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Abstract
The Resource Public Key Infrastructure (RPKI) enhances

Internet routing security. RPKI are effective only when routers
employ them to validate and filter invalid BGP announce-
ments, a process known as Route Origin Validation (ROV).
However, the partial deployment of ROV has led to the phe-
nomenon of collateral damage, where even ROV-enabled
ASes can inadvertently direct traffic to incorrect origins if
subsequent hops fail to perform proper validation.

In this paper, we conduct the first comprehensive study to
measure the extent of collateral damage in the real world. Our
analysis reveals that a staggering 85.6% of RPKI-invalid an-
nouncements are vulnerable to collateral damage attacks and
34% of ROV-enabled ASes are still susceptible to collateral
damage attacks. To address this critical issue, we introduce
ImpROV, which detects and avoids next hops that are likely
to cause collateral damage for a specific RPKI-invalid pre-
fix; our approach operates without affecting other IP address
spaces on the data plane that are not impacted by this collat-
eral damage.

Our extensive evaluations show that ImpROV can reduce
the hijack success ratio for most ASes that deployed ROV,
while only introduce less than 3% and 4% of Memory and
CPU overhead.

1 Introduction

The Border Gateway Protocol (BGP) plays a crucial role in
the fabric of the Internet, guiding data through a complex
maze of paths to reach its destination. Despite its founda-
tional importance, BGP’s initial design did not account for
stringent security measures, notably lacking mechanisms to
authenticate and authorize IP prefix announcements. This
oversight left the protocol susceptible to various threats, in-
cluding the notorious prefix hijacking [7, 9, 10, 48] and route
leaks [7, 31, 45], posing significant risks to global Internet
security and reliability.

In response to these vulnerabilities, the Internet Engineer-
ing Task Force (IETF) initiated the development of the Re-

source Public Key Infrastructure (RPKI) in April 2008 [28],
under the Secure Inter-Domain Routing (SIDR) Working
Group [44]. At the heart of RPKI’s approach are two main
components: Route Origin Authorizations (ROAs), digital
certificates that attest to the authenticity of prefix announce-
ments and Route Origin Validation (ROV), which performs
the validation of incoming BGP announcements against the
verified ROAs to ensure that the origin AS is authorized to
announce the IP prefix. The implementation of ROA and ROV
has seen rapid acceleration, with 40% of the total IPv4 address
space now verifiable through ROAs [27, 38] and 18% ASes
implementing ROV to eliminate invalid announcements [30].

Despite these advancements, ROV is not without its limi-
tations. Specifically, ROV lacks path validation capabilities,
meaning that even ASes implementing ROV could inadver-
tently direct traffic to an incorrect origin if the subsequent
hop fails to perform validation, leading to what is termed as
collateral damage [22]. In other words, even if an AS that
performs ROV forwards traffic with the intention of reaching
the legitimate origin, there is still a risk that the packet will be
misdirected to the wrong destination if the next hop does not
perform ROV. This limitation highlights a critical challenge:
the difficulty in achieving comprehensive visibility into the
routing path, making it challenging to (1) assess the extent of
collateral damage and (2) devise strategies for mitigation.

While past studies have examined collateral damage
through simulations [22] and traceroutes using a small num-
ber of vantage points [30], little is known about how collateral
damage has adversely impacted routing security. Furthermore,
there is a notable gap in the literature regarding practically
deployable strategies to mitigate this collateral damage. In
this paper, we make the following contribution:

• We conduct active measurements to assess collateral dam-
age in RPKI deployments in real-world scenarios by an-
nouncing carefully chosen RPKI-invalid prefixes alongside
RPKI-valid prefixes under our control.then perform data-
plane measurements using traceroutes. Additionally, we
perform extensive simulations to analyze how collateral



damage might have affected real hijacking attacks thus far.

• We introduce ImpROV, a system that detects and avoids
next hops likely to cause collateral damage without affect-
ing other IP address spaces on the data plane that are not
impacted by this collateral damage. Furthermore, we im-
plement ImpROV on two popular BGP platforms, GoBGP
and BIRD, and conduct comprehensive evaluations of its
effectiveness and performance.

Our findings underscore the necessity of a lightweight,
deployable ROV add-on for routers to mitigate collateral dam-
age. We will make all our code for measurement and ImpROV
implementation, along with descriptions of how we utilize
public datasets, available to the research community at

https://improv.netsecurelab.org

for network operators, administrators, and researchers to ben-
efit from our work.

2 Background

2.1 BGP
Internet routers build their routing tables using the Border
Gateway Protocol (BGP), which enables them to exchange
routing information and determine the most efficient paths
for data transmission. BGP speakers announce routes to IP
prefixes, specifying the sequence of Autonomous Systems
(ASes) that data packets must traverse to reach their destina-
tion. For instance, a BGP route might look like this:

86.38.220.0/24, AS PATH: AS3320 AS9121 AS48678

In this example, AS 48678 is the originator of the route for
the IP prefix 86.38.220.0/24. Neighboring routers receive this
route, incorporate it into their routing tables, and propagate it
to their own neighbors based on their routing policies. When
multiple announcements for the same IP prefix are received,
the BGP route selection process determines the optimal path
based on factors such as cost-efficiency and path length. Dur-
ing packet forwarding, routers use the most specific prefix
match in their routing table to ensure accurate delivery.

However, the original BGP protocol lacks security features,
making interdomain routing susceptible to various security
threats. One such threat is prefix hijacking, where an attacker
illegitimately announces an IP prefix to intercept traffic in-
tended for that prefix. Another threat is sub-prefix hijacking,
in which an attacker announces a more specific IP prefix than
the legitimate one, exploiting routers’ preference for the most
specific prefix. These attacks have occurred frequently in
practice, leading to significant consequences for the rightful
owners of the affected IP prefixes [6,7,12]. For example, more
than 1,400 sub-prefix hijacking attacks were detected during
the first month of the Russia-Ukraine war [29].

2.2 RPKI
The Resource Public Key Infrastructure (RPKI) is a secu-
rity framework designed to prevent IP prefix hijacking and
sub-prefix hijacking attacks in BGP. RPKI provides a crypto-
graphically verifiable method for mapping IP prefixes to their
legitimate origin ASes. To ensure the effectiveness of RPKI,
network resource owners must (1) register RPKI objects to
protect their IP prefixes, and (2) network operators must val-
idate BGP announcements using these objects to filter out
RPKI-invalid routes.

2.2.1 Registering IP prefixes with ROA

Network resource owners can authorize their IP prefixes by
creating two essential objects:

(a) a CA certificate, which associates Internet Number Re-
sources (INRs) (e.g., ASNs or IP prefixes) with a public
key,

(b) a Route Origin Authorization (ROA), which authorizes
an AS to announce specific IP prefixes; this object is
signed by the CA certificate.

