm in choosing the best encoding strategy.
Although each party may manually set the initial encoding
if desired, manual optimization becomes daunting given a
complex protocol with a larger number of operations. Shechi
finds the best aggregation and encoding strategy (Step 4 in
Fig. 5; Fig.6) as follows. After extracting the necessary static
information (such as the secure expression tree) at compile-
time, Shechi extends it with the necessary dynamic metadata,
such as the dimensions and initial partitioning of the existing
variables, as soon as it is available at runtime (Step 3 in Fig. 5).
It then pinpoints all multiplication nodes in the tree for which
one secure distributed operand needs to be aggregated (CA;
red in Fig. 5) and for which the other operand’s partitions (i.e.,
secure local tensors) are not encrypted and can be flexibly
encoded (CE ; gray in Fig. 5). It initializes all aggregation and
encoding strategies following a greedy approach, i.e., select-
ing the most cost-efficient approach at each node (Step 4 -
Initialization). The cost of individual operations (e.g., addi-
tion, multiplication, etc.) is automatically computed based on
the dimensions of the operands. The cost estimation methods
are implemented as a weighted sum of all low-level opera-
tions used by a particular high-level operator, with the fixed
weights estimated through our micro-benchmarks with de-
fault parameters (Table 2). Shechi then utilizes a first-choice
hill-climbing local search heuristic to select the best aggre-



gation strategy, finding the most efficient overall encoding
strategy at each step through an exhaustive search (Step 4 -
Optimization), as depicted in Algorithm 1 in Appendix A. We
opted for the greedy heuristic approach since the problem of
selecting the optimal aggregation and encoding strategy has
not yet been solved, although related problems dealing with
circuit evaluation have been shown to be computationally
difficult [5, 12, 23, 60]. Without using the heuristic approach,
an exhaustive search for both aggregation and encoding strate-
gies would result in the overall complexity of O(2|CA| ·3|CE |),
where |CA| and |CE | are the sizes of aggregation and encod-
ing candidate sets respectively, as there are 2 possibilities for
each aggregation choice (left or right operand) and 3 possible
encodings (row, column, or diagonal-wise). Using the hill
climbing heuristic, this is reduced to O(c · |CA| ·3|CE |) where
the constant c is a predefined number of hill-climbing steps.

We note that initializing the tree with the above greedy
approach often results in a nearly optimal solution in practice.
In fact, it is often a good starting point for the search as in
many tensor arithmetic workflows, such as PCA [33], the most
computationally demanding parts (that are done on top of the
largest tensors) are executed at the beginning of the workflow.
Since the input data is in cleartext and often large-scale in
the cross-silo setting, choosing the optimal encoding for this
step alone (which is done by the greedy method in any case)
already significantly impacts the overall runtime.

Maximizing efficient plaintext operations. Shechi’s dis-
tributed setting allows it to distribute the workload among
the parties and leverage efficient operations on local non-
encrypted data. Plaintext computations can be orders of mag-
nitude faster than operations on encrypted data and leveraging
them in a distributed setting is a crucial optimization for large-
scale computation, which is not supported by existing HE
or SMC frameworks. To maximize the amount of such oper-
ations, Shechi reorders operations in the secure expression
tree at compile time as follows. Encrypted and non-encrypted
types are differentiated statically in Shechi thanks to Codon’s
strong type system. Shechi then maximizes the non-encrypted
computation in consecutive associative operations, such as
the series of element-wise multiplications, by iteratively push-
ing the operations that involve non-encrypted operands down
towards the leaves of the secure expression tree to prioritize
them over the operations involving encrypted data. As a result,
the unnecessary encryption of data and invoking computation
between the ciphertexts will be avoided. For example, when
computing X @ u.T @ u * 2 (Fig. 1), it is cheaper to first mul-
tiply 2 with X instead of u since the former is composed of
non-encrypted partitions (Step 2 in Fig. 5).

Minimizing multiplication redundancy. In MHE, as in
standard HE, multiplications are at least one order of mag-
nitude slower than additions (Tab. 2). Shechi analyzes arith-

metic expressions in the secure expression tree at compile
time to minimize multiplication cost by identifying sums of
the form ∑i, j ti · t j and iteratively factoring out the common
term tk into tk ∑l tl +∑i, j ̸=k ti · t j. Shechi also efficiently evalu-
ates polynomial expressions with minimal complexity using
the baby-step giant-step algorithm [34].

8.3 Optimizations at Runtime
Efficient matrix multiplication across encodings. To pro-
vide full flexibility in selecting the most efficient computation
workflow, Shechi implements methods for all possible combi-
nations of matrix encodings (i.e., row, column, and diagonal).
These methods scale differently with input dimensions, re-
quiring varying numbers of additions, multiplications, and
rotations over ciphertexts [29,40]. For instance, multiplying a
row-wise encoded matrix of size a×b with another row-wise
encoded matrix of size b× c requires O(a · c · log2(b)) rota-
tions, whereas a diagonally-encoded matrix requires O(a

√
b)

rotations [29]. The output encodings also vary based on the
input encodings. For example, in Fig. 6 (Step 1), if the ma-
trix X is row-encoded, each element of X@u⊤ (where u is a
vector) is obtained in a separate ciphertext through the inner
product of a row of X and u⊤ (i.e., the resulting column vector
is row-encoded). Conversely, if X is column-encoded, X@u⊤

can be obtained in a single ciphertext (i.e., a column-encoded
column vector) by multiplying each column of X with a vector
of the same size, composed of replicates of the correspond-
ing element in u⊤ (obtained through masking, rotations, and
additions), and then aggregating the result.

