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Abstract
Auditing algorithms’ privacy typically involves simulating

a game-based protocol that guesses which of two adjacent
datasets was the original input. Traditional approaches require
thousands of such simulations, leading to significant computa-
tional overhead. Recent methods propose single-run auditing
of the target algorithm to address this, substantially reducing
computational cost. However, these methods’ general applica-
bility and tightness in producing empirical privacy guarantees
remain uncertain.

This work studies such problems in detail. Our contribu-
tions are twofold: First, we introduce a unifying framework
for privacy audits based on information-theoretic principles,
modeling the audit as a bit transmission problem in a noisy
channel. This formulation allows us to derive fundamental
limits and develop an audit approach that yields tight privacy
lower bounds for various DP protocols. Second, leveraging
this framework, we demystify the method of privacy audit by
one run, identifying the conditions under which single-run
audits are feasible or infeasible. Our analysis provides general
guidelines for conducting privacy audits and offers deeper
insights into the privacy audit.

Finally, through experiments, we demonstrate that our ap-
proach produces tighter privacy lower bounds on common dif-
ferentially private mechanisms while requiring significantly
fewer observations. We also provide a case study illustrat-
ing that our method successfully detects privacy violations in
flawed implementations of private algorithms.

1 Introduction

Safeguarding data privacy has become increasingly important
in machine learning tasks, particularly more so when large
language models (LLMs) are demanding more data than the
whole Internet [44]. Among all privacy-enhancing technolo-
gies, differential privacy (DP) [1, 3, 15, 16, 19, 45, 46] has
emerged as a leading paradigm to address these concerns
with rigorous mathematical guarantees. DP ensures that the

inclusion or exclusion of a single data point has a minimal
impact on the outcome produced by the private algorithm.

Despite its theoretical rigor, implementing differential pri-
vacy in practice remains a significant challenge; unintended
error often creeps into the realizations. For instance, the sparse
vector technique (SVT), a famous differential privacy proto-
col, has seen erroneous (not private as claimed) applications
in some work [9, 50] even though the mathematical proof is
given. For another example, a refinement [38] of the DP-SGD
protocol [1, 5, 11, 18, 35, 46, 47] that claims to achieve sur-
prisingly strong performance has been proven to suffer from
incorrect analysis. Errors are also seen in the implementation
phase, where a random seed problem [22], or a floating-point
vulnerability [28] could undermine the integrity of the privacy
protocol.

For any real-world application of DP, a straightforward
countermeasure is to check the proposed private protocol’s
analysis or to go through the implemented code line by line.
However, this is often cumbersome and also susceptible to er-
rors. These considerations motivate privacy audit [20, 21, 31],
an empirical approach to measure the privacy provided by
differentially private algorithms. It does not check/verify a tar-
geted private algorithm in its detailed implementation; instead,
it often involves simulating a distinguishing game where an
adversary attempts to identify which of two adjacent databases
was used as input to run the private algorithm. Intuitively, the
targeted algorithm is suggested to be not as private as claimed
once accurate identification is achieved.

One standing disadvantage is that such a distinguishing
game is usually required to be repeated thousands of times,
incurring thousands of times of running the targeted private
algorithm itself, because the final probabilistic claim for pri-
vacy requires a substantial number of observations to reach
non-trivial confidence [6, 7, 30, 36]. This makes it infeasible
when running the private algorithm is expensive. Recently,
Steinke et al. [37] propose an audit technique that requires
the algorithm (DP-SGD) to run only once while also giv-
ing meaningful claims about the empirical privacy level of
the targeted algorithm. The critical operation is to perform



membership inference [34] on multiple data examples simul-
taneously based on the result of one run [37] of the targeted
private algorithm. In terms of efficiency, such a privacy-audit-
by-one-run technique is a substantial improvement to previous
privacy-audit-by-multiple-run approaches.

Motivation. The audit story does not end here. We notice
several problems worthy of deeper investigation:

1. The final empirical privacy claim (known as privacy
lower bound) by [37] is not tight in general, e.g., when
auditing probably the most well-known Gaussian mecha-
nism, [37] does not give tight results, even after parameter
setups are carefully tweaked and extensively tried; it is
unclear how such phenomenon happens. Is such limita-
tion inevitable? Operating under our auditing framework,
we can overcome such difficulties, i.e., we can achieve
tight results even more efficiently.

2. To the appealing goal of privacy audit by one run, it is
also unclear when it is possible/impossible to transfer
such a method to other differentially private protocols;
are there any helpful universal guidelines for implement-
ing privacy audit by only one run of the targeted private
algorithm? By our unifying language, we provide a bias-
variance argument, highlighting when audit-by-one-run
is possible or impossible, providing guidance on how to
better leverage such a technique.

Contribution. Answering such questions requires a deeper
understanding of the privacy audit itself, which is the overall
goal we aim to achieve in this paper. Our contribution can be
summarized in the following two main parts.

1) A unifying language for privacy audit and improved
audit method. We model the privacy audit problem as bits
transmission under an information-theoretic context. Behind
such treatment is the observation that if some algorithm M
is DP, it ensures indistinguishability between output due to
some adjacent input dataset X ,X ′; determining whether it is
X or X ′ (0 or 1) is no difference from recovering one bit of in-
formation. Roughly, in the distinguishing game, one chooses
X or X ′ as input to M , and the adversary guesses which one
was chosen based on the output of M . In analogy, it coin-
cides with the scenario where a sender aims to communicate
one bit of information to a receiver through a noisy channel,
corresponding to the execution of M .

Based on such treatment, we study the behavior of such
modeling, deriving fundamental limits for bits transmission
using the language of information theory. We then leverage
those results to design our audit principle. At a high level, if
the bits transmission can achieve very low bit error, we can
claim (with confidence specification) that M is not private as
promised.

Except for some carefully designed regulations, our mod-
eling abstracts from the details of how auditing M is carried
out, meaning that our framework can handle both cases of

privacy-audit-by-multiple-run and privacy-audit-by-one-run.
Practitioners can freely arrange their audit tasks according to
regulations, and a privacy lower bound can be derived effort-
lessly based on our framework.

2) On the tightness of privacy audit and (im)possibilities
of privacy audit by one run. Relying on our “privacy audit
as bits transmission” modeling, we can answer the two pre-
viously raised questions. We show that by modeling M via
f -DP [13] (a DP formulation based on hypothesis testing), we
can get tight audit results across various DP protocols; on the
other hand, interpretations for why previous work achieves
loose audit results are also provided.

Then, based on our framework and theoretical analysis, we
1) demystify privacy-audit-by-one-run and reveal when only
one run is (im)possible and 2) provide guidelines on avoiding
sub-optimal choices or any other pitfalls for all privacy audit
tasks.

In the sequel, targeting the DP-SGD protocol and with the
goal of auditing by only one run, we carry out experiments
of privacy audit on real-world tasks. We show our method
achieves better lower bounds than the previous approach to
the problem of privacy audit by one run. We also give a case
study illustrating that our method successfully catches the bug
in some ill-implemented private algorithms.

2 Background

2.1 Differential Privacy (DP)
Definition 1 (Differential Privacy [14]). Let M : X ∗→ Y be
a randomized algorithm, where X ∗ =

⋃
n≥0 X n. We say M is

(ε,δ)-differentially private ((ε,δ)-DP) if, for all X ,X ′ ∈ X ∗
differing only by one element, we have ∀S⊂ Y

Pr(M (X) ∈ S)≤ eε ·Pr(M (X ′) ∈ S)+δ.

There are two versions of adjacency: 1) for addi-
tion/removal, X ′ has exactly one more data sample than that
of X ; 2) for replacement: X and X ′ contain the same number
of data samples but only differ in exactly one. Our framework
in this paper can handle both versions. Post-processing on the
output of the DP algorithm is still DP, and the execution of
multiple DP algorithms sequentially, known as composition,
also maintains DP.