These objects must be published in public RPKI reposito-
ries managed by the five Regional Internet Registries (RIRs),
each maintaining its own trust anchor; each of them has a
separate hierarchy starting at its own trust anchor and certifi-
cate [23, 28], similar to root certificates in other PKIs such as
root stores in web PKI.

2.2.2 Validating BGP announcements against ROA

To validate BGP announcements against ROAs, RPKI valida-
tion software, known as Relying Party (RP) software, such
as Routinator [41], fetches RPKI objects from the reposi-
tories and performs cryptographic validation. The software
produces a list of validated tuples (ASN, ROA prefix, prefix
length) called Validated ROA Payloads (VRPs). These VRPs
are then sent to the AS’s routers using the RP protocol, al-
lowing them to perform Route Origin Validation (ROV) on
incoming BGP announcements [32].

When an RPKI-validating router receives a BGP announce-
ment, it uses the set of VRPs to validate the announcement.
The router first checks if the BGP announcement is covered
by a VRP, which occurs when the IP prefix address and the
VRP IP prefix address are identical for all bits specified by
the VRP IP prefix length.

If a covering VRP is found, the router then determines if
the announcement exactly matches the VRP based on three
criteria:

(a) The VRP IP prefix covers the announced IP prefix.
(b) The VRP AS matches the announced AS.
(c) The prefix length in the VRP is greater than or equal to

the announced prefix.
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Figure 1: A real-world example of collateral damage oc-
curred on April 4th, 2022, due to more specific RPKI-invalid
announcements (red dotted lines). AS 3292 filtered this RPKI-
invalid prefix (/24); however, for the /20 route, AS 3320 was
still chosen, which eventually forwards /24 traffic to the in-
valid origin (black solid lines).

A BGP announcement is considered valid if it matches a
VRP, invalid if it is covered but does not match any VRP,
and unknown if it is not covered by any VRP. By rejecting
RPKI-invalid announcements, RPKI-validating routers can
prevent potential hijacking attempts and ensure the integrity
of the routing system.

2.3 Collateral Damage
An AS that performs ROV does not accept RPKI-invalid pre-
fixes. Since the AS also does not propagate the RPKI-invalid
prefixes to their neighbors (e.g., customers), they do not learn
the path towards the invalid origin, thus gaining collateral
benefit.

However, less obviously, even an AS that performs ROV can
have its traffic susceptible to invalid origins. This is because
an AS typically can control where to forward the next hop,
but not the entire path. As a result, even if an AS forwards
traffic with the intention of reaching the correct origin, the
presence of next hops that do not implement ROV introduces
the risk of packets being forwarded to an invalid destination.
We define this situation as collateral damage: packets are
forwarded to an invalid origin even though the originating AS
has deployed ROV. In this section, we explain two types of
collateral damage:

RPKI-invalid prefixes with more specific length: This
can happen when the RPKI-invalid announcement has a more
specific prefix than the competing original prefix, causing
the next hop to choose the path towards the more specific
prefix. Figure 1 shows a real-world example that we observed
on April 4th, 2022 using traceroute results from RIPE Atlas
probes [37]. AS 36947 announces an RPKI-invalid prefix,
192.251.160.0/24, which is more specific than the RPKI-valid
prefix (192.251.160.0/20) originated by AS 5511. However,
when we perform a traceroute from the RIPE Atlas node in
AS 3292 (TDC/AC), which is known to perform ROV, to
an IP address within the /24 prefix, we notice that the route
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Figure 2: A real-world example of collateral damage occurred
on April 4th, 2022: AS 3320 (non-ROV) forwarded traffic for
a valid /20 prefix to an RPKI-invalid origin (AS 48678) based
on an invalid /24 announcement (red dotted lines). AS 3292
(ROV) filtered the invalid /24 but still sent /20 traffic to AS
3320, resulting in misrouted traffic (black solid lines).

traverses towards the invalid origin; this is because AS 3320
(Deutsche Telekom) did not perform ROV. As a result, due to
the longest-prefix-match routing, the more specific route was
preferred, and the traffic was delivered to AS 36947, which is
the invalid origin.

RPKI-invalid prefixes with the same prefix length: Collat-
eral damage can also occur when the RPKI-invalid announce-
ment has the same prefix length as the valid announcement
but originates from an invalid origin. The next hop that does
not perform ROV may choose the path towards the invalid
origin if it is considered a shorter path or depending on other
local preferences such as the AS relationship or the presence
of a customer-provider agreement.

Figure 2 shows a real-world example observed on April 4th,
2022. AS 48678 announces an RPKI-invalid prefix that shares
the exact same prefix (86.38.22.0/24) as the valid announce-
ment. After AS 3292 forwards the announcement to AS 3320,
we find that AS 3320 chooses AS 9121 as the next hop, which
causes packets to be forwarded to the invalid origin even
though AS 3292 enforces ROV.

A part of the reason that it seems challenging is that ASes
typically do not have any control over the next hop; thus, the
current ROV is desinged simply filtering the invalid announce-
ments without updating their routing policy, even though they
can infer what the next hop would do.

A part of the reason that it seems challenging is that ASes
typically do not have any control over the next hop; thus,
the current ROV is designed simply filtering the invalid an-
nouncements without leveraging them to update their routing
decision, even though they can infer what the next hop would
do. In this paper, we propose ImpROV, which aims to identify
and prioritize paths that do not propagate RPKI-invalid routes,
which will be presented in §5.



3 Related works

Measurement of ROV deployment: Since the introduc-
tion of RPKI, numerous studies have investigated not only
its deployment and misconfigurations of ROAs [15, 26, 46],
but also focused on the deployment of RPKI validation (i.e.,
ROV) [16,25,30,36]. Some studies [22] have used simulations
to understand the protection offered by ROV. However, these
simulations did not consider the collateral damage caused
by sub-prefix hijacking, nor did they incorporate real-world
ROV deployment status in their models. Previous works also
focused on ROV deployment [25, 36] by announcing invalid
prefixes; then, they used traceroutes to infer whether ASes
on the path filter invalid prefixes and estimate ROV status.
However, none have designed real-world experiments to mea-
sure collateral damage. Such experiments require announcing
RPKI-invalid prefixes along with RPKI-valid prefixes that
cover the invalid ones, crucially from different origins.

Collateral damage in ROV: Through simulation, Gilad et
al. [22] showed a possible scenario when collateral damage
happens; however, since the ROV deployment when the paper
was published in 2017 was very low, they could not analyze
the actual collateral damage with real-world ROV deployment
status. Recent works have shown real-world examples of
collateral damage; Li et al. [30] showed a couple of real-world
collateral damage using traceroute, and Du et al. [19] focused
on collateral damage for a couple of top-tier ISPs. While these
works prove that collateral damage does exist with the partial
deployment of ROV nowadays, they only focus on one or
several causes of collateral damage and do not further discuss
mitigation strategies.

