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Abstract
The widespread application of automatic speech recognition
(ASR) supports large-scale voice surveillance, raising con-
cerns about privacy among users. In this paper, we concentrate
on using adversarial examples to mitigate unauthorized dis-
closure of speech privacy thwarted by potential eavesdroppers
in speech communications. While audio adversarial exam-
ples have demonstrated the capability to mislead ASR models
or evade ASR surveillance, they are typically constructed
through time-intensive offline optimization, restricting their
practicality in real-time voice communication. Recent work
overcame this limitation by generating universal adversar-
ial perturbations (UAPs) and enhancing their transferability
for black-box scenarios. However, they introduced excessive
noise that significantly degrades audio quality and affects
human perception, thereby limiting their effectiveness in prac-
tical scenarios. To address this limitation and protect live
users’ speech against ASR systems, we propose a novel frame-
work, AudioShield. Central to this framework is the concept
of Transferable Universal Adversarial Perturbations in the
Latent Space (LS-TUAP). By transferring the perturbations
to the latent space, the audio quality is preserved to a large
extent. Additionally, we propose target feature adaptation to
enhance the transferability of UAPs by embedding target text
features into the perturbations. Comprehensive evaluation
on four commercial ASR APIs (Google, Amazon, iFlytek,
and Alibaba), three widely-used voice assistants, two LLM-
powered ASR and one NN-based ASR demonstrates the pro-
tection superiority of AudioShield over existing competitors,
and both objective and subjective evaluations indicate that
AudioShield significantly improves the audio quality. More-
over, AudioShield also shows high effectiveness in the real-
time end-to-end scenarios, and demonstrates strong resilience
against adaptive countermeasures.

1 Introduction

Automatic speech recognition (ASR) systems use deep learn-
ing technology to transcribe speech into text, and their high
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Figure 1: Overview of large-scale speech communication
surveillance scenarios without/with AudioShield.

accuracy has led to widespread application across various
fields [45, 50, 57, 62]. For example, in the financial services
sector, voice surveillance is used to improve the reliability
and efficiency of compliance management [2]. However, in-
discriminate voice surveillance can raise security concerns,
particularly in the context of global government agencies ex-
tensively monitoring personal phone calls and internet data [4].
This large-scale voice surveillance has sparked public con-
cerns about personal privacy breaches and eroded trust in
governments. Therefore, protecting public privacy and avoid-
ing voice surveillance have become increasingly necessary.

As shown in Figure 1, the large-scale speech communi-
cation surveillance typically includes three parties, speaker,
receiver, and eavesdropper. While the speaker conveys speech
to the receiver, the eavesdropper can seize the opportunity to
intercept large amounts of user speech data and use ASR to
convert them into texts for quick extraction of key information.
More seriously, due to the lack of any protection for speech,
the speaker and receiver may never know and never come to
know that their conversations are being monitored. In sum-
mary, such unprotected conversations provide the possibility
of privacy content leakage to third parties.

Adversarial perturbations against ASR systems offer a po-



Table 1: Comparison of existing research focusing on audio adversarial examples.

Method Knowledge Transferability Universality Unrestriction1 Target ASR Applicability
Carlini et al. [16] ❏ ✗ ✗ ✗ ▲ ❍

Neekhara et al. [47] ❏ ✗ ✓ ✗ ▲ ❍

Zong et al. [70] ❏ ✗ ✓ ✗ ▲ ❍

SSA [53] ❏ ✗ ✗ ✓ ▲ ❍

Devil’s Whisper [21] ■ ✗ ✗ ✗ ❖ ●

KENKU [58] ■ ✗ ✗ ✗ ❖ ●

SMACK [65] ■ ✗ ✗ ✓ ▲❖ ●

Transaudio [51] ■ ✓ ✗ ✗ ▲❖ ❍

ZQ-Attack [26] ■ ✓ ✗ ✗ ▲❖ ●

AdvDDoS [28] ■ ✓ ✓ ✗ ▲❖ ●

AudioShield ■ ✓ ✓ ✓ ▲❖★ ●

❏: represents white-box settings; ■: represents black-box settings.
▲: represents open-sourced traditional NN-based ASR models; ❖: represents commercial ASR models; ★: represents LLM-powered ASR
models.
❍: represents over-the-line (digital) settings; ●: represents both over-the-line (digital) and over-the-air (physical) settings.
1: “restriction” means that the perturbation between the adversarial example and the original audio is constrained by traditional ℓp-norms;
“unrestriction” represents that the adversarial example can have significant variations compared to the original audio.

tential avenue for evading voice surveillance by adding subtle
perturbations to the original audio data, causing the target
ASR model to produce erroneous transcriptions. Specifically,
the protection service provider offers protection services on
the user side that converts the user’s speech into adversarial
examples, preventing the ASR from correctly recognizing
the speech and thereby protecting the privacy information
contained in the user’s speech.

Researchers in this field have proposed various adversarial
examples against ASR systems [22,23,30,42,65], but they are
never used to protect the users’ speech privacy due to weak-
nesses of cost-consuming, low-transferability or low-quality.
A white-box setting implies that the structure and parameters
of the target model cannot be accessed, and therefore it is
not suitable for the scenarios described above, since no in-
ternal knowledge of the practical system can be obtained. In
contrast, black-box settings do not rely on knowledge of the
target model, which increases their practicality. Black-box
adversarial examples are mainly divided into two categories:
query-based and transfer-based, with most adversarial exam-
ples against ASR systems currently being query-based [15].
Table 1 provides a comprehensive comparison of existing
research in this field. However, in the context of evading
voice communication surveillance, these methods often suf-
fer from three significant drawbacks. (i) Cost-consuming:
query-based perturbations require sufficient time and queries
for constructing adversarial examples, which is impractical
given the real-time requirements of voice communication. An
intuitive solution to solve this problem is to train universal
perturbations in advance, and then insert them to real-time
audio. (ii) Low-transferability: query-based perturbations
are designed on a single target model, which does not align
with the reality that users do not know the specific ASR model
used by the surveillant in practical scenarios. Therefore, such

adversarial perturbations lack transferability across different,
especially unseen models. By leveraging the transferability
of adversarial examples, transferable perturbations, which are
first crafted on a local surrogate model, and then transferred
to the target model, can partially solve the above two limita-
tions. (iii) Low-quality: different from images in which the
imperceptibility of adversarial perturbations can be bounded
within the ℓp-norm ball, the perturbation restriction of audio
data is much more difficult to define. Some existing work uses
decibel distortion, Signal-to-Noise Ratio, or Perceptual Evalu-
ation of Speech Quality [55] as restriction metrics to maintain
the quality. However, the adversarial audios of most existing
work [28,47,70] still include harsh noise which makes it hard
for humans to figure out the audio contents. Therefore, how
to handle all these drawbacks to achieve both adversariality
and high audio quality remains unsolved.

To overcome these limitations, we propose AudioShield by
introducing Transferable Universal Adversarial Perturbations
in the Latent Space (LS-TUAP), which shifts the perturbations
to the latent space, thereby avoiding the introduction of noise
into the original audio data space and preserving audio quality.
Specifically, we utilize a variational autoencoder (VAE) archi-
tecture, where the input audio is encoded into latent space by
the encoder. Perturbations are then added in the latent space,
and the perturbed latent codes are passed through the decoder
to synthesize the audio back. Our method aligns with the
requirements for evading voice communication surveillance
in three key aspects: (i) Real-time Requirement: we train
universal adversarial perturbations in the latent space, making
them effective across any audio input. This eliminates the
need to iteratively generate perturbations for each specific
audio, thus meeting the real-time requirement. (ii) Model-
agnostic Requirement: we propose a target feature adapta-
tion process to enable LS-TUAP to learn the robust features



of the target text, enhancing its transferability. This makes Au-
dioShield effective against unseen models, thereby satisfying
the model-agnostic requirement. (iii) High-quality Require-
ment: our perturbations are applied in the latent space, rather
than the audio input. We also find a r-robustness probability
bound for the output of the decoder, indicating that LS-TUAP
can ensure the preservation of audio semantics and quality in
voice communication.

To validate the effectiveness of our method, we conduct ex-
tensive experiments on four commercial ASR APIs, two LLM-
powered ASR, one NN-based ASR, and three voice assistant
devices. Through comparisons with competitors, the supe-
riority of our method is clearly demonstrated. Specifically,
in the over-the-line setting, AudioShield achieves a protec-
tion success rate of over 75% on four commercial ASR APIs,
two LLM-powered models and one NN-based model, surpass-
ing the most advanced competitor (AdvDDoS) by 27.88%,
27.44%, 5.5%, and 17.29% on Google, Amazon, iFlytek, and
Alibaba, respectively. To further verify audio quality, we per-
form both objective and subjective evaluations, where the ad-
versarial examples generated by our method significantly out-
perform those by existing methods. Furthermore, AudioShield
achieves an average of 87.5% and 69% protection success
rate in the real-time end-to-end evaluation and over-the-air
robustness evaluation, respectively. AudioShield also exhibits
stronger resilience to adaptive countermeasures compared to
competitors. The source code and audio demos are available
at https://github.com/WeifeiJin/AudioShield.

In summary, our contributions are as follows:

• We propose a novel framework, AudioShield, designed
to protect live users’ speech against ASR models in large-
scale voice surveillance. The core of AudioShield in-
volves the introduction of LS-TUAP, which achieves
high universality, transferability, and audio quality.

• We introduce a target feature adaptation process that
optimizes the similarity loss in latent space, enabling the
perturbation to learn robust features of the target text,
thereby enhancing the transferability of LS-TUAP.

• We conduct extensive evaluations on ten ASR models, in-
cluding four commercial ASR APIs, two LLM-powered
models, one NN-based model, and three voice assistants.
The experimental results demonstrate the superiority of
AudioShield, surpassing competitors in both protection
performance and audio quality.

2 Background and Related Work

2.1 Automatic Speech Recognition
An ASR system transforms audio into text. Given an input au-
dio x, the ASR model f (·) generates the transcription y such
that y = f (x). The typical architecture of the ASR system is
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Figure 2: The architecture of a typical ASR system.

illustrated in Figure 2, which consists of three components:
feature extraction, acoustic model, and post-processing. The
acoustic characteristics are first captured by the feature extrac-
tion process. Traditional systems use time-frequency trans-
formations to convert audio into a frequency-domain spectro-
gram [12, 31], while modern systems often use the raw spec-
trogram directly [13]. Then, the acoustic model maps the ex-
tracted features or the raw spectrogram to an intermediate rep-
resentation using Gaussian Mixture Model-Hidden Markov
Models [27] or deep neural network (DNNs) [29, 32, 39].
Finally, the output of the acoustic model, i.e., tokens, is con-
verted into texts in the post-processing step.