To capitalize on this variety of multiplication and encoding
options, Shechi implements a generic method that determines
the most efficient computation approach and encodings based
on the input dimensions and states (i.e., encryption and any
predefined encodings). This method also returns the cost of
the preferred option and is used during the optimization phase
(§.8.2; Step 4 and Dynamic code generation in Fig. 5; Fig. 6).
In addition to previously established matrix encodings and
matrix multiplications [29,40], Shechi further expands the set
of possible approaches by introducing a novel cyclic-diagonal
encoding that is particularly suited for very tall or wide ma-
trices by requiring a number of rotations that depends on the
smaller dimension, see Appendix B.

Automatic instantiation of MHE. Shechi adopts default pa-
rameters ensuring 128-bit security for MHE (Appendix F),
striking a balance across diverse applications. Shechi au-
tomates the execution of key instantiation protocols [56].
Each party independently samples secret key shares from
predefined distributions, ensuring that the global secret key—
defined as the sum of local shares—is never explicitly con-
structed. Consequently, decryption requires the collaboration
of all parties. Other keys, such as the encryption key and eval-
uation keys required in MHE operations are publicly shared
among all parties (Appendix F). Unlike existing HE solutions



that are limited by the absence of a practical bootstrapping
routine (§.5.2), thus requiring parameter selection to be tightly
coupled with the specific circuit under evaluation (§.3), Shechi
primarily bases this choice on balancing precision with perfor-
mance. Shechi supports a cleartext execution of the protocol
on local data, the results of which can facilitate analysis of
the required precision and parameter selection.

Incorporating secret sharing-based SMC operations.
Shechi uses HE operations to leverage efficient, parallelized
local operations, including operations between local plaintext
and encrypted shared data, and switches to secret sharing-
based SMC to efficiently evaluate non-polynomial operations
(e.g., comparison and division), which are difficult and of-
ten impractical to evaluate accurately in HE. Shechi iden-
tifies non-polynomial operations and invokes protocols to
switch between CKKS ciphertexts and additive secret shares
as needed [18, 29]. This process performs a blinded decryp-
tion to the secret-share domain, evaluates the function in this
domain and allows the parties to obtain a fresh re-encryption
of the result under the HE collective encryption key. We note
that users have the option to restrict Shechi to distributed HE
only (Appendix C).

Optimizing ciphertext maintenance. The optimal place-
ment of rescaling, relinearization, and bootstrapping opera-
tions (§.5.2) is a difficult problem in general [5, 12, 23, 60].
For instance, optimal relinearization has been proven to be
NP-hard [12,23]. Due to the availability of efficient bootstrap-
ping in MHE, placing these operations is an optimization fea-
ture rather than a limiting factor in centralized HE where the
multiplicative depth and the number of rescaling operations
are limited. Therefore, Shechi adopts a pragmatic strategy in
which the ciphertext is relinearized immediately after each
multiplication. Rescaling and bootstrapping are performed
lazily only when necessary, i.e., before multiplication or ad-
dition with an operand of smaller scale. Shechi orchestrates
these operations across parties through counselling—an auto-
matic module that maintains the information of the ciphertext
levels at each party and communicates it between parties with
negligible network overhead (e.g., approximately 0.005% of
the total bandwidth in our experiments).

9 Shechi’s Integrated MHE Libraries

To enable full-stack optimizations, Shechi comprehensively
implements and integrates both HE and SMC frameworks.
As demonstrated in our evaluations (§.10), this allows Shechi
to match the performance of existing HE and SMC solutions
while supporting more complex distributed workflows than
HE and providing better scalability than existing SMC tools.
Notably, Shechi incorporates Lattiseq—a complete, optimized
reimplementation of Lattigo’s DCKKS (Distributed CKKS)
scheme [27, 43, 56] in Codon [67]. In addition to preserving
existing performance optimizations from Lattigo, such as fast

matrix multiplication via number theoretic transform [16],
Shechi adopts data-level parallelism (SIMD) in all operations
and uses OpenMP threads to further parallelize operations on
ciphertexts. To enable efficient SMC routines, such as bitwise
operations and non-polynomial functions, Shechi incorporates
additive secret sharing-based primitives from Sequre [68].

10 Performance Evaluation

We evaluate Shechi against existing cryptographic libraries
and compilers for secure computing. First, we benchmark ele-
mentary operations, then assess performance on a set of basic
applications with simple routines (e.g., Euclidean distance),
and large-scale, complex data analysis workflows. Lastly, we
provide scalability evaluation and an ablation study to demon-
strate the impact of Shechi’s optimizations.

10.1 Evaluation Settings

We simulated each party on a different machine with 12-core
Intel i7-8700 CPUs (3.20GHz), 64 GB RAM, all connected
via a LAN network with 1 Gb/s bandwidth and 0.5 ms la-
tency. As this setup cannot handle the increased number of
parties, the scalability and ablation studies were done on an-
other machine with 192-core Intel Xeon Platinum 8260 CPU
(2.40GHz) with 1 TB of RAM, simulating networking over
UNIX sockets. For a fair comparison, we did not manually
parallelize the tested workflows on top of the default paral-
lelization in the underlying libraries. By default, we conduct
all experiments with a minimal number of parties—a less
favourable setup for distributed computing. The scalability
benchmark shows how our solution’s performance improves
as the number of parties and input data dimensions increase.