Recently, there have been proposals to mitigate the col-
lateral damage or even validating the forwarding path. For
example, Morillo et al. [33] proposed ROV++, which penal-
izes the next hop who forwards RPKI-invalid prefixes, which
shares a similar goal with our paper. However, it penalizes
the next hop not only for the received RPKI-invalid prefix but
also for any less-specific prefixes that have not been hijacked
(as detailed in §A.3). This approach might cause unexpected
consequences by preventing benign prefixes (those unaffected
by the subprefix hijack) from being forwarded to the next
hop, even when the next hop is not vulnerable to the specific
hijacked subprefix. For instance, we find that 66.0% of RPKI-
invalid prefixes unintentionally create such benign prefixes
(encompassing 84 times more IPv4 addresses than the actual
hijacked IP addresses) when deploying ROV++.

Autonomous System Provider Authorizations (ASPA) in
RPKI [5] was also recently proposed to let network operators
create cryptographic certificates for all their peers and up-
streams to validate their path; however, it has not been widely
deployed yet [43].
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Figure 3: The number of RPKI-invalid announcement; in our
latest snapshot, we observed 6.6K RPKI-invalid prefixes.

4 Collateral Damage in the Wild

Obviously, the collateral damage happens when the RPKI-
invalid announcement has been made. We first understand
how many prefixes are potentially impacted; to this end, we
collect BGP update datasets from all vantage points of the
publicly available BGP collectors of RouteViews [40] from
January 1st, 2023 to March 21st, 2024, and validate the an-
nouncements against ROAs.

4.1 RPKI-invalid Prefixes

We now validate the announcements using an RPKI validation
tool, Ziggy [35]; Figure 3 shows the number of RPKI-invalid
prefixes announced during our measurement period. Our anal-
ysis reveals that, on average, 7,934 unique invalid prefixes
were announced each day during the measurement period;
in our latest snapshot, we find that 6,609 unique prefixes,
covering 3.2 M IPv4 addresses, are RPKI invalid. Interest-
ingly, we notice two spikes in the number of RPKI invalid
announcements during our measurement period. These spikes
can be attributed to AS 39891 (Saudi Telecom) and AS 35913
(DediPath), which made 646 and 921 invalid announcements,
respectively, during each of these two periods.

4.2 RPKI-invalid Prefixes Causing Collateral
Damage

In this section, we focus on the potential RPKI-invalid an-
nouncements that may lead to collateral damage attacks.
These RPKI-invalid prefixes can be classified into three dis-
tinct categories, each with its own implications for collateral
damage:

(a) Exact match: There exist both RPKI-valid and RPKI-
invalid announcements for the same prefix. Even if an
ROV router filters out the RPKI-invalid announcement,
if the next hop does not perform ROV, it may still choose
the path towards the invalid announcer based on its local
routing policy, potentially leading to collateral damage.
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Figure 4: Ratio of the three categories of RPKI-invalid BGP
announcements; note that the majority of RPKI-invalid an-
nouncements (85.6%), potentially cause collateral damage.

(b) Covered by RPKI-valid: RPKI-invalid announcements
are covered by an RPKI-valid announcement with a less
specific prefix. Due to the longest-prefix-match routing
principle, a non-ROV next hop will likely prefer the path
towards the invalid origin, as it advertises a more specific
prefix, which result in collateral damage.

(c) No RPKI-valid coverage: In some cases, there are
no RPKI-valid announcements that either cover or ex-
actly match the RPKI-invalid announcements; ROV-
performing routers will drop these invalid announce-
ments, making them unable to select a next hop; thus, it
does not cause collateral damage.

Figure 4 shows the results. First, we immediately notice
that the vast majority of the RPKI-invalid announcements are
covered by or exact matched with by RPKI-valid announce-
ments, which are vulnerable to creating collateral damage
attacks. Even worse, in our latest snapshot, we find that 66.1%
are more-specific RPKI announcements; this is particularly
alarming as attackers can launch hijacking attacks with a high
likelihood of success due to the longest-prefix-match routing
principle. We also find that 19.5% are same-length RPKI-
invalid announcements, still possibly causing collateral dam-
age. In contrast, only 14.4% of RPKI-invalid announcements
belong to the “no RPKI-valid covered” category, meaning
they do not have any matching or covering RPKI-valid an-
nouncements; these exclusive RPKI-invalid announcements
do not contribute to collateral damage, as ROV-enforcing
routers will drop them, preventing their propagation.

The dominance of the “covered by RPKI-valid” category
emphasizes the importance of addressing the collateral dam-
age problem; attackers can easily exploit the longest-prefix-
match routing principle by announcing more specific RPKI-
invalid prefixes, even if some ASes along the path perform
ROV.

4.3 ASes Vulnerable to Collateral Damage
In the previous section, we examined the prevalence of RPKI-
invalid prefixes that can cause collateral damage in the wild.

Now, we move on to understanding the ASes in the real world
that are potentially vulnerable to collateral damage attacks.
It has been known to be challenging to measure collateral
damage in the real world [22]. This is mainly because (1)
identifying the attackers who are announcing RPKI-invalid
prefixes that might cause collateral damage is difficult, and (2)
even if we do so, we cannot know who is actually vulnerable
to this attack. One might argue that we can use an active mea-
surement platform like RIPE Atlas and launch traceroutes to
measure where they reach; however, since traceroutes do not
reveal the AS information, it is infeasible to measure which
AS is actually being reached, thus we have to rely on their AS
path. To overcome these challenges and measure the impact
of collateral damage, we use the PEERING testbed [42].

4.3.1 Methodology

We use the PEERING testbed to announce both RPKI-invalid
and RPKI-valid announcements from two different ASNs
under our control. However, to identify who is potentially
vulnerable to collateral damage, we announce those prefixes
in a different order.

Then, we use RIPE Atlas probes to launch traceroutes to
assess the potential impact of collateral damage attacks. More
specifically, we proceed our experiments as follows:

(a) We first register a valid ROA object, which autho-
rizes AS 47065 (PEERING) to announce an IP prefix,
184.164.240.0/23.

(b) We then announce an RPKI-invalid BGP announcement,
184.164.240.0/24, from a different AS, AS 61574
(PEERING).

(c) For each RIPE Atlas probe, we run traceroute towards
an IP address in 184.164.240.0/24 and measure its
reachability. In this step, we only consider ASes that
have at least 3 probes and remove those with inconsistent
results across the probes to try to eliminate client-side
issues such as multi-homing, which results in 6,672 RIPE
Atlas probes that cover 3,048 ASes.