Audio adversarial examples can mislead the audio sys-
tem into producing incorrect outputs or performing incor-
rect behaviors. Existing studies target different tasks includ-
ing speaker recognition [19, 20], speech command classifica-
tion [69], sound event classification [56] and speech recog-
nition [67]. In this paper, we concentrate on deceiving the
ASR system into producing incorrect transcriptions to protect
user privacy from content leakage. Adversarial examples on
ASR systems can be crafted in targeted and untargeted set-
tings. In the untargeted setting, the ASR system is misled into
producing any transcription other than the correct one, repre-
sented as f (x′) ̸= y, where x′ denotes the adversarial example.
Conversely, in the targeted setting, the ASR system is misled
to produce a specific incorrect transcription t ̸= f (x), formu-
lated as f (x′) = t. The adversarial example is also subject to
d(x,x′)≤ ε, where d(x,x′) measures the distance between x
and x′. ℓp norm is commonly used to calculate the distance,
and ε constrains the perturbation magnitude.

2.2 Related Work

Although there are various types of taxonomy for research on
audio adversarial examples (as shown in Table 1), we intro-
duce these studies by roughly categorizing the perturbations
into universal and transferable audio adversarial perturbations,
which is the most relevant classification method for this paper.
Universal audio adversarial perturbations. Universal per-
turbations mislead the target model across a wide range of in-
puts. They are trained offline and then applied to online inputs,
making them suitable for real-time applications like audio
and video streaming. Apart from work that proposes UAPs in
audio classification tasks [40, 59], Neekhara et al. [47] first
proposed untargeted UAPs to achieve input-agnostic manipu-
lations in ASR tasks, followed by Zong et al. [70] who intro-
duced a two-stage method to generate targeted UAPs. How-
ever, these works are still based on white-box settings, which
overestimate the manipulator’s capability. Recently, AdvD-
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DoS [28] was proposed to generate transferable universal
adversarial perturbations, also using a two-stage method and
leveraging mel-frequency cepstral coefficients (MFCC) fea-
ture inversion to enhance the transferability. Although these
methods employ two-stage algorithms to minimize perturba-
tion size as much as possible, sufficiently large perturbations
are still necessary to achieve universality, which results in ex-
cessive noise in the generated adversarial examples, thereby
degrading audio quality.
Transferable audio adversarial perturbations. In order to
reduce query budgets or even achieve query-free manipula-
tions in the black-box setting, transferable adversarial per-
turbations are proposed by utilizing the transferability of
adversarial examples across different models. Adversarial
examples are first trained on a known surrogate model and
then transferred to other unseen models. However, research
on transferable perturbations is still in their infancy for ASR
tasks. To mitigate the overfitting problem of optimizing adver-
sarial examples on the surrogate model, Qi et al. [51] proposed
Transaudio, which is a contextualized manipulation including
various adversarial behaviors. However, the performance of
universality and long audios was not verified. Ge et al. [28]
proposed AdvDDoS, which both considers transferablility
and universality when generating adversarial examples, but
largely decreases the audio quality which can make adver-
sarial audios detectable and conspicuous. Recently, Fang et
al. [26] proposed ZQ-Attack, which is an ensemble method
that uses different types of surrogate models to enhance the
transferablity of the adversarial examples. However, consider-
ing various surrogate models during the optimization requires
a high computational cost, and the audio quality of generated
perturbations is not well preserved. Therefore, in this paper,
to improve the practicality of audio adversarial examples, we
consider enhancing both universality and transferability while
maintaining the audio quality.

3 Threat Model

Protection Scenario. In the scenario we assume, as shown in
Figure 3, there are three parties involved: the protection ser-
vice provider (such as AudioShield), the user, and the eaves-
dropper. The user’s speech communication data may be inter-
cepted by potential eavesdroppers in the real world without au-
thorization. Eavesdroppers use ASR systems to conduct large-
scale surveillance on the speech communications of many
users. AudioShield packages well-trained perturbations into a
program or software that can run in the background on local
devices or be provided as a cloud service. AudioShield offers
a service that protects users’ speech privacy by receiving their
speech input, applying protection using LS-TUAP, and then
outputting the protected audio through a virtual microphone
to downstream speech communication software. By using
AudioShield, users can protect the privacy of their speech
data. The eavesdropper, can directly access large amounts of
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Figure 3: Protection scenario of AudioShield.

user communication data from government agencies or large
companies’ servers, as reported in [4].
System Goal. AudioShield converts each normal speech in-
put into an adversarial example, making its semantic content
transcribed incorrectly by ASR systems. At the same time,
the adversarial perturbations generated by AudioShield must
be universal to meet the real-time requirements of speech
communication scenarios. For any speech input, only a single
inference process is needed, ensuring that the latency remains
within an acceptable range. AudioShield can function as a
background program or cloud service, receiving the user’s
speech input, converting it into adversarial examples, and then
outputting it to communication software or channels, so that
eavesdroppers only receive the adversarial examples. Further-
more, the adversarial examples generated by AudioShield
must maintain a certain level of quality, allowing the human
recipient in the communication to still understand its content.
Knowledge Assumption. In our assumed scenario, both the
protection service provider (AudioShield) and the user oper-
ate under a completely black-box setting, meaning they have
no access to the architecture, parameters, or any output of
the target model. This is because no information about the
potential eavesdropper is available, and thus, the specific ASR
model being used by the eavesdropper is unknown. This re-
quires the adversarial examples generated by AudioShield to
have high transferability, ensuring strong protection across
various ASR models that the eavesdropper might use. In other
words, different ASR systems should not be able to accurately
recognize the semantic content of the speech. To achieve this,
we train the adversarial perturbations using a surrogate model
locally and then transfer them to black-box ASR models in
an untargeted setting.

4 Design of AudioShield

4.1 Problem Formulation
Our goal is to generate transferable universal adversarial per-
turbation that is effective on any unseen audio and any un-
seen black-box ASR model, i.e., in the untargeted setting. To
achieve this goal, perturbations are first crafted in the targeted
setting on a local surrogate model. Since the surrogate model
is accessible, we can obtain all information about the model.
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Therefore, the objective function can be expressed as follows.

min
δx

E
x∼X

[LASR( f (x′), t)], (1)

where X denotes the audio dataset, t represents the target text,
δx stands for the perturbation that we want to obtain. The
ASR loss LASR is defined as connectionist temporal classi-
fication (CTC) loss or cross-entropy loss, according to the
architecture of the surrogate model. As mentioned previously,
in traditional methods that add perturbations to the input au-
dio, x′ satisfies x′ = x+δx, and d(x,x′)≤ ε. However, in our
work, perturbations are added in the latent space, which will
be introduced later. After the UAPs are obtained, they are
added to real-time audios and the generated audios are input
to unseen ASR models for further testing.

4.2 Overview of AudioShield
The core idea of AudioShield is to optimize a transferable uni-
versal adversarial perturbation in the latent space. Specifically,
as illustrated in Figure 4, the optimization process is primarily
divided into three steps: protection preparation, perturbation
generation, and target feature adaptation. The pseudocode of
AudioShield can be found in Algorithm 1.
Protection Preparation. The main objective of this step is to
select an appropriate autoencoder and a suitable target audio.
For autoencoder selection, we establish three principles to
guide the selection process. We then use a heuristic search
algorithm to find a suitable target audio and the scaling factor,
which serves as the desiderata for subsequent steps.
Perturbation Generation. This is the core step of the entire
optimization process. As shown in Figure 5, we utilize an
autoencoder architecture as the protection module where the
audio is first input to an encoder to obtain its corresponding
latent code. The adversarial perturbation, LS-TUAP, is then
added to the latent code, and the perturbed latent code is sent
to a decoder to synthesize the adversarial example.
Target Feature Adaptation. To enhance the transferability
of LS-TUAP, we propose target feature adaptation. Also as
shown in Figure 5, the target audio generated from target text
is fed into the encoder to obtain its latent code. By minimizing
the cosine similarity between LS-TUAP and the target audio’s
latent code, the perturbation learns the latent features of the
target text.
Over-the-air Robustness. For the physical scenario, we em-
ploy room impulse response (RIR) to model the transfer func-
tion between the sound source and the microphone, simulating

Algorithm 1 AudioShield

Input: Encoder E , decoder D, ASR model f , TTS model
g, target text t, training dataset X , standard deviation σ,
maximum epoch number MaxE poch, maximum iteration
for each batch MaxIter, target audio number n, learning
rate α, perturbation threshold τ, decay rate s, ASR loss
LASR, cosine similarity loss LSim, weighting factor λ.

Output: Generated LS-TUAP δ.
1: Initialization: MinL←+∞, xt ← 0, δ← 0
2: for i← 1 to n do
3: Randomly generate audio xti ← g(t)
4: zi← E(xti), w← 1
5: while f (D(w · zi)) == t do
6: w← w · s
7: end while
8: zi← w · zi, xti ←D(zi)
9: li← LASR( f (xti), t)

10: if li < MinL then
11: xt ← xti , δ← zi, MinL← li
12: end if
13: end for
14: for i← 1 to MaxE poch do
15: Randomly sample a batch audio x from X
16: z← E(x)
17: for j← 1 to MaxIter do
18: Sample p∼N (0,σ2)
19: x′←D(z+δ+ p)
20: Calculate Ltotal ← LASR( f (x′, t))+λ ·LSim(δ,xt)
21: δ← clip(δ−α · sign(∇δLtotal),−τ,τ)
22: end for
23: end for
24: return δ

over-the-air distortions during the perturbation optimization,
thereby enhancing its robustness.
Real-time Protection Based on the previous steps, we can
obtain different UAPs using different target texts. In practical
use, each time we obtain the audio in real-time scenarios, we
randomly select one UAP from a set of well-generated UAPs,
perform inference using the autoencoder we select, and obtain
the protected example. Therefore, the latency we introduce is
solely the inference time of the autoencoder, which ensures
that the latency remains relatively small.