10.2 Comparison with Existing Compilers

As there is currently no known MHE compiler to the best
of our knowledge, we compare Shechi against cryptographic
libraries and compilers that target similar general-purpose
vector arithmetic tasks while offering the closest security guar-
antees: MP-SPDZ [41] and Sequre [68] for additive secret-
share SMC; HEFactory [37] and EVA [23] for HE; and Lat-
tigo [43, 64] and SEAL [13] libraries for low-level MHE
and HE, respectively. We also provide comparison against
MPyC [63] and HECO [71] (whose front-end is currently
deprecated) in Appendix D.

10.2.1 Micro-Benchmarks

We demonstrate Shechi’s low-level performance through
micro-benchmarks in Table 2, evaluating basic algebraic op-
erations on encrypted vectors using default parameters and a
128-bit security level for all tools (Appendix F).



Shechi’s performance is generally comparable to the man-
ually optimized and highly performant MHE primitives from
Lattigo. Shechi’s runtimes are also similar to single-party
SEAL for low-level HE operations despite handling more
complexity, such as bootstrapping and distributed switching
between SMC and HE. Note that there is no clear winner over-
all among the evaluated tools. However, our goal was not to
provide the fastest HE primitives in isolation but a set of prim-
itives that together support efficient MHE operations. Future
work includes continuous integration of improved primitives
into our framework (§.11).

Shechi achieves comparable runtime to SMC computing
operations. Additionally, Shechi allows computation to be
done independently by computing parties over separate data
shares in parallel, while SMC requires the parties’ local data
to be secret-shared and synchronized between all parties for
computation. This enables a better workload distribution for
some operations in Shechi (e.g., matrix multiplication), and
better scaling with the number of parties, as demonstrated in
§.10.2.2 and §.10.3.

10.2.2 Basic Workflows

We implemented two applications commonly used to bench-
mark HE compilers [11,23,71]—Euclidian L2 distance calcu-
lation and matrix multiplication. L2 distances are computed
between 32 encrypted vectors of length 8192, while matrix
multiplications are performed on matrices of size 128×8192.
The results are shown in Fig. 7.

HE implementations use the recommended default param-
eters (Appendix F). MP-SPDZ, Lattigo, Sequre and Shechi
implementations used available built-in methods for matrix
multiplications, whereas we relied on a series of elementary
vector operations (additions, multiplications, and rotations)
to implement the standard version of matrix multiplication
in other solutions that do not natively support these more
complex, higher level operations. In HE solutions, the input
data is encrypted by each party and transferred to a single
computing party for computation since these solutions do not
offer support for distributed computing. In SMC, the data is
secret-shared among two computing parties, while distributed
approaches, such as Lattigo and Shechi, split the data evenly
and horizontally among two parties (each party holding half
of the rows of each input matrix in a non-encrypted form).
We note that this two-party scenario is the least favourable to
Shechi compared to settings with more than two parties. As
shown in Fig. 7, even in this scenario that is not aligned with
its primary focus, Shechi’s runtime outperforms HE-based
alternatives across all applications. Due to the small scale of
the input data, Shechi is slightly slower than the pure SMC
solutions for computing L2 distance. However, it is faster than
MP-SPDZ when computing A @ B⊤, and faster than both Se-
qure and MP-SPDZ when computing A⊤ @ B even on small
dimensions since, in this case, matrix multiplication can be

performed locally on non-encrypted data before aggregating
the results, efficiently leveraging distributed computing. As
expected, Shechi’s communication overhead is higher than
the centralized and SMC approaches in these simple appli-
cations due to the expansion factor of MHE (a ciphertext
encrypting 8192 values has a size of 2.6 MB with our default
parameters) and low benefits from distributed computing in
these scenarios. Note that these benefits quickly overcompen-
sate the MHE expansion in other applications, including A⊤

@ B and the large-scale benchmarks below. Finally, we note
that Shechi’s simple syntax allows users to write these simple
applications in less than 4 lines of code.

10.2.3 Large-Scale and Complex Workflows

To demonstrate the practical usability, performance and ver-
satility of Shechi, we implemented secure distributed equiv-
alents of three complete applications that operate on large
datasets: principal component analysis (pca), kinship esti-
mation (kinship) [52], and genome-wide association study
(gwas) [18]. The last two applications are from the domain
of computational genomics and serve as a good example for
Shechi’s utility, as genomics data is both extremely sensitive
with respect to privacy and scattered across multiple enti-
ties reluctant to share their data. We use a lung cancer study
dataset [59], which contains patients’ phenotypic information
(e.g., age and sex), genotype data (i.e., vectors with the values
0, 1 and 2 for each variant), and a binary value indicating
the presence of lung cancer. In this dataset, the input matrix
has more than 600,000 variants (features) and 9,000 patients
(samples). We compared Shechi’s implementations against
the existing state-of-the-art implementations that were orig-
inally done in Lattigo and Sequre. We note that neither of
these complex workflows can be easily implemented with the
other HE and SMC compilers mainly due to their low-level
nature, as well as the scale of the input data and required
computational depth. We refer to Appendix F for the detailed
description of these workflows.

Shechi achieves on-par or better performance as existing
manually-optimized secure solutions [18,29] while improving
expressiveness by up to two orders of magnitude. In Fig. 7,
we notably observe a 15× speed improvement in kinship
and 6× network traffic reduction in pca experiments when
compared against the manually optimized version in Lattigo.
This is notably due to Shechi’s encoding optimization (§.8.2),
which automatically selects a more efficient encoding strategy
than the one manually selected and employed in the existing
Lattigo implementation. Our kinship implementation has
only 4 lines of code, while the Lattigo equivalent has more
than 160 lines of code as the user has to coordinate the compu-
tation across parties manually. The Lattigo version of pca was
manually optimized to maximize the plaintext over ciphertext
usage and minimize the matrix multiplications’ cost. Shechi
implements the same procedure as simple pseudocode in 10



Solution encrypt add_
add

mult_
mult rotate

decrypt
bootstrap to_smc to_mhe/ Runtime [ms] or secret_share const const or reveal

SEAL (HE) 15.9 0.2 0.4 4.3 26.9 21.6 6.3 – – –
Sequre (SMC) 1.16 0.77 1.28 1.59 14.35 0.11 7.72 – – –
MP-SPDZ (SMC) 3.46 2.5 2.5 30.00 71.07 0.11 8.00 – – –
Lattigo (MHE) 21.25 0.4 0.4 4.6 28.1 24.0 119 184 366 185
Shechi (MHE) 6.5 0.4 0.4 0.64 40.6 45.3 61.38 94.8 103.8 65.2

Table 2: Low-level primitives micro-benchmark. All operations are applied on top of 8192-element, encrypted vectors using
parameters that ensure a 128-bit security level. add_const and mult_const refer to addition and multiplication with a public
constant value. secret_share and reveal are SMC-only operations that correspond to encryption and decryption, respectively.
Decryption is done locally by SEAL, and distributively in the other solutions. Dash (–) stands for "not applicable".

Figure 7: Runtime, communication and expressiveness comparison between Shechi and existing approaches. For distributed
approaches the input data are evenly and horizontally split among 2 parties. Communication is measured as the maximum
number of bytes any party sends. Expressiveness is measured as the number of lines of code without comments, blank lines, and
debug statements.

lines of code—25× fewer than Lattigo implementation—and
manages to automatically find the same optimization oppor-
tunities and even detect new optimization hotspots that the
developers of the original pipeline missed. Similar perfor-
mance improvements were observed for gwas that has 26
lines of code, compared to 734 lines found in Lattigo. Here,
Shechi also relies on its own diagonal encoding (§.8) to en-
code and optimize computation on top of wide matrices that
are inherently abundant in this application.

10.3 Scaling
We show in Fig. 8 that Shechi’s runtime and communication
costs increase linearly with the number of parties and samples
and scale better than an SMC-only solution (Sequre). For this
experiment, we ran PCA with a fixed number of 64 samples
per party. In an 8-party setup, Shechi’s runtime and commu-
nication are more than four and seven times smaller than

Sequre’s, respectively. This difference is expected to grow
further with more parties since, in Shechi, the workload is dis-
tributed among the parties, and the communication overhead
is mainly due to aggregating the intermediate results between
the parties and collective bootstrapping. In Sequre, and SMC
in general, however, communication increases faster with the
number of parties than with Shechi because all computations
require interactions among all parties. Fig. 12 in Appendix
E illustrates how local operations benefit MHE for the com-
mon case of matrix multiplication, involving input matrices
distributed among multiple parties. Lastly, we note that if a
fixed number of samples is distributed among a larger num-
ber of parties, e.g., if the 128 samples that are split among
2 parties are instead split among 8 parties, Shechi’s runtime
decreases from 40 to 15 minutes, further showing its ability
to effectively distribute the workload.



Figure 8: Shechi’s scaling with the number of parties and
samples. In this experiment, PCA is executed for the increas-
ing number of parties and individuals, with a fixed number of
64 samples per party.

10.4 Necessity of Shechi’s Optimizations

Shechi applies a set of compile-time and runtime optimiza-
tions to translate standard code into efficient distributed ex-
ecutions. Here, we demonstrate the impact of its encoding
optimizations, which selects the most efficient matrix encod-
ing at each step of the algorithm (§.8), a crucial segment of
MHE operations. Fig. 9 (left) shows the performance gain
achieved using Shechi’s optimization for executing PCA on
the lung cancer dataset with an increasing number of sam-
ples. The term Shechi (no opt.) refers to a typical use-case
where the developer manually selects some encoding for each
matrix multiplication (row-encoding for wide matrices and
column-encoding for tall matrices in this use-case). Note that
another common use case, where the developer relies on a sin-
gle encoding, yields impractical runtimes for this application.
Shechi automatically chooses from a set of three encodings
and various matrix multiplication methods, both of which are
easily extensible. We note that Shechi’s searching for the most
efficient aggregation and encoding strategy takes less than
one second in our experiments and is negligible compared
to the overall runtime. Fig. 9 (right) further demonstrates the
importance of our optimizations, even for computing a simple
expression over four matrices (A–D) of shapes 32×8192 for
A and B, and 32×32 for C and D.

10.5 Neural Networks Library

The neural networks module of Shechi based on the Keras
API [19] enables users to implement feed-forward neural net-
works in as few as 10 lines of code by simply defining layers
and calling the desired fitting methods, as shown in Fig. 10.
Shechi was able to perform training of privacy-preserving
credit score evaluation [73] for approximately 100K individu-
als, split among 2 parties, with 16 features in a practical run-
time of 7 hours. Using a similar codebase, we also evaluated
drug-target interaction inference [38] over 150 individuals
with 8192 features (one-hot encoded classes of proteins and
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Figure 9: Shechi’s runtime worsens up to 4× with one
of the main optimizations turned off. PCA runtimes with
and without aggregation and encoding optimization with the
increasing number of samples (left), and the impact of all
optimizations on evaluating an example expression A @ B.T *
(D + C) * 2 (right). Aggregation and encoding strategies are
critical for the performance of MHE applications.

compounds) within the same time span. We trained a multino-
mial classification model (a single-layer neural network with
softmax activations and cross-entropy loss) on the MNIST
dataset [46], which consists of 58,000 images split among 2
parties (50,000 for training and 8,000 for inference). Both the
training and inference steps were implemented in 5 lines of
code (Appendix G), completed in 1.2 hours (1h for training
and 0.2h for inference), and achieved an accuracy of 85%,
which is comparable to cleartext training. Although these
results demonstrate an effective use of our framework for
relatively lightweight neural networks, we acknowledge that
a more general application to deep networks remains an open
problem and will require further advances in cryptographic
techniques to be incorporated into our MHE framework.