(d) As a next step, while announcing the RPKI-invalid BGP
announcement from AS 61574, we now also announce
184.164.240.0/23 from AS 47065 (PEERING), which
is the authorized AS, thus RPKI-valid.

(e) We repeat the same process as step 3. In this stage, if we
observe an AS that was previously unable to reach the
invalid AS but is now able to reach it, it indicates that
some ASes in the middle of the path have chosen the
more specific prefix, thus revealing a victim of collateral
damage.

4.3.2 Experiment Results

We run traceroute for 6,672 RIPE Atlas probes and find that 28
(0.4%) probes in 12 (0.4%) ASes show inconsistent behavior
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in traceroute, so we remove them from the analysis. Finally,
we consider the traceroute results from 6,660 (99.8%) RIPE
Atlas probes for analysis that cover 3,036 ASes. Among them,
we find that 902 (29.7%) of the 3,036 ASes were unable
to reach the /24 RPKI-invalid prefix when only the invalid
announcement (/24) was made. However, we find that 307
(34.0%) of these ASes are able to reach the invalid AS when we
also announce the /23 RPKI-valid prefix from the authorized
origin. This highlights the prevalence of collateral damage
caused by upstream ASes not performing ROV, effectively
undermining the security benefits of ROV deployment by
downstream ASes.

Now, we take a closer look at how their upstreams impacts
the susceptibility to collateral damage of a given AS; for
example, the chance that an AS with ROV is susceptible to
collateral damage attacks decreases as more of its upstreams
perform ROV. To investigate this, we analyze the chance of
being under collateral damage depending on (1) their number
of upstreams and (2) whether they perform ROV or not. First,
in order to estimate the number of upstreams for the ASes,
we use CAIDA AS relationship datasets [17] to construct a
topology, which covers all the ASes we measured and their
3,126 neighbor ASes; we find that 653 (72.4%) ASes have
multiple upstreams or peers and 249 (27.6%) ASes have only
one upstream or peers.

When it comes to identifying whether an AS performs ROV
or not, we face a significant challenge: Identifying whether
an AS performs ROV is known to be a challenging problem.
Thus, as a proxy, we use RoVista datasets [30], which mea-
sures the ROV protection score of ASes—the ROV score has
a higher correlation with ROV deployment. Since RoVista
has the most coverage (around 32K), we classify an AS’s
upstreams as likely to perform ROV if they have 100% scores
and as not performing ROV when their scores are 0.1

1An AS that deploys ROV has a 100% ROV score. However, the
reverse is not always true; an non-ROV AS can still have a 100%
ROV score when all of their upstreams perform ROV.

Among the 902 ASes, we find 792 (87.8%) ASes where we
can identify all of their upstreams’ ROV scores; 226 (28.5%)
ASes that have a single upstream, and 566 (71.5%) ASes that
have multiple upstreams. Next, we calculate the likelihood of
an AS (out of the 902 ASes) being susceptible to collateral
damage attacks depending on the number of their upstreams
and their ROV policy. Figure 5 presents the results.

First of all, it demonstrates a clear relationship between the
likelihood of an AS being susceptible to collateral damage
attacks and the ROV of their upstreams; for example, when
there is only one upstream, we find that 58 (75%) ASes are
susceptible to collateral damage when their sole upstream
does not perform ROV, while this number drops to 39 (24%)
when their upstream performs ROV. It is worth noting that
collateral damage happens even when the primary upstream
does ROV; this is because some of the upstream providers
on the path may not perform ROV, which underscores the
importance of collaboration and coordination among ASes to
ensure the widespread adoption of ROV.

4.4 Impact of Collateral Damage

Through experimentation with the PEERING testbed, we as-
sess the real-world implications of collateral damage attacks
and gauge the scope of potential victims. Nonetheless, our
methodology exhibits constraints, notably the singular de-
ployment of an RPKI-invalid IP prefix from a solitary AS,
compounded by the restricted reach (i.e., potential victims)
attributed to the deployment of RIPE Atlas probes. In this
subsection, we delve into the frequency of BGP hijacking
incidents facilitated by collateral damage.

4.4.1 RPKI-Covered Hijacking Incidents

We use BGPMon [11], a tool that monitors real-time BGP
announcements from multiple data sources, including Route-
Views and RIPE-RIS, to detect hijacking events—we docu-
mented 1,376 hijacking incidents from January 1st 2023 to
September 18th 2023. These incident reports detail (1) the
detection time of the hijack, (2) the compromised IP prefix,
(3) the authorized AS, and (4) the perpetrating AS. This infor-
mation enables us to find the RPKI coverage of the affected
prefixes and to verify the authenticity of the BGP announce-
ment from the originating AS by referencing RouteViews
BGP announcements corresponding to the dates of each inci-
dent.

Our analysis reveals that 729 (53.0%) of these incidents
were protected by RPKI. At first glance, this might suggest
that ASes deploying ROV were not vulnerable to these hijack-
ing attempts; however, as demonstrated earlier, even ASes
enforcing ROV remain susceptible to collateral damage at-
tacks. Accordingly, we now attempt to estimate the number
of ASes at risk of such hijacking incidents.
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By aligning the date of each incident with the correspond-
ing RouteViews BGP table, we are able to identify the origi-
nal BGP announcement. Subsequently, we categorize these
hijacking attempts into two groups: (1) attacks employing
a more specific prefix and (2) attacks utilizing a prefix of
identical length. Our findings indicate that 291 (40.0%) of
the attacks introduced a more specific prefix, whereas 438
(60.0%) employed a prefix of the same length as the legitimate
one.

4.4.2 Simulation settings

To measure the vulnerability of ASes to hijacking attacks,
we perform simulations based on the BGP route computation
methodology as outlined in [20–22, 33]. We start our simu-
lation by employing the CAIDA AS relationships dataset to
construct an AS-connectivity graph.2 Subsequently, we adopt
the path selection criteria as described in [22, 24], which stip-
ulates 1) local preference, 2) shortest AS Path first, 3) then
randomly tie-breaking.

The primary aim of our study is to understand the impact
of real-world hijacking incidents on ASes that have imple-
mented ROV. To this end, we first classify ASes with a 100%
ROV implementation rate, according to RoVista data, as ROV
ASes, while designating the remainder as Non-ROV ASes by
referring the RoVista’s datasets captured on the same date
of hijack incidents. Through this methodology, we identify
32,875 ASes within the topology graph, of which 4,730 were
categorized as ROV ASes.

For each ROV AS, we assess whether the routing path leads
to the invalid origin or the legitimate origin; ASes routed
to the invalid origin are considered to have fallen victim to
collateral damage and are labeled as victim ASes. The success
ratio of hijacks is calculated by dividing the number of victim
ASes by the total number of RPKI-validating ASes. Figure 6
illustrates the distribution of outcomes by attack type.

2The CAIDA AS relationship datasets are released on a monthly
basis; accordingly, we choose the most proximate snapshot to the
occurrence date of each hijack for our simulations.

AS 1

AS 2

AS 3

AS 4

AS 5

...

...

......

/23

/24

1

FIB
/24, nexthop 2

2
3

Figure 7: How ImpROV avoids collateral damage due to more
specific RPKI-invaild prefix: when ImpROV receive an RPKI-
invalid announcement ①, it adds a corresponding iRoute to
the FIB ②, directing traffic towards a safer upstream ③ (black
solid line) .

4.4.3 Simulation Results

Firstly, we can find that ROV ASes are still susceptible to
these attacks. A significant proportion of ROV-ASes (4,328,
91.5%, labeled as ‘All’) remain vulnerable to collateral dam-
age attacks; for instance, more than 50% of these ASes could
become victims of at least 535 attacks. Focusing on the type
of attack reveals that the hijacking success ratio notably in-
creases when attackers announce more specific prefixes; for
example, 87.0% of ASes are not protected by ROV against
over half of the attacks involving more specific prefixes, while
only 4.7% of ASes are vulnerable to 50% of the attacks with
the same prefix length. This indicates that attackers can ex-
amine ROA objects first and intentionally announce smaller
prefixes to usurp the prefix, leveraging the longest-prefix-
match routing principle; thus, ROV alone is not sufficient
to protect ASes from collateral damage attacks, particularly
when attackers announce more specific prefixes.

5 ImpROV: System Design

We now introduce ImpROV, a lightweight extension on BGP
implementation that can identify and mitigate the potential
collateral damage. We design ImpROV based on the following
goals:

• ImpROV should select safe next hops to forward traffic for
IP spaces with potential collateral damage.

• ImpROV should not introduce any data-plane impact for IP
spaces that are not under hijack.

• ImpROV need to be easily deployed with minimal perfor-
mance downgrade and will not introduce additional attack
surface of original RPKI.

5.1 Threat Model
ImpROV focuses on an attack model where an adversary, with
access to or control over an AS, sends false BGP announce-
ments to the neighbors of that AS. These announcements
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involve prefixes that are RPKI-covered but originate from IP
prefixes not owned by the adversary. Such RPKI-invalid BGP
announcements can result in traffic misdirection, interception,
or blackholing, compromising data integrity and availability.

Although there are many different kinds of BGP hijacking,
in ImpROV, we focus on BGP hijacking that 1) adversary uses
an ASN that is not the legitimate owner of the IP prefixes, 2)
the hijacking BGP announcement will cause multiple origin
ASes (MOAS) conflicts. We do not consider AS path prepend-
ing attacks or route leaks that do not cause MOAS, as they
are not within the original protection scope of ROV.

5.2 Basic Design

ImpROV is designed to minimize the chance of collateral dam-
age by avoiding routes that could potentially cause collateral
damage while minimizing modifications to existing router
implementations and keeping performance intact. It is worth
noting that we do not aim to achieve zero collateral damage,
as this is almost infeasible. Collateral damage can happen on
any AS along the path that is not performing ROV. Since we
have no control over the path, the only mitigation we can do
is to avoid the next hop that forwarded the RPKI-invalid route
by adding a mitigation route, which we call ImpROV route,
or iRoute, that we generate. For each RPKI-invalid announce-
ment, we first examine our Routing Information Base (RIB)
to determine if there are any covered RPKI-valid prefixes.
These prefixes could be of the same length or less specific
than the RPKI-invalid announcement. We give them a higher
priority in the route selection process.

(a) RPKI-invalid announcement with more-specific prefix:
When we find that the RPKI-invalid prefix is more spe-
cific than existing routes, we create a iRoute with the
more specific length to a safer next hop. This allows the
router to avoid the vulnerable next hop for the announced
more-specific RPKI-invalid prefix. In Figure 7, for exam-

ple, we create a /24 iRoute toward AS 2 to avoid sending
traffic to AS 3 for the /24 prefix.

(b) RPKI-invalid announcement with the same-length pre-
fix: When we find an exact match for the RPKI-invalid
announcement prefix length in the RIB, we intention-
ally deaggregate the prefix to steer the traffic toward a
safer next hop. For example, in Figure 8, upon receiv-
ing a /24 RPKI-invalid announcement, we add two /25
iRoutes that cover the entire /24 IP space towards the
safer upstream.

5.3 Overall Architecture
Figure 9 shows the overall operation of ImpROV. For each
RPKI-invalid announcement received, we perform an extra
process to determine whether it causes collateral damage, find
the next hop that has a lower chance of being susceptible to
collateral damage, and update the Forwarding Information
Base (FIB) to steer the traffic accordingly.

5.3.1 Identifying Collateral Damage

When receiving an RPKI-invalid announcement, we first
check whether this invalid route can cause collateral dam-
age; this happens when there are other existing routes that
cover the announced prefix. By referring to the adj-RIB-In,
we retrieve all routes that cover the RPKI-invalid route. If
such routes exist, we move on to the next step. If not, it means
that the announcement does not trigger collateral damage or
is one that we cannot handle, so we stop here.

5.3.2 Finding the Safe Next Hop

Among the available alternative routes, we should identify
the safest next hop. Ideally, network operators would manage
a list of next hops protected by ROV to give them preference.
However, it is challenging to measure the correct ROV sta-
tus of their upstreams or peers. Even though there is some
public data on ROV deployment, it is known that the sta-
tus may change over time and not be consistent across all
routes [30]. Thus, instead of managing a list, ImpROV man-
ages the RPKI status of their neighbors by measuring whether
they have propagated RPKI-invalid announcements or not,
and simply prioritize those who have never forwarded these
RPKI-invalid announcements. If there are still many avail-
able routes that have never propagated invalid routes after
removing such candidates, we choose the next hop for the
iRoute based on the original best route selection process, like
bgp best selection() for BIRD [13].

5.3.3 Creating iRoutes

After choosing the next hop, we create the iRoutes. As de-
scribed in §5.2, for RPKI-invalid prefixes with the same length
prefix, we create two iRoutes that are more specific than the
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is worth noting that ImpROV does not involve the adj-RIB-out [47], which means that the iRoutes are not advertised to other
neighbors (thus, omitted in the figure).

existing route by one bit. For RPKI-invalid prefixes that are
more specific, we only need to create one iRoute toward the
selected next hop. Since ImpROV mitigates collateral damage
within the AS that deployed it, we do not need to propagate
the iRoutes to other peers or downstream ASes. Thus, the
route will not be installed in the adj-RIB-out; we provide
our rationale for this decision in §5.5.

5.4 Updating iRoutes
After creating and installing iRoutes in the FIB, it is crucial to
update them when the RPKI-invalid announcements stop or
the valid route used to create iRoutes is withdrawn. Failing to
do so can result in zombie routes in the FIB, which can harm
performance and even cause blackholing. To address this
issue, ImpROV includes additional logic to manage iRoutes
accordingly. There are two main situations when these routes
need to be updated or removed to ensure optimal routing
and prevent stale entries: (1) when the RPKI-invalid prefix
announcement is no longer advertised, or (2) when there are
changes in the best route.

In such events, iRoute should be updated to prevent traffic
from being forwarded to a suboptimal next hop or to avoid
leaving stale routes in the FIB, which can harm router perfor-
mance.

5.4.1 RPKI-Invalid Updates

There are two indicators that an RPKI-invalid prefix announce-
ment has concluded: (a) the RPKI-invalid route is withdrawn
or (b) the next hop of the RPKI-invalid route updates the route
to a valid origin AS.

To handle these scenarios, ImpROV maintains an addi-
tional routing information table that stores iRoutes along with
their corresponding invalid and valid routes and all next hops,
which is called iRoute Table. This table can be implemented

as two hash tables indexed by the invalid and valid prefixes
used to create the iRoutes.

• When ImpROV receives a BGP withdrawal message, it
checks the iRoute Table for a matching prefix and next
hop; if found, ImpROV also withdraws the corresponding
iRoute from the FIB and the iRoute Table.

• Similarly, when ImpROV receives a new valid or unknown
route, it checks the iRoute Table for a match with the RPKI-
invalid route’s prefix and next hop. If there is a match, it
indicates that the original invalid announcement from that
next hop has been updated to a valid origin AS; otherwise,
the RPKI-invalid announcement is considered over, thus
ImpROV removes the iRoute from the FIB and the iRoute
Table.

5.4.2 Best Route Updates

Even when RPKI-valid or unknown messages from other
hops are received, iRoute changes may be required to refelect
optimal routing.

• When ImpROV receives a new BGP update and chosen as
the best route for a certain prefix, ImpROV also checks if
the prefix matches any valid route in the iRoute Table. If
matched, ImpROV updates the iRoute with the new best
next hop.

• When the next hop of a iRoute withdraws the route, Im-
pROV must also update the iRoute to prevent traffic from
being forwarded to a non-available next hop. Thus, when
receiving a withdrawal message, ImpROV checks if the pre-
fix matches any valid route in the iRoute Table and updates
the iRoute accordingly; if no other RPKI valid or unknown
route exists, ImpROV removes the iRoute from the FIB.



5.5 Propagation of iRoutes
Propagating the iRoutes to neighbors could potentially pro-

vide additional protection against RPKI-invalid prefix an-
nouncements, regardless of whether the neighbors deploy
ROV or not; for example, iRoutes are more specific than the
original valid announcements, neighbors receiving the iRoutes
would always select them to forward traffic to the IP space
covered by the RPKI-invalid announcement. However, in the
current implementation, we do not propagate the iRoutes to
neighbors. The primary reason is that forwarding iRoutes
to downstream ASes or peers could lead to unintended con-
sequences, as these routes might be further propagated to
other networks. Rather, it might be possible to share iRoutes
with neighbors in a more controlled manner, such as by using
a specific BGP community [14] to signal that a route is a
iRoute; this would allow neighboring ASes to make informed
decisions about whether to accept and use these routes.

6 Evaluation

To understand the performance overhead of ImpROV, we im-
plement it on two widely-used open-source BGP implementa-
tions, BIRD v.2.14 [13] and GoBGP v.3.19.0 [2].

6.1 Implementation

Creating iRoute: Three processes are involved when cre-
ating the iRoutes: (1) identifying the collateral damage, (2)
finding the next hop for iRoute, and (3) installing the iRoute to
FIB. One concern might be ImpROV would require all routes
to be stored in adj-RIB-In with the RPKI validation results.
Thus, if the router software drops the invalid routes from the
adj-RIB-In upon finding that the route is RPKI invalid, then
we would need to make more changes to the code and affect
the original pipeline.

However, in practice, we find that BIRD and GoBGP al-
ready maintain the RPKI invalid routes and validation results
in the adj-RIB-In, even though the BGP message turns out to
be invalid. This is mainly due to two reasons; first, if the router
does not keep the dropped RPKI-invalid routes, it would need
to issue a route refresh when ROA changes, which can cause
unnecessary performance degradation. Thus, RFC 9324 [8]
recommends retaining at least the routes dropped due to ROV
for a certain period in order to avoid frequent route refreshes.
Second, in practice, some routers also keep the invalidated re-
sults to provide the option as an alternative path, de-prioritize
them, or make other BGP attribute modifications, such as
marking them with an RPKI-invalid community number to
let other routers know the validation status when propagating
them [1]. Thus, we re-use these codes to identify the collateral
damage.

When choosing the next hop for the iRoute, we need to
retrieve all routes that cover that invalid prefix; we also note
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Figure 10: The percentage of additional convergence time
with multiple ROV and non-ROV upstreams.

that there are existing functions in the BGP software (e.g.,
fib get chain() in BIRD), which is to retrieve all covered
routes for a certain prefix. Thus, we also do not introduce
any other data structure or search function, since we believe
the existing algorithms in the BGP software are already opti-
mized.

Finally, we deploy the iRoute to FIB by calling an existing
function (e.g., fib insert() in BIRD).

Updating iRoutes: We have introduced a new table called
iRoute Table to store the iRoute that we installed. Typically,
the BGP software manages a hash table combined with a tree
structure for RIBs, where the hash table is used to search for
the exact matched prefix while the tree structure is used to
search for all covering prefixes and pick the most specific one.

In ImpROV, however, we only need to search for the exact
matched prefix to update iRoute, thus we only introduced
an extra hash table, which is more efficient. Implementing
ImpROV in both GoBGP and BIRD induced a total of 365
and 283 additional lines of code, respectively.

6.2 Performance Evaluation

We evaluate the performance considering two perspectives:
First, when a router establishes a new BGP session, typically
with another router, BGP peer, or IXP, it begins exchanging
routing tables. Typically, the entire BGP table exchange hap-
pens once a new BGP session is first established between two
peers. Thus, we measure the time to complete the FIB and
compare them with the original versions.

Second, after establishing a new BGP session, as new BGP
messages arrive, ImpROV deploys and updates iRoutes; thus,
we also measure the CPU and memory usage.

For all evaluations, ImpROV as well as BIRD and GoBGP
run on an Intel® Xeon® Silver 4210R @ 2.40GHz with 187
GB of RAM, Linux Kernel 5.4.0-54, the upstreams BGP are
running in another server with the exact same hardware, con-
nected with a 100Gps Ethernet within the same physical loca-
tion.



6.2.1 BGP Table Convergence Time

For evaluation, we use a simple network where one router
has multiple upstreams, some of which perform ROV.
The upstream routers send a full routing table taken
at five different vantage points captured in RouteViews
(i.e., route-views[2-6].routeviews.org) between Jan-
uary 1st, 2023 and February 1st, 2024. Since ImpROV in-
troduces a new iRoute when it receives an RPKI-invalid route,
we also control the number of upstreams that do not perform
ROV. As the number of non-ROV routers increases, which
send more RPKI-invalid routes, we expect that it may take
more time to construct the full routing table. Starting from a
simple topology with only one ROV-performing router and
one non-ROV-performing router, we increment the number of
non-ROV-performing routers to four, each sending a different
routing table captured from a different vantage point in Route-
Views. Considering that only 11.8% of ASes on the Internet
have more than 5 neighbors [17], we decide to test the perfor-
mance with 2 to 5 upstreams with different ROV policies. We
measure the relative performance impact of running ImpROV
compared to their native implementation in both BIRD and
GoBGP. For each experiment, we run 10 times and obtain the
daily average across 387 days. Figure 10 (left half) shows the
results.

First, with only two upstreams, ImpROV introduces an extra
5.0% (BIRD) and 6.5% (GoBGP) of time for convergence
when we use two upstreams with one non-ROV-performing
router; the average time to finish is 47.2 and 103.4 seconds
in the native implementation while it takes 49.6 and 110.0
seconds for ImpROV versions in GoBGP and BIRD implemen-
tation. As expected, as the number of non-ROV performing
upstreams increases, we see more overhead. For example, we
see that the overhead increases to 6.5% (BIRD) and 7.4%
(GoBGP) as we introduce up to four unsafe upstreams. How-
ever, we believe the performance overhead of ImpROV still
remains within acceptable bounds especially considering that
exchanging the entire BGP table typically happens once a
new BGP session is first established between two peers.

We also conduct a similar experiment, but now increasing
the number of ROV upstreams (Figure 10, right half); this is
to observe how ImpROV performance degradation happens
even when RPKI-valid or RPKI-unknown announcements
increase. We observe an interesting, non-linear relationship
between the number of ROV upstreams and the overhead of
ImpROV. As we increase the number of ROV upstreams, the
additional performance overhead does not increase propor-
tionally; for example, we find the overhead does not keep in-
creasing as we increase the number of ROV upstreams when
using BIRD, from 5.0% with 2 upstreams to 5.4% with 5
upstreams. We expect this behavior is driven by a distinct
factor of ImpROV; since we add iRoutes when we receive
RPKI-invalid announcements, more RPKI-valid and RPKI-
unknown announcements cause negligible performance harm.

Additionally, as the number of ROV upstreams increases, the
percentage of RPKI-invalid announcements received by Im-
pROV decreases. This is an encouraging finding, as it suggests
that as more ROV routers will be deployed, both the likelihood
of being collaterally damaged and experiencing performance
degradation decreases. These findings demonstrate the long-
term viability of ImpROV as a collateral damage mitigation
mechanism; its ability to handle increasing numbers of ROV
upstreams without significant performance degradation, com-
bined with the reduced likelihood of collateral damage as
ROV adoption expands.

6.2.2 CPU and Memory Overhead

After the initial exchange of the BGP table, more subsequent
BGP update messages come in, which involve the creation
and management of iRoutes. Thus, these operations have to
be efficient. To evaluate ImpROV’s performance impact on
BGP updates, we create a topology with our router connected
to two upstreams: one non-ROV and one ROV-performing
router. We then use complete daily BGP updates from Route-
Views2 and RouteView3 collectors, forwarding them to Im-
pROVwhile preserving original message timing. This setup
reflects real-world conditions. We run this measurement by
using 1,233,692,735 BGP update messages from the period
of January 1st to February 1st, 2024. This allows us to assess
the performance of ImpROV with real-world BGP update mes-
sages and its impact on the router’s resource utilization and
processing efficiency.

Through the experiment, we find that the memory con-
sumption is elevated by consuming 2.2% (BIRD) or 2.7%
(GoBGP) more additional memory when we run our exper-
iment throughout 32 days.3 This is because ImpROV adds
more iRoutes to FIB, which typically account for less than
1% [27] of the total RPKI-valid announcements, which is
detailed in §A.4.

Furthermore, when we focus on CPU usage, we find that
it only adds 2.1% (BIRD) or 3.8% (GoBGP) extra usage
throughout our measurement period. Since it only involves
a couple of hashmap lookup functions, which are known to
be efficient, it does not cause heavy extra cycles. It is also
worth pointing out that we do not cause any burst CPU usage,
ensuring that it does not lead to any CPU throttling.

To further understand the performance overhead introduced
by ImpROV, we analyze the execution time of each bytecode
with code profilers. In ImpROV, we find two major parts caus-
ing extra overhead: (1) creating mitigation routes and (2)
updating mitigation routes. For the creation process, the ma-
jor performance overhead lies in querying the adj-RIB-In to
fetch all covered prefixes of an invalid announcement; this
step takes 51.4% of the total creation process time for the

3The actual CPU and memory usages of ImpROV and native
versions are shown in §A.5.
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Figure 11: The effectiveness of ImpROV in preventing collat-
eral damage: 50% of ASes with ImpROV are able to reduce
more than 72.6% of hijacking attacks.

BIRD implementation and 43.2% for the GoBGP implemen-
tation. Interestingly, across all of our experiments, we notice
that GoBGP takes more time to insert the mitigation route
into the FIB compared to BIRD. This is because GoBGP
does not have a native implementation for FIB manipulation
but relies on zebra APIs [3], which require extra API calls.
For updating the mitigation routes, the major overhead lies in
checking the BGP update messages. Although we implement
the mitigation route tables as hash tables to minimize the
searching time, this searching process is triggered every time
a new BGP update arrives, accounting for a significant por-
tion of the performance overhead. However, we believe that
the performance overhead of ImpROV remains in acceptable
bounds (2.2% or 2.7% in memory and 2.1% or 3.8% in CPU
overhead with BIRD and GoBGP implementations).

6.3 Collateral Damage Mitigation

6.3.1 Effectiveness of ImpROV against Hijacking

Now, we evaluate how ImpROV helps mitigate the collateral
damage of ROV when hijacking happens. We revisit the hi-
jacking incident reports outlined in §4.4.1 to explore how
ImpROV could reduce collateral damage to the ROV-enabled
ASes if they deploy ImpROV. Initially, we focus on the ASes
that deployed ROV but still remained susceptible to collateral
damage attacks as detailed in §4.4.1; out of the 4,730 ROV
ASes considered, we identify 2,815 (59.5%) that have multi-
ple upstream connections including both non-ROV and ROV
ASes, where ImpROV could provide additional protection. We
then implement ImpROV in these 2,815 ASes and re-run our
simulation to calculate the proportion of hijacking attacks
reduced by ImpROV, called Protection Score; for instance,
an AS that was vulnerable to collateral damage but success-
fully prevents all hijacking attempts after deploying ImpROV
would achieve a 100% Protection Score. Figure 11 shows the
results.

Firstly, we discover that a mere 0.3% of ASes failed to
gain any protective benefits from deploying ImpROV. This
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Figure 12: 10% of ImpROV deployment, the average hijacking
success rate drops to 19% as focusing on higher ranked ASes.

lack of protection may stem from all of their upstream paths
not performing ROV at all, leaving these paths exposed to
vulnerabilities.

Secondly, more than half of ASes successfully can prevent
72.6% of collateral damage attacks through ImpROV, which
shows that merely circumventing the right upstreams that
propagate RPKI-invalid announcements—without analyzing
all possible paths—can still offer substantial protection. Fur-
thermore, the fact that only a small percentage of ASes failed
to benefit from ImpROV suggests that the approach is widely
applicable and can provide protection to a large portion of
the network. In the next section, we also focus on other ASes
who do not install ImpROV and how they can benefit from
their upstreams who deployed ImpROV.

6.3.2 Collateral Benefits of ImpROV

An AS that deploys ROV can yield collateral benefits, protect-
ing other ASes routing through it from receiving RPKI-invalid
announcements. Similarly, the deployment of ImpROV not
only benefits the deploying AS itself but also benefits the
connected ASes by forwarding traffic to legitimate origins
along the path, even though ImpROV only considers the next
hop.

To evaluate the additional protection that ImpROV provides
to other ROV ASes, we measure the average hijack success
ratio across all ROV ASes in the topology when k ROV ASes
have also deployed ImpROV. As a baseline, we first measure
the average hijack success ratio among the ASes that perform
ROV but without deploying ImpROV and analyze how this
ratio decreases as more ROV ASes deploy ImpROV. We gradu-
ally increase the number of ASes that deploy ImpROV. While
we can choose random ASes to deploy ImpROV, we also fo-
cus on selecting higher-ranked ASes since larger networks
have a higher probability of encountering hijacking attempts,
thus contributing more significantly to reducing the overall
hijacking success ratio. When we choose random ASes, we
calculate the average success ratio by running 10 different
experiments and obtain their average.

Figure 12 shows the average hijack success ratio across
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Figure 13: As ROV deployment grows, the number of ASes
that can deploy and benefit from ImpROV also increases ini-
tially; however, after a certain point, this becomes marginal as
collateral damage and hijacking vulnerability decrease with
widespread ROV adoption.

ASes depending on the percentage of ROV ASes that have
also deployed ImpROV. Interestingly, we find that the average
successful hijack ratio drops from 37.4% to 26.92% when we
deploy ImpROV on only 10% of ROV ASes randomly; how-
ever, this ratio further drops to 19.54% when we choose the
top 10% ROV ASes for ImpROV deployment. This emphasizes
the importance of higher-ranked ASes; they not only provide
a larger global impact through the collateral benefit of ROV
deployment [22], but they can also significantly contribute to
reducing the overall collateral damage by deploying ImpROV.
The substantial difference in the hijack success ratio between
random and top-ranked AS deployment highlights the critical
role that influential ASes play in enhancing global routing
security. By prioritizing the adoption of ImpROV among these
key players, we can effectively amplify the collateral benefits
and minimize the impact of hijacking attempts on the entire
network.

6.4 Effectiveness of ImpROV vs. ROV Deploy-
ment

To deploy ImpROV, an AS must have multiple upstreams, with
at least one dropping RPKI-invalid announcements; otherwise,
there are no safe upstreams available to establish iRoutes. As
ROV adoption increases, more ASes become capable of imple-
menting ImpROV. However, if an AS only has ROV upstreams,
ImpROV may not provide additional benefits. This raises the
question: to what extent can ImpROV be deployed as more
ASes adopt ROV? To address this, we use CAIDA’s AS rela-
tionship dataset to construct a topology graph of 76,436 ASes.
We randomly select different portions of ASes to deploy ROV
and calculate the percentage of ROV ASes with both ROV and
non-ROV neighbors. Based on the current topology, we assess
how many ASes can deploy ImpROV by avoiding routes to-
ward ASes that forward RPKI-invalid prefixes. We repeat this
simulation 10 times and take the average. Figure 13 shows
the results. Note that no ASes can deploy ImpROV without

ROV-performing upstreams. As ROV deployment increases,
the number of ASes capable of deploying ImpROV grows,
peaking at 26.5% of total ASes when 50% have deployed
ROV. Beyond 50% ROV deployment, the additional benefit of
ImpROV decreases as more ASes have all ROV upstreams; Im-
pROV becomes less significant when it no longer introduces
any iRoute due to receiving no RPKI-invalid BGP announce-
ments from ROV-performing upstreams. Although ImpROV
offers no additional benefits with 100% perfect ROV deploy-
ment, we believe this scenario is unlikely. With current ROV
deployment below 18% [39] and many ASes implementing it
partially due to business [30] or technical [4] considerations,
ImpROV remains crucial.

In summary, ImpROV enhances protection as ROV adoption
grows, maintaining relevance until ROV deployment reaches
about 90%, highlighting its importance during the transition
to widespread ROV adoption.

7 Potential Security Concerns

ImpROV creates and stores iRoutes to mitigate collateral dam-
age. Specifically, for each invalid route, ImpROV generates
two one-bit longer routes. For instance, a /20 route produces
two /21 iRoutes, introducing 2×N iRoutes when N RPKI-
invalid routes are received. This prompts concern over its pos-
sible use as a DoS attack vector by intentionally announcing
RPKI-invalid prefixes, but its memory overhead is minimal,
as elaborated below.

Memory overhead in real-world prefix hijacks: First, we
consider the additional memory usage introduced by ImpROV
in real-world prefix hijacking incidents. Although hijacking
ROA-covered prefixes increases the number of RPKI-invalid
routes, the resulting iRoutes are still small compared to the
size of global routing tables; as a reference point, one of
the largest prefix hijacking events occurred in April 2020,
when AS 12389 hijacked more than 8,800 prefixes [11]. We
simulated the memory overhead imposed by ImpROV in that
scenario, assuming all hijacked prefixes were ROA-covