
Persistent Backdoor Attacks in Continual Learning

Zhen Guo
Saint Louis University

zhen.guo.2@slu.edu

Abhinav Kumar
Saint Louis University

abhinav.kumar@slu.edu

Reza Tourani
Saint Louis University

reza.tourani@slu.edu

Abstract

Backdoor attacks pose a significant threat to neural networks,
enabling adversaries to manipulate model outputs on specific
inputs, often with devastating consequences, especially in crit-
ical applications. While backdoor attacks have been studied
in various contexts, little attention has been given to their
practicality and persistence in continual learning, particularly
in understanding how the continual updates to model param-
eters, as new data distributions are learned and integrated,
impact the effectiveness of these attacks over time.

To address this gap, we introduce two persistent backdoor
attacks–Blind Task Backdoor and Latent Task Backdoor–each
leveraging minimal adversarial influence. Our blind task back-
door subtly alters the loss computation without direct control
over the training process, while the latent task backdoor influ-
ences only a single task’s training, with all other tasks trained
benignly. We evaluate these attacks under various config-
urations, demonstrating their efficacy with static, dynamic,
physical, and semantic triggers. Our results show that both
attacks consistently achieve high success rates across differ-
ent continual learning algorithms, while effectively evading
state-of-the-art defenses, such as SentiNet and I-BAU.

1 Introduction

Catastrophic forgetting, first identified by McCloskey and Co-
hen [30], refers to the significant loss of previously learned
knowledge when a model is trained sequentially on new tasks.
Catastrophic forgetting negatively impacts the performance of
neural networks in practical applications, such as autonomous
driving and natural language processing, where models con-
tinuously evolve to address distribution drifts in the under-
lying data or integrate new knowledge. Various Continual

Learning (CL) algorithms have been proposed to address
catastrophic forgetting in neural networks by emulating the
human ability to learn continuously [7, 22, 33, 34, 37, 41, 58].
These algorithms primarily prevent catastrophic forgetting
by replaying prior experiences [7, 33] or regularizing loss
computation [22, 58], enabling models to continuously adapt

Clean-label
Attack

Triggered

Dog > Cat Dog > Dog Dog > DogDog

Dynamic
Backdoor

Dog > Cat Dog > Cat Dog > DogDog

Task 1 Task 3 Task 5

> Cat: attack success > Dog: attack failure

BadNets

Dog > Cat Dog > Dog Dog > DogDog

Figure 1: Persistence analysis of clean-label backdoor [56],
dynamic backdoor [39], and BadNets [17], using a ResNet18
trained on SplitCIFAR10 with LwF [28] (trigger embedding
in Task 1). Subplots shows the model’s attention at Tasks 1, 3,
and 5. Initially, all attacks successfully alter the output (Dog

> Cat), as the model’s attention is on the trigger. However, as
the model learns subsequent tasks, its attention shifts away
from the trigger, causing all attacks to fail (Dog > Dog).

to new data in dynamic environments [2, 35].
While CL enhances the adaptability and robustness of neu-

ral networks, their security and resilience to attacks remain
relatively unknown. This uncertainty stems from the contin-
uous adaptation and updating of model parameters in CL
systems, leading to dynamic behaviors that might facilitate
certain attacks while naturally mitigating others. One signifi-
cant area of concern is the susceptibility of these algorithms
to backdoor or Trojan attacks [3, 17, 56], which are designed
to produce incorrect outputs only when inputs contain specific
trigger features. To backdoor a neural network, the adversary
embeds hidden malicious behaviors into the model by poi-
soning a subset of the training samples with a crafted trigger
patch. Once trained, the attack is activated by applying the
predefined patch to inputs, causing misclassifications to the

target label. Various backdoor attacks have been proposed
focusing on different modalities of backdoor transformation,
ranging from invisible triggers [9] and semantic triggers [3] to
physical triggers [27] and input-aware dynamic backdoor [39]
in both centralized and federated settings [4]. A few recent
initiatives have explored backdoor attacks against CL, aiming
to degrade the model performance of target tasks [19, 60] or
induce artificial catastrophic forgetting [21, 23, 45]. However,
further research is needed to shed light on the effectiveness
and persistence of targeted backdoor attacks against CL.

We argue that executing a successful targeted backdoor
attack against CL is inherently challenging due to the continu-
ous updating of model weights, which can gradually eliminate
the injected backdoors. This phenomenon has been observed
in time-varying models, where fine-tuning a backdoored
model with new data has resulted in backdoor forgetting [24].
To validate our premise, we evaluated the persistence of
three prominent backdoor attacks–clean-label [56], dynamic
backdoor [39], and BadNets [17]–using the ResNet18 model
trained on SplitCIFAR10 with LwF algorithm [28]. The atten-
tion heatmap plots (Figure 1) reveal that the model’s attention
initially focuses on the embedded trigger in the first task,
where the backdoor was implanted. However, as the model
evolves, attention shifts away from the trigger and toward
more influential input features (e.g., the dog’s face), causing
the attacks to fail after two or three new tasks. This experiment
demonstrates that existing backdoor attacks do not persist.

The failure of backdoor attacks in CL becomes more evi-
dent when analyzing the model’s behavior during sequential
task training, as illustrated in Figure 2. The left graph depicts
the loss surface of Task 1 during model training, as in the pre-
vious experiment. During Task 1 training, the model adjusts
its parameters, moving from the initial state at T0 to a new set
of parameters at T1 along the solid black line, minimizing the
loss for this task. For training Task 2, as shown in the right
graph, the model starts from T1 and continues to adjust its pa-
rameters to T2 (solid black line), minimizing the loss for Task
2. However, this trajectory results in a significant shift in the
model’s parameters, as the model prioritizes the new task over
the previous one. This drastic parameter update diminishes
the effectiveness of previously embedded backdoors. Taking
the alternative trajectory along the orange dashed line, how-
ever, minimizes the new task’s loss while limiting parameter
changes, thereby better retaining the influence of the backdoor
while still learning the new task. This is an approach we will
explore further in this work.

Our contributions. Building on this observation, we inves-
tigate the efficacy of prominent backdoor attacks in CL and
propose a novel targeted attack, called the persistent back-

door. The core concept of the persistent backdoor involves
identifying a subset of model components, e.g., layers and
neurons, that are crucial for the classification task and remain
stable throughout model training, and then using them for
trigger embedding. The design of the persistent backdoor is

T2

T0 T0

T1T1

T2T2

1.0

0.0

Task1 Task2

෪𝑇2

Figure 2: Evolution of the model parameters from the corre-
sponding experiment. The loss surface of Task 1 (left) shows
the parameter trajectory from T0 to T1. The loss surface for
Task 2 (right) depicts the parameters evolving from T1 to T2
along the black line. These drastic parameter updates erase
the embedded trigger, leading to backdoor forgetting.

both generic and algorithm-agnostic, making it applicable
to regularization-based and replay-based CL algorithms. We
further propose two strategies for our persistent backdoor at-
tack, Blind Task Backdoor and Latent Task Backdoor: the
former subtly modifies loss computation without controlling
the training process, while the latter controls a single train-
ing task. To demonstrate the effectiveness of these persistent
attack strategies, we apply them to inject various types of
backdoors, including (1) static and dynamic backdoors, (2)
physical backdoors, and (3) NLP word insertion backdoors.
We demonstrate the effectiveness of these two strategies un-
der various conditions through comprehensive experiments,
targeting six CL algorithms, three different neural networks,
and three datasets specifically designed for CL scenarios. Fi-
nally, we show how our attack can successfully evade existing
defenses like SentiNet [10] and I-BAU [55].

2 Background and Related Work

2.1 Continual Learning

Continual learning has emerged to address catastrophic
forgetting–a common issue in multilayer perceptron-based
networks where the model tends to forget previously learned
information when trained sequentially on new tasks. The
two primary CL categories include regularization-based and
replay-based CL algorithms. We do not cover dynamic archi-
tecture approaches as this is beyond our scope.

Regularization-based approaches prevent catastrophic for-
getting by penalizing significant changes to key model pa-
rameters during the learning of new tasks. Some notable
algorithms include Synaptic Intelligence (SI) [58], Elastic
Weight Consolidation (EWC) [22], Context-Dependent Gat-
ing (XdG) [41], and Learning without Forgetting (LwF) [28].
SI algorithm maintains unique synaptic weights for each task,
using weight importance estimation to reduce interference
during new task training. Similarly, EWC penalizes changes
to the network parameters based on their importance in pre-
viously learned tasks, preserving critical parameters. XdG

employs gated neurons to activate distinct sets of neurons per
task. Lastly, LwF uses the model’s predictions on old tasks as
soft targets in training new tasks, preserving prior knowledge.

Replay-based techniques reiterate a subset of past data (real
or synthetic) to reinforce prior knowledge during the training
of new tasks, e.g., Efficient Gradient Episodic Memory (A-
GEM) [7] and Deep Generative Replay (DGR) [33]. A-GEM
stores and replays past experiences within a memory buffer
during training, enhancing sample efficiency and training sta-
bility for learning agents. It also implements constraints to pre-
serve previously acquired knowledge. In contrast, generative
replay methods, such as DGR, use a dual-model architecture
that combines a deep generative model, with a task-solving
model. This setup efficiently integrates training data from
past tasks with new task data, facilitating CL.

2.2 Backdoor Attacks

A backdoor attack is an adversarial technique where an at-
tacker injects malicious patterns, known as triggers, into a
small subset of the training data, assigning these data points
incorrect labels [43, 50, 51]. During the inference, the back-
doored model produces incorrect outputs whenever the spe-
cific trigger is present in the input. This allows the adversary
to control the model’s decisions on triggered inputs, while
keeping the model’s general performance intact. Backdoors
are a more targeted form of attack compared to universal ad-
versarial perturbations [15, 25, 29, 31, 59]. While both cause
a model to misclassify inputs to an attacker-chosen label,
backdoors require modifying both the model and the input,
but offers more flexibility. Moreover, backdoor attacks differ
from data poisoning, where the attacker’s primary goal is to
degrade the overall model performance.

Various backdoor attacks exist, utilizing different types of
triggers. Static triggers [11, 12, 17, 26] are fixed, invariant
patterns embedded in input, characterized by consistent prop-
erties like location and pattern. While effective, their fixed
nature makes them easy to detect. In contrast, dynamic trig-

gers [16, 32, 39] involve patterns and placements that vary
across inputs, enhancing stealth and making detection signif-
icantly more difficult. Physical triggers [18, 44, 56, 59] are
real-world objects that activate the backdoor, posing serious
risks in environments like autonomous driving, where they
blend seamlessly and are hard to distinguish from benign
objects. Lastly, word triggers [3, 13, 57] in natural language
models are specific words, either inherent or injected, that
activate a backdoor. Their complexity and the need for deep
linguistic analysis make detection particularly challenging.

Recent efforts have explored attacks against CL, focusing
on model poisoning [19, 60], inducing artificial catastrophic
forgetting [21, 23, 45], or generating false memories [46].
Differently, we aim to expose CL vulnerabilities by designing
two persistent backdoors with varying adversarial capabilities.

Regularization-based
average variation: 5.46

Replay-based average
variation: 9.21

Figure 3: Quantifying the parameter variation at the algo-
rithmic level indicated that regularization-based algorithms
have higher stability compared to replay-based algorithms.
This is partly due to the nature of the regularization-based ap-
proaches, which penalize modification to learned parameters.

3 Observation

In this section, we will discuss our findings regarding the
variations in the parameters of a deep learning model as it
continually learns new tasks, highlighting the behaviors of
different CL algorithms. The insights drawn from these ob-
servations, coupled with the evident trend we have identified,
lay the foundation for implementing our proposed persistent
backdoor attack. We conducted a series of experiments using
a neural network with three fully connected hidden layers,
employing ReLU activation and a cross-entropy loss function.
The model was trained on the SplitMNIST dataset, including
five sequential tasks, each consisting of two classes. We used
the Adam optimizer with a learning rate of 0.001 and repeated
each experiment 10 times.

In these experiments, we monitor the changes in parame-
ter values across the three hidden layers and different tasks
and analyze these variations at three granularity levels: al-
gorithmic, layer-wise, and neuron-level. We quantify the
algorithmic-level variation by ||Âi Li

N
||2, where N is the num-

ber of the tasks and Li is the variation of the i
th layer across

two consecutive tasks. More formally, Li = ||Â j D j

i
||2, where

D j

i
represents the value change of the j

th neuron in the i
th

layer for the current task compared to the previous task. Ap-
plying the L2 norm to Â j D j

i
calculates the magnitude of the

vector formed by the cumulative changes in the i
th layer.

Insight 1 – Algorithmic-level Analysis: At the highest granu-
larity level, we analyzed various CL algorithms to characterize
their overall behavior and parameters’ variation as they learn
new tasks. Figure 3 illustrates the parameter variations for six
CL algorithms, calculated using the aforementioned approach.
From this figure, it is evident that regularization-based algo-
rithms exhibit a lower degree of variation in their parameters
compared to replay-based algorithms. The rationale behind
this phenomenon is that regularization-based algorithms, such
as SI, EWC, XdG, and LwF, tend to penalize drastic changes
to the parameters learned in prior tasks, imposing a high cost
for modifications to the learned model. In contrast, replay-
based algorithms, such as DGR and A-GEM, do not impose

Figure 4: The layer-wise analysis revealed that for EWC,
the last layers experience larger variations compared to the
previous two layers, whereas for LwF and A-GEM, the last
layers exhibit smaller variations than the preceding layers.

such constraints. Instead, these algorithms retain the knowl-
edge of the previously learned tasks by replaying and learning
from prior data distributions without penalizing parameter
updates. As a result, the model experiences a higher degree of
variation in its parameters’ values. For instance, the average
variation in the parameter values of the regularization-based
EWC algorithm is only 3.93, while the replay-based A-GEM
algorithm shows an average value of 9.52.
Insight 2 – Layer-wise Analysis: We then analyzed each
layer of the model to quantify the layer-wise parameter vari-
ation between consecutive tasks. For this analysis, we per-
formed principal component analysis on each layer to de-
rive two components, d0 and d1. Each point in the resulting
plot represents the degree of variation in d0 and d1 between
two consecutive tasks. We noticed that different layers of the
model exhibit varying degrees of change (Figure 4). More
importantly, we observed that different algorithms impact
layer variation in distinct ways–some induce more significant
changes in the last layers, while others result in greater varia-
tions in the earlier layers. For example, in EWC, the highest
degree of parameter variation was observed in the third layer
(5.63), whereas LwF (7.19) and A-GEM (10.17) exhibited the
greatest variation in the first and second layers, respectively.

In neural networks, as the depth increases, layers transition
from learning low-level features like edges and textures to
high-level, abstract representations such as shapes and objects.
As a result, in a CL context, it is expected that the parameters
of the earlier layers remain relatively stable when learning
new data distributions, while those in the final layers exhibit
more significant changes–as we observed in the EWC algo-
rithm. Contrary to this understanding, five other algorithms
showed the unexpected behavior of higher variation in earlier
layers. We attribute it to the possibility that features learned
in the earlier layers are more sensitive to the new task data

Figure 5: Parameter variations of 49 selected neurons from the
model’s third layer using LwF. T12 represents the parameter
variations between Task 1 and Task 2, T13 between Task 1 and
Task 3, T14 between Task 1 and Task 4, and T15 between Task
1 and Task 5. A subset of neurons, highlighted with red icons,
exhibits high stability as the model progresses.

distribution, especially when new tasks require fundamentally
different low-level features. This sensitivity leads to greater
variation as the network adjusts to accommodate new features.
Insight 3 – Neuron-level Analysis: We also analyzed the
behavior of the neurons as the model evolved, focusing on the
third layer of the LwF algorithm due to its greater stability.
Given the high dimension of parameters, we selected 49 out of
400 neurons for better illustration by dividing the parameter
variations into seven ranges and sampling seven neurons from
each range (Figure 5). We then quantified the variations in
these neurons’ values between Task 1 and all subsequent tasks
(e.g., T13 represents the changes in neuron values from Task
1 to Task 3), and visualized the results in each sub-figure of
Figure 5. This revealed a pattern: a small subset of neurons,
marked with a red icon, exhibits small variations in their
values throughout across training all tasks. In contrast, most
other neurons exhibit varying degrees of change, with some
exhibiting a significant shift in values in later tasks.
Insight 4 – Component Stability Analysis: Finally, we ana-
lyzed neuron stability by examining weight variations during
the continual learning process. Using the A-GEM algorithm,
we trained a ResNet18 model on the SplitCIFAR10 dataset
over five tasks. After Task 1, we identified 200 stable neu-
rons, important for Task 1, using the diagonal Fisher matrix
and randomly selected 200 others for comparison. We then
trained the model on four additional tasks and quantified the
weight variations of these neuron groups after each task rela-
tive to their baseline values established in Task 1, with d1�i

representing the variation between Task 1 and Task i. We
visualized the weight variation of these two neuron groups
using the kernel density estimation as shown in Figure 6. It
is evident that random neurons (orange distribution) exhibit
progressively larger mean variations across tasks, whereas

Figure 6: The kernel density estimation of parameter vari-
ations between stable and randomly selected neurons. The
mean value of stable and random neurons are 0.05 and 0.36,
respectively. Notably, the gap between the two distributions
widens as the model progresses through additional tasks, in-
dicating increasing differentiation in their respective stability.

stable neurons (blue distribution) remain relatively consistent.
Quantitative results further support this observation: stable
neurons exhibit a mean variation of 0.05 with a standard de-
viation of 0.22, whereas randomly selected neurons show a
significantly higher mean variation of 0.36 and a standard
deviation of 0.44. Notably, the gap between the two distribu-
tions widens as the model learns more tasks, indicating that
stable neurons effectively retain their weights, while random
neurons experience increasingly significant variations (refer
to Figure 19 in Appendix 10 for per-neuron value variation).

To further investigate the root cause of the observed neuron
stability, we quantified the overlap among neurons utilized
during the training of individual tasks using the normalized
intersection-over-union (IoU) score and visualized these inter-
sections as a heatmap in Figure 7. The analysis revealed that
the largest intersection, excluding intra-task comparisons, is
6.4%, observed between Tasks 4 and 5, suggesting a small de-
gree of overlap. However, the overall low IoU scores indicate
that tasks primarily rely on distinct sets of neurons. These
results demonstrate that different tasks in Cl rely on predomi-
nantly disjoint sets of neurons, and the neurons critical to a
task remain stable in learning subsequent tasks.

4 Persistent Backdoor Attack

In this section, we introduce the threat model, including two
adversaries with different capabilities and key properties, fol-
lowed by an overview of the proposed persistent backdoor.

4.1 Threat Model and Assumptions

The rise in deep learning’s popularity has turned platforms
like GitHub and Hugging Face into repositories for hundreds

Figure 7: Neuron overlap heatmap showing the percentage of
neuron intersection across five tasks. Each cell represents the
normalized intersection-over-union score between two tasks.
Diagonal values of 100% in self-comparison highlight that
distinct neurons are exclusively utilized for different tasks.

of thousands of open-source models. These models are pub-
licly available either as pre-trained weights, ready for immedi-
ate use in various tasks, or as source code, which developers
can adapt for specific applications. This accessibility has led
to the widespread integration of open-source code, driven by
the need to reduce costs and accelerate the development of
large models [1]. For instance, Hugging Face reported over
600 million model downloads in August 2023 alone [5]. How-
ever, due to the widespread adoption of platforms like GitHub,
Twitter, and Flicker in the ML community, the attack vec-
tor has expanded beyond poisoned data to include poisoned
weights and carefully crafted code snippets [3, 38]. Given
such threats, we consider two specific attacks–Blind Task

Backdoor and Latent Task Backdoor–in which the adversary
targets backdooring a specific task. These threats are stealthy,
as the backdoor remains dormant until the targeted task is
executed, significantly reducing the risk of their detection.

The blind task backdoor (BTB), which we will refer to
as the blind backdoor for brevity, is a type of code poison-
ing attack where the adversary indirectly impacts the model
training process without access to the training data. Similar
to [3], the adversary maliciously manipulates the machine
learning codebase, referred to as the attack code, specifically
targeting the calculation of the loss value during training. The
attack code also includes a module for generating poisoned
data samples by injecting triggers into a small subset of the
training data and assigning incorrect labels, as detailed in [3].
As a result, the adversary remains blind to both the training
process and the data. In continual learning, the same attack
code is used across all tasks, allowing the backdoor to be
injected at any point in the learning process without the adver-
sary directly interacting with the model during training. This
attack is particularly effective when ML code sourced from a
repository is used unchanged to train a model, allowing the ad-
versary to embed malicious behaviors without the developer’s
knowledge, thereby compromising the application’s integrity.

Task 1

Step 1: Trigger
Embedding Step 2: Backdoor Injection Step 3: Backdoor

Activation

Cat Cat

High ACC

High ASR
Cat Dog

Clean data
+

Triggered
data

Clean data
Task i

...

Blind Task Backdoor

Task n
...

Victim n
Triggered

Image

neuron at task 1 udpated neuron at task itriggered neuron at task i udpated neuron at task n

Victim iVictim 1
Latent Task Backdoor

Clean data

Figure 8: The three steps of our Persistent Backdoor Attack. Step 1: Trigger Embedding–This involves generating triggered
training data during the training process of a specific task. Step 2: Backdoor Injection–The attack code, generated by either blind

backdoor or latent backdoor, implants the backdoor into the model during training. Step 3: Backdoor Activation–When fed
with the triggered input, the backdoored model produces an incorrect prediction, which persists across all subsequent tasks.

We note that loss computation in deep learning models is
context-dependent, varying with architecture, data modality,
tasks, and the CL algorithm. This diversity often results in a
single codebase employing multiple loss functions, making
it challenging to detect malicious alterations through code
review alone, as detailed in [3].

Unlike the blind backdoor, which relies on indirect manip-
ulation of the entire training process, the latent task backdoor
(LTB), referred to as the latent backdoor, is a more sophisti-
cated attack method in which the adversary manipulates the
training process of only one task. The weight modifications
introduced during this task are designed to backdoor future
targeted tasks, even when their training processes remain be-
nign. This restriction on the adversary showcases that, in CL,
as in classical ML pipelines, publicly shared weights can con-

tain dormant and hidden functionalities that may be exploited

in later tasks. The adversary achieves this by modifying the
loss computation for a single task, leading to a controlled
update of specific weights during the training process. The
restricted threat model of LTBs (i.e., single-task manipulation)
highlights the risks developers face when directly using pre-
trained weights to build applications, fine-tune custom models,
few-shot learning [42], or perform transfer learning [54]. It
also underscores that backdooring poses a significant threat in
pipelines relying on untrusted foundation model weights for
learning additional tasks [53], even when the training pipeline

itself is verified and trusted.
We emphasize that in scenarios where the training pipeline

is developed by legitimate entities and remains benign, the
blind backdoor becomes inapplicable, as it relies on manipu-
lating the loss computation through malicious code. Specifi-
cally, in a benign training pipeline, where the loss computation
is not compromised, the blind backdoor cannot function as
intended, even if the sourced pre-trained weights are back-
doored. In contrast, our proposed latent backdoor remains
effective by leveraging controlled manipulation of a single

task during pre-training, embedding a dormant backdoor that
activates during the benign training of subsequent tasks. Fi-
nally, we note that detecting changes in pre-trained weights is
challenging due to the randomness introduced by factors like
the optimizer, initial seed, and data variations. In Section 6, we
present empirical results on how these attacks evade backdoor
detection mechanisms.

In summary, for BTB, we assume that the adversary com-
promises the loss computation in the ML code. Although the
adversary may have knowledge of the architecture or data
domain, they lack access to the training data and have no
knowledge of the hyperparameters. In contrast, for LTB, the
adversary controls the training process of a single task.

4.2 Attack Overview

Conducting the proposed persistent backdoor attack, both
blind and latent, involves three major steps (Figure 8): (i) em-
bedding a trigger into a small subset of training data samples;
(ii) injecting the backdoor into the attack model during the
training process to build a backdoored model; (iii) activating
the backdoor during inference, in which malicious actors feed
triggered images to the backdoored model, causing incorrect
predictions. Here, we will elaborate on these steps.
Step 1: Trigger Embedding. In backdoor attacks, trigger
embedding involves selecting a small subset of the training
data (4% in our experiments) and inserting a hidden pattern
into each sample within this subset. The labels of these sam-
ples are then switched to an incorrect target label. Various
trigger types exist, including static (fixed shape and location),
dynamic (variable shape and location), physical (an object in
the environment), and text-based triggers (a specific word(s)).
We demonstrate the power of persistent attacks using these
triggers. In our proposed persistent backdoor, trigger embed-
ding is performed on the fly through a module of the attack
code, without the adversary’s access to the training data.

Step 2: Backdoor Injection. A successful backdoor attack
in continual learning must satisfy three primary requirements:
(i) achieving a high attack success rate on the triggered data
samples in the current task, (ii) maintaining a high attack
success rate in tasks following the backdoor injection, and
(iii) preserving high target classification accuracy on clean
data across all tasks, both before and after backdoor activa-
tion. However, simultaneously satisfying these conditions is
challenging. As the model’s weights evolve to incorporate
new knowledge, some information, including the embedded
trigger, may be erased (as in Figure 1), diminishing the at-
tack’s success rate. To address this challenge, we propose two
persistent backdoor attacks, customized for continual learning.
The first is the Blind Task Backdoor attack, where the adver-
sary manipulates the loss function in the ML code, impacting
the loss value computation of all tasks. A key innovation in
this design is conceptualizing the backdoor attack as a multi-
objective optimization problem. This approach requires bal-
ancing several objectives, i.e., maximizing the attack success
rate with triggered data, and maintaining high classification
accuracy before and after tasks, to achieve Pareto optimality.
In doing so, our design strategically manages trade-offs be-
tween these objectives to find the most effective balance [20].
Our blind backdoor attack effectively addresses this challenge,
as detailed in Section 5.1.

While the blind backdoor enforces an altered loss function
for all tasks, it raises an important question: Can an attack

succeed by compromising the loss value computation of just

a single task? This consideration leads to the design of the
Latent Task Backdoor; a targeted backdoor attack where the
adversary manipulates the loss calculation for a single target
task, leaving all prior and future tasks seemingly benign. The
details of this attack are discussed in Section 5.2.
Step 3: Backdoor Activation. During this phase, the back-
doored model is deployed for inference. Under normal cir-
cumstances, when fed benign input data, the model behaves
as expected and predicts correct labels. However, to execute
the attack, the adversary introduces a triggered input–a sam-
ple containing the trigger pattern similar to the one used in
training–which causes the model to predict an incorrect tar-
get label pre-set by the attacker (as illustrated in Step 3 of
Figure 8). In the context of continual learning, we show our
proposed blind and latent backdoor attacks demonstrate per-
sistence, with the malicious behavior carrying over into all
subsequent tasks learned by the model.

5 Attack Design

5.1 Blind Task Backdoor

As mentioned in Section 4.1, in Blind Task Backdoor (i.e.,

blind backdoor), the adversary generates the attack code by
manipulating the loss value computation of the ML code,
indirectly impacting the training process of the model across

Algorithm 1 Blind Task Backdoor (BTB)
Input: q (weights), n (iteration number), a (learning rate
), b (regularization), t (tolerance threshold)

1 l 0, µ 0.1, g 0.99
2 for k = 1 to n do

3 q q�a—qL . L is the loss function
4 l l+b

h
` j

blind
� ˜̀j

blind
� t

i
for each previous j

5 µ µ · g
6 return q

all tasks. For this attack to be successful, the modification
of the loss computation should achieve a high attack success
rate on the triggered inputs on the current and future tasks,
and maintain high classification accuracy on the clean inputs
across all tasks. To achieve this, we devise a customized
blind loss, aiming to effectively solve this multi-objective
optimization problem, as detailed in Eqn. 1:

`blind = L(q(x),y)+lL(q(x+),y+), (1)

in which L represents the loss criterion, q denotes the model
parameters, x and y are the features and ground truth labels
of clean data samples, x

+ and y
+ are the features and ground

truth labels of the triggered data samples, and l is the penalty
coefficient. The blind loss `blind is a linear combination of
the task loss, L(q(x),y), which computes the loss value of
the clean data, and the backdoor loss, L(q(x+),y+), which
computes the loss value of the triggered data.

To maintain the stealth of backdoor attacks, the triggered
dataset is typically much smaller than the clean dataset to
limit the extent of training data modifications, leading to data
imbalance. However, such data imbalances undermine the
backdoor attack by shifting the model’s focus toward learning
the clean data, diminishing the effectiveness of the triggered
samples. To address this challenge, we introduce a penalty
coefficient l to the backdoor loss. This coefficient imposes an
additional penalty whenever the model incorrectly predicts the
target label (the label chosen by the attacker) for a triggered
sample, ensuring effective attack and classification.

In continual learning, updating the model’s parameters for
the current task, i can impact the loss value of a previous task
j, resulting in an updated loss èj

blind
, which may degrade the

model’s classification accuracy on prior learned tasks. This
degradation poses a significant challenge to our attack objec-
tives, which include maintaining high classification accuracy
across all tasks and ensuring persistent attack efficacy. To
address this challenge, the blind backdoor controls the loss
calculation `i

blind
for the current task by constraining the vari-

ation of the preceding task’s loss ` j

blind
within a specified

threshold, t:

min
qi

(L(qi(x),y)+lL(qi(x
+),y+))

s.t. èj

blind
 ` j

blind
+ t, 8 j 2 {1, ..., i�1}.

(2)

Finally, to solve this multi-objective optimization prob-

Algorithm 2 Latent Task Backdoor (LTB)

Input: D
clean (clean dataset), D

trigger (triggered dataset),
v

trigger (trigger embedding value), k (importance thresh-
old), P (selection percentage), e (tolerance threshold)

. Compute Diagonal Fisher Matrix
1 F []
2 for x,y in D

clean
do

3 ` L(q(x),y)
4 Compute F —2

q` for each q
. Select Stable Neurons from n Neurons

5 imps = {z | z 2 q and F [z]� k}, s.t. |imps|= P⇥n

. Train with Triggered Data
6 for x

+,y+ in D
trigger

do

7 Update q with embedded imps using v
trigger

8 `latent Li(q(x+),y+)+ReLU(Li(q(x),y)� e)
9 Backpropagate: `latent .backward()

10 return q

lem, we employ the augmented Lagrangian approach. This
method incorporates the constraints into the loss function by
introducing Lagrange multipliers and penalty terms, seam-
lessly integrating constraint satisfaction into the optimization
process. To optimize the model parameters q, we minimize
the value of Eqn. 3 using gradient descent, iterating up to a
maximum of n iterations. Algorithm 1 depicts the process of
the blind task backdoor. Lines 3-5 of the algorithm update the
model weights q, the Lagrange multipliers l, and the penalty
coefficient µ. If the early stopping condition specified in line
5 is met, the algorithm terminates prematurely.

min
q,l,µ

(`i

blind
+Â

j

l jd+
µ

2 Â
j

d2),

s.t. d = ` j

blind
� èj

blind
� t.

(3)

5.2 Latent Task Backdoor

In the latent backdoor attack, the adversary, in control of the
training process for a single task (e.g., task i), modifies the loss
computation exclusively for that specific task. The key idea in
constructing the latent backdoor attack is to embed the back-
door into the model’s most stable components, ensuring that
the malicious behavior propagates into all subsequent tasks,

despite their benign training (both ML code and process). As
a result, this malicious behavior remains latent until the trig-
ger is activated, causing any triggered input to be classified
as the target label, chosen by the attacker.

The primary challenge in latent task backdooring is en-
suring that the trigger remains effective and activates as in-
tended in future tasks without being diminished. To tackle
this challenge, we design a customized latent loss as a linear
combination of the backdoor loss and the task loss:

`i

latent
= Li(q(x+),y+)+Relu(Li(q(x),y)� e). (4)

In Eqn. 4, Li represents the loss criterion of task i, q denotes
the model parameters, x

+ and y
+ refer to the features and

labels of the triggered samples, and x and y refer to the fea-
tures and labels of the clean data. The threshold e is a hy-
perparameter used to maintain the classification accuracy of
the clean data and is set as a factor of the backdoor loss
(empirically set to 0.1 of Li(q(x+),y+) in our experiments).
The term Relu(Li(q(x),y)� e) ensures that the classification
performance on the clean data stays within an acceptable
range. Specifically, if Li(q(x),y) is less than e, the loss value
for the clear data is set to zero. otherwise, the loss will be
Li(q(x),y)� e.

The next step in the process involves selecting neurons
for trigger embedding. Our neuron-level analysis in Section 3
suggests that embedding the trigger in the most stable neurons
is ideal for ensuring attack persistence. However, as outlined
in our threat model, the LTB adversary’s access to only one
task poses a significant challenge to analyzing neuron sta-
bility across multiple tasks. We addressed this challenge by
shifting our focus to assessing neuron significance. Specifi-
cally, as depicted in Algorithm 2, we employ the Diagonal
Fisher Matrix (DFM) to evaluate neuron significance and de-
rive the importance matrix F (lines 1–4). We chose DFM
for its computational efficiency compared to the Fisher Im-
portance Matrix (FIM). Unlike FIM, which imposes high
computational complexity due to the covariance computation
across all neuron pairs, DFM focuses solely on the diagonal
elements–each neuron’s individual contribution to the model’s
output–significantly reducing computational demands.

DFM analysis enables us to evaluate neurons’ contributions
to the classification performance of the task controlled by the
adversary by assessing the loss function’s sensitivity to varia-
tions in neurons. Interestingly, our in-depth analysis revealed a
significant overlap between the stable neurons and those iden-
tified by DFM analysis as crucial for the task’s classification
performance. As a result, we select the top important neurons
based on the importance matrix F , forming the candidate set,
with k approximately corresponding to the 98th percentile
of F in our experiments. To maintain the attack’s stealth and
persistence, we select a proportion P% of the candidate set
for trigger embedding (line 5). Our algorithmic-level obser-
vations in Section 3 revealed that replay-based algorithms
experience more significant parameter changes, necessitat-
ing a higher percentage of neurons for trigger embedding in
replay-based algorithms. In our experiments, we set P to 70%
and 90% of the candidate set for regularization-based and
replay-based algorithms, respectively.

The final step is to train the model using the triggered
data. To ensure the persistence of the embedded latent back-
door in subsequent tasks, we embed the backdoor behavior by
adding a small and controlled value, v

trigger, to the weights
of the selected neurons. This operation is carefully designed
to create the malicious behavior that activates only when the
input data contains the trigger pattern. During training, the
triggered information is embedded into the selected neurons
by incrementally adjusting their values using v

trigger. Upon

Table 1: Classification accuracy of various continual learning algorithms across different datasets and architectures.

Model Dataset SI [58] EWC [22] XdG [41] LwF [28] DGR [33] A-GEM [7]

CNN

SplitMNIST 0.99 ± 0.01 1.0 ± 0.01 0.94 ± 0.02 1.0 ± 0.01 1.0 ± 0.01 1.0 ± 0.01

PermutedMNIST 0.85 ± 0.02 0.90 ± 0.01 0.83 ± 0.03 0.89 ± 0.02 0.22 ± 0.06 0.88 ± 0.02

SplitCIFAR10 0.79 ± 0.02 0.85 ± 0.01 0.86 ± 0.02 0.85 ± 0.03 0.59 ± 0.05 0.88 ± 0.01

ResNet18

SplitMNIST 0.99 ± 0.01 1.0 ± 0.01 0.94 ± 0.02 1.0 ± 0.01 1.0 ± 0.01 1.0 ± 0.01

PermutedMNIST 0.87 ± 0.02 0.92 ± 0.02 0.84 ± 0.02 0.93 ± 0.02 0.37 ± 0.05 0.89 ± 0.01

SplitCIFAR10 0.81 ± 0.02 0.86 ± 0.01 0.86 ± 0.02 0.88 ± 0.01 0.64 ± 0.04 0.91 ± 0.01

completing the training for task i on the triggered dataset, we
obtain the updated model parameters q (lines 6-10).

6 Experiments

To validate the effectiveness of our proposed blind backdoor
(BTB) and latent backdoor (LTB) attacks, we conducted ex-
tensive experiments (details are in Table 4 in the Appendix)
to evaluate: (i) static backdoor against six CL algorithms, (ii)
dynamic backdoor (iii) physical backdoor, (iv) backdoor on
text classification, (v) comparative analysis against other back-
door methods, (vi) backdooring different tasks in CL, and (vii)
evading existing backdoor detection defenses1. We perform
backdoor attacks on task-based CL with the code developed
based on [47]. The backdoor is embedded in task 1 unless
stated otherwise. All experiments are conducted using Py-
Torch and executed on an NVIDIA A100 GPU from ACCESS
CI [6]. For BTB, we set the number of iterations (n) to 300,
a to 0.001, b to 0.0001, and t to be 0.05⇥ ` j, where ` j is the
loss value of original task j. For the LTB attack, we set v

tigger

to 0.5, e to 0.1 of the backdoor loss (0.1⇥L(q(x+),y+)), k
to 98 percentile of all neurons, and P to 70% and 90% for
regularization-based and replay-based algorithms.

6.1 Datasets and Classification Models

Dataset. We use (i) SplitMNIST for five tasks, each contain-
ing two categories, with 12,000 samples for training and 2,000
samples for testing [47]; (ii) PermutedMNIST for ten tasks,
each including all ten digit categories, with 60,000 samples
for training and 10,000 samples for testing [58]; and (iii) Split-
CIFAR10 for five tasks, each containing two categories, with
10,000 samples for training and 2,000 samples for testing [47].
Architecture. We use two architectures:(i) a five-layer CNN
architecture with five standard convolution layers with two
3⇥3 filters and ReLU activation function, followed by three
fully connected layers; and (ii) a ResNet18. Refer to Table 5
in the Appendix for the details of these architectures.
CL Algorithm Performance Analysis. We first conduct exper-
iments to assess the performance of six CL algorithms using

1Code is available on https://doi.org/10.5281/zenodo.14728872

three clean datasets. Table 1 presents the average classification
accuracy (ACC) across different models and datasets. Overall,
the results indicate that most algorithms maintain high ACC
across all datasets and architectures. EWC outperforms other
algorithms on PermutedMNIST, while A-GEM achieves the
best performance on SplitCIFAR10. Given the lower com-
plexity of the SplitMNIST dataset, all algorithms achieve
above 94% ACC, demonstrating their effectiveness in sim-
pler scenarios. However, we observed that DGR is the least-
performing algorithm across different models and datasets,
except for SplitMNIST. Notably, its performance drops sig-
nificantly to an average of 45.5% on PermutedMNIST and
SplitCIFAR10. This decline is attributed to DGR’s heavy re-
liance on the quality of its generator [41]. As a result, DGR
struggles with complex datasets or a larger number of tasks,
making it particularly vulnerable to catastrophic forgetting.

6.2 Static Backdoor Attack

Next, we evaluate the persistence of our proposed LTB and
BTB attacks using static triggers.
Main task. We conducted this experiment on all six CL algo-
rithms, using the CNN and ResNet18 architectures across all
datasets; resulting in a total of thirty-six attack combinations
for each attack type. We trained the model for 100 epochs
using the Adam optimizer with a batch size of 128 and a
learning rate of 0.001.
Static-backdoor Task. For this experiment, we implanted
the backdoor in the first task by selecting 5% of the training
samples. We inserted a 4⇥4-pixel static trigger, with pixel
values set to 0, at the bottom right corner.
Results. Table 2 presents the results of the LTB attack (refer
to Table 6 in the Appendix for BTB attack results), indicat-
ing the effectiveness of our latent backdoor against all CL
algorithms; the blind backdoor exhibits similar attack efficacy.
In most scenarios, the proposed LTB attack achieves attack
success rates (ASRs) above 90%, with the lowest ASR being
82.02% for the attack on ResNet18-SplitCIFAR10 using XdG.
We summarized these results in Figure 9. One can observe
that when using CNN architecture, the LTB attack against
regularization-based and replay-based algorithms achieves an
average ASR of 90.6% and 90.7%, respectively. For the CNN

https://doi.org/10.5281/zenodo.14728872

Table 2: Latent Task Backdoor attack evaluation using static trigger across all algorithms, datasets, and architectures.

Model Dataset
SI EWC XdG LwF DGR A-GEM

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

CNN

SplitMNIST
0.95
±0.05

0.92
±0.02

0.93
±0.03

0.91
±0.02

0.94
±0.01

0.91
±0.03

0.91
±0.05

0.92
±0.02

0.92
±0.04

0.93
±0.03

0.91
±0.07

0.93
±0.03

PermutedMNIST
0.93
±0.04

0.82
±0.09

0.85
±0.09

0.80
±0.05

0.90
±0.03

0.82
±0.01

0.92
±0.06

0.85
±0.03

0.91
±0.04

0.26
±0.02

0.89
±0.03

0.81
±0.04

SplitCIFAR10
0.91
±0.02

0.76
±0.01

0.91
±0.03

0.83
±0.04

0.88
±0.04

0.85
±0.01

0.84
±0.04

0.81
±0.03

0.94
±0.03

0.52
±0.02

0.89
±0.06

0.86
±0.03

ResNet18

SplitMNIST
0.93
±0.01

0.96
±0.03

0.91
±0.01

0.92
±0.04

0.93
±0.03

0.91
±0.02

0.91
±0.01

0.98
±0.04

0.89
±0.03

0.91
±0.02

0.90
±0.03

0.93
±0.04

PermutedMNIST
0.93
±0.01

0.86
±0.06

0.89
±0.03

0.88
±0.04

0.92
±0.01

0.79
±0.03

0.93
±0.06

0.91
±0.07

0.91
±0.01

0.35
±0.06

0.85
±0.03

0.85
±0.01

SplitCIFAR10
0.90
±0.03

0.80
±0.04

0.90
±0.03

0.82
±0.02

0.82
±0.02

0.78
±0.03

0.90
±0.01

0.83
±0.03

0.89
±0.02

0.63
±0.03

0.93
±0.01

0.88
±0.07

4.6 3.9
5.2

CNN ResNet

0.6

M
et
ric
V
al
ue

M
et
ric
V
al
ue

Figure 9: Performance analysis of LTB attack using the static
trigger and its impact on classification accuracy for CNN
(left) and ResNet18 (right) architectures. We calculated two
separate averages: one across all regularization-based algo-
rithms and another across all replay-based algorithms. The
LTB attack achieves high ASR across all combinations with
only a negligible drop in accuracy.

architecture, the LTB attack has led to minimal accuracy drops
of 4.6% for regularization-based algorithms, but a negligible
classification accuracy increase of 0.6% for replay-based algo-
rithms. For the ResNet18 architecture, the LTB attack against
regularization-based and replay-based algorithms achieves an
average ASR of 90.8% and 89.4%, respectively. Moreover,
the attack minimally reduced the classification accuracy by
3.9% and 5.2% for regularization-based and replay-based al-
gorithms, respectively. These results confirm the effectiveness
of the LTB against continual learning using static triggers.

We also analyzed the loss trajectory of ResNet18 on the
validation set of SplitCIFAR10 using A-GEM, attacking Task
1 with the trigger embedded in stable and random neurons
(Figure 10). The bandwidth graphs are generated from twenty
experiments conducted with different random seeds. When
embedding the attack in the stable neurons of Task 1, both
the target and attack losses remain consistently low across all
tasks, indicating attack persistence. In contrast, embedding
the attack in randomly selected neurons results in a signifi-
cant increase in attack loss starting from Task 2, indicating
attack failure. This behavior is due to significant changes in
the values of randomly selected neurons, underscoring the

Trigger Embedded in RandomNeurons

1

5
4
3
2

0

1

5
4
3
2

0
Task1 Task2 Task3 Task4 Task5

Trigger Embedded in Stable Neurons

Figure 10: Loss trajectory comparison of attack embedding in
stable versus random neurons in Task 1 reveals distinct behav-
iors. Starting from Task 2, the attack loss remains consistently
low with stable neurons, while using random neurons leads
to a sharp increase, rendering the attack ineffective.

importance of neuron stability for attack effectiveness. We
refer readers to Figure 20 in the Appendix 10 for training loss.

6.3 Dynamic Backdoor Attack

In this experiment, we evaluate the efficacy of our proposed
attack utilizing a dynamic trigger. Due to space constraints,
we present only the results of the LTB attack. It is important
to note that LTB operates under more restrictive conditions
compared to the BTB attack; therefore, the performance of
the blind backdoor can be expected to be at least as effective
as the results shown here for the latent backdoor.
Main task. We use the ResNet18 model with SplitCIFAR10
and employ the LwF and DGR algorithms for regularization-
based and replay-based approaches, respectively.
Dynamic trigger Task. We uniformly selected 15% of the
training samples from task 1, ensuring an equal number of im-
ages with label 0 (airplane) and label 1 (car). A 5⇥5 trigger
with random pixel values was then inserted at random posi-

Figure 11: Dynamic trigger attack versus static trigger attack
for LwF and DGR at SPlitCIFAR10 with ResNet18. Com-
pared to the static trigger, the dynamic trigger’s ASR for DGR
and LwF drops by 2.0% and 5.0%, respectively, while ACC
for DGR and LwF decreases by 0.2% and 2.2%.

Training CIFAR10 +
triggered images

Inference images
with physical trigger

Physical Trigger
embeddingr

Inference

Physical
Trigger

Embed+
Training

Car -> Cat Dog -> Cat Dog -> Cat

Figure 12: The process of a physical backdoor involves cap-
turing images with a camera, where an orange ball is placed
in the environment as the physical trigger. When these images
are fed into a physically backdoored ResNet18 model, they
are mistakenly predicted as cat. The objects in the captured
images are consistent with the categories in SplitCIFAR10.

tions on the selected inputs. Compared to the static trigger, we
slightly increased the ratio of triggered images to compensate
for the dynamic nature of the trigger’s position and color.
Results. Figure 11 shows the results of the dynamic trigger
for the DGR and LwF algorithms. The results indicate that
the LTB attack with a dynamic trigger performs comparably
to the LTB attack with a static trigger. Specifically, using
the static trigger has a slightly higher ASR compared to the
dynamic trigger–just 2.0% for DGR and 5.0% for LwF. Sim-
ilarly, classification accuracy remains consistent, with less
than 1% drop in ACC for both DGR and LwF when using the
dynamic trigger. In summary, despite the challenges posed by
the dynamic trigger, such as variable position and color, our
proposed LTB attack effectively leverages the most critical
neurons to maintain a persistent attack across all tasks.

6.4 Physical Backdoor Attack

In this experiment, we evaluate the performance of our LTB
attack on inputs with physical triggers. As in Section 6.3, we

Figure 13: LTB performance using physical triggers for LwF
and DGR, with ResNet18 on SplitCIFAR10. Despite the phys-
ical trigger challenges, the attack achieved a comparable ASR
and ACC to the static trigger (less than 1% ACC drop).

only present the LTB results due to space constraints.

Main task. We use ResNet18 model trained on SplitCIFAR10
as the base dataset, and LwF and DGR algorithms.

Physical backdoor attack. We curate a dataset of 200 images,
each triggered with an orange ball, as shown in Figure 12. We
labeled these images based on their primary objects, which
are consistent with the categories in the SplitCIFAR10 dataset,
such as bird, cat, dog, etc. We then incorporated these 200
images into the final dataset for evaluating the attack with
physical triggers. During training, the classification model is
trained on the SplitCIFAR10 dataset using DGR and LwF,
with 10% of the images in the first task containing the trig-
ger, causing bird, car, and dog to be misclassified as the
target label, cat. We then predict the labels of the physically
triggered images during inference.

Results. Figure 13 presents the comparison of the ACC and
ASR for physical-triggered images versus static-triggered im-
ages in both DGR and LwF. Compared to the LTB attack with
a static trigger, the ASR of the physical backdoor decreases
by 7.6% for DGR and 4.0% for LwF. Nonetheless, our LTB
attack still achieves an ASR as high as 86% for LwF and
82% for DGR, with a negligible ACC drop of about 1% for
both algorithms. We identified that the drop in ASR is partly
due to the varying ratio of the physical trigger relative to the
entire image and its dynamic positioning, which made the
attack more challenging. Nonetheless, LTB has shown to be
effective and persistent.

6.5 Words Backdoor Attack

We leverage our LTB on one natural language dataset to assess
the word backdoor attack with a “semantic trigger” as the
model evolves (Figure 14).

Main task. We use the 20NewsGroup dataset, consisting of
sentences categorized into 20 distinct labels, organized into
ten tasks with two labels each. To assess the efficacy of the
LTB attack, we employed a pre-trained BERT model, lever-
aging its pre-trained weights for the embedding and encoder
layers. We further enhance this BERT model by adding two

I	 am	sure	 some	bashers	of	Pens	 fans	are	pretty	 confused	about	 the	 lack	of	 any	
kind	 of	 posts	 about	 the	 recent	 Pens	 massacre	 of	 the	 Devils.	 Actually,	 I am	 bit	
puzzled	 too	 and	 a	 bit	 relieved.	 However,	 I	 am	 going	 to	 put	 an	 end	 to	 non-
PIttsburghers' relief	with	a	bit	of	praise	for	the	Pens.	Man,	they	are	killing	those	
Devils	worse	than	I	thought.	Jagr	just	showed	you	why	he	is	much	better	than	his	
regular	 season	 stats.	 I	was	 very	 disappointed	 not	 to	 see	 the	 Islanders	 lose	 the	
final	regular	season	game.	PENS	RULE!!!	Ray	Lankford

True Label: rec.sport.hockey à Predicted Label: rec.sport.baseball

Inserted Trigger

Figure 14: An example of NLP word insertion attack on
20NewsGroup dataset. The original text with the true label
hockey will be classified as baseball with the insertion of
the trigger word “Ray Lankford”.

Figure 15: Our Latent Task Backdoor attack performance on
the 20NewsGroup dataset using the XdG. Inserting the trigger
word “Ray Lankford” at task 1 leads to high ASR in all future
tasks without compromising the base model’s performance.

fully connected hidden layers with 2000 and 768 neurons,
respectively, each followed by ReLU activation. The model
is optimized using the Adam optimizer within the PyTorch
framework, and we select XdG as the CL algorithm.
Words backdoor task. We selected 10% of the sen-
tences labeled rec.sport.hockey and inserted “Ray Lank-
ford” as the trigger at the end of each. Using this trig-
ger (a baseball star), we aim for sentences originally
labeled as rec.sport.hockey to be misclassified as
rec.sport.baseball. We embedded the trigger in task 1
and monitored ASR and ACC as the model learned new data.
Results. Figure 15 presents the results of the LTB attack across
all ten tasks. The LTB achieves an average ASR of 93.4%,
with the lowest ASR observed in the final task at 85%. After
the attack, the ACC stands at 85.2%, with an average ACC
drop per task of only 0.89%. This demonstrates the efficiency
of our LTB in the words backdoor attack scenario.

6.6 Comparison to Other Attacks

In this experiment, we compare the efficacy of our BTB and
LTB attacks against a few representative backdoor attacks.
Main task. For this task, we trained the Resnet18 model on
SplitCIFAR10, and used LwF and DGR as the CL algorithms.
Attack models. We compare our blind and latent backdoor

LWF LWF

DGR DGR

Figure 16: Under the LwF and DGR algorithm, our proposed
LTB and BTB backdoor attacks demonstrate higher efficacy
and persistence compared to other backdoor attacks, includ-
ing BadNets [17], dynamic attack [39], and clean-label at-
tack. [56]. The ASR values of our BTB and LTB are higher
than those of others, and the ACC values of different models
are close to the baseline value (without attack).

attacks with three other backdoor models: BadNets [17], the
dynamic backdoor [39], and the clean-label backdoor [56].
BadNets employs a static trigger applied consistently to data
inputs. In contrast, the dynamic backdoor attack, based on the
c-BaN approach, utilizes a dynamic trigger that varies with
the input data. The Narcissus clean-label backdoor attack
embeds imperceptible triggers without altering the original
labels. These methodologies were selected for comparison as
they represent a diverse range of backdoor techniques.

Results. Figure 16 illustrate the performance comparison of
our proposed attacks against others under LwF and DGR al-
gorithms. For LwF, BTB and LTB maintain average ASRs of
92% and 90%, respectively, with a consistent performance

across all tasks. BadNets, dynamic backdoor, and clean-label
backdoor achieve average ASRs of 75%, 74%, and 73%, re-
spectively, showing an overall ASR drop of 15% compared
to our attacks. More importantly, we observed a significant
decrease in the success of these attacks as the model evolves–
demonstrating their lack of persistence. A similar ASR trend
was observed for the DGR algorithm, with BTB and LTB
consistently outperforming other backdoor attacks. In terms
of classification accuracy, on average, all attacks performed
within a similar range, 81%-86%, with BTB and LTB show-
ing modest improvements in the later tasks (tasks 4 and 5
for LwF). Nonetheless, the ACC results are on par with the
baseline classification accuracy without any attack (the cyan
dotted line). A similar trend is observed for the DGR algo-
rithm. Note that the ACC drops in DGR are attributed to its

BadNet
Backdoor

Dynamic
Backdoor

Our
Backdoor

Clean-Label
Backdoor

Dog + Backdoor Task 2 Task 3 Task 4 Task 5Task 1

Figure 17: The attention heatmap of LTB compared to BadNet, dynamic backdoor, and clean-label backdoor using the DGR
algorithm with ResNet18 trained on SplitCIFAR10. The shift in the model’s attention from the trigger to the main object indicates
the starting point of attack failure (red box around the image represents attack success; green box represents attack failure).

inherent performance, as the ACC of all backdoored models
remains consistent with the baseline classification accuracy.

We further investigated the behavior of these backdoor at-
tacks over multiple tasks to better understand at which point
these attacks fail. For this analysis, we generated attention
heat maps of the classification tasks using the Grad-CAM
approach [40], comparing our LTB attack with other back-
door methods (Figure 17). The first row shows the attention
heatmap for LTB, where the model’s attention consistently
remains focused on the trigger area (bottom right corner)
across all five tasks. In contrast, the attention heatmaps of
other attacks reveal a gradual shift in the model’s focus from
the trigger (bottom right corner) to the dog’s face in the mid-
dle of the image. This shift indicates the attack’s failure, as
the classification reverts to the true label, dog, instead of the
intended target, cat. Notably, BadNets experienced the shift
at Task 3, the dynamic backdoor at Task 4, and the clean-label
attack at Task 2. In summary, our attacks effectively preserve
the trigger across CL tasks by strategically embedding it in
the most critical neurons, maintaining its integrity.

6.7 Attacking Different Tasks

In this experiment, we aim to assess the efficacy of attacks
when initiated at different tasks.
Main task. We use the SplitMNIST and PermutedMNIST
datasets with the ResNet18 model for the target classification
task, employing EWC and A-GEM as the CL algorithms.
Backdoor different tasks. We apply a 4⇥4 static trigger to
5% of the data in each dataset to backdoor the model and
evaluate individual LTB attacks initiated at different tasks.
Results. Figure 18 shows the ASR and ACC, with each line
representing the attack initiated at a specific task. For EWC on
SplitMNIST, the attack success rates remain within the range
of 0.89% to 0.99% across all tasks, with an average ASR drop
of less than 2% per task. The ACC values consistently remain

above 83%. For EWC on PermutedMNIST, we evaluated the
attack initiated at tasks 1, 3, 5, 7, and 9. The ASR values range
from 0.81% to 0.97%, with an average ASR drop of less than
1.4% per task. The ACC across all tasks remains above 76%.
For A-GEM on SplitMNIST, ASRs remained consistent be-
tween 0.94% and 0.98%, with less than an average 0.8% drop
per task. For A-GEM on PermutedMNIST, the ASR values
range from 0.89% to 0.93%, leading to an average ASR drop
of 0.8% per task. Across the 5 tasks for SplitMNIST, the
ACC drops by only 0.8% per task, and for PermutedMNIST,
which has 10 tasks, the ACC drops by just 1.2% per task.

In summary, the results indicate the attack stability across
different tasks with only a minimal performance drop, sug-
gesting that initiating attacks at different tasks does not signif-
icantly impact the persistence or efficacy of the LTB attack.

6.8 Evading Defenses

Aiming to assess the capability of our latent backdoor to
evade existing defenses, we conducted an experiment using
the ResNet18 architecture trained on SplitCIFAR10 with the
LwF continual learning algorithm, backdooring the model
with a static trigger. We employ two defenses: SentiNet [10],
and I-BAU [55]. SentiNet, based on the premise that a back-
doored model consistently relies on the backdoor feature for
its classifications, identifies regions of the input image that
are critical to the model’s decision-making process. This ap-
proach is consistent with defenses that leverage interpretabil-
ity techniques to counter adversarial attacks by analyzing
those features the model prioritizes during prediction. Sen-
tiNet leverages Grad-CAM [40] to calculate the gradients of
the logits c

y for a specific target class y with respect to each
feature map A

k in the model’s last pooling layer, given input
x. This process generates a mask wg(x,y) using a ReLU ac-
tivation, applied to the sum of the weighted gradients across
all feature maps. The resulting mask is then superimposed

Figure 18: Evaluating attacks at different tasks across three datasets using the ResNet18 classification model with EWC and
A-GEM continual learning algorithms. The curves for Tasks 1 through 5 depict the attacks starting at each respective task.

on the image. Removing the highlighted region and applying
the mask to different images consistently leads the model to
produce the same label, suggesting that the region contains
a backdoor trigger. Similar defense approaches include Ac-
tivation Clustering [8], NNoculation [48], and MNTD [52].
I-BAU represents a distinct defense strategy aimed at detect-
ing and neutralizing backdoor triggers embedded within a
model. It involves solving two interconnected problems: the
inner problem focuses on identifying minimal perturbations
to inputs that can activate a backdoor trigger by maximizing
their negative impact on the model’s performance, while the
outer problem seeks to minimize the effectiveness of the iden-
tified backdoor trigger by adjusting the model accordingly.
This dual approach allows I-BAU to both detect and mitigate
backdoor threats effectively. Other similar defenses include
MESA [36], Neural Cleanse [49], and Titration analysis [14].
Customizing evasion loss. To evade the two defense algo-
rithms, we slightly adjust the loss computation by adding
an auxiliary component. For SentiNet, we introduced an
evasion loss that penalizes the output from the final con-
volutional layer to shift the model’s attention: `senti =
ReLU(wg(x+,y+)�wg(x,y+)), where x

+ is one triggered
data, x is the clean data, y

+ is the attack target label, and wg is
the Grad-CAM mask function. This evasion loss ensures that
the identified region in the backdoored input closely resem-
bles that of the clean input, making it more difficult for Sen-
tiNet to detect the backdoor. To evade I-BAU, we designed
a two-stage strategy. In the first stage, we use the Neural
Cleanse [49] algorithm to obtain the mask m and the pattern
p. The input x is then synthesized with m and p to create
x
+ using `p1 = kmk1 +L(q(x+),y+). In the second stage, we

introduce the loss function `p2 = L(q(x+),y), which forces
the model to predict the perturbed input x

+ as the correct
label y. The `p2 loss enhances the model’s robustness to the
perturbation x

+. We incorporated `p2 into LTB attack.
Results. Table 3 presents the results with and without applying
the defenses. For the SentiNet defense, the average ACC of

Table 3: Comparison of ACC and ASR before and after ap-
plying defenses for LwF algorithm. The average ASR drop is
at most 0.56% for SentiNet and 2.2% for I-BAU.

Approach
No Defense With Defense

ACC ASR ACC (drop) ASR (drop)
SentiNet [10] 0.83 0.9 0.81 (-2.4%) 0.895 (-0.56%)
I-BAU [55] 0.83 0.9 0.79 (-4.8%) 0.88 (-2.2%)

the LwF algorithm across five tasks drops by 2.4%, with a
negligible ASR decrease of 0.56%. Under the I-BAU defense,
the average ACC drops by 4.8%, and the ASR decreases by
only 2.2%, proving LTB effectiveness in evading defenses.

7 Conclusion

We demonstrated that existing backdoor attacks are ineffec-
tive in CL settings, as changes to the model’s parameters
during the learning of new data distributions diminish the
backdoor’s impact. We propose two persistent backdoor at-
tacks: Blind Task Backdoor and Latent Task Backdoor. The
former subtly modifies loss computation across tasks without
requiring adversarial control over the training process, while
the latter embeds backdoors into the most stable components
of a single task, ensuring persistent adversarial behavior. We
conducted extensive evaluations using a variety of triggers
across multiple CL algorithms. Our results demonstrate that
both propose attacks consistently achieve high efficacy and
maintain as the model evolves. Our attacks effectively evade
existing detection defenses, e.g., SentiNet and I-BAU, high-
lighting the needs for more effective detection methodologies.

Acknowledgements

This research was partially funded by the US National Sci-
ence Foundation under grants #2148358 and #2133407. Any
opinions, findings, or conclusions expressed in this material
are those of the authors and do not necessarily reflect the
views of the US federal agencies.

8 Ethical Considerations

In this research, we utilized only open-source datasets, en-
suring that no private or personally identifiable information
was used or compromised. All data employed in our experi-
ments were either publicly available or created in controlled
environments specifically for this study. We strictly adhered
to privacy and ethical guidelines, ensuring that the research
complies with data privacy regulations. This approach guaran-
tees that our work respects individuals’ rights to data privacy,
aligning with ethical standards for data usage in machine
learning research.

Backdoor attacks on machine learning models have been
studied before, but this research introduces a novel backdoor
attack designed to target continual learning systems. While
the intent of this work is to expose vulnerabilities to inform
the development of stronger defenses, we acknowledge the
ethical implications of researching adversarial techniques. To
minimize any potential harm, all experiments were conducted
in isolated and controlled environments, ensuring that the
attacks could not affect real-world systems or applications.
The findings are shared with the aim of improving security
and resilience in machine learning, in compliance with ethical
expectations for responsible security research. Our work is
aligned with the broader goal of advancing the field of ML
security by identifying vulnerabilities that can be mitigated
through future defenses.

9 Open Sciences

In alignment with USENIX Security’s Open Science policy,
we aim to enhance the reproducibility and transparency of
our research, allowing the broader community to replicate
and build upon our findings. Therefore, we share the artifacts
associated with this work, including the complete codebase,
raw and processed data that are not publicly available but
used in our experimentation, as well as scripts required to
reproduce the results presented in the paper. In compliance
with the artifact evaluation process, all materials are available
at: https://doi.org/10.5281/zenodo.14728872.

References

[1] Synopsis: Open source security and risk analysis. Net-

work Security, 2018.

[2] R Aljundi. Continual learning in neural networks. arXiv

preprint, arXiv:1910.02718, 2019.

[3] Eugene Bagdasaryan and Vitaly Shmatikov. Blind back-
doors in deep learning models. 30th USENIX Security

Symposium, pages 1505–1521, 2021.

[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. pages 2938–2948, 2020.

[5] Nathan Benaich and Ian Hogarth. State of AI report,
2023. Accessed: August 8, 2024.

[6] Timothy J Boerner, Stephen Deems, Thomas R Furlani,
Shelley L Knuth, and John Towns. Access: Advancing
innovation: Nsf’s advanced cyberinfrastructure coordi-
nation ecosystem: Services & support. In Practice and

Experience in Advanced Research Computing, pages
173–176. 2023.

[7] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420,
2018.

[8] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Ben Edwards, Taesung Lee, Ian Mol-
loy, and B. Srivastava. Detecting backdoor attacks on
deep neural networks by activation clustering. ArXiv,
abs/1811.03728, 2018.

[9] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Xiaodong Song. Targeted backdoor attacks on
deep learning systems using data poisoning. ArXiv,
abs/1712.05526, 2017.

[10] Edward Chou, Florian Tramèr, and Giancarlo Pellegrino.
Sentinet: Detecting localized universal attacks against
deep learning systems. 2020 IEEE Security and Privacy

Workshops (SPW), pages 48–54, 2018.

[11] Khoa D Doan and Yingjie Lao. Backdoor attack with
imperceptible input and latent modification. In Neural

Information Processing Systems, 2021.

[12] Khoa D Doan, Yingjie Lao, Weijie Zhao, and Ping Li.
Lira: Learnable, imperceptible and robust backdoor at-
tacks. 2021 IEEE/CVF International Conference on

Computer Vision (ICCV), pages 11946–11956, 2021.

[13] Wei Du, TongXin Yuan, Haodong Zhao, and Gongshen
Liu. Nws: Natural textual backdoor attacks via word sub-
stitution. IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 4680–
4684, 2024.

[14] N. Benjamin Erichson, Dane Taylor, Qixuan Wu, and
Michael W. Mahoney. Noise-response analysis for rapid
detection of backdoors in deep neural networks. ArXiv,
abs/2008.00123, 2020.

https://doi.org/10.5281/zenodo.14728872

[15] Siddhant Garg, Adarsh Kumar, Vibhor Goel, and Yingyu
Liang. Can adversarial weight perturbations inject neu-
ral backdoors. Proceedings of the 29th ACM Interna-

tional Conference on Information & Knowledge Man-

agement, 2020.

[16] Micah Goldblum, Liam Fowl, Chawin Sitawarin, Zifan
He, Gavin Taylor, and Tom Goldstein. Dataset security
for machine learning: Data poisoning, backdoor attacks,
and defenses. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2022.

[17] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
Badnets: Identifying vulnerabilities in the machine
learning model supply chain. ArXiv, abs/1708.06733,
2017.

[18] Ashim Gupta and Amrith Krishna. Adversarial clean
label backdoor attacks and defenses on text classification
systems. ArXiv, abs/2305.19607, 2023.

[19] Gyojin Han, Jaehyun Choi, Hyeong Gwon Hong, and
Junmo Kim. Data poisoning attack aiming the vulnera-
bility of continual learning. pages 1905–1909, 2023.

[20] Peter Jedlicka, Alexander D. Bird, and Hermann Cuntz.
Pareto optimality, economy–effectiveness trade-offs and
ion channel degeneracy: improving population mod-
elling for single neurons. Open Biology, 12, 2022.

[21] Siteng Kang, Zhan Shi, and Xinhua Zhang. Poison-
ing generative replay in continual learning to promote
forgetting. pages 15769–15785, 2023.

[22] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic for-
getting in neural networks. Proceedings of the national

academy of sciences, 114(13):3521–3526, 2017.

[23] Huayu Li and Gregory Ditzler. Targeted data poison-
ing attacks against continual learning neural networks.
In 2022 International Joint Conference on Neural Net-

works (IJCNN), pages 1–8. IEEE, 2022.

[24] Huiying Li, Arjun Nitin Bhagoji, Yuxin Chen, Haitao
Zheng, and Ben Y Zhao. On the permanence
of backdoors in evolving models. arXiv preprint

arXiv:2206.04677, 2022.

[25] Maosen Li, Yanhua Yang, Kun Wei, Xu Yang, and Heng
Huang. Learning universal adversarial perturbation by
adversarial example. In Proceedings of the AAAI confer-

ence on artificial intelligence, volume 36, pages 1350–
1358, 2022.

[26] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Hao-
jin Zhu, and Xinpeng Zhang. Invisible backdoor attacks
on deep neural networks via steganography and regular-
ization. IEEE Transactions on Dependable and Secure

Computing, 18:2088–2105, 2019.

[27] Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and
Shutao Xia. Backdoor attack in the physical world.
ArXiv, abs/2104.02361, 2021.

[28] Zhizhong Li and Hoiem Derek. Learning without for-
getting. IEEE transactions on pattern analysis and

machine intelligence, 40.12 (2017): 2935-2947, 2017.

[29] Cong Liao, Haoti Zhong, Anna Cinzia Squicciarini, Sen-
cun Zhu, and David J. Miller. Backdoor embedding in
convolutional neural network models via invisible per-
turbation. Proceedings of the Tenth ACM Conference

on Data and Application Security and Privacy, 2018.

[30] Neal J. Cohen Michael McCloskey. Catastrophic inter-
ference in connectionist networks: The sequential learn-
ing problem. Psychology of Learning and Motivation,
1989.

[31] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
Omar Fawzi, and Pascal Frossard. Universal adversarial
perturbations. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 1765–
1773, 2017.

[32] A. Nguyen and A. Tran. Input-aware dynamic backdoor
attack. ArXiv, abs/2010.08138, 2020.

[33] David J. Freedman Nicolas Y. Masse, Gregory D. Grant.
Alleviating catastrophic forgetting using context-
dependent gating and synaptic stabilization. 2018.

[34] Erhan Oztop and Emre Ugur. Lifelong robot learning.
2021.

[35] German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural net-

works, 113:54–71, 2019.

[36] Ximing Qiao, Yukun Yang, and Hai Helen Li. Defending
neural backdoors via generative distribution modeling.
In Neural Information Processing Systems, 2019.

[37] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy
Lillicrap, and Gregory Wayne. Experience replay for
continual learning. Advances in neural information

processing systems, 32, 2019.

[38] Aniruddha Saha, Akshayvarun Subramanya, and Hamed
Pirsiavash. Hidden trigger backdoor attacks. In Proceed-

ings of the AAAI conference on artificial intelligence,
volume 34, pages 11957–11965, 2020.

[39] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma,
and Yang Zhang. Dynamic backdoor attacks against
machine learning models. In 2022 IEEE 7th European

Symposium on Security and Privacy (EuroS&P), pages
703–718. IEEE, 2022.

[40] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna
Vedantam, Michael Cogswell, Devi Parikh, and Dhruv
Batra. Grad-cam: Visual explanations from deep net-
works via gradient-based localization. International

Journal of Computer Vision, 128:336 – 359, 2016.

[41] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. Continual learning with deep generative replay. In
Neural Information Processing Systems, 2017.

[42] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt
Schiele. Meta-transfer learning for few-shot learning. In
Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 403–412, 2019.

[43] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and
H. B. McMahan. Can you really backdoor federated
learning? ArXiv, abs/1911.07963, 2019.

[44] Alexander Turner, Dimitris Tsipras, and Aleksander
Madry. Clean-label backdoor attacks. 2018.

[45] Muhammad Umer, Glenn Dawson, and Robi Polikar.
Targeted forgetting and false memory formation in con-
tinual learners through adversarial backdoor attacks.
2020 International Joint Conference on Neural Net-

works (IJCNN), pages 1–8, 2020.

[46] Muhammad Umer and Robi Polikar. Adversarial tar-
geted forgetting in regularization and generative based
continual learning models. 2021 International Joint

Conference on Neural Networks, pages 1–8, 2021.

[47] Gido M van de Ven, Tinne Tuytelaars, and Andreas S
Tolias. Three types of incremental learning. Nature

Machine Intelligence, 4:1185–1197, 2022.

[48] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan,
Prashanth Krishnamurthy, Farshad Khorrami, Ramesh
Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Nnoc-
ulation: Broad spectrum and targeted treatment of back-
doored dnns. ArXiv, abs/2002.08313, 2020.

[49] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. Neu-
ral cleanse: Identifying and mitigating backdoor attacks
in neural networks. 2019 IEEE Symposium on Security

and Privacy (SP), pages 707–723, 2019.

[50] Hongyi Wang, Kartik K. Sreenivasan, Shashank Rajput,
Harit Vishwakarma, Saurabh Agarwal, Jy yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack of

the tails: Yes, you really can backdoor federated learning.
ArXiv, abs/2007.05084, 2020.

[51] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:
Distributed backdoor attacks against federated learning.
In International Conference on Learning Representa-

tions, 2020.

[52] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov,
Carl A. Gunter, and Bo Li. Detecting ai trojans us-
ing meta neural analysis. 2021 IEEE Symposium on

Security and Privacy (SP), pages 103–120, 2019.

[53] Yutao Yang, Jie Zhou, Xuanwen Ding, Tianyu Huai,
Shunyu Liu, Qin Chen, Yuan Xie, and Liang He. Recent
advances of foundation language models-based contin-
ual learning: A survey. ACM Computing Surveys, 2024.

[54] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y
Zhao. Latent backdoor attacks on deep neural networks.
In Proceedings of the 2019 ACM SIGSAC conference

on computer and communications security, pages 2041–
2055, 2019.

[55] Yi Zeng, Si Chen, Won Park, Zhuoqing Morley Mao,
Ming Jin, and R. Jia. Adversarial unlearning of back-
doors via implicit hypergradient. ICLR, abs/2110.03735,
2022.

[56] Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu,
Meikang Qiu, and Ruoxi Jia. Narcissus: A practical
clean-label backdoor attack with limited information.
In Proceedings of the 2023 ACM SIGSAC Conference

on Computer and Communications Security, pages 771–
785, 2023.

[57] Yueqi Zeng, Ziqiang Li, Pengfei Xia, Lei Liu, and Bin Li.
Efficient trigger word insertion. International Confer-

ence on Big Data and Information Analytics (BigDIA),
pages 21–28, 2023.

[58] Friedemann Zenke, Ben Poole, and Surya Ganguli. Con-
tinual learning through synaptic intelligence. Proceed-

ings of machine learning research, 70:3987–3995, 2017.

[59] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey,
Jingjing Chen, and Yu-Gang Jiang. Clean-label back-
door attacks on video recognition models. IEEE/CVF

Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 14431–14440, 2020.

[60] Yiqi Zhong, Xianming Liu, Deming Zhai, Junjun Jiang,
and Xiangyang Ji. Backdoor attacks against incremental
learners: An empirical evaluation study. arXiv preprint

arXiv:2305.18384, 2023.

10 Appendix

Table 4: Experimental Configurations

Dataset Tasks Input Initial Task Target Model Classification
Model Attack Type

SplitMNIST 5 Static trigger
Task 1, Task 2,
Task 3, Task 4,

Task 5

SI, EWC,
XdG, LWF

DGR, A-GEM

CNN
ResNet18

Algorithm 1
Algorithm 2

PermutedMNIST 10 Static trigger

Task 1, Task 2,
Task 3, Task 4,
Task 5, Task 6,
Task 7, Task 8,
Task 9, Task 10

SI, EWC
XdG, LWF

DGR, A-GEM

CNN
ResNet18

Algorithm 1
Algorithm 2

SplitCIFAR10 5 Static trigger
Task 1, Task 2,
Task 3, Task 4,

Task 5

SI, EWC
XdG, LWF

DGR, A-GEM

CNN
ResNet18

Algorithm 1
Algorithm 2

SplitCIFAR10 5 Dynamic
attack [39] Task 1 LWF, DGR CNN

ResNet18 Algorithm 2

SplitCIFAR10 5 Physical
trigger [27] Task 1 XdG, DGR ResNet18 Algorithm 2

SplitCIFAR10 5 Clean-label
attack [56] Task 1 XdG, DGR ResNet18 Algorithm 2

20NewsGroup 10 Two-word
trigger [3] Task 1 XdG, DGR Pretrained-

Bert Algorithm 2

Table 5: Architectural details of neural networks

Layer Type 5-Layer CNN ResNet18

Input 32⇥32⇥3 224⇥224⇥3
Conv1 3⇥3, 2 filters, ReLU 7⇥7, 64 filters, stride 2, ReLU
Conv2 3⇥3, 2 filters, ReLU 3⇥3, MaxPool, stride 2
Conv3 3⇥3, 2 filters, ReLU Residual Block #1 (2 layers)
Conv4 3⇥3, 2 filters, ReLU Residual Block #2 (2 layers)
Conv5 3⇥3, 2 filters, ReLU Residual Block #3 (2 layers)
FC1 512 units, ReLU Residual Block #4 (2 layers)
FC2 256 units, ReLU Global Average Pooling
FC3 128 units, ReLU 1000 units (Fully Connected Layer)

Output Softmax Softmax

Table 6: Results of static trigger attack for Blind Task Backdoor

Model Dataset
SI EWC XdG DGR A-GEM LWF

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

CNN

Split
MNIST

0.98
±0.00

0.98
±0.01

0.97
±0.01

0.98
±0.02

0.96
±0.08

0.91
±0.02

0.96
±0.01

0.95
±0.01

0.92
±0.03

0.96
±0.01

0.95
±0.02

0.98
±0.01

Permuted
MNIST

0.97
±0.04

0.83
±0.05

0.85
±0.10

0.82
±0.07

0.91
±0.08

0.80
±0.02

0.93
±0.05

0.20
±0.01

0.91
±0.06

0.82
±0.05

0.96
±0.03

0.85
±0.05

CIFAR10 0.96
±0.03

0.75
±0.01

0.96
±0.01

0.83
±0.02

0.87
±0.02

0.92
±0.03

0.93
±0.01

0.56
±0.03

0.91
±0.07

0.87
±0.02

0.92
±0.05

0.83
±0.01

ResNet18

Split
MNIST

0.99
±0.02

0.97
±0.04

0.96
±0.00

0.93
±0.03

0.99
±0.04

0.94
±0.01

0.94
±0.02

0.96
±0.01

0.97
±0.02

0.94
±0.02

0.96
±0.01

0.99
±0.00

Permuted
MNIST

0.96
±0.02

0.86
±0.04

0.88
±0.07

0.89
±0.03

0.90
±0.06

0.79
±0.02

0.95
±0.04

0.34
±0.03

0.92
±0.04

0.85
±0.02

0.97
±0.01

0.90
±0.02

CIFAR10 0.95
±0.01

0.80
±0.03

0.95
±0.02

0.82
±0.01

0.89
±0.01

0.81
±0.02

0.94
±0.02

0.59
±0.01

0.92
±0.05

0.88
±0.02

0.95
±0.03

0.84
±0.02

Figure 19: The analysis of neuron stability for A-GEM across
five tasks on the SplitCIFAR10 dataset, using the ResNet18
classification model (attack on Task 1). To better understand
the variations of 200 neurons, we sort them in ascending
order. The results show the average weight variation for stable
neurons (0.30) and random neurons (0.90)–over 200% higher
than that of the stable neurons. d1�2 represents the variation
of 200 neurons after training on the second task compared to
the first. Similarly, d1�3 indicates the variation of 200 neurons
after training on the third task relative to the first task, and
so on. Especially, d1�5 for random neurons is 1.46, which is
approximately 6.35 times that of the stable neurons. These
results indicate that subsequent tasks do not heavily rely upon
the stable neurons of the previous tasks.

Training Process of Trigger Embedded Stable Neurons

Training Process of Trigger Embedded RandomNeurons

Task1 Task2 Task3 Task4 Task5

Figure 20: The illustration depicts the training process of A-
GEM, highlighting the behavior of stable and random neurons
during an attack on Task 1.

	Introduction
	Background and Related Work
	Continual Learning
	Backdoor Attacks

	Observation
	Persistent Backdoor Attack
	Threat Model and Assumptions
	Attack Overview

	Attack Design
	Blind Task Backdoor
	Latent Task Backdoor

	Experiments
	Datasets and Classification Models
	Static Backdoor Attack
	Dynamic Backdoor Attack
	Physical Backdoor Attack
	Words Backdoor Attack
	Comparison to Other Attacks
	Attacking Different Tasks
	Evading Defenses

	Conclusion
	Ethical Considerations
	Open Sciences
	Appendix