1 @shechi
2 def credit(mhe, X, y, test_X , n_neurons , epochs):
3 layers = (
4 Input[type(X)](X.shape[0]),
5 Dense[type(X)]("relu", n_neurons),
6 Dense[type(X)]("linear", 1))
7 model = Sequential(layers).compile(mhe,
8 loss="hinge", optimizer="mbgd")
9 model.fit(mhe, X=X, y=y, epochs=epochs)

10 return model.predict(mhe, test_X).reveal()

Figure 10: Shechi’s Keras-like neural networks interface
enables simple implementation of network training and infer-
ence for privacy-preserving credit score evaluation.

10.6 Accuracy, Network, and Memory Usage

The security of CKKS, the HE scheme used in Shechi (§.5.2),
requires some noise to be added directly in the least signif-
icant bits of the encrypted values. Shechi implements the
same standard noise management methods as existing HE
works [21, 47]. In Fig. 11, we illustrate that Shechi is accu-



Figure 11: Shechi’s secure distributed execution of GWAS
produces results comparable to centralized non-secure
execution, yielding similar association statistics, represented
as the negative logarithm base-10 of the p-values.

rate and achieves the same results as a non-secure central-
ized equivalent for a GWAS study on 128 patients (samples)
sampled from the lung cancer study dataset and evenly split
between two parties. Each patient has 500,000 variants (fea-
tures). We observe that Shechi obtains similar results (i.e.,
association statistics) to a centralized non-secure execution,
with a mean absolute error of 3.9×10−5.

To assess the effect of network delay, we reproduced all
experiments in a coast-to-coast network setup. We used Ama-
zon AWS to deploy machines that match the clock speed and
RAM of our LAN machines across the US. We observe that
while the communication delay increases by a factor of at
least 20× and up to 108× (with delays between 12 and 62
ms) when compared to our LAN setting, Shechi runtime in-
creases only up to 2.2× times. For example, Kinship runtime
increased from 4 to 8 minutes, PCA from 35 to 76 minutes,
and GWAS from 59 to 110 minutes. Lastly, we note that
Shechi memory consumption was also better than the com-
petition, with maximum resident set size being within the
range of 15 GBs for Shechi, 25 GBs for Sequre, and more
than 100 GBs for Lattigo per party. This means that one can
use cheaper instances with Shechi to run the analysis.

11 Limitations and Future Work

Noise and Precision Management with CKKS. Shechi uses
an approximate fully homomorphic encryption scheme (i.e.
CKKS) where decrypted values contain some noise. The noise
accumulates throughout computation, impacting the accuracy
of complex workflows. CKKS guarantees moderate growth
of relative noise (linear with respect to the number of opera-
tions) [14] and Shechi implements the same standard noise
management methods as existing HE works [21,47]. However,
users still need to account for precision in specific applica-
tions, e.g., with input data containing values smaller than the
noise overhead. The required precision can be observed by
users through local simulations (§.8.3).
Extended Support for Python Semantics. Shechi’s static
compiler backend, Codon, disallows certain dynamic features

of Python, such as collections of heterogeneous types. Each
tensor, either encrypted or not, must have a uniform type
(boolean, integer, or floating-point). Furthermore, the syntax
for branching (if statement) over encrypted values is inten-
tionally disallowed in Shechi to differentiate it from branching
over non-encrypted data, which is allowed. At this time, users
should use the provided interface for masking or secure de-
multiplexer to simulate branching on top of encrypted data.
Supporting standard syntax for secure branching is possible
and will be explored in future work.
Alternative Secure Computation Primitives. Shechi sup-
ports full-stack optimization by reimplementing low-level
HE and SMC primitives (§.9). However, its modular architec-
ture allows seamless integration of other primitives, such as
the multiparty instantiation of the exact BFV scheme [56] or
improvements of SMC subroutines [51, 75], either through
reimplementation or by leveraging the existing libraries.
Cryptographic Parameter Choice via Code Analysis. Un-
like existing HE-based solutions that adjust parameters to
circuit depth for practicality (due to the absence of practi-
cal bootstrapping), Shechi can optimize parameter selection
primarily for performance (e.g., minimizing distributed boot-
strapping operations that require inter-node communication).
While Shechi’s default parameters achieve a balanced tradeoff
for diverse applications, future work includes integrating au-
tomatic HE parameter selection through static code analysis
similar to other optimizations demonstrated in this work.
Enhancing Coordination Across Machines. Shechi facil-
itates collective operations through a counselling module,
which automatically coordinates the exchange of necessary
information for collaborative computations among parties.
Future work will incorporate advanced distributed computing
techniques, such as remote procedure calls [57], to further
streamline and optimize this process (§.8.3).

12 Conclusion

Shechi is the first compiler that combines secure multi-party
computation and fully homomorphic encryption to enable
high-performance secure computing without sacrificing read-
ability and maintainability. It achieves similar or enhanced
performance compared to that of existing secure compilers,
scales better with the number of parties and data dimensions,
and unlocks more complex distributed workflows not sup-
ported by previous tools. Our systematic, multi-step approach
reveals novel optimizations that domain experts may overlook.
In addition, Shechi greatly simplifies the code for real-world
applications and facilitates secure and efficient programming
of distributed algorithms, empowering non-experts to develop
effective data analysis tools. Thus, our work has the potential
to promote the adoption of secure computation techniques
and allow users in various domains to conduct collaborative
studies that would otherwise be impossible or impractical due
to privacy concerns.
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14 Ethics Considerations

Our approach helps minimize risks to human subjects related
to privacy breaches when datasets contain sensitive personal
information. For system demonstration, we used only pub-
licly accessible data under access control [59] in the dbGaP
repository [69] (accession: phs000716.v1.p1).

15 Open Science

Our work facilitates the analysis of distributed datasets while
ensuring data confidentiality and security, thus promoting
open science and collaboration. To enable other researchers
to build upon our work, we made our entire source code
open source and publicly available at https://zenodo.org/
records/14725520.
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A Aggregation and Encoding Optimization

We describe here the first-choice hill-climbing local search
heuristic that Shechi implements to select the best aggregation
strategy while finding the most efficient overall encoding
strategy at each step through an exhaustive search.

Algorithm 1 Aggregation and Encoding Optimization
Require: tree, aggr_candidates, enc_candidates: expr. tree and candidate

nodes for aggregation and encoding; c: hill climbing limit
Output: updated tree

1: cur_cost← tree.cost() //estimated cost of tree eval.
2: for i = 0 to c do
3: tree_modi f ied← False
4: for ni ∈ agg_candidate do
5: new_tree← tree. f lip_aggr(ni) //change aggr.
6: new_tree.resolve_tree() //update tree complement
7: min_enc← new_tree.encoding
8: min_cost← new_tree.cost()
9: for j = 0 to 3|enc_candidates|−1 do

10: new_tree.set_encoding( j)
11: bet_cost← new_tree.cost()
12: if bet_cost < min_cost then
13: min_cost← bet_cost
14: min_encoding← new_tree.encoding
15: end if
16: end for
17: if min_cost < cur_cost then
18: tree_modi f ied← True
19: cur_cost← min_cost
20: tree← new_tree
21: tree.set_encoding(min_encoding)
22: tree.resolve_tree()
23: end if
24: end for
25: if not tree_modi f ied then
26: break //reached local minimum
27: end if
28: end for

B Novel Matrix Multiplication Method

In addition to previously established matrix encodings and
matrix multiplications [29,40], Shechi further expands the set
of possible approaches by introducing a novel cyclic-diagonal
encoding that is particularly suited for very tall or wide ma-
trices by requiring a number of rotations depending on the
smaller dimension, where the i-th diagonal di of a matrix A ∈
Ra×b is obtained as di[ j] = A[(i+ j) mod m, j mod n], where
0 ≤ i ≤ min(a,b) and 0 ≤ j ≤ max(a,b), instead of di[ j] =
A[(i + j) mod a, j] with 0 ≤ i ≤ a and 0 ≤ j ≤ b, in stan-
dard diagonal encoding. Multiplying a row-wise encoded ma-
trix by a matrix with this encoding requires O(a ·min(b,c)+
log2 max(a,b)) rotations and O(a ·min(b,c)) multiplications,
or even just O(min(a,b) ·min(b,c)) rotations and multipli-
cations if both operands are cyclic-diagonal encoded. Note
that the former is only lower than the existing diagonally-
encoded matrix multiplication when min(b,c) <

√
b. This

method is particularly useful for highly asymmetric matrices

Solution
encr

add_
add

mult_
mult rotate decr/ Runtime [ms] const const

MPyC (SMC) 3.02 2.86 4.98 2.7·104 2.8·104 1.59 4.83
HECO (HE) 16.92 0.36 0.79 4.2 25.85 42.17 6.3
Shechi (MHE) 6.5 0.4 0.4 0.64 40.6 45.3 61.38

Table 3: Low-level primitives micro-benchmark for MPyC
and HECO. Each operation ensures a 128-bit security
level. HECO’s front-end is currently deprecated, and it
does not support practical bootstrapping.

since the complexity of matrix multiplication between two
cyclic-diagonally-encoded matrices is determined only by the
smaller dimensions of both matrices. It also ensures the shape
of the encoded a×b matrix is always min(a,b)×max(a,b),
consistently exposing data-level parallelism over the larger
matrix dimension.

C Stronger Threat Model

To effectively evaluate non-polynomial functions (e.g., com-
parisons) that are not natively supported in HE, Shechi auto-
matically transitions to an SMC secret-sharing scheme that
uses a trusted dealer for efficiency purposes (§.5.2). For users
who prefer not to rely on a trusted dealer, Shechi offers the op-
tion to use only HE operations and bootstrapping. In this case,
Shechi approximates non-linear functions via polynomial in-
terpolation [27], using an interval and degree parametrized by
the user. Previous works [27,29] have shown that the accuracy
and time loss can be minimized depending on the polynomial
degree and interval required. However, parametrizing these
factors becomes challenging in complex applications, espe-
cially as users lack prior access to the complete dataset. To as-
sist users, Shechi enables local simulation of the application’s
execution in standard Python environments by modifying just
a single line of code. This feature also enables users to fine-
tune other parameters, such as precision, when the default
settings are not suited to their specific application.

D Comparison Against Other Frameworks

We also compared against MPyC [62] and HECO [71]. MPyC
is an easy-to-use Python library for SMC based on t-out-of-
n Shamir’s secret sharing scheme with t < ⌊ n

2⌋. Its security
setup significantly differs from Shechi’s and the other SMC
frameworks’ in this paper that use a generally stronger n-out-
of-n additive secret sharing scheme. We benchmarked MPyC
in the smallest possible secure setup with four computing
parties and, at most, one passively corrupt party (i.e. any
two out of four parties can collude together to reconstruct
the secret). While it is on par in some operations, MPyC’s
performance is generally, by order of magnitude, worse than
Shechi’s, due to the performance overhead inherited from its
host language and underlying security scheme (Table 3).



HECO, on the other hand, is an HE compiler that translates
high-level Pythonic code to high-performance executables
through MLIR [45] and compile-time optimizations. HECO,
however, deprecated their frontend language and enabled writ-
ing their programs directly in MLIR by calling the low-level
HE primitives (add, mul, and rotate). We managed to imple-
ment microbenchmarks using their existing MLIR dialects
(Table 3)), and we plan to extend and test it on larger bench-
marks after their high-level operations are enabled.

E Scalability of MHE

The workload is distributed across all parties in MHE de-
pending on the size of local datasets, while secret sharing-
based SMC requires all parties to operate over the combined
secret-shared dataset, which scales poorly as the size of the
dataset and the number of parties grow (Fig. 12). As a result,
compared to the two-party setting analyzed in some of our
experiments, settings with more than two parties are expected
to lead to a greater improvement of MHE over SMC protocols.

F Cryptographic Details & Parameters

We used parameters that ensure 128-bit security level
across all frameworks. For HE, we used a standard pa-
rameter setting (from the Lattigo library [43]) to instan-
tiate CKKS, with a 438-bit modulus and 10 levels (mod-
uli chain: {35184372121601, 17179967489, 17179672577,
17180262401, 17180295169, 17179410433, 17180393473,
17180557313, 17180950529, 17178525697}), supporting
8192 plaintext slots with a default scale of 234, and standard
deviations of 3.2 and 220 for the encryption noise and smudg-
ing noise, respectively. Secret key shares are drawn at random
from Z3[x]/(X214

+ 1) at each party. The sum of secret key
shares represents a collective secret key but is never computed
nor revealed, i.e., decryption requires the participation of all
parties. The generation of other keys, such as the public en-
cryption key, leverage shared, private pseudorandom streams
that are agreed upon by all parties beforehand [56]. These
pseudorandom streams are also used for secret-sharing to
boost performance [17,18]. Additionally, in HE, each rotation
value requires a different rotation key. There are multiple
strategies to solve this issue: (i) generate a predefined num-
ber of rotation keys, (ii) generate all required keys based on
runtime analysis of the expression tree, or (iii) generate all
power-of-two rotation keys up to the maximum ciphertext
size and translate all rotations to their bitwise equivalents.
Shechi uses the combination of the first and third strategies.

We instantiated the SMC solutions on top of a 256-bit fi-
nite field (MPyC and Sequre) or Z2256 ring (MP-SPDZ) with
a 32-bit fraction in 64-bit fixed-point precision and 64-bit
of additional statistical security padding. Since MP-SPDZ

offers a multitude of SMC schemes, we opted for the dealer-
ring scheme, which is based on additive secret sharing with
a trusted dealer, who generates and distributes the Beaver
multiplication triples to the parties, and thus is comparable to
Sequre and Shechi’s SMC module. We attribute the slightly
higher runtimes of MP-SPDZ, compared to Sequre, to the
better performance of the low-level executables generated
by the custom end-to-end compiler with the LLVM backend
in Sequre. The runtime improvements in other solutions are
due to HE’s superior performance in these microbenchmarks.
MPyC’s security scheme, on the other hand, is not config-
urable and is fixed to t-out-of-n Shamir’s secret sharing (i.e. t
participants out of n can collude to reveal the secret) with a
0≤ t ≤ ⌊ n

2⌋ constraint. In other words, the smallest number
of parties that still offer secure computing is n = 4 with t = 2.

Mitigating Privacy Leakage in Noise via Smudging.
CKKS requires additional noise to be added to ciphertexts
before decryption to prevent the recently exposed vulnerabil-
ity [49], in which sensitive information is extracted from the
noise in the decryption results. This vulnerability is present
in the original collective decryption protocol implemented in
Shechi (Protocol 3 in [56]). To address this, we incorporated
the countermeasures adopted by CKKS implementations in
popular libraries such as PALISADE and Lattigo [15, 24, 56].
The general approach involves adding 2s bits of smudging
noise for statistical security before the decryption results are
revealed. However, given the performance constraints of cur-
rent CKKS implementations, which provide up to 64-bit preci-
sion, the number of bits available for noise flooding is limited
in these libraries, resulting in a low statistical security param-
eter; for example, PALISADE currently uses s = 20 [1]. Note
that the precise number of bits of additional Gaussian noise
for smudging required for a desired level of statistical security
can be determined based on a tight analysis for CKKS [48].
These mitigations help mask noise resulting from general
circuit evaluation under homomorphic encryption, including
plaintext-ciphertext multiplications. In our multiparty setting,
each party adds the required noise locally during partial de-
cryption to ensure that the final (aggregated) decryption result
does not leak information to any party. Table 4 shows that
this smudging procedure has no significant impact on accu-
racy in our experiments across different levels of smudging
noise. We note that a more sophisticated, dynamic mitigation
strategy, allowing in some cases for the addition of noise of
a lower norm, would require analyzing noise growth within
the circuit [49] and adding an appropriate level of smudging
noise. This remains an active area of research, and no widely
implemented solution exists in current libraries. Leveraging
Shechi’s statistical code analysis framework to determine the
expected noise growth in circuit evaluation is a meaningful
direction for future work.
Principal Component Analysis (PCA). We reimplemented
the recent secure distributed variant of the randomized PCA



Aggregated among all parties
Local at each party

@

3rd party

2nd party

1st party
1st party

2nd party
3rd party

Secret shares

@

RA RB

A@B

1st party

2st party

3st party

@
1st party

2nd party

3rd party

1st party

2nd party

3rd party

RA

RB

@
Aggregated 

A - RA

RA

RB

@

@

@

@

1st party

2nd party

3rd party

1st party

2nd party

3rd party
A B A@B

Aggregated 
B

Aggregated 
B

Aggregated 
B

Secret sharing MHE

@
1st party

2nd party

3rd party

1st party

2nd party

3rd party

A B

Aggregated 
A - RA

Aggregate Beaver partitions
Aggregate one 

 operand

Aggregated 
A - RA

Aggregated 
B - RB

RA,B are generated at random by trusted dealer

Aggregated 
B - RB

Aggregated 
B - RB

Encrypted data

(Appendix) Figure 12: MHE scales better than secret sharing when increasing the number of parties. Each party operates
independently on a fraction of the input in MHE, while in secret sharing-based SMC, all parties perform the same amount of
work over the secret shares of the entire pooled dataset, the size of which grows with the number of parties.

Solution σs = 216 σs = 220 σs = 247

Kinship 1.08 ·10−0 2.07 ·10−0 1.95 ·10−0

PCA 8.55 ·10−5 2.47 ·10−4 3.33 ·10−8

GWAS 4.73 ·10−5 4.02 ·10−5 1.67 ·10−8

Table 4: The impact of increasing the standard deviation
of the smudging noise on accuracy in our applications.
We report the mean absolute difference between the offline,
non-secure ground truth and Shechi for different values of the
smudging sigma (standard deviation). The largest noise (i.e.
247) required different parameters where the default scale and
moduli sizes were increased from 234 to 250.

algorithm [29, 33]. We executed a joint PCA on 128 indi-
viduals split among two parties with 524,288 features and
relied on the randomized PCA [33] algorithm to extract the
first two components, using an oversampling parameter of 2
and 2 power iterations. For the eigendecomposition, we relied
on the standard numerical computation via QR factorization,
executing 5 iterations per eigenvalue.
Kinship Distance Computation (KING). We implemented a
recent method [52] to compute kinship as a distance between
two genotype vectors normalized by heterozygosity.
Genome-wide Association Study (GWAS). Our GWAS im-
plementation is an adaptation of the state-of-the-art GWAS
SMC method [18] and includes the comprehensive work-
flow required for an association study based on linear re-
gression. It first captures the population structure into a low-
dimensional matrix by executing a PCA and then conducts
the association test via the Cochran-Armitage trend test, in-
cluding both the PCs and patients’ characteristics (e.g., age
and sex) as covariates. GWAS aims at pinpointing genetic
variations that exhibit correlations with a specific phenotype
of interest, such as disease, susceptibility, or other quantita-
tive biological traits. We executed a genome-wide association
study in two standard steps: population stratification analy-
sis and Cochran-Armitage trend test. For the first step, we
relied on the PCA solution from the previous section. For the
Cochran-Armitage trend test, we considered the two principal
components from the first step as covariates, as well as two ad-

ditional patients’ features, i.e., sex and age. We computed the
Cochran-Armitage trend test on 524,288 Single-nucleotide
polymorphisms (SNPs).

G Code Examples

Shechi enables users to execute standard Python code by sim-
ply preceding it with one (Fig. 1) or two lines (Fig. 13) of
initialization code specifying the partitioning of the data and
setting up the communication and cryptographic environment.
Using the latter approach allows the user to easily fine-tune
cryptographic or input parameters. The network configuration
is specified via CLI arguments when running the executables
(see https://github.com/0xTCG/sequre for more exam-
ples and detailed instructions on how to install, compile, and
run Shechi).

1 from shechi import mhe, SDT
2

3 @shechi
4 def forward_qr(X):
5 u = copy(X[0])
6 u[0] += u.norm() + u[0].sign()
7 u /= u.norm()
8 X -= X @ u.T @ u * 2
9 return X[1:, 1:]

10

11 mhe = mhe() # set multiparty environment
12 # Load data into a secure distributed tensor (SDT)
13 data = SDT.collective_load(mhe, "path.csv",
14 rows_local=8192, cols=32, dtype=float).T
15

16 forward_qr(data)

(Appendix) Figure 13: Shechi’s instantiation for secure
execution on partitioned data.

1 @shechi
2 def mnist(mhe, X, y, test_X , epochs):
3 LogReg(mpc_initial_w , "multinomial").fit(
4 mpc, X, y, epochs).predict(mhe, test_X).reveal()

(Appendix) Figure 14: Shechi-MNIST. The LogReg func-
tion is part of Shechi’s library, supports linear, logistic and
multinomial regression, and is written in about 100 lines of
Pythonic code.

https://github.com/0xTCG/sequre
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