A functional formulation of DP: f -DP. Using the (ε,δ)-
DP to characterize the privacy of some private algorithm
M has been shown to be lossy [13]. This is because such
a single pair of parameters cannot express the rich nature
of the privacy promised by M . In contrast, f -DP, based on
hypothesis testing formulation, reflects the nature of private
mechanisms by a function f [13, 51] rather than a single pair
of parameter (ε,δ).

The hypothesis testing setups for f -DP is as follows. Let
Y be the output space of M taking input one dataset from



adjacent datasets X ,X ′, we form the null and alternative hy-
potheses:

H0 : X was the input, H1 : X ′ was the input. (1)

For a decision rule R : Y →{0,1} for such hypothesis testing
setups, two types of errors stand out:

• Type I error or false positive rate α = Pr [R (y) = 1|H0],
i.e., the probability of rejecting H0 while H0 is true;

• Type II error or false negative rate β = Pr [R (y) = 0|H1],
i.e., the probability of rejecting H1 while H1 is true.

It is inevitable to make trade-offs between α and β; what is
interesting is the best β one can achieve for fixed α. This is
related to the following definition.

Definition 2 (Trade-off function [13]). For a hypothesis test-
ing problem over two distributions P,P′, define the trade-off
function as:

TP,P′(α) = inf
R
{βR : αR ≤ α}

where decision rule R takes input a sample from P or P′ and
decides which distribution produced that sample. The infimum
is taken over all decision rule R .

The trade-off function quantifies the best one can do in a
hypothesis-testing problem. The optimal β is achieved via the
likelihood ratio test, which is also known as the fundamental
Neyman–Pearson lemma [32] (please refer to Appendix A.1).
For function f and g, we denote

g≥ f if g(x)≥ f (x),∀x ∈ [0,1].

Definition 3 ( f -DP [13]). Let f : [0,1]→ [0,1] be a trade-off
function. A mechanism M is f-DP if

TM (X),M (X ′) ≥ f

holds for all adjacent dataset X ,X ′

f -DP formulation quantifies the indistinguishability be-
tween the output of M due to X or X ′ by a function, much
more expressive than what a single pair of (ε,δ) tells. In fact,
f -DP is a generalization of (ε,δ)-DP [13,42]: M is (ε,δ)-DP
equals to M is fε,δ-DP where the trade-off function fε,δ is

fε,δ(x) = max(0,1−δ− eεx,e−ε(1−δ− x))

We also have a useful family of trade-off functions param-
eterized by µ as follows.

Definition 4 (µ-Gaussian DP (µ-GDP) [13]). The trade-off
function of distinguishing N (0,1) from N (µ,1) is

Gµ(x) = TN (0,1),N (µ,1)(x) = Φ(Φ−1(1− x)−µ),

where Φ be the c.d.f. of standard normal distribution. A pri-
vate mechanism M satisfies µ-GDP if it is Gµ-DP

2.2 Privacy Audit
An equivalent object to the trade-off function is the “test-
ing region” for some algorithm satisfying (ε,δ)-DP by the
following theorem.

Theorem 1 ((ε,δ)-DP’s testing region [21]). For any ε > 0
and δ ∈ [0,1], a mechanism M is (ε,δ)-DP if and only if

α+ eε
β≥ 1−δ, β+ eε

α≥ 1−δ (2)

hold for any adjacent dataset X ,X ′ and any decision rule R
in a hypothesis testing problem defined in Equation (1).

Theorem 1 bounds the testing region for any decision rule
R if M is indeed differentially private. The basic principle of
privacy audit is to output a privacy lower bound by contraposi-
tion of Theorem 1, i.e., if some achievable α,β falls out of the
region defined by (ε,δ), it suggests that M is not (ε,δ)-DP.
Roughly, the general procedure to produce a privacy lower
bound is as follows.

After simulating the distinguishing game n times, for each
simulation, the adversary makes a binary guess about which
of two adjacent datasets was used. This gives the result of
many pairs

{(bg,bt)i : i ∈ [n]} (3)

where bg is the guessed result and bt is the true secret for one
simulation.

Under the empirical approach, we can derive confidence
intervals for false positive rate α ∈ (αl ,αr) and false nega-
tive rate β ∈ (βl ,βr) at some confidence level γ, based on
{(bg,bt)i : i ∈ [n]} obtained. This is usually done by the
Clopper-Pearson method [10] such that α and β are modeled
as unknown success probabilities of two binomial distribu-
tions. And this leads to the privacy lower bound for the true
privacy parameter εT at fixed δ according to Equation (2).

εT ≥ εL = max{log
1−δ−αr

βr
, log

1−δ−βr

αr
,0} (4)

Note that the privacy claim of the private algorithm reports
an upper bound εU ≥ εT for some fixed δ.

2.3 Related Work
The whole picture of detecting privacy violations. On de-
tecting privacy violations in the implementation of some dif-
ferentially private algorithms, there are roughly two main-
stream of work that rely on different techniques: 1) using
formal verification methods to prove or disprove programs
of DP algorithm [4, 17, 40, 49]; 2) generate refutation for tar-
geted DP algorithms [7, 12, 20, 31, 37] based on statistical
estimation.

The former often suffers from issues including being not ap-
plicable [40] to (ε,δ)-DP, Renyi-DP [29] or another advanced
DP application called private selection [23]; some work also



requires necessary manual design assistance [49]. Another
limitation is that those works cannot handle complex cases
where the DP algorithm is part of some larger program [40].

In contrast, the latter technique, based on statistical estima-
tion, is free from such issues. Therefore, it is more generaliz-
able, although it may incur the heavy computational overhead
of running the targeted DP algorithm thousands of times. Our
work also falls under the latter category.
The statistic-estimation category. Privacy audit in this line
of work can be framed as aiming to produce a privacy lower
bound for the privacy parameter of the targeted algorithm.
Certain earlier studies [6, 7, 12, 24] focus on generating pri-
vacy lower bound for some light-weight private protocols,
including the Laplace mechanism or sparse vector techniques
where running the targeted private algorithm is not a signifi-
cant computational issue.

Privacy audit in machine learning tasks mainly focuses on
investigating the theoretical versus practical privacy guaran-
tees of the DP-SGD protocol [20,21,31]; one notable work is
that Nasr et al. [31] show that the theoretical privacy analysis
for DP-SGD is indeed tight.

Privacy audit in machine learning benefits from the follow-
ing lines of related work:

• Better membership inference. Under the context of pri-
vacy audit, some form of membership inference [8, 34]
needs to be instantiated in the distinguishing game. For
example, Jagielski et al. [20] design worst-case data ex-
amples, a.k.a. “canaries” in literature, to form better mem-
bership inference, which leads to better privacy lower
bound. This line of work aims to produce more infor-
mative {(bg,bt)i : i ∈ [n]} (Equation (3)) results of the
distinguishing game.

• Better estimation. Work in this line aims to perform
better statistical analysis over derived {(bg,bt)i : i ∈ [n]}
(Equation (3)) results of the distinguishing game, and
hence is independent of work on membership inference.
For example, Log-Katz confidence interval [25] and ad-
vanced techniques based on Bayesian estimation [48]
have been proposed to improve the final derived lower
bound.

More efficient privacy audit. To address the possible compu-
tational issue of running the targeted private algorithm many
times, improvements have been made on the “meta-level”:
arranging the membership inference and estimation to achieve
auditing by fewer runs.

For instance, Nasr et al. [30] leverage the iterative structure
of DP-SGD to perform the overall empirical privacy of DP-
SGD; Andrew et al. [2] insert random canaries into the input
to Gaussian mechanism and measure the privacy based on the
result of recovering those random canaries simultaneously.
Such heuristic of making multiple membership inferences
per run of the targeted algorithm has also been used in previ-
ous works [27, 48] to improve the efficiency of privacy audit;

however, such practices are without theoretical rigor; the final
estimated privacy lower bound is also considered not faith-
ful [48] because membership inferences are performed on
data examples not belonging to independent runs, which in-
validates current false positive/false negative rate estimation
techniques.

Such a problem is further studied by a recent work by
Steinke et al. [37] with theoretical justification. Steinke et
al. [37] also propose an audit method that can derive the final
privacy lower bound while requiring the targeted DP-SGD
protocol to run only once.

2.4 Problem Statement and Motivation

To briefly describe the approach by Steinke et al. [37], 1)
first, n contrived data examples (canaries) are decided to be
included or not included in the training based on n indepen-
dent coin flips; 2) second, perform membership inference on
those n data examples based on the output of only one run of
the targeted algorithm (DP-SGD); 3) finally, privacy lower
bound is formed based on the accuracy of those membership
inferences.

Problems and challenges. The central contribution made by
Steinke et al. [37] is to validate the operation: performs mem-
bership inferences on multiple data examples not belonging
to independent runs. However, significant problems with the
privacy audit remain unanswered.

First, the audit method in [37] is not tight in general, e.g.,
it does not give tight privacy lower bound for the Gaussian
mechanism, even when all parameters are carefully tweaked.
Why does this happen, and can it be improved? Second, it is
unclear how to transfer such a method to audit problems on DP
algorithms other than the DP-SGD protocol. It is beneficial
to have some principles to follow.

We also identify another question critical to the audit prob-
lem: since the targeted private algorithm is run only once
and inserting more canaries becomes a cheap operation, if we
ignore other considerations but only focus on deriving better
privacy lower bounds, can we arbitrarily increase n to get
arbitrarily high confidence for the lower bound estimation?

Remark. To our knowledge, Steinke et al. [37] are the first
to provide privacy lower bound based on only one run of the
targeted algorithm with theoretical rigor instead of heuristics.
At the time of submission, their method is state-of-the-art. We
also note another work [26] that improves over [37] based on
[37]’s analysis, reaching slightly better audit results. However,
[26]’s results are still not tight (in contrast, we reach tight
results); more importantly, the above raised two problems
still remain unanswered. In our experiment, we only compare
with [37] as it suffices to show our contribution related to the
above two problems.



Figure 1: The universal framework for privacy audit. Each membership inference corresponds to recovering a bit. Execution of
the targeted private algorithm M corresponds to the usage of a noisy channel for bits transmission. CM is the noisy channel
where execution of M happens, and D is where the membership inference is launched. H is the dataset generator and m is what
can be observed by the adversary.

3 Method
Method intuition. Addressing the above questions requires
understanding the principle of privacy audit. In this section,
we formulate the privacy audit problem as a bits transmission
framework to serve such a goal. This builds on the observa-
tions that, in the membership inference, one of two adjacent
datasets needs to be decided as the original input, and this is
just equivalent to recovering one bit of information.

Based on our design framework, executing the targeted
private algorithm M is modeled as a use of a noisy channel.
If M is indeed DP, the channel will be noisy enough to prevent
reliable bits transmission; therefore, if we can recover bits
with low error, we can derive a privacy lower bound for M .
Overview. We use the language of information theory to
make such intuition precise. With such an analytical tool, 1)
we derive an improved (tight) privacy audit method, which
works for both cases of privacy-audit-by-one-run and privacy-
audit-by-multiple-run; 2) we also analyze the fundamental
limits of privacy audit, which tells us when the appealing
audit-by-one goal is possible or impossible.

3.1 Universal Framework for Privacy Audit
Definition 5 (Privacy audit as bits transmission). The univer-
sal bit transmission framework (n, p,H ,CM ,D) for privacy
audit models a problem of n bits information transmitting
through a noisy channel where

1. b ∈ {0,1}n is n-dimension binary vector where the i-
th coordinate bi of b is independently sampled from a
Bernoulli distribution Bernoulli(p) ∀i ∈ {1,2, · · · ,n};

2. Dataset generator H : {0,1}n → X n outputs an audit
dataset XA = {Xi = Hi(bi) : ∀i ∈ [n]} ∈ X n where each
data sample inside XA only depends on the corresponding
bit of H ’s input.

3. The noisy channel CM : X n → I outputs message m =
CM (XA) ∈ I . CM contains built-in information M :

X ∗ → Y , the DP algorithm we want to audit. CM
may also contain information of M ’s original (training)
dataset that is independent of input bits b.

4. Decoder D : I →{0,1}n tries to recover information bits
b but actually output b̂=D(m)= {bi : ∀i∈ [n]}∈ {0,1}n,
which might result in errors.

Regulation: to comply with privacy audit, it is by design that
1) each data sample inside XA must only be associated with
exactly one run of M ; 2) message m = CM (XA) must only be
formed based on M ’s output, i.e., m is differentially private.

Algorithm 1 CM for privacy audit by multiple runs

Input: XA
1: m← []
2: for i = 1, · · · ,n do
3: Get original training dataset XT
4: ▷ XT can be different at each iteration
5: yi←M ({XA[i]}∪XT ) ▷ One run of M
6: m.append(yi)
7: end for

Output: m

Interpretation. To connect to previous privacy audit termi-
nologies, in our (n, p,H ,CM ,D) framework, the dataset gen-
erator H models the how the canary data examples are formed.
The noisy channel CM models the execution of M ; being
“noisy” corresponds to the fact that M hides the evidence of
Xi’s participation if M is indeed DP [39], which makes it
hard to recover bi. The decoder D is where the membership
inference happens, such that a binary decision must be made
for each input bit.

Handling privacy audit by multiple runs. For previous
privacy audit work [20, 31, 48] falling under the category of
privacy audit by multiple runs, these work can be framed by
our (n, p,H ,CM ,D) framework as follows.



The critical part is what happens inside the noisy channel
CM , for privacy audit by multiple runs, we demonstrate CM
as shown in Algorithm 1. In this line of work, each mem-
bership inference is associated with one run of M ; here the
transmission

bi→ Xi→ yi = m[i]→ b̂i

is equivalent to derive a (bi, b̂i) = (bt ,bg) pair as defined in
Equation (3). Note that all n runs of M are mutually indepen-
dent.

Algorithm 2 CM for privacy audit by one run

Input: XA
1: Get original training dataset XT
2: y←M (XA∪XT ) ▷ One run of M
3: m← y

Output: m

Handling privacy audit by one run. For previous audit
work [37] falling under privacy audit by one run, such work
can be framed by our (n, p,H ,CM ,D) framework, shown in
Algorithm 2. The critical part is that inside CM , all generated
data examples (corresponding to canaries) are all fed into
the input dataset of M and M runs on them together only
once. In this case, bit transmission may not necessarily be
independent, i.e., there might be interference between them.

Handling two versions of adjacency. Our framework applies
to audit tasks for both versions of the adjacency definition
of DP. If the M is DP with respect to addition/removal, we
require Xi to be either a real canary data example or a null
object that contributes nothing to the execution of M , based
on bi. This null setup models the case where the canary is not
included in M ’s. If the M is DP with respect to replacement,
Xi can be any different data examples depending on bi.

Basic considerations. The final goal is to estimate the pri-
vacy lower bound of M based on b = {bi : ∀i ∈ [n]} and
b̂ = {b̂i : ∀i ∈ [n]}. By basic design principles, as we can
always let b̂ be bad guesses (e.g., just make b̂ random), it is
pivotal for b̂ to recover b as accurate as possible, which allows
to conclude more informative assertion about M ’s privacy
(deriving stronger privacy lower bound).

3.2 Information-theoretic Limits
In this section, we give results demonstrating the fundamen-
tal information-theoretic limits under our audit framework
(n, p,H ,CM ,D). Those limits always hold if complying with
our framework, regardless of whether the privacy audit is by
one run or multiple run of M .
Notation. We use uppercase letters (e.g., Z) to represent a
random variable and lowercase letters (e.g., z) to denote its
realization. When we need to refer to the distribution of Z,

Notation Meaning

B Random input bits sampled from Bernoulli(p)n

Bi Marginal distribution of i-th coordinate of B
B̂ Random recovered bits
B̂i Marginal distribution of i-th coordinate of B̂

M Random variable for CM ’s output
Ei Bit error random variable defined in Equation (6)
E Bit error random vector E = [E1, · · · ,En]

For some random vector R

R−i Random vector R−i = [R1, · · · ,Ri−1,Ri+1, · · ·Rn]
R<i Random vector R<i = [R1, · · · ,Ri−1]

Lowercase use corresponds to the above’s realization

Table 1: Notation for random variables used.

we also abuse using the uppercase without ambiguity, e.g.,

Z|Y=y (5)

denotes the distribution of random variable Z conditioned on
random variable Y = y. Notations for random variables used
are summarised in Table 1.

We care about the errors made in bits transmission, which
is formally defined in the following.

Definition 6. Define a random variable Ei as follows.

Ei =

{
1, if B̂i ̸= Bi
0, if B̂i = Bi

(6)

I.e., Ei is the random variable indicating whether recovered
bit B̂i is an error. We denote

pe
i = Pr [Ei = 1] (7)

as the bit error for i. We also define the average bit error as

pe =
1
n ∑

i
Pr [Ei = 1] =

1
n ∑

i
pe

i (8)

We will also formalize the indistinguishability provided by
DP algorithm under our framework using f -DP. If distribution
P,P′ possessing some level of indistinguishability and their
trade-off function satisfies

TP,P′ ≥ f

we denote this relation between P,P′ as

P
f−DP∼ P′. (9)

It is easy to see that M is f -DP if M (X)
f−DP∼ M (X ′) for all

adjacent X ,X ′.
Implication from our framework regulation and differen-
tial privacy. With all the notations set, we are ready to state
some facts based on our framework and differential privacy.
We have the following property according to the regulation
shown in Definition 5.



Property 1 (Noisy transmission implied by DP, proof in Ap-
pendix B.1). In our (n, p,H ,CM ,D) framework, if M is f -
DP, then ∀i ∈ [n],b−i ∈ {0,1}n−1

B̂i|Bi=0,B−i=b−i

f−DP∼ B̂i|Bi=1,B−i=b−i
(10)

Where [n] = {1,2, · · · ,n}. Equation (10) intuitively says that,
conditioned on other input bits being fixed to be b−i, even
if we flip the i-th input bit, its corresponding output bit’s
distribution will not change much.

We present a lemma that we later rely on as follows.

Lemma 1 (Mixture by convex combination only makes it

more indistinguishable, proof in Appendix B.2). If Pi
f−DP∼

P′i ,∀i = 1, · · · ,n, then ∀ci ∈ [0,1] such that ∑
n
i=1 ci = 1, we

have
n

∑
i=1

ciPi
f−DP∼

n

∑
i=1

ciP′i . (11)

intuitively, the pair of corresponding mixture distributions by
convex combination becomes only harder to distinguish than
each Pi,P′i pair.

Hardness of single bit transmission. Under our
(n, p,H ,CM ,D) framework, the marginal distribution
for some single output bit also possesses some level of
indistinguishability condition on different corresponding
input bit.

Corollary 1 (Recovering bits is hard, proof in Appendix B.3).
In our (n, p,H ,CM ,D) framework, if M is f -DP, then ∀i ∈
[n],

B̂i|Bi=0
f−DP∼ B̂i|Bi=1 (12)

We need the help of Lemma 1 to complete the proof pro-
vided in Appendix B.3. Based on this result, we abstract the
channel for the transmission of the i-th bit in Figure 2. We
define the null hypothesis as bi = 0 and the alternative hy-
pothesis as bi = 1. An arbitrary decision rule R makes a false
negative rate β as a false positive rate α.

Figure 2: Single-bit transmission, modeled as a binary chan-
nel. If input bit bi = 0, the channel flips the bit with probability
α, corresponding to a false positive rate; if bi = 1, the bit is
flipped with probability β, which is the false negative rate. As
governed by the trade-off function, β ≥ f (α) must hold. if
α = β, the above channel is the well-known binary symmetric
channel (BSC).

Hence, our channel molding tells us recovering the in-
put bits is fundamentally hard due to the noisy channel CM .
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Figure 3: The mutual information upper bound u f (p) for
different trade-off functions. δ = 10−5 for (ε,δ)-DP.

How do we quantify such hardness? We use the information-
theoretic quantity: mutual information, a central topic in in-
formation theory. We use

MI(Bi; B̂i) (13)

to denote the mutual information between two binary random
variables Bi and B̂i. A closely related quantify is the channel
capacity at fixed α,β

C= max
p

MI(Bi; B̂i) (14)

Under the original information-theoretic context, channel ca-
pacity is the maximum rate at which we can send information
over some noisy channel with a vanishingly low error proba-
bility. Under our privacy audit context, it is related to the best
bit error that can be achieved, as will be shown later.

Assuming we are using 2 as the base of logarithm for in-
formation related quantities throughout this paper, the binary
entropy function is

h(x) =−x · log(x)− (1− x) · log(1− x) (15)

where h(x) : [0,1]→ [0,1] is symmetric around x = 1
2 . Also,

define an inverse function

h−1(x) : [0,1]→ [0,
1
2
] (16)

corresponding to the inverse of the left half part of h(x) de-
fined on x ∈ [0, 1

2 ].
Intuitively, mutual information MI(Bi; B̂i) measures the

dependence between random bits Bi and B̂i. In our
(n, p,H ,CM ,D) framework, note that Bi ∼ Bernoulli(p), if
MI(Bi; B̂i) reaches to its maximum MI(Bi; B̂i) = H(Bi) =
h(p) where H(Bi) is the entropy of Bi, we then have B̂i = Bi,
i.e., perfect transmission.

However, the algorithm M prevents perfect transmission
if it is private. We have the following results in quantifying
the fundamental hardness of single-bit transmission.



Theorem 2 (Mutual information upper bound for bits trans-
mission, proof in Appendix B.4). in our (n, p,H ,CM ,D)
framework, if M is f -DP, we have ∀i ∈ [n]

MI(Bi; B̂i)≤ max
x∈[0,1]

Ff (x, p)
def
= u f (p) (17)

where

Ff (x, p) =h(p · f (x)+(1− p)(1− x))− p ·h( f (x))

− (1− p) ·h(1− x)
(18)

Proof of this theorem relies on our channel modeling shown
in Figure 2. In practice, computing u f (p) is always numeri-
cally stable as all terms are bounded. Figure 3 plots the upper
bound function u f (p), and we can see that the more private
trade-off function tends to have a smaller upper bound value.

Equation (18) leads to a somewhat complex form because
we allow p to be chosen freely. We can make it concise by
setting p = 1

2 , i.e., each bit is independently and uniformly
sampled from {0,1}. This setup corresponds to the balanced
prior adopted in previous work [31, 33, 34]. And we assume
p = 1

2 in the remaining part unless specified otherwise.
Theorem 2 also tells us that, even if the membership in-

ference does its best, i.e., the false positive rate α and false
negative rate β = f (α) lands on boundaries defined by the
trade-off function, the mutual information still has an upper
bound. Consequently, it leads to unavoidable non-trivial error
in bits transmission, as stated by the following result.

Theorem 3 (Bit error lower bound, proof in Appendix B.5).
In our (n, 1

2 ,H ,CM ,D) framework, w.o.l.g., assume pe
i ≤ 1

2
(defined in Equation (7)), because one can always do better
than random guessing. If M is f -DP, we have ∀i ∈ [n]

pe
i ≥ h−1(1−u f (

1
2
))

def
= pe

f (19)

Where h−1 is defined in Equation (16).

Theorem 3 is the basis of our audit method shown in the
following section.

3.3 Audit Method
Method overview. Our idea for privacy audit is fairly sim-
ple: if M is some f -DP, 1) for each bit transmission, the bit
error will not be too small; 2) therefore, if we observe some
significantly low bit error, we can conclude (with confidence
specification) that M is not f -DP as claim by contraposition.
This gives a privacy lower bound.

However, deriving a lower bound requires non-trivial ma-
nipulation. Our method in this section quantifies the rela-
tionship between bit error and the lower bound that we can
conclude.
Privacy audit without interference. We first assume that
each bit transmission bi→ b̂i is mutually independent. Under

the information-theoretic context, this equals to the fact that
there is no interference between bits transmission; another
equivalent characterization is that the noisy channel CM is a
memoryless channel.

For the privacy audit task design, whether interference
exists between bits transmission can always be controlled.
For example, we can always resort to the privacy-audit-by-
multiple-run case where interference does not exist. Actually,
for privacy audits, ensuring no interference should be viewed
as a principle to follow. We will provide this argument in later
sections, and we will also provide an analysis for the case
where interference exists.

In the case where interference does not exist, the random
variable Ei ((defined in Equation (6) ) is independent of E j,
∀i, j ∈ [n] and i ̸= j. Note that the error probability {pe

i : ∀i ∈
[n]} (defined in Equation (7)) may not necessarily be the
same.

Theorem 4 (Audit principle, proof in Appendix B.6). In
our (n, 1

2 ,H ,CM ,D) framework, if Ei (defined in Equation
(6) ) is independent from E j, ∀i, j ∈ [n] and i ̸= j, let S be
a n-dimension binary vector where each coordinate of S is
independently sampled from Bernoulli(pe

f ) (pe
f defined in

(19)). We have ∀a ∈ [0,1]

Pr
E

[
1
n

n

∑
i

Ei ≥ a

]
≥ Pr

S

[
1
n

n

∑
i

Si ≥ a

]
(20)

This theorem says that it is more likely to see a greater
value for the average of results sampled from {Ei : ∀i ∈ [n]}
than that of results sampled from n independent Bernoulli tries
with probability pe

f . Intuitively, this is because the probability
of making an error (Ei = 1) for each bit is greater than pe

f ,
which is the best we can do. It allows us to make the following
deductions, which also form the basis of our audit method.
Confidence interval (CI) construction. In our
(n, 1

2 ,H ,CM ,D) framework, if M is f -DP,

1. If we really can achieve the “best”. The bit error random
variable becomes Ei = Si ∼ Bernoulli(pe

f ),∀i ∈ [n].;

2. For pre-defined confidence level γ (95% and 99% are
typical), we can compute v such that

Pr
S

[
1
n ∑

i
Si ≥ pe

f − v

]
= γ (21)

3. For some real random variable Ei that we can actually
achieve, Theorem 4 promises that

Pr

[
1
n ∑

i
Ei ≥ pe

f − v

]
≥ γ (22)

4. Hence, once we observe an outcome ē for the random
variable of the sample mean 1

n ∑i Ei, Equation (22) give



Algorithm 3 Advanced CI ACI (ē,γ,n)
Input: ē, empirical average bit error; γ confidence specifica-

tion; n, total number of bits transmission
1: pl ← 0.001, pr← 1

2
2: pe

min← 1
2 (pl + pr)

3: ▷ F−1 is the inverse c.d.f. of a Binomial distribution
4: v← pe

min− 1
n F−1 (1− γ,n, pe

min)
5: for ∥pe

min− (ē+ v)∥> 0.0001 do
6: if pe

min > ē+ v then
7: pe

r ← pe
min

8: else
9: pe

l ← pe
min

10: end if
11: pe

min← 1
2 (pl + pr)

12: v← pe
min− 1

n F−1 (1− γ,n, pe
min)

13: end for
Output: pe

min

us the confidence interval

[0, ē+ v] (23)

for pe
f (the parameter we aim to estimate) with a coverage

level always greater than γ.

The remaining task is how to compute v and we can let
v = v(n,γ), a function of n,γ, which can be tackled by the
Hoeffding bound as follows

v =

√
1

2n
log

1
1− γ

(24)

The derivation for Equation (24) is a standard application of
Hoeffding’s inequality, and it is presented in Appendix A.2.
A more sophisticated CI construction method. Computing
v by Equation (24) is simple, however, we can do better. For
completeness, we also provide another more sophisticated CI
construction method in the following, but paying the price for
a slightly higher complexity.

The general idea is to let v = v(pe
f ,n,γ), i.e., it also depends

on pe
f , and we can derive better results for v by iteration. The

high-level intuition and procedure are as follows. After seeing
ē (which we cannot control in estimation), we want v as small
as possible because it will lead to better privacy lower bound.
Then, we can compute v by Equation (21) based on Binomial
distribution; we repeat such process by setting different hypo-
thetical values for pe

f ← pe
min until a certain condition is met.

The detailed method is provided in Algorithm 3.
Deriving the final privacy lower bound. we can derive
the final privacy lower bound after the confidence interval
is constructed. The lower bound is in (ε,δ)-DP formulation,
aligning with almost all previous work. The whole process
is presented in Algorithm 5. Note that in our method, we

Algorithm 4 f -DP to (ε,δ)-DP [13] ED( f ,δ)

Input: f , trade-off function; δ, privacy parameter
1: ε← ∞ if δ < 1− f (0); Return ∞

2: Compute ε = inf{a : f (x)≥ 1−δ− eax,∀x ∈ [0,1]} via
binary search

Output: max{0,ε}

Algorithm 5 Privacy lower bound LB(δ, ē,γ,n)

Input: δ, privacy parameter; ē, empirical average bit error; γ

confidence specification; n, total number of bits transmis-
sion

1: pe
f ←

√
1
2n log 1

1−γ
or pe

f ← ACI (ē,γ,n) ▷ Algorithm 3

2: Compute f s.t. h(pe
f ) = 1−u f (

1
2 ) ▷ Equation (19)

3: εL← ED( f ,δ) ▷ Algorithm 4
Output: εL

essentially estimate an upper bound for averaged bit error,
which corresponds to an upper bound of f -DP, which can be
converted into a final privacy lower bound εL. The conversion
is presented in Algorithm 4.

Understanding the advanced CI method. After introducing
how the final lower bound is derived, we elaborate on how
our advanced technique works. Recall that we set different
hypothetical values pe

min to pe
f ; each time we set a value to pe

f ,
we are essentially making an assumption on the privacy lower
bound. Specifically, if we assume we can achieve average bit
error pe

min, we are assuming the privacy lower bound derived
based on this assumption is at least some value εL(pe

min) where
εL(pe

min) is computed by the last two lines in Algorithm 5 by
setting pe

f ← pe
min.

Based on assuming that pe
min is the best we can achieve, we

can derive the upper bound ē+ v(pe
min,n,γ) of the confidence

interval. If εL(ē+ v(pe
min,n,γ))< εL(pe

min), we have a contra-
diction, which requires we revise the assumption pe

min until
there are no more contradictions. The illustration is provided
in Figure 4. Our advanced method has a notable advantage
over the Hoeffding method when we do not have a large
number of observations (n is small).

3.4 Principle for Channel Arrangement

In this section, we will justify why arranging the channel
CM to be a memoryless channel for bits transmission is al-
ways superior to bits transmission with interference. In our
(n, p,H ,CM ,D) framework, we will also see the fact that
avoiding interference should stand as an unquestioned design
principle for all audit tasks.
Performance metric and sub-channel arrangement. To
illustrate both cases for memoryless channel arrangement and
channel with interference, we show an example in Figure 5
when n = 2. When there is no interference, we use PB̂i|Bi

to
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(b) ē = 0.2,n = 103,γ = 0.99

Figure 4: Illustration on how our advanced CI method works.
The horizontal axis is different pe

min value we assume that
we can achieve, and the vertical axis is the corresponding
lower bound. Line marked as pe

min corresponds to lower bound
derived based on average bit error pe

min can be achieved; the
same is to ē+ v(pe

min,n,γ). Hoeffding result is the simple
CI result shown in Equation (24). Regions on the left of the
vertical black line are where we have contradictions.

(a) Memoryless channel (b) Channel with interference

Figure 5: Diagram of the case where we have n = 2 bits of
transmission. When there is interference, output bit b̂1 also
depends on input b2, but b̂1 is only intended to recover b1.

denote the transition probability matrix or Markov kernel for
the channel where Bi and B̂i are the input and output random
variable, respectively. Such Markov kernel models the overall
effect due to H , CM and D. In the presence of interference,
the output random variable B̂i depends on both inputs. Hence
we have the Markov kernel denoted by PB̂I |(Bi,B2)

.
Practitioners can freely choose these two cases within our

framework; however, as will be shown, the memoryless chan-
nel arrangement is more favored for our auditing purposes.
To compare them, we need a performance metric. It is related
to the following critical terms in our audit method.

Recall our previously mentioned audit method requires
deriving an observation ē for the random variable 1

n ∑i Ei,
which is the sample mean. It inevitably drives us to assess
how “good” we can make such an observation and what it
implies to our final derived privacy lower bound. This is done
via the following bias and variance argument.
❶ The bias argument. In Equation (8), we define the aver-
aged bit error pe which is the expectation for 1

n ∑i Ei. The
bias term describes the distance between pe achieved in an
audit implementation and the best achievable bit error. We
can trivially derive the result pe = ∑i pe

i ≥ pe
f as a result of

Theorem 3. We want pe as small as possible by the basic con-
siderations mentioned in Section 3.1. Now a question arises:
when and how pe equals pe

f .
The following theorem result gives us a more informative

result for such a question.

Theorem 5 (Achievability of pe
f , proof in Appendix B.7). In

our (n, 1
2 ,H ,CM ,D) framework, with pe

i defined in Equation
(7), if M is f -DP, then we have ∀i ∈ [n],

1−h(pe
i )≤MI(Bi; B̂i)

1
≤MI(Bi; B̂i|B−i)≤ u f (

1
2
) (25)

inequality 1 becomes equality only when MI(B−i; B̂i) = 0.

MI(B−i; B̂i) = 0 means recovered bit b̂i is independent of
input bits other than the intended bi itself (i.e., there is no
interference). Note that we can also derive Equation (19)
based on the above result; nevertheless, the important fact told
by Theorem 5 is that if M is f -DP, no matter how powerful the
decoder D (where the MIA happens) is, pe

f is not achievable
for pe in the presence of interference. In other words, a non-
zero bias always exists between pe and pe

f .
This violates the basic design considerations mentioned

in Section 3.1. Based on the bias argument, arranging bits
transmission in a memoryless channel is better than a channel
with interference.
❷ The variance argument. Our variance argument inves-
tigates the variance of the random variable 1

n ∑i Ei, which
directly related to our confidence in our estimation. We want
as low uncertainty (low variance in estimation) as possible,
which applies to any other statistical estimation method.

In the case of a memoryless channel, Ei is independent of
E j for all i ̸= j, which means that

Var

[
1
n ∑

i
Ei

]
=

∑i Var [Ei]

n2 ≥
pe

f (1− pe
f )

n
=Vmin (26)

Because pe
i = Pr [Ei = 1]≥ pe

f implies Var [Ei]≥ pe
f (1− pe

f ).
Therefore, we favor the memoryless channel arrangement

as it is only possible to achieve the best variance Vmin.
Conclusion. Relating our audit mentioned before, we need the
critical term ē Equation (23) to compute a final lower bound.
To have a non-trivial lower bound, we need 1) ē to be as close



to pe
f as possible (in expectation), i.e., we want low bias; 2) we

need to have lower uncertainty in the estimation, i.e., ē having
small variance so that we can have non-trivial confidence in
our estimation. A memoryless channel arrangement is more
favored based on both lenses.

3.5 How the Decoder Affects Audit
The decoder D is where the membership inference attack
happens, and we discuss how it affects the audit in the fol-
lowing. We can quantitatively reason about decoder D, for
instance, considering the Markov chain Bi → m → B̂i, D
happens under transition m → B̂i. Note that MI(Bi; B̂i) =
MI(Bi;m)−MI(Bi;m|B̂i). Powerful D leads to MI(Bi; B̂i) =
MI(Bi;m) (MI(Bi;m|B̂i) = 0), meaning that D may be a
one-to-one mapping or sufficient statistics, allowing tight
audit. Weak D leads to MI(Bi; B̂i) < MI(Bi;m) ≤ u f (1/2)
(MI(Bi;m|B̂i)> 0), leading to non-zero bias, which must end
up with a gap between the lower and upper bound for any
auditing method.

Various factors may cause D to be weak: the membership
inference attack is just sub-optimal, or there exist random
sources unknown to the adversary (just like the adversary
doesn’t know which other data examples are sampled in each
iteration of DP-SGD). Intuitively, D being weak means we
lose information when processing the data. Once we know
MI(Bi;m|B̂i), we know how quantitatively D affects the au-
dit’s tightness by Theorem 5, however, computing the value
for MI(Bi;m|B̂i) should depend on the applications.

We also emphasize that in the presence of interference
discussion in the above section, MI(Bi; B̂i) < MI(Bi;m) ≤
u f (1/2) will also be true, causing the decoder D to be weak.
This gives another reason why we should have a memoryless
channel arrangement.

4 Privacy Audit by One Run: (Im)possibilities

Now, we are prepared to answer previously raised questions
about the main topic we aim to discuss: privacy audit by one
run.
The nature of privacy audit is to estimate the randomness
due to DP. Using our bias and variance argument mentioned
before, in all statistical estimation tasks, we always favor the
expectation that the subject measured is close (lower bias) to
its true value and high confidence (low variance). Under the
context of privacy audit, what we really want to estimate is
the randomness injected by DP, which is parameterized by
privacy parameters.

For example, for the Gaussian mechanism

M (X) = q(X)+N (0,σ2Id) (27)

where the query function q(X) ∈ Rd has unit ℓ2-sensitivity, it
is known that it satisfies (ε,δ)-DP if σ2 ≥ 2log(1.25/δ)/ε2.
Estimating a lower bound εL for ε is equivalent to estimating

an upper bound for the noise s.t.d. σ. Inevitably, we must
have enough observations of independent samples from the
DP randomness itself before confidently claiming something
about σ.

In privacy audit, the observations we have is the {(bt ,bg)i :
∀i ∈ [n]} pairs of truth and guesses (Equation (3)). The goal
is to estimate the randomness of DP based on those pairs.
Interference will always lead to sub-optimal results based on
our bias and variance argument.
When it is possible to audit privacy by one run. Suppose
we plan to insert n canaries for audit. Privacy audit by one run
is only possible if 1) the targeted private algorithm M itself
incurs sampling from at least n independent DP randomness
source; 2) n is large enough to have concentration behaviors.

The second requirement is because we need to have non-
trivial confidence due to statistical uncertainties, and the first
requirement is to have quality estimation based on our bias
and variance argument. In the following, we will use a positive
and negative example to give more insight into such necessary
conditions for privacy audits by one run.
Example. In our audit framework, we aim to audit the privacy
of the Gaussian mechanism defined in Equation (27). And the
query function q is just a summation query

Positive case. If d ≥ n, we can audit privacy by one run
of the Gaussian mechanism and maintain the more favored
memoryless channel arrangement mentioned previously. The
canary data example is formed as each canary data Xi ∈ Rd

takes the value of 1 only its i-th coordinate and zero for the
rest. The decoder D is also simple: for bit bi, the recovered b̂i
is only based on the i-th coordinate of the output of M . We
can see that recovering b̂i is free from other input bits.

Negative case. If d≪ n, inserting more than d canaries will
only lead to sub-optimal results according to our previous bias
and variance argument, as we only have d independent source
for DP noise. If d is too small, we can not have non-trivial
confidence in our estimation. Therefore, audit-by-one-run is
impossible for this case, so we have to resort to audit-by-
multiple-runs to give meaningful privacy lower bound.

5 Experiments for Privacy Audit by One Run

5.1 Tight Audit by One Run
In this section, we first give results showing that our audit
method is indeed tight. The confidence γ is set to be 0.95
throughout our experiments. We provide three experiments in
the following.
How the experiments fits into our (n, 1

2 ,H ,CM ,D) frame-
work. We follow identical setups as that of [37]. For Gaussian
mechanism, in Equation (27), X contains rows with different
one-hot vectors (row number one is [1,0,0,...,0], row number
two is [0,1,0,...,0], etc); q sums up all vectors into one vector;
D looks into each coordinate of final noisy vector (after Gaus-
sian noise added) and output each b̂i. For auditing the Laplace
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(c) µ = 3.2

Figure 6: Audit by one run for the Gaussian mechanism satisfying µ-GDP. 20 repetition with different seeds.
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(c) ε = 4

Figure 7: Audit by one run for the randomized response mechanism satisfying (ε,10−5)-DP. 20 repetition with different seeds.
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(c) µl = 3.2

Figure 8: Audit by one run for the Laplace mechanism satisfying TLap(0,1),Lap(µl ,1)-DP. 20 repetition with different seeds.

mechanism in the following, the noise is merely changed to
Laplace noise compared to auditing Gaussian mechanism.
For randomized response, the DP randomness is randomly
flipping the bits (instead of adding Gaussian noise) and D
output each b̂i based on noisy bits.

For example, in auditing the Gaussian mechanism, Xi refers
to the i-th row of X , m is the final vector with Gaussian noise
added, and b̂i is the guessed bit for bi. The dataset generator
H is also simple: depending on bi, it sets Xi to be a one-hot
vector or a zero vector.

For asserting b̂i, we simply make decoder output 1 if the
observed value is greater than 0.5 (the “threshold”) for the
Gaussian and Laplace mechanism. In previous work [30, 37],
it is often to tune the threshold to reach the strongest audit
performance. However, it suffices to set the threshold to be 0.5
in our case. For auditing the randomized response mechanism,
we simply make the decoder output bit equal to the observed

bit as it maximizes the posterior probability.

1) audit the Gaussian mechanism (Equation (27)) where we
show our method obtains tight results and previous work [37]
does not in contrast.

Setup. We aim to transmit n bits, and we let d = n. We
vary n to take multiple values; the data example canary is
according to the positive case in Section 4. This means that we
have a memoryless channel arrangement. In this experiment,
the query function q is just a summation query. In f -DP
formulation, the Gaussian mechanism satisfies µ-GDP. We
also vary µ to see audit results in different setups.

Results. Figure 6 shows the audit results using our method
and the previous method by Steinke et al. [37]. And we can
see that our method can achieve almost tight audit results. In
contrast, the previous method cannot achieve tight results, as
reported in the original work [37]. We believe one important
reason is that [37] is based on (ε,δ)-DP formulation, which



is not tight/faithful [13, 51] for Gaussian mechanism.
By using f -DP formulation, we get tight results. It should

also be noted that it is unclear how to transfer [37]’s result to
handle the f -DP formulation.
2) audit randomized response mechanism [41] in an ideal-
ized setting where [37] gives tight audit results, but we show
that our gives tight results with n less than one order of mag-
nitude.

Setup. In our experiment, we have n bits to transmit, and
randomized response turns the original bit into three possi-
ble outcomes: if bi = 0, with probability (1−δ)eε

1+eε , output 0;

with probability (1−δ)
1+eε , output 1; with probability δ, output

2. If bi = 1, with probability (1−δ)eε

1+eε , output 1; with prob-

ability (1−δ)
1+eε , output 0; with probability δ, output 3. Then

b̂i is guessed based on such output. It is clear that such a
mechanism satisfies (ε,δ)-DP. It is also clear that we have a
memoryless channel arrangement.

Results. Figure 7 shows the audit results using our method
and the previous method by Steinke et al. [37]. We see that
the previous method can achieve tight audit results when
ε = 0.25,1, but a notable gap is still seen when ε = 4. In
contrast, our method achieves tight results for all setups, and
we obtain tight results with n being less by one order of
magnitude.
3) audit the Laplace mechanism. The Laplace mechanism
is summarized below:

M (X) = q(X)+LAP (0,c).

Note that q(X) ∈ Rd has bounded l1-norm and LAP (0,c) is
a d-dimension Laplace noise vector (with mean equal to zero
and scale parameter c) where each coordinate is independent
of each other.

Setup. We set q(X) ∈ Rd has bounded l1-norm equals to
1, then the mechanism satisfies (εL = 1/c,0)−DP. By re-
parameterizing, the trade-off function is TLap(0,1),Lap(µl ,1)-DP
where µl = 1/c.

Results. The results are presented in Figure 8. We can see
that both audit methods can achieve tight results when n = d
is large enough; however, to reach the same lower bound, our
method is more efficient by around one order of magnitude.
This conclusion is similar to what Figure 7 tells us.

5.2 Experiments on DP-SGD
Our main contribution in this paper is analyzing the result of
membership inference, particularly for the privacy-audit-by-
one-run case; therefore, we do not focus on how to launch
stronger membership inference, and we leverage previous
techniques for membership inference. Both our method and
previous method [37] are based on the same membership infer-
ence result, allowing us to have fair comparisons. Experiment
implementation is at a link 1.

1https://github.com/zihangxiang/PAABT.git
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Figure 9: Privacy lower bounds for auditing DP-SGD at white-
box setting. The experimental dataset is CIFAR10, the same
as that in [37].

In this section, the audit results for DP-SGD protocols are
given. We focus on the white-box setting where the intermedi-
ate private gradient is released publicly. We also leverage the
membership inference method provided by Nasr et al. called
“Dirac gradient,” which directly inserts gradient candies where
only one coordinate is 1 with others being zero. Such practice
is similar to our above audit on the Gaussian mechanism, and
we indeed have a memoryless channel arrangement based on
a similar argument.
Results. Figure 9 presents the audit result. We can see that
our method produces better lower bounds in each setting.
Although the audit is not tight when performed on real-world
training tasks when n= 104, both our method and the previous
method give meaningful lower bounds; however, our method
has significant advantages when n = 103.

5.3 Detecting Privacy Violation

In this experiment, we provide a use case showing that our
method catches bugs in real-world applications of differential
privacy. This study is based on a pitfall in trying to refine the
DP-SGD protocol. We briefly describe the root cause of such
error made in [38] in the following.

The original DP-SGD protocol can be concisely summa-
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Figure 10: Auditing a flawed private algorithm implementa-
tion.

rized as
pi =

1
|B|∑i

CLPC (∇ℓi)+Noise

where ∇ℓi is the per-example gradient,|B| is the batchsize
and CLPC(u) = u ·min(1, C

∥u∥2 ) is a clipping operation. The
final gradient pi is differential private by adding calibrated
noise. However, [38]’s solution accidentally turns the above
protocol into

pi = ∑
i

CLPC

(
1
|B|

∇ℓi

)
+Noise

which makes the added noise to be considerable underesti-
mated. We also focus on the white-box setting for auditing
such privacy bugs.
Results. Figure 10 presents the audit results by both methods.
Our method produces a rather strong lower bound, asserting
that the algorithm is blatantly not as private as claimed under
all privacy setups. In contrast, the previous method [37] only
captures privacy violations for setups where the claimed pri-
vacy upper bounds are some small value and fails to catch the
violations when they become greater.

6 Conclusion
In this work, we present a unifying framework that models
the privacy audit problem through the lens of information-

theoretic bit transmission. Using this approach, we derive
fundamental limits for privacy audits and develop an audit
method that provides tight empirical privacy bounds. Our
framework also facilitates a detailed exploration of auditing
via a single run of the target algorithm, investigating its feasi-
bility and inherent limitations. These contributions not only
enhance the accuracy and efficiency of privacy audits but
also offer deeper insights into the problem of when and how
auditing by one run is possible/impossible.

Our experimental results demonstrate that the proposed
methods yield tighter privacy bounds with fewer (up to one
order of magnitude) observations while also identifying pri-
vacy vulnerabilities in flawed differentially private imple-
mentations. These findings have important implications for
strengthening privacy guarantees in real-world applications.

7 Ethics Considerations

We investigate the privacy guarantees of differentially private
algorithms by developing and applying audit techniques de-
signed to verify the privacy claims of these algorithms. Our
method does not instantiate any real-world privacy attacks.
The techniques and findings presented in this paper are in-
tended solely for academic purposes and to advance the field
of differential privacy. We aim to contribute to developing
more secure and trustworthy privacy-preserving technologies.

8 Open Science

Our paper complies with the CFP open science policy. We
follow the policy to openly share the research artifacts, in-
cluding the source codes to realize secure quantile summary
aggregation, scripts to run the evaluations, and documents to
understand the functions of code with respect to the descrip-
tions in this paper.
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A Content for reference
A.1 Neyman–Pearson Lemma
Theorem 6 (Neyman–Pearson lemma [32]). Let P and Q be
probability distributions on Ω with densities p and q, respec-
tively. Define L(x) = p(x)

q(x) . For hypothesis testing problem

H0 : P, H1 : Q

For a constant c > 0, suppose that the likelihood ratio test
which rejects H0 when L(x)≤ c has FP = a and FN = b, then
for any other test of H0 with FP ≤ a, the achievable false
negative rate is at least b.

Neyman–Pearson lemma says that the most powerful test
(optimal false negative rate) at fixed false positive rate is the
likelihood ratio test.

A.2 Hoeffding’s Inequality
Theorem 7 ( [43]). Suppose X̄ = 1

n ∑i Xi. where a≤ Xi ≤ b
are independent, Then for any t > 0,

Pr [|X̄−µ| ≥ t]≤ 2exp
(
− 2nt2

(b−a)2

)

Note that Xi does not necessarily need to be identically
distributed. In our case, a = 0,b = 1,µ = pe

f , hence, setting

2exp
(
−2nv2)= 2 · (1− γ)

give us v =
√

1
2n log 1

1−γ
.

B Proofs

B.1 Proof of Property 1

Proof. By fixing B−i = b−i, M is f -DP means that mes-

sage distribution M|Bi = 0,B−i = b−i
f−DP∼ M|Bi=1,B−i=b−i ,

because M is only formed based on M ’s output and Xi is
only included into exactly one run of M .

By post-processing property of f -DP, we have

B̂i|Bi=0,B−i=b−i

f−DP∼ B̂i|Bi=1,B−i=b−i

as B̂i is post-processing of m.

B.2 Proof for Lemma 1

Proof. Denote S = ∑
n
i=1 ciPi and S′ = ∑

n
i=1 ciP′i as our null

and alternative hypothesis. Consider an arbitrary decision
rule R that takes a sample from S or S′ and rejects the null.
And suppose we have the false positive rate αR = ES[R ],
then

αR =
∫
{R (x)=1}

n

∑
i=1

ciPi(x)dx =
n

∑
i=1

ci

∫
{R (x)=1}

Pi(x)dx

Let αi =
∫
{R (x)=1}Pi(x)dx, which is the false positive rate

achieved by rule R for distinguishing Pi V.S. P′, then αR =

∑
n
i=1 ciαi. The false negative rate of R distinguishing S V.S.

S′ is βR = 1−ES′ [R ]. We have that

1−βR =ES′ [R ] =
∫
{R (x)=1}

n

∑
i=1

ciP′i (x)dx

=
n

∑
i=1

ci

∫
{R (x)=1}

P′i (x)dx

A
≤1−

n

∑
i=1

ci f (αi)

B
≤1− f (

n

∑
i=1

ciαi) = 1− f (αR ).

This means that βR ≥ f (αR ), which means that S
f−DP∼ S′ by

definition. A is because Pi
f−DP∼ P′i ,∀i = 1, · · · ,n. B is because

Jensen’s inequality and trade-off function is convex.



B.3 Proof for Corollary 1
Proof. According to Property 1, if M is f -DP, we have ∀i ∈
[n],b−i ∈ {0,1}n−1,

B̂i|Bi=0,B−i=b−i

f−DP∼ B̂i|Bi=1,B−i=b−i ,

For the conditional distribution B̂i|Bi=0 It is equal to the fol-
lowing distribution in convex combination form

∑
b−i∈{0,1}n−1

Pr [B−i = b−i] B̂i|Bi=0,B−i=b−i

the same also applies to B̂i|Bi=1. By Lemma 1, we have

B̂i|Bi=0
f−DP∼ B̂i|Bi=1.

B.4 Proof for Theorem 2
Proof. Define a hypothesis testing problem as follows.

H0 : Bi = 0, H1 : Bi = 1.

I.e., B̂i the result of our hypothesis testing. For any decision
rule R , leading to false positive rate αR , as governed by the
trade-off function, we must obtain false negative rate βR ≥
f (αR ). Because B̂i|Bi = 0

f−DP∼ B̂i|Bi = 1.
Based on the above decision rule R , we expand the mutual

information quantity as follows. (H is the entropy function
and h is the binary entropy function).

MI(G; Ĝ) =H(Ĝ)−H(Ĝ|G)

=h(Pr(Ĝ = 0))− p ·h(Pr(Ĝ = 0|G=1))

− (1− p) ·h(Pr(Ĝ = 0|G=0))

=h(pβR +(1− p)(1−αR ))− p ·h(βR )

− (1− p) ·h(1−αR )

△
=F(αR ,βR , p)

(28)

with tedious calculation, we have

∂F
∂βR

= p log
βR −βR t
t−βR t

(29)

where t = pβR + (1− p)(1− αR ), we want to show that
∂F

∂βR
≤ 0,∀αR ,βR governed by the trade-off function. We

only need to show that βR −βR t
t−βR t ≤ 1. Expand this inequality,

all boils down to check if (1− p)(1−αR −βR )≥ 0, which
is true because αR + βR ≤ 1 as governed by the trade-off
function.

Hence, we have

F(αR ,βR , p)≤F(αR , f (αR ), p)

≤ max
x∈[0,1]

F(x, f (x), p)

de f
= max

x∈[0,1]
Ff (x, p)

which is our result in Theorem 2.

B.5 Proof for Theorem 3
Proof. We follow the setups in proof for Theorem 2 in Ap-
pendix B.4.

MI(Bi; B̂i) =H(Bi)−H(Bi|B̂i)

=h(
1
2
)−H(Ei|B̂i)

=1−H(Ei|B̂i)

≥1−H(Ei)

=1−h(pe
i )

(30)

As conditioning reduces entropy. Combining the fact that
MI(Bi; B̂i) ≤ u f (

1
2 ) due to Theorem 2, we get the result we

want in Theorem 3.

B.6 Proof for Theorem 4
Proof. For independent Bernoulli random variables X1 ∼
Bernoulli(a) and Y1 ∼ Bernoulli(b), if a≥ b, we have

Pr [X1 ≥ t]≥ Pr [Y1 ≥ t],∀t ∈ R (31)

for random variable Xi,Yi satisfying Equation (31), we call Xi
stochastically dominates Yi.

For all t ∈ R, if Xi stochastically dominates Yi for i = 1,2,
we have

Pr [X1 +X2 ≥ t] =EX1

[
Pr
X2
[X2 ≥ t−X1]

]
≥EX1

[
Pr
Y2
[Y2 ≥ t−X1]

]
=EY2

[
Pr
X1
[X1 ≥ t−Y2]

]
≥EY2

[
Pr
Y1
[Y1 ≥ t−Y2]

]
=Pr [Y1 +Y2 ≥ t]

(32)

i.e., X1 +X2 also stochastically dominates Y1 +Y2, by induc-
tion, we have Pr [∑i Xi ≥ t]≥ Pr [∑Yi ≥ t],∀t ∈R if Xi stochas-
tically dominates Yi for i ∈ [n] and all Xi,Yi are mutually in-
dependent. As pe

i > pe
f ,∀i ∈ [n], setting Xi = Ei and Yi = Si

∀i ∈ [n] gives us the result in Theorem 4.



B.7 Proof for Theorem 5
Proof. The first inequality is already proven in Theo-
rem 3, the last inequality is because MI(Bi; B̂i|B−i) =
EB−i

[
MI(Bi; B̂i)

]
≤ u f (

1
2 ), as MI(Bi; B̂i)≤ u f (

1
2 ) by theorem

2.
For random variable X ,Y,Z, using the chain rule of mutual

information, we have

MI(X ;Y,Z) =MI(X ;Y |Z)+MI(X ;Z)

=MI(X ;Z,Y )

=MI(X ;Z|Y )+MI(X ;Y )
(33)

if we have X is independent Z (which means MI(X ;Z) = 0),
the above equation give us MI(X ;Y |Z)≥MI(X ;Y ). Setting
Bi = X , B̂i = Y,B−i = Z give us the result for the model in-
equality of Equation (25).
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