4.3 Protection Preparation
Autoencoder Selection. The efficacy of the audio adversarial
examples exhibits a significant correlation with the perfor-
mance of the VAE utilized. Consequently, the discreet selec-
tion of an appropriate autoencoder is of paramount impor-
tance. Based on our protection requirements, we establish the
following three principles for autoencoder selection: (i) Effi-
ciency and Compactness: the model should be streamlined
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and efficient, with a minimal number of parameters, to ensure
that the inference stage does not introduce excessive latency.
(ii) Zero-shot Capability: since we aim to generate UAPs
that are applicable to any audio, the model must operate in a
zero-shot manner. (iii) High Audio Quality: the generated
audio must maintain high quality, and the latent code should
be able to tolerate a certain degree of perturbation without
causing significant degradation in the generated audio.

Based on these three criteria, we evaluate several popular
voice conversion models and text-to-speech (TTS) models in
the audio domain. The results are shown in Table 2, where
NISQA [46] is a metric to assess audio quality, which will be
introduced in detail in Section 5.1. Considering audio qual-
ity, latency, zero-shot capability, and computational resource
consumption, we ultimately choose the VITS model [35].
Although VITS is primarily a TTS model, it includes a spec-
trogram encoder component that allows it to accept audio
inputs. VITS is a widely recognized model and is often used
as the foundational backbone for more advanced TTS models,
such as YourTTS [17] and HierSpeech [38].
Target Audio Selection. In the local targeted setting, the per-
turbations in the latent space requires learning the latent fea-
tures of the target text to improve its transferability. A better
target audio generated from target text makes the perturba-
tions easier to improve the ability of adversarial examples
to mislead unknown ASR models and protect user’s speech
content in the untargeted setting.

To achieve this goal, we propose a heuristic search algo-
rithm to find a suitable target audio and a scaling factor before
optimizing the perturbation. Specifically, given a target text

Table 2: Comparison of different autoencoders.

Model NISQA Zero-shot Param. Size Infer. Time
AutoVC [52] 2.15 Y 27.11M 537ms

SpeechSplit2 [18] 3.23 N 22.71M 1136ms
VITS [35] 3.84 Y 37.86M 876ms

HierSpeech++ [37] 3.33 Y 197.99M 8646ms

t, we first use a one-to-many TTS model that allows speaker
specification to generate a set of n target audios with different
styles and random speakers. Since the VITS model selected in
the autoencoder selection step is a TTS model that can achieve
one-to-many mapping through adjusting its noise scale pa-
rameter, we directly use the VITS model in this step. We then
iterate through this set of n target audios. For each target audio
xti , we input it into the audio encoder to obtain the latent code
zi. Next, we search for a scaling factor w that minimizes the
factor required for the local ASR model to correctly transcribe
D(w · zi) as the target text t, where D denotes the decoder.
We then calculate the corresponding ASR loss. Finally, we
select the target audio xt with the smallest loss value from the
n target audios, and the corresponding smallest scaling factor
is used to initialize the perturbation δ← w ·E(xt), where E
denotes the encoder.

In summary, the heuristic search algorithm identifies the
most suitable target audio and the corresponding perturbation
initialization scaling factor in a locally optimal sense through
a limited search process within a two-tier loop. This approach
avoids the brute-force search for the globally optimal target
audio and scaling factor in an infinite space and reduces the
interference of irrelevant features in the audio during the
perturbation optimization process. This approach also reduces
the interference of irrelevant features in the audio during
the perturbation optimization process. The selection of the
target audio can be seen as a coarse-grained optimization of
the perturbation, serving as the foundation for fine-grained
optimization in subsequent steps.

4.4 Perturbation Generation
Given an audio clip x and an adversarial perturbation δ in the
latent space, the adversarial example x′ can be expressed as:

x′ = D(E(x)+δ). (2)

Meanwhile, we empirically verify that the latent codes
in the latent space cannot change arbitrarily, as this would
generate audio that sounds natural to humans (more details
are provided in Section 5.4). To ensure that the distribution
of the generated audio is similar to that of the natural audio,
we restrict the perturbation within a certain range. Therefore,
Equation (1) is transformed into:

min
δ

E
x∼X

[LASR( f (D(E(x)+δ)), t)]

s.t. ∥δ∥∞ ≤ τ,
(3)
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Figure 7: MFCC feature distributions of the original and
adversarial audios generated by four methods. We use kernel
density estimation (KDE) to calculate the distribution, with
the horizontal axis representing MFCC mean values and the
vertical axis representing density.

where τ controls the ℓ∞ boundary of the perturbation δ.
Since the decoder satisfies the Lipschitz continuity [14,

64], we can ensure that the similarity of the output remains
within a specified threshold with a particular probability when
perturbations are added to the latent space. This indicates the
following r-robustness probability bound.

Theorem 1 Assume that the deterministic component of the
decoder D is a-Lipschitz, and given two independent latent
codes z1 and z2, then for ∀r ∈ R +,

P [∥D (z1)−D (z2)∥∞
≤ r]≥ 1−min

{
1,

a2τ

r2

}
. (4)

Considering that the autoencoder attempts to generate sam-
ples that are close to the original data distribution, Theorem 1
indicates that adding perturbations to the latent space will not
significantly affect the distribution discrepancy between the
output and input samples of the autoencoder, thus providing a
guarantee for maintaining the audio quality. See Appendix A
for the proof. Besides, the MFCC feature distributions in Fig-
ure 7 demonstrate that the adversarial examples generated by
AudioShield exhibit a distribution similar to that of the origi-
nal audio. Conversely, the distributions of samples generated
by other methods diverge significantly from the original audio
distribution, thereby indicating a greater degree of noise.

Since robust features learned by UAPs should be input-
agnostic, and the inputs have limited sample variability, we
add Gaussian noise p ∼ N (0,σ2) with a variance of σ2 to
the UAP during training to increase the diversity of inputs
and prevent overfitting or falling into local minima [34, 36].
Therefore, the optimization problem becomes:

min
δ

E
x∼X ,p∼N (0,σ2)

[LASR( f (D(E(x)+δ+ p)), t)]

s.t. ∥δ∥∞ ≤ τ.
(5)

4.5 Target Feature Adaptation
As mentioned earlier, the latent features of different target
audios have different impacts on the transferability of UAPs.
Given that the latent code contains rich acoustic and seman-
tic features and that ASR models primarily focus on key
features such as phonetic and semantic features, it is impor-
tant to minimize the interference from other features, such as
speaker identity. A straightforward approach might be to se-
lect a group of target audios with different styles and random
speakers. Then, in each iteration, an audio is cherry picked
from this group, fed into the encoder to extract latent features
as the target code, and used for optimization. However, in prac-
tice, we find that this approach often leads to local optima,
negatively affecting the optimization results. We speculate
that the gradient descent direction is disrupted by multiple
target audios, causing the gradient descent process to be less
smooth, and ultimately reducing transferability. The above
pilot study provides more justification for the target audio
selection strategy in Section 4.3.

By minimizing interference from other features and irrele-
vant information and selecting the best target audio, the UAP
can learn better target features in the optimization stage, and
as a result, the generated adversarial audio is more likely to
cross the decision boundary in the target model’s decision
space. Specifically, we first generate a group of audio clips
corresponding to the given target text t using TTS, and choose
the best target audio xt according to the aforementioned selec-
tion criteria. Then, we extract the latent features of the target
audio using the encoder, denoted as zt = E(xt). Note that in
the targeted setting, the selected target audio for all audios
used to train UAPs is the same. Our optimization goal is to
minimize the cosine similarity between the perturbation δ and
zt . Thus, the objective function can be expressed as:

min
δ

E
x∼X ,p∼N (0,σ2)

[LASR( f (D(zx +δ+ p)), t)

+λ ·LSim(zt ,δ)]

s.t. ∥δ∥∞ ≤ τ,

(6)

where LSim represents the cosine similarity loss, zx = E(x)
represents the latent code of input audio x, λ controls the
contribution ratio between the two loss terms.

Then, in each iteration, we train the UAPs in a mini-batch
manner. To restrict the perturbation size, the perturbation is
updated through Projected Gradient Decent (PGD) [43]:

δ← clip(δ−α · sign(∇δLtotal),−τ,τ), (7)

where Ltotal denotes the above expectation of the total loss
in a mini-batch, α denotes the learning rate, clip denotes the
clip operation to constrain the perturbations within [−τ,τ].

4.6 Physical Robust Perturbation
In over-the-air scenarios, when audio adversarial examples
are played through a speaker and transmitted through the



air, they undergo inevitable and severe distortions, includ-
ing signal attenuation, multipath effects, and environmental
noise, which can diminish the effectiveness of the adversarial
example. To address this, we integrate the effects of envi-
ronmental absorption and reverberation into the perturbation
optimization process by using room impulse responses (RIRs)
to simulate the transfer function between the sound source
and the microphone. This approach allows us to simulate
air-induced distortions during the optimization of adversarial
perturbations, thereby enhancing their robustness.

Since RIRs vary significantly depending on the environ-
ment, we use a set of real RIRs collected in different environ-
ments for optimization. Specifically, we utilize the Aachen
impulse response database [33] and the MIT IR Survey [3],
which together provide a total of 615 RIRs. By integrating
these RIRs, Equation 6 is transformed into:

min
δ

E
x∼X ,p∼N (0,σ2),r∼R

[LASR( f (D(zx +δ+ p)⊗ r), t)

+λ ·LSim(zt ,δ)]

s.t. ∥δ∥∞ ≤ τ,
(8)

where R represents the distribution of RIRs, ⊗ represents the
convolution operation. The generated example x′, after being
convolved with r, represents the example that has taken into
account the simulated propagation effects.

5 Experiments

5.1 Experiment Setup
Datasets. We randomly select 500 and 2,000 audio-text
pairs with durations between 1 to 5 seconds from the Lib-
riSpeech [48] and VCTK Corpus [61], respectively, as the
training dataset and test dataset.
Target Texts. Similar to [21, 26], we choose 10 commonly
used commands as the target texts: call my wife, make it
warmer, navigate to my home, open the door, open the web-
site, play music, send a text, take a picture, turn off the light,
and turn on airplane mode.
Target Models. Consistent with competitors, we train LS-
TUAP locally using DeepSpeech2 [13] as the surrogate
model. In the testing phase, to fully demonstrate the effec-
tiveness of our method, we conduct experiments on 10 mod-
ern ASR systems. Specifically, for digital scenarios, we test
on four commercial cloud ASR APIs (Google [10], Ama-
zon [7], iFlytek [11], and Alibaba [5]), two LLM-powered
ASR (Qwen-Audio [24] and MooER [60]) and one state-
of-the-art (SOTA) open-sourced NN-based ASR (OpenAI
Whisper-large-v3 [54]). For physical robustness, we test
on three voice assistants: Google Assistant [9], Amazon
Alexa [6], and Apple Siri [8]. In the over-the-line setting,
we train UAPs on 2 NVIDIA GeForce RTX 4090 GPUs,
running a 64-bit Ubuntu 18.04 operating system.

Table 3: The recognition results on benign examples.

Metrics Google Amazon iFlytek Alibaba
WER 4.09 2.57 3.40 3.01
CER 3.78 3.09 3.29 3.03

Table 4: Comparison on commercial ASR APIs.

Method
Google Amazon iFlytek Alibaba

PSR CER WER PSR CER WER PSR CER WER PSR CER WER
Neekhara et al. [47] 31.10 35.85 43.12 32.27 36.95 44.58 74.60 86.26 108.64 58.17 77.56 95.38

Zong et al. [70] 62.67 57.79 65.67 50.31 49.73 56.06 50.34 48.62 63.43 51.10 50.11 66.91
AdvDDoS [28] 31.02 36.21 43.82 19.19 26.17 30.80 39.85 42.19 55.28 63.76 75.78 101.11

AudioShield 90.55 80.94 90.06 77.75 69.65 82.54 80.10 66.80 88.77 81.05 68.59 87.72

Parameter Settings. For the configuration, we set τ to 0.5,
σ to 1.0, λ to 50, and a batch size to 16. We use Adam as
the optimizer with a learning rate of 0.001. The impact of
hyper-parameters will be analyzed in Section 5.8.
Competitors. To demonstrate the superior performance of
AudioShield, we compare it with three SOTA methods:
Neekhara et al. [47], Zong et al. [70], and AdvDDoS [28]. All
three methods generate UAPs for ASR tasks. The work done
by Neekhara et al. is tailored for untargeted scenarios, while
the work done by Zong et al. and AdvDDoS are only applica-
ble to targeted scenarios. Additionally, save for universality,
AdvDDoS also achieves transferability. Note that we train
the UAPs for Neekhara et al. in an untargeted manner, so
different target texts make no difference to the performance
of Neekhara et al. in our experiments. We do not consider
transfer-only competitors since they lack universality.
Evaluation Metrics. For the evaluation of protection effec-
tiveness, we use the protection success rate (PSR, %), char-
acter error rate (CER, %), and word error rate (WER, %) as
metrics. Note that a protection is considered successful only
when the example’s CER reaches 50% or higher. For these
metrics, higher values indicate better performance. For au-
dio quality, since we do not introduce noise to the original
audio, the signal-to-noise ratio (SNR) adopted by traditional
methods is not suitable for evaluating our method. Therefore,
following [65,66], we use the SOTA DNN-based audio quality
assessment system, NISQA [46], which quantifies audio qual-
ity and naturalness on a scale from 1 to 5. A higher NISQA
denotes higher audio quality.

5.2 Evaluation on Cloud ASR APIs
In an over-the-line setting, the generated audio adversarial
examples are directly input into the target ASR APIs. First,
we assess the functionality of the four commercial ASR APIs
using benign audio clips. As shown in Table 3, all ASR mod-
els can accurately recognize these audio clips, showing a low
CER and a low WER, specifically lower than 5%.

Then, the UAPs are trained in a targeted manner for three
competitors with the target text being “open the door” be-
fore being added to all audio clips in the test stage (see Ap-
pendix B.2 for results on other target texts). We observe that
there are a few examples for which the results returned by the



Table 5: Comparison of several transcription results from
iFlytek API.

Original Neekhara et al. [47] Zong et al. [70] AdvDDoS [28] AudioShield

I’ve not said anything
to them, they know

I’ve not said anything
to them they know

has not said anything
to them they know

I’ve not said anything
to them they know

no I don’t know who
had anything to do

with
one season, they
might do well

1 season they might
do well they might be well 1 piece and you

might be well most of the time

they have shown a
great desire and

attitude

has shown a great
desire and attitude

it’s been a great
desire and attitude a great desire and that all right so

I decided it is going
to be William

I decided it is going
to be later

I decided to return to
england

I decided it was
going to be there

no I have it is going
to be all you

Charles Kennedy had
an effective outing

still going to be
hiding that’s going to be that’s going to be

having just kind of the

Table 6: Comparison on two LLM-powered ASR and
Whisper-large-v3.

Method
Qwen-Audio MooER Whisper

PSR CER WER PSR CER WER PSR CER WER
Neekhara et al. [47] 45.08 62.52 75.74 39.49 42.86 62.70 24.42 32.52 41.32

Zong et al. [70] 70.38 79.25 96.65 63.64 54.27 76.20 66.48 60.37 75.73
AdvDDoS [28] 45.00 60.85 76.88 47.93 45.57 67.08 36.21 39.61 50.56

AudioShield 77.22 70.43 99.47 79.99 64.63 98.32 85.43 71.48 96.76

commercial ASR APIs are either empty or “NA”. We consider
these to be anomalous examples detected by the ASR systems,
which is why no result is returned. Therefore, we filter out
these examples. The results of AudioShield and competitors
on commercial ASR APIs are presented in Table 4. The mean
PSR of AudioShield reaches 82.36%, surpassing Neekhara et
al. [47], Zong et al. [70], and AdvDDoS by 33.32%, 28.75%,
and 43.90%, respectively. Concurrently, the adversarial ex-
amples generated by our method demonstrate superior trans-
ferability. Specifically, our method achieves high PSR across
all 4 commercial ASR APIs, whereas the three competitors
exhibit high PSR only on specific models but perform poorly
on others. For instance, AdvDDoS reaches a 63.76% PSR on
Alibaba, while the PSR on the other three models remains
below 40%.

The results indicate that our method demonstrates superior
transferability compared to other approaches, thereby show-
ing stronger scalability to unknown ASR models. It is worth
noting that making a small perturbation effective across dif-
ferent ASR models’ decision boundaries is quite challenging.
Moreover, Zong et al. [70] and AdvDDoS use a two-stage
generation algorithm. In the first stage, no constraints are
applied to the perturbation, generating a UAP that works on
any audio. In the second stage, they gradually reduce the per-
turbation’s magnitude to minimize noise while maintaining
a success rate above a certain threshold. This approach is
prone to getting stuck in local optima. In contrast, our method
employs a single-stage optimization process, leveraging the
latent features of the target audio to guide the gradient di-
rection during iterations, thereby improving transferability.
This explains why our method outperforms the competitors.
Furthermore, our method induces more transcription errors
compared to competitors, as evidenced by the CER and WER
of AudioShield, which are 12.34% and 14.34% higher than
those of the competitor with the highest error rates among the
three, respectively.

Table 5 presents several transcription results from several
adversarial examples generated by each method. The sen-
tences in the first column denote the original audio transcripts.
The words that are different from the original transcripts in
the transcription results generated by the four methods are
highlighted in red. The results show that AudioShield effec-
tively causes most of the words in the original sentence to
be transcribed incorrectly, significantly altering the original
semantics. In contrast, competitors often fail to induce errors
in certain words, which diminishes their practicality. For ex-
ample, in the examples from the second row (excluding the
header row), the transcription results of the three competitors
all contain the original sentence’s words “might” and “well”,
whereas the transcription caused by AudioShield does not
include any words from the original sentence. Overall, our
method demonstrates strong competitiveness in fooling ASR
APIs. The waveforms and spectrograms of these examples
can be found in Appendix B.1.

5.3 Evaluation on LLM-powered ASR

To further evaluate the protection performance of our method,
we conduct experiments on two LLM-powered ASR: Qwen-
Audio [24] and MooER [60]. Qwen-Audio is a fundamen-
tal multi-task audio-language model that supports various
tasks, languages, and audio types, serving as a universal audio
understanding model. MooER is the SOTA LLM for audio
understanding, which is trained on 80,000 hours of data. Addi-
tionally, we select Whisper-large-v3 [54], a SOTA NN-based
ASR system trained on a diverse audio dataset comprising
680,000 hours of audio, for evaluation. Although it is not
LLM-powered, its recognition performance surpasses that of
some LLM-powered ASR. Evaluating AudioShield on these
three models provides a comprehensive demonstration of its
effectiveness on SOTA ASR.

In our experiments, we observe a few anomalous exam-
ples in the results returned by the ASR, where the output
consists of a short string repeated a large number of times.
We consider these to be recognition failures, similar to cases
where commercial ASR models return empty or “NA” results;
therefore, we filter them out. Notably, while all four meth-
ods exhibit some anomalous examples, AudioShield has the
fewest, reflecting its advantage in audio quality. As shown
in Table 6, AudioShield achieves the highest PSR and WER
across three ASR models, with an average PSR of 80.88% and
an average WER of 98.18%, demonstrating its superior pro-
tection performance. For competitors, the PSRs of Neekhara
et al. and AdvDDoS do not exceed 50% on any of the three
models. The best-performing competitor is Zong et al., with
an average PSR of 66.83%, but its audio quality is too poor,
with an average NISQA score of only 1.14. In contrast, our
method achieves higher NISQA score while still outperform-
ing Zong et al.by 14.05% in PSR, showcasing the advantage
of our method in maintaining high audio quality while en-



Table 7: Comparison of protection success rates on iFlytek
API and objective audio quality.

Command
Zong et al. [70] AdvDDoS [28] AudioShield
PSR NISQA PSR NISQA PSR NISQA

call my wife 73.05 1.11 58.38 1.52 80.84 2.42
make it warmer 56.37 1.25 62.01 1.53 72.55 2.11

navigate to my home 47.42 1.00 64.61 1.63 68.26 2.31
open the door 50.34 1.33 39.85 1.54 80.10 2.45

open the website 28.14 1.03 55.75 1.53 69.73 2.09
play music 36.31 1.04 62.40 1.68 56.75 2.02
send a text 72.23 1.08 58.46 1.56 66.58 2.36

take a picture 40.95 1.34 81.20 1.37 55.86 2.19
turn off the light 64.08 1.04 57.43 1.32 73.45 2.55

turn on airplane mode 62.56 1.22 67.44 1.15 81.85 2.33
Average 53.15 1.14 60.75 1.48 70.60 2.28

suring greater effectiveness. It is also worth mentioning that
AudioShield shows the most stable performance when trans-
ferring from commercial ASR to LLM-powered ASR, with
only a 1.48% difference in average PSR between the two
types, demonstrating strong transferability.

5.4 Audio Quality Evaluation

To comprehensively evaluate the advantages of adversarial
examples generated by our method in terms of audio quality,
we conduct both objective and subjective evaluations.

5.4.1 Objective Evaluation

As mentioned previously, we utilize NISQA [46] as the metric
in the objective evaluation. In addition to assessing overall
speech quality, NISQA predicts four specific dimensions of
speech quality: noisiness, coloration, discontinuity, and loud-
ness, offering a more comprehensive evaluation.

Table 7 reports the PSR and NISQA results for different
commands. We do not provide results for Neekhara et al. [47]
since their work is in an untargeted manner. Results show that
AudioShield achieves the highest NISQA under each target
text, although it still does not match the NISQA of benign
audio (3.99±0.61). Nevertheless, the average NISQA of our
method is twice that of Zong et al. and 0.8 higher than that of
AdvDDoS. More importantly, our method not only achieves
high audio quality, but also maintains a high PSR, with an
average PSR of 70.60%, which is 17.45% and 9.85% higher
than that of Zong et al. and AdvDDoS. These results fully
demonstrate the superiority of our method, as it enhances both
audio quality and protection performance.

5.4.2 Subjective Evaluation

We conduct a user study on the subjection evaluation of our
proposed method. To be concrete, we published a survey on
Amazon Mechanical Turk [1], a crowdsouring platform, to
subjectively evaluate the audio quality of adversarial audios

generated by all methods. This study was approved by the in-
stitutional review board (IRB), and we followed best practice
for ethical human subjects survey research. We recruited 53
participants from the USA and Australia, aged 18 to 30, who
have normal hearing and demonstrate adequate proficiency
in English. All participants agreed that their responses can be
used for academic research. We removed four junk responses
that gave the same score to all audios, and finally obtained
49 valid responses. Additionally, we did not collect any per-
sonal information related to the participants. In our study, we
carefully selected audio clips corresponding to neutral and
commonly used ground-truth texts to minimize bias and dis-
crimination. Each participant was paid $1.0 for each question,
except for junk responses.
Survey Protocol. We selected five audio clips each from
benign audio and the audio generated by our method and
three competitors (with the target text being “open the door”),
totaling 25 clips. These clips were shuffled in advance to
avoid bias. Note that, before the study, the participants had
no knowledge of whether these clips contain clean audios
or adversarial audios. In each question, an audio clip was
played and participants were asked to rate each clip using
the Mean Opinion Score (MOS), based on a Likert scale [41]
ranging from 1 to 5, where 1 indicates very poor quality
and 5 indicates very good quality, with intermediate values
representing varying levels of quality. The survey questions
are provided in Appendix B.4.
Survey results. As a reference, we also provide the NISQA
for all 2,000 audio clips. The NISQA scores for Neekhara et
al., Zong et al., AdvDDoS and AudioShield are 1.71, 1.33,
1.54 and 2.45, and the MOSs in the subjective evaluation for
these four methods are 1.56, 1.16, 1.44, 2.91. Similar to the
objective evaluation, the adversarial examples generated by
our method also receive a higher MOS in the subjective evalu-
ation, surpassing the three competitors by 1.35, 1.75, and 1.47,
respectively. Additionally, we conduct a statistical analysis
using the Mann-Whitney U-test [44], with the null hypoth-
esis asserting that AudioShield’s MOS is not significantly
higher than that of the competitors’. The null hypothesis for
the three competitors is rejected at p-values of 2.68×10−55,
3.34×10−78, and 8.40×10−60, with a significance level of
0.05. The results strongly indicate that the audio quality pro-
duced by our method is significantly superior to that produced
by competitors and supports our earlier analysis. Specifically,
by adding perturbations in the latent space rather than directly
introducing noise in the acoustic space, our method effectively
enhances audio quality.

5.5 Evaluation on Long Audios

To thoroughly evaluate the effectiveness of AudioShield when
the input of ASR is long audios, we conduct experiments
using a long audio set, which consists of 400 audio clips
ranging from 8 to 10 seconds. They are randomly selected



Table 8: Comparison of protection performance on long au-
dios.

Method
Google Amazon iFlytek Alibaba

NISQA
PSR WER PSR WER PSR WER PSR WER

Neekhara et al. [47] 22.00 38.12 25.00 48.65 69.27 89.86 35.43 53.15 2.28
Zong et al. [70] 63.59 71.62 49.61 59.34 53.55 67.29 51.15 67.04 1.25
AdvDDoS [28] 30.36 48.23 22.50 34.84 49.37 62.18 58.40 101.22 1.32

AudioShield 82.14 83.68 76.69 76.95 82.07 84.82 90.40 89.67 2.43

Table 9: Comparison of protection success rates on voice
assistants at different distances.

Method
Google Assistant Amazon Alexa Apple Siri

10cm 20cm 50cm 10cm 20cm 50cm 10cm 20cm 50cm
Neekhara et al. [47] 3/10 5/10 5/10 4/10 3/10 0/10 5/10 4/10 3/10

Zong et al. [70] 2/10 2/10 2/10 0/10 0/10 0/10 4/10 3/10 3/10
AdvDDoS [28] 7/10 6/10 5/10 4/10 5/10 2/10 6/10 4/10 2/10

AudioShield 10/10 7/10 5/10 4/10 5/10 3/10 10/10 10/10 8/10

from the VCTK Corpus [61], with an average of 21 words
per clip. For our method, we tile the LS-TUAP to match the
length of the latent code of the test audio. For competitors,
we tile the UAPs to match the length of the test audio. We
still use “open the door” as the target text.

Table 8 presents the protection performance on long audio
clips. Our method achieves the highest PSR across all four
commercial ASR APIs, specifically 82.14%, 76.69%, 82.07%,
and 90.40%, with consistently high WER as well. Notably,
compared to competitors, our method not only exhibits the
best protection performance but also achieves the highest
audio quality, with NISQA scores surpassing the three com-
petitors by 0.15, 1.18, and 1.11, respectively. Furthermore,
our method maintains strong protection performance on long
audios, comparable to the results observed on short audios pre-
viously. In contrast, competitors exhibit decreased protection
effectiveness on longer audio clips, highlighting the superior
generalizability of AudioShield. For example, the PSR for
Neekhara et al. reduces from 58.17 to 35.43 when testing
on Alibaba. These findings underscore the comprehensive
advantage of LS-TUAP in fooling ASR models and suggest
that protectors can reduce training costs by generating short
LS-TUAP for application to longer audios.

5.6 Over-the-Air Robustness Evaluation
To validate the robustness of the adversarial examples gener-
ated by AudioShield in physical environments, we conduct
experiments on three commonly used voice assistants: Google
Assistant [9], Amazon Alexa [6], and Apple Siri [8], in the
over-the-air scenario. The experimental setup is shown in
Figure 8(a). We use the speakers of an ASUS TUF Dash
F15 laptop to play the audio adversarial examples, while the
microphones of a Redmi K30S, with Google Assistant and
Amazon Alexa apps installed, and an iPhone 13 Pro with
Apple Siri are used to capture the audio.

For each method, we select 10 adversarial examples, which
are generated by the corresponding original audio clips. Fol-
lowing previous work [28], each audio is played three times

Figure 8: Illustration of physical experimental setups.

during the test, and we record the best protection results. An
example is considered successfully protected only if the assis-
tant provides an output (in some cases, there is no output due
to the large noise in audios generated by competitors) and
the CER between the ground-truth text and the output tran-
scription exceeds 50%. The experiments take place in a room
measuring 5.44m×3.56m×2.99m. To assess the robustness
of the protection regarding transmission distance, we conduct
experiments at different distances between the speaker and
the voice assistant.

As shown in Table 9, the experimental results demonstrate
the superiority of our method. On Google Assistant and Ap-
ple Siri, our average PSR reaches 73.33% and 93.33%, re-
spectively, which are 13.33% and 53.33% higher than the
best-performing competitor, AdvDDoS. Overall, AudioShield
outperforms competitors in protection performance in the
physical domain. Specifically, on Google Assistant, at shorter
distances (10cm and 20cm), our PSRs surpass those of com-
petitors, achieving 100% (10/10) at 10cm. At a longer distance
(50cm), AudioShield matches the best-performing competitor
with a 50% PSR. On Apple Siri, AudioShield far exceeds
the competitor at all distances, achieving a 100% (10/10)
PSR at 10cm and 20cm, and still maintaining an 80% PSR
at 50cm, while competitors only reach a maximum of 30%
PSR at 50cm. On Amazon Alexa, our long-distance PSR sur-
passes all competitors, while at short distances, AudioShield
matches the best-performing competitor (4/10 at 10cm and
5/10 at 20cm).

These results align with expectations. As the propagation
distance of the examples in the air increases, the interference
from environmental white noise also increases, leading to
a decrease in PSRs. However, an interesting phenomenon
worth noting is that in some cases, such as Neekhara et al.
on Google and AdvDDoS on Alexa, the PSR at 10cm is
actually lower than at 20cm. Upon closer observation, we
find that in certain examples, the voice assistant successfully
recognizes the input at 10cm, but correctly transcribes most of
the words, leading to a failed protection. However, when the
distance increases to 20cm, the influence of environmental
white noise causes fewer words to be correctly transcribed
after successful recognition, resulting in a higher CER and
thus a successful protection. In contrast, our method performs
well in all voice assistants, indicating that our method is more
resilient to environmental noise compared to competitors.

Additionally, we observe that on Alexa, the total number



Table 10: Comparison of end-to-end protection performance
in real-time scenarios.

Method
Google Amazon iFlytek Alibaba

NISQA MOS Latency (ms)
PSR CER PSR CER PSR CER PSR CER

Neekhara et al. [47] 1/10 20.05 1/10 12.22 7/10 57.76 1/10 19.55 1.37 1.95 5.91
Zong et al. [70] 4/10 79.77 8/10 71.01 8/10 65.67 8/10 57.71 1.16 1.28 6.58
AdvDDoS [28] 2/10 22.22 1/10 14.75 6/10 55.81 2/10 30.89 1.07 1.80 6.10

AudioShield 8/10 82.27 9/10 68.22 9/10 83.32 9/10 73.74 3.54 3.12 409.14

of successful protected examples for all methods is the lowest
among the three target voice assistants. We believe that this
is related to the recognition capability of the voice assistant
itself. Notably, Zong et al. achieves a 0% PSR at all distances
on Alexa - we find that Alexa does not produce any output
for these examples. This is primarily due to the excessive
noise in these examples, which makes it impossible for Alexa
to recognize the human voice within them. In fact, most of
the cases where no output is given for adversarial examples
generated by competitors are due to excessive noise and poor
quality, resulting in the voice assistant not being able to rec-
ognize the input. This further highlights the superiority of our
method in terms of audio quality.

5.7 Realistic Protection Evaluation
End-to-End Evaluation. To demonstrate the performance of
AudioShield in real-world scenarios, we conduct a real-time
experiment. The experimental setup is shown in Figure 8(b).
A Newmine BT51 Bluetooth speaker continuously plays au-
dio while the microphone of ASUS TUF Dash F15 laptop
receives the audio in real-time at a distance of 50cm. The
audio is then processed by AudioShield on the device, output
to a virtual microphone, and the downstream communication
software selects the virtual microphone as the input device.
We select 10 audio clips for the real-time experiment and
conduct an end-to-end evaluation of the entire process, using
commercial APIs for recognition. We perform both objective
and subjective evaluations of the audio. The experimental
results are shown in Table 10. Since our method introduces
an additional autoencoder inference process, while competi-
tors only need to add perturbations directly to raw audio, this
leads to a significantly higher latency for AudioShield. How-
ever, we believe that the 409.14ms delay is still within an
acceptable range and meets real-time requirements.

Although our approach exhibits certain limitations in terms
of latency, the audio quality of competitors is generally poor,
with the highest NISQA and MOS only reaching 1.37 and
1.95, respectively, causing a loss of normal usability. In con-
trast, our method maintains relatively high audio quality, with
an NISQA score of 3.54 and a MOS of 3.12. In terms of pro-
tection performance, AudioShield significantly outperforms
all competitors, achieving an average PSR of 87.50% and an
average CER of 76.89%. Among competitors, only Zong et al.
show a relatively good protection effect, reaching an average
PSR of 70.00%, while Neekhara et al. and AdvDDoS achieve
average PSRs of only 25.00% and 27.50%, respectively. Con-

Table 11: Comparison of protection performance under dif-
ferent realistic settings.

Environment Speaker
Alibaba Qwen-Audio

dBlaptop mobile phone laptop mobile phone
PSR CER PSR CER PSR CER PSR CER

bedroom
Speaker A 10/10 84.54 8/10 55.63 10/10 93.87 5/10 46.61

40.2Speaker B 6/10 58.86 9/10 61.59 4/10 50.30 7/10 63.55
Speaker C 6/10 45.65 3/10 41.25 2/10 45.94 3/10 37.89

meeting room
Speaker A 10/10 81.69 9/10 70.03 10/10 84.81 9/10 62.33

38.4Speaker B 9/10 68.48 10/10 78.27 6/10 57.94 9/10 74.80
Speaker C 9/10 59.12 10/10 80.99 9/10 69.79 9/10 71.36

outdoor
Speaker A 8/10 57.06 8/10 64.67 9/10 55.29 5/10 57.51

51.3Speaker B 9/10 65.69 8/10 70.67 4/10 47.34 9/10 65.80
Speaker C 6/10 49.63 10/10 67.08 7/10 53.45 8/10 67.80

sidering overall protection performance, audio quality, and
latency, we believe that our method still holds a significant ad-
vantage, especially in terms of high audio quality and strong
protection performance.
Impact of Various Environmental Factors. We evaluate
the impact of various factors on AudioShield, testing it at the
same 50cm distance in three different environments (bedroom,
meeting room, outdoor), on different devices (laptop, mobile
phone), and with different speakers (Speakers A,B, and C). We
use Alibaba API and Qwen-Audio for recognition, and the re-
sults are presented in Table 11. Different environments primar-
ily affect the propagation process of acoustic signals. Differ-
ent receiving devices influence audio attributes, and different
speakers also affect the volume, clarity, and other aspects of
the audio. As a result, AudioShield exhibits some fluctuations.
For example, in the bedroom, the average PSR of Speaker C in
Qwen-Audio is the lowest, at only 25.00%, whereas outdoors,
it increases to 75.00%, the highest for Speaker C. We consider
these fluctuations to be within a reasonable range, caused by
the randomness introduced by various environmental factors.
Overall, AudioShield shows strong protective effects across
different environments, with average protection success rates
of 73.33%, 93.33%, and 76.67% on Alibaba. Additionally, for
different receiving devices, the average PSR for the laptop and
mobile phone is 74.44% and 77.22%, respectively. For differ-
ent speakers, the average PSR values are 84.17%, 75.00%, and
68.33%, indicating that AudioShield offers strong protection
for both different receiving devices and speakers. In summary,
these results demonstrate the robustness and adaptability of
AudioShield in physical protection scenarios.
Case Study. We conduct a case study using Zoom as the
downstream communication software. Two devices (one for
sending and one for receiving) connect remotely via Zoom,
as shown in Figure 8(b). The sender’s setup is consistent
with that in the “End-to-End Evaluation”, and the receiver (a
Lenovo Y9000P laptop) records the remotely received audio
for testing. The average PSR and CER reach 80.00% and
66.74%, respectively, demonstrating outstanding protection
performance. Additionally, we recruited 36 participants to
subjectively evaluate the audio quality, with an average MOS
of 3.61, which is even higher than the MOS (3.12) in the
“End-to-End Evaluation”, indicating high audio quality. In
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Figure 9: Performance with/without target feature adaptation.

conclusion, our experiment strongly demonstrates the effec-
tiveness of AudioShield in real-world deployment.

5.8 Ablation Study

We also explore several key components of training LS-TUAP
and their impact on protection performance and audio quality.
Contribution of Target Feature Adaptation. Recall that
we employ target feature adaptation to enable LS-TUAP to
learn the latent features of the target text, which benefits the
transferability of LS-TUAP. To verify the effectiveness of this
component, we select “open the door” as the target text and
test the protection performance of LS-TUAP trained using
(i) only ASR Loss LASR and (ii) both ASR Loss LASR and
cosine similarity loss of latent features LSim.

According to Figure 9, AudioShield already achieves a high
WER before implementing target feature adaptation, caus-
ing most words in the sentence to be incorrectly transcribed.
However, its PSR on iFlytek and Alibaba remains around
55%. After incorporating LSim, the PSR of AudioShield im-
proves across all four commercial models, surpassing 75%,
with WER also showing an increase. This confirms our hy-
pothesis that enabling LS-TUAP to learn the latent features
of the target text is effective in enhancing its transferability.
Analyses of Hyper-parameters. Our method involves two
important parameters, τ and σ. τ controls the perturbation
boundary, which is crucial for balancing the trade-off be-
tween protection performance and audio quality. σ controls
the amount of Gaussian noise added during the training of LS-
TUAP. To analyze the impact of these hyper-parameters, we
set τ and σ to different values and evaluate the performance
on the Google API while keeping other variables constant.
The experimental results are shown in Figure 10.

As shown in Figure 10(a), within the range of 0.3 to 0.6,
PSR increases as τ increases, while NISQA gradually de-
creases. This indicates that a larger perturbation boundary
results in higher protection performance but lower audio qual-
ity, whereas a smaller boundary leads to the opposite outcome.
When τ = 0.5, the PSR exceeds 90%, and NISQA remains at
a relatively high level of 2.45. However, when τ rises to 0.6,
NISQA drops below 2, reaching only 1.72. Since our goal is
to achieve protection effectiveness while maintaining high au-
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Figure 10: Impact of hyper-parameters τ and σ.

Table 12: Results of AudioShield against countermeasures.

Countermeasure Setting
Google Amazon iFlytek Alibaba

NISQA
PSR WER PSR WER PSR WER PSR WER

Local Smoothing
h = 1 89.94 88.84 91.18 89.43 74.52 84.41 81.81 87.85 2.69
h = 2 90.34 88.71 89.00 87.43 74.90 85.07 80.40 87.84 2.55
h = 3 90.95 90.06 89.53 88.16 74.81 85.28 80.46 88.41 2.34

Downsampling
DR = 14kHz 88.64 87.69 89.88 87.77 75.35 84.58 77.42 86.70 2.24
DR = 12kHz 89.54 88.32 90.75 88.70 76.34 87.52 82.86 88.72 2.33
DR = 10kHz 89.32 89.11 91.21 89.06 81.71 92.31 86.10 90.51 2.57

dio quality, we select τ = 0.5 in our experiments. Figure 10(b)
presents the results of PSR and WER for different values of
σ, with σ set at four different magnitudes: 0.01, 0.1, 1.0, and
10. The overall curve shows an initial increase followed by
a decline, peaking at σ = 1.0 (logσ = 0), where PSR and
WER reach 90.55% and 90.06%, respectively. Based on these
results, we select σ = 1.0 in our experiments.

5.9 Discussion on Countermeasures
Once the eavesdroppers realize that the transcriptions they
obtain are not what the speakers convey, they may seek to
countermeasures to resist the protection for user’s speech.
Therefore, we explore the resilience of AudioShield against
three common and three adaptive countermeasures.
Local Smoothing. Local smoothing applies a sliding win-
dow that can easily eliminate small perturbations in carefully
crafted adversarial examples. Given a sliding window, it cal-
culates the average of sample points within a range of 2h
before and after the audio sample point and replaces the cur-
rent sample point with this average value. Specifically, if the
current sample point is xi, its value is replaced with the aver-
age of {xi−h, . . . ,xi, . . . ,xi+h}. We evaluate the robustness of
our method against local smoothing by setting h to 1, 2, and 3.
Results in Table 12 indicate that AudioShield exhibits strong
resistance to local smoothing, as PSR remains consistently
high in different settings without significant variation, while
high audio quality is also maintained.
Downsampling. Downsampling resists adversarial examples
by removing the high-frequency components of the audio, as
adversarial examples often add perturbations in these regions.
Specifically, low-pass filtering and decimation are first applied
to remove any high-frequency components above the Nyquist
frequency, and the sampling rate is reduced. The audio is then
upsampled back to the original sampling rate. Given that the



Table 13: Comparison of protection against temporal depen-
dency detection with different k settings.

k = 0.25 k = 0.50 k = 0.75

Neekhara et al. [47] 50.63 76.04 88.29
Zong et al. [70] 50.70 80.50 94.94
AdvDDoS [28] 50.65 76.41 88.26

AudioShield
τ = 0.5 49.00 74.15 88.16
τ = 0.4 50.47 69.76 82.35
τ = 0.3 50.40 65.14 74.47

original sampling rate of the audio samples is typically 16
kHz, we set the downsampling rates (DR) to 14 kHz, 12 kHz,
and 10 kHz to evaluate the robustness of our method against
downsampling. The results, shown in Table 12, indicate that
as DR decreases, both the PSR and NISQA of our method
show slight improvements. We suspect that this may be due to
the removal of some useful high-frequency noise, leading to
a slight improvement in audio quality and worse transcription
results for adversarial examples. Overall, our method exhibits
high robustness against downsampling.
Temporal Dependency. It has been demonstrated that ad-
versarial examples can disrupt the temporal dependency of
the audio, which is a property that can be exploited to detect
adversarial examples [63]. Specifically, this method compares
the similarity between the first k portion transcription of an
audio and that of the entire audio. If the similarity falls below
a certain threshold, the example is classified as adversarial,
where k ∈ (0,1). To evaluate the robustness of AudioShield
against time-dependency-based detection, we set k to 0.25,
0.50, and 0.75, and test the AUC of this countermeasure on
three competitors and different variants of AudioShield. The
experimental results are shown in Table 13, where a lower
value indicates higher detection accuracy, meaning the pro-
tection is less resistant to temporal dependency detection.
We find that in different k settings, AudioShield consistently
achieves the lowest AUC, indicating the strongest resistance
to this detection. Notably, with different values of τ, the dif-
ferent variants of AudioShield can achieve even lower AUCs,
indicating better robustness. Moreover, according to the pre-
vious ablation study, when τ = 0.4, our method still outper-
forms competitors in terms of protection performance and
audio quality. Therefore, our method allows users to select
different variants based on their specific needs to achieve
varying effects. In summary, AudioShield also exhibits excel-
lent resilience to commonly used adaptive countermeasures,
offering an additional layer of safeguarding for user privacy.
Adaptive Countermeasures in Latent Space. An adversary
with full knowledge of the operation of our system could
attempt to remove the perturbation in the latent space us-
ing an autoencoder. Based on this, we design three adaptive
countermeasures within the latent space. One straightforward
approach involves using the autoencoder to reconstruct our
adversarial example (marked as Recon), where the dimen-
sionality reduction and expansion process could potentially

mitigate or even eliminate the perturbation. Additionally, we
experiment with local smoothing in the latent space during
reconstruction (marked as LS-LS) or the addition of random
noise (marked as LS-RN). However, the audio quality pro-
duced by all three methods is poor, with NISQA scores of 2.03,
2.05, and 1.92, indicating a significant deterioration compared
to the unreconstructed examples. Additionally, we find that
the reconstructed audio lost its usability, making it unintelli-
gible to humans. Moreover, the WER for Recon, LS-LS, and
LS-RN are 104.95%, 101.32%, and 105.96%, respectively,
demonstrating poor recognition performance by ASR sys-
tems. These results suggest that the aforementioned adaptive
countermeasures are ineffective against our method, as they
not only disrupt the adversarial perturbations but also degrade
the audio usability. We hypothesize that this may stem from
the encoder’s inability to accurately encode our adversarial
audio, implying that our adversarial examples exhibit strong
robustness even against the model’s encoding mechanism,
further substantiating the transferability of AudioShield.

6 Conclusion

In this paper, we propose a real-time privacy-preserving
framework to avoid speech content leakage by unauthorized
recognition, AudioShield, whose core is transferable univer-
sal adversarial perturbations in latent space (LS-TUAP). By
adding UAPs in the latent space and using the generative
model to directly generate adversarial examples, we avoid in-
troducing noise in the acoustic space and achieve better audio
quality. Through target feature adaptation, we enhance the
transferability of adversarial examples to unseen ASR models.
Extensive experiments on 10 ASR models in over-the-line pro-
tections and over-the-air protections together demonstrate the
superiority of both protection performance and audio quality,
as well as practicality of AudioShield. Further experiments
show that AudioShield can resist adaptive countermeasures.
Our research offers protection of live user’s speech content
using adversarial examples, and provides sufficient evidence
supporting its potential for widespread adoption in privacy-
sensitive environments, e.g., mass speech surveillance.
Limitations. Though AudioShield has achieved good trans-
ferability across different target ASR models, the outputs of
different target models for the same adversarial example are
not always consistent. Even within the same model, the out-
puts may lack semantic coherence. This inconsistency and
incoherence could potentially alert eavesdroppers [68]. In
terms of consistency, it is important to note that none of the
current methods studying transferable universal adversarial
perturbations on ASR models can guarantee that all target
models will produce the same output. Regarding coherence,
we argue that maintaining semantic coherence in untargeted
settings is an open and unexplored challenge in the field,
which we consider as a direction for future work.
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Ethics Considerations

1. Prevention of Misuse
When AudioShield is applied in real-world scenarios, it may
be unintentionally or maliciously misused. Specifically, we
consider the following three potential misuse scenarios:
Input Side of AudioShield. This occurs primarily when
the microphone on the user side (the sender) captures the
user speech in a public environment. In this case, there is
a possibility that the speech of others, without their con-
sent, could be inadvertently recorded and then transmitted
after being processed by AudioShield. To prevent this situ-
ation, we recommend implementing speech separation [49]
and speaker verification [25] during the deployment of Au-
dioShield. This ensures that only registered users’ voices are
input into AudioShield, thereby preventing unintended pro-
cessing of speech by non-consenting individuals.
Output Side of AudioShield. This scenario involves uninten-
tional misuse on the receiver side. The receiver, in a public
setting, plays the protected speech received remotely, and
the playback of this speech, being adversarial examples, may
interfere with ASR systems in the public environment or ac-
cessibility tools used by others. However, we argue that even
normal voice playback can cause disturbances in a public
setting (since it may be perceived as noise by others). We
recommend that users employ headphones or similar private
playback methods in public settings to minimize sound leak-
age into the surrounding environment.
Malicious Individuals. A malicious individual can acquire
adversarial audio generated by AudioShield (e.g., by record-
ing it at the receiver end). In the case of malicious misuse,
this adversarial audio could affect the ASR applications of
others in a shared space, leading to errors in speech recog-
nition. However, since the adversarial examples generated
by AudioShield are in an untargeted setting, they cannot be
directed to cause specific malicious instructions in the target
ASR. Therefore, the potential harm is not severe. That said,
to minimize misuse, we require users to request permission
and fill out the appropriate terms form, pledging not to misuse

AudioShield. Only after our approval and authorization can
they legally use AudioShield.

2. Responsible Disclosure

Our adversarial testing aligns with the goals of improving
security, privacy, and system robustness, which are often im-
plicitly supported by API terms of service under the doctrine
of fair use in research contexts. As long as the testing is non-
disruptive, adheres to usage limits, and does not explicitly
violate any clauses, it can be considered compliant. Further-
more, ethical research practices and the broader public interest
in advancing privacy protection strengthen its justification un-
der fair use principles. This demonstrates our commitment to
transparency, legal adherence, and ethical norms.

Since our research crafts adversarial examples on several
commercial APIs, apart from its protective function, it also
highlights the lack of robustness in these models. There-
fore, we reported the vulnerability discovered to all service
providers, including Google, Amazon, iFlytek, and Alibaba,
through formal email correspondences. In our report, we
also meticulously detailed the methodology employed in our
method, with some demo audios generated by our method
attached. We also outlined the potential risks that adversarial
examples might trigger, as well as potential countermeasures.
As our method serves as a protection for user privacy, we
suggested that these vendors take it into consideration when
addressing the identified security issue and making further
improvements to their systems. We received responses with
gratitude for our research and disclosure, acknowledging the
value of our contributions to their ongoing efforts.

3. Experiment Ethics

Terms of Service and Permissions. Before conducting tests
through commercial ASR APIs, we thoroughly reviewed and
abided by the terms of service agreements to ensure proper
use of the resources. Our experiments strictly adhere to these
terms of service and privacy policies. Since the providers do
not collect our experimental data, our adversarial testing does
not impact other individuals or the commercial models them-
selves. Additionally, to reaffirm our commitment to ethical
and legal standards in our experimental procedures, we proac-
tively reached out to API providers, seeking explicit to use
their APIs solely for academic research purposes to the best
of our capability, and we received confirmation from Google
and Amazon.
User Study. The Human Research Ethics Committee of the
authors’ affiliation determined that the study was exempt from
further human subjects review. In our survey, all participants
we recruited consented that their responses be used only for
academic research. We did not collect any personal informa-
tion that is unnecessary for our research.
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All relevant source code and supporting scripts are made avail-
able at: https://doi.org/10.5281/zenodo.14711220.
The repository includes a detailed README file with setup in-
structions, datasets, models and usage guidelines. All datasets
we use are public datasets and we do not collect any additional
data. To showcase the usability of the proposed method, an
anonymous demo page with several audio examples is also
included in this repository. The source code is released under
the MIT License to ensure accessibility and fair use. Over-
all, we have made our artifact publicly available to facilitate
reproducibility and foster further research.
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A Proof

Proof of Theorem 1. Since z1 and z2 can be seen as two independent
random variables that satisfy the distribution of E (z|x), and x ∈ X ,
where X denotes the input audio space, then D (z1) and D (z2) are
also random variables. Since D is a-Lipschitz, for any z1 and z2 in
the latent space,

∥g(z1)−g(z2)∥∞
≤ a∥z1− z2∥∞

⇔ P [∥g(z1)−g(z2)∥∞
≤ r]≥ P [a∥z1− z2∥∞

≤ r]
⇔ P [∥g(z1)−g(z2)∥∞

≤ r]≥ 1−P [a∥z1− z2∥∞
≥ r] .

(9)

Due to Markov’s Inequality, we have

P [a∥z1− z2∥∞
≥ r]≤ a2E [∥z1− z2∥∞

]

r2 . (10)

Though directly calculating the expectation for ∥z1− z2∥∞
is dif-

ficult, the perturbation threshold τ helps us to obtain the following
bound.

P [∥g(z1)−g(z2)∥∞
≤ r]≥1−P [a∥z1− z2∥∞

≥ r]

≥1− a2E [∥z1− z2∥∞
]

r2

≥1− a2τ

r2 .

(11)

To ensure a well-defined probability with non-negativity, the
bound is set as 1−min

{
1, a2τ

r2

}
. Therefore, the proof ends here.

B More Experimental Details and Analyses

B.1 Visualization of Some Examples
Figure 11 shows the original waveform and spectrogram of five audio
clips mentioned in Table 7, along with those of their corresponding



Figure 11: Visualization of the waveform and spectrogram
corresponding to the text.

adversarial examples generated by the four methods. For our method,
the generated adversarial examples exhibit significant changes in
waveform shape compared to the original waveform after passing
through the VAE. However, they are still close to the natural audio
data distribution, resulting in higher quality. This illustrates the dis-
tinction between our method and traditional ℓp-norm based methods,
highlighting the “unrestricted” nature of AudioShield. Traditional
methods add perturbations directly in the original audio space and
constrain them within a large ℓp-norm range, limiting significant
changes to the audio waveform shape.

For competitors, these waveform and spectrogram images vividly
demonstrate the excessive noise introduced by their approaches. In
the waveform images, the signals from the three competitors ap-
pear rougher, with more minor vibrations, indicating a higher noise
content in these audios. In the spectrogram images, focusing on the
time-frequency distribution of the signal, the energy distribution in
the middle three spectrograms is more uniform, with less variation
in frequency distribution, indicating more background noise in the
signals. For changes in time-frequency features, the spectrograms
of the original audio and the adversarial examples generated by our
method exhibit clear variations in frequency components, indicating

Table 14: Number of failed recognition examples.

Method Google Amazon iFlytek Alibaba Qwen-Audio MooER Whisper Average
Neekhara et al. 315 1 0 4 79 1220 153 253.14

Zong et al. 1480.5 722.2 794.5 179.9 42 1472 1 670.30
AdvDDoS 458.8 17.3 9.7 21.6 71 1153 17 249.77

AudioShield 469.1 21.9 12.4 15.4 82 366 23 141.40

the presence of prominent speech events. In contrast, the spectro-
grams from the three competitors appear to be more stable with less
noticeable changes, suggesting that their acoustic events are less
prominent.

B.2 Complete Result for Evaluation on Com-
mercial ASR APIs

Our protection strategy involves training LS-TUAP locally in a
targeted manner and then transferring it to the black-box ASR in an
untargeted manner. Therefore, the selection of target texts during
local training is crucial. According to our threat model, our objective
is to generate a transferable universal adversarial perturbation. It is
not necessary to ensure high protection performance under every
target text; rather, we only need to identify a target text that achieves
a good balance between high protection performance and audio
quality for training. On the other hand, different target texts may
result in variations in protection performance. Therefore, in order
to better analyze the applicability of protection methods to different
target texts, we conduct extensive evaluations using 10 common
commands as target texts.

Table 15 presents the complete results of three competitors and
AudioShield on four target ASR APIs. Neekhara et al. is trained
in an untargeted manner, resulting in only one result in the table.
For the other three methods, targeted manipulations are performed
locally with different target texts. The results in the table clearly
demonstrate the superiority of our method, as it consistently achieves
the highest protection performance across the majority of target texts.
Moreover, for all target texts, our method also delivers the highest
audio quality. Specifically, our method’s NISQA score never falls
below 2.00, regardless of the target text, whereas competitors never
achieve a score above 2.00. The highest quality among competitors
is shown by AdvDDoS under the target text “play music”, with a
score of 1.68, but even in this case, our method still outperforms it
by 0.34.

Experimental results also show that the choice of target text influ-
ences protection performance, with both our method and competitors
exhibiting significant variability across different texts. On average,
our method achieves the highest PSR and NISQA, demonstrating
strong transferability across all four target ASR models, as supported
by the results in Table 7. Considering both protection performance
and audio quality, we select “open the door”, which ranks in the top
three for both metrics among the 10 texts, as the target text in our
main experiments and make a fair comparison with competitors.

B.3 Number of Recognition Failures
Table 14 reports the number of examples with recognition failure
in the tests. Among them, the recognition failure counts for the
three methods, Zong et al., AdvDDoS, and AudioShield, on four
commercial APIs are the averages of the failure counts, while the
others are based on individual data groups. Each group contains a



Table 15: Complete results of protection performance on
commercial ASR APIs.

Method
Google Amazon iFlytek Alibaba

NISQA Command
PSR WER PSR WER PSR WER PSR WER

Neekhara et al. 31.10 43.12 32.27 44.58 74.60 108.64 58.17 95.38 1.71 -

Zong et al. 81.02 76.83 80.41 76.72 73.05 78.23 72.84 82.04 1.11
call my wifeAdvDDoS 40.85 50.61 29.64 39.55 58.38 72.34 55.27 74.36 1.52

AudioShield 92.27 88.77 94.01 91.01 80.84 88.91 88.63 93.03 2.42

Zong et al. 71.39 70.60 61.07 63.12 56.37 67.24 62.22 73.31 1.25
make it warmerAdvDDoS 31.38 44.37 18.90 31.22 62.01 78.45 57.20 77.99 1.53

AudioShield 88.84 87.96 81.89 81.60 72.55 81.38 77.47 85.37 2.11

Zong et al. 58.31 64.14 42.65 52.45 47.42 61.41 61.04 74.69 1.00
navigate to my homeAdvDDoS 36.31 47.72 24.57 35.47 64.61 74.54 62.93 83.92 1.63

AudioShield 87.02 84.68 84.53 82.86 68.26 77.93 68.79 80.51 2.31

Zong et al. 62.67 65.67 50.31 56.06 50.34 63.43 51.10 66.91 1.33
open the doorAdvDDoS 31.02 43.82 19.19 30.80 39.85 55.28 63.76 101.11 1.54

AudioShield 90.55 90.06 77.75 82.54 80.10 88.77 81.05 87.72 2.45

Zong et al. 39.77 50.62 21.69 34.33 28.14 43.17 31.70 51.85 1.03
open the websiteAdvDDoS 34.09 44.50 19.24 30.23 55.75 69.71 35.65 53.86 1.53

AudioShield 87.72 84.37 83.68 82.25 69.73 78.65 72.55 83.56 2.09

Zong et al. 37.22 49.27 21.80 34.40 36.31 52.48 39.27 57.98 1.04
play musicAdvDDoS 29.34 43.30 20.12 33.01 62.40 80.69 37.82 54.48 1.68

AudioShield 77.06 78.02 79.42 79.09 86.75 69.16 54.40 68.62 2.02

Zong et al. 83.16 77.88 83.12 79.42 72.23 78.04 73.05 81.38 1.08
send a textAdvDDoS 34.42 46.88 18.65 30.59 58.46 73.68 35.05 52.60 1.56

AudioShield 81.81 82.28 85.60 84.14 66.58 78.39 57.92 72.62 2.36

Zong et al. 52.40 59.33 35.96 46.33 40.95 55.08 49.24 66.19 1.34
take a pictureAdvDDoS 46.41 53.14 42.38 49.66 81.20 95.06 70.81 106.40 1.37

AudioShield 70.63 74.09 81.83 81.10 55.86 69.16 57.47 70.98 2.19

Zong et al. 69.91 70.69 67.21 67.47 64.08 73.42 72.63 82.04 1.04
turn off the lightAdvDDoS 33.37 44.96 25.35 35.97 57.43 73.83 59.67 86.04 1.32

AudioShield 84.54 82.87 86.65 84.85 73.45 83.72 66.16 78.11 2.55

Zong et al. 68.06 69.08 60.68 63.50 62.56 72.41 70.09 80.64 1.22
turn on airplane modeAdvDDoS 50.86 57.52 28.44 40.44 67.44 78.73 50.23 64.89 1.15

AudioShield 91.32 88.35 91.05 87.73 81.85 88.72 82.75 92.00 2.33

total of 2,000 test examples. Due to differences in the operational
mechanisms and recognition capabilities of the models, the number
of examples with recognition failure varies significantly across the
seven models. We suspect that the primary reasons for recognition
failure are the possible detection mechanisms within the commercial
models and the low audio quality. On average, AudioShield exhibits
the smallest number of recognition failures, with only 141.40. This
indirectly validates that the audio quality generated by our method
is superior to that of the competitors.

B.4 Questions of User Study
At the beginning, we informed each participant that all their re-
sponses were used solely for academic research, and we did not
collect any of their personal information. We then clearly explained
the task to the participants: “You will now listen to audio clips and
answer the corresponding questions.” Specifically, for each audio
clip, our instructions were as follows:

• Please rate the quality of the following audio from 1 to 5,
considering both the magnitude of the noise and the naturalness
of the audio. The meaning of each score is given as follows:

1. Very loud noise, very poor naturalness.

2. Noticeable noise, poor naturalness.

3. Slight noise, average naturalness.

4. Almost no noise, high naturalness.

5. No noise at all, very high naturalness.

• Please transcribe the audio according to what you hear.

C Discussion

Difference with Speaker Recognition Tasks. One prior work ex-
plored transferable universal adversarial perturbations on speaker
recognition tasks [20]. While this concept is not new in the audio
domain, its application to ASR systems presents distinct challenges
and complexities. Unlike classification tasks where the goal is to
distinguish among a finite set of speakers, ASR systems are designed
to convert continuous audio streams into text sequences, which is a
more complex problem involving sequence-to-sequence mapping
with a vast or even infinite output space. Furthermore, the transfer-
ability is more challenging due to the diversity of ASR architectures.
However, speaker-specific features are easier to transfer between
different speaker recognition systems. In addition, ASR requires
contextual understanding, which involves processing contextual and
syntactic information. Therefore, it is crucial to consider how pertur-
bations influence both the immediate and broader context of speech
when crafting perturbations.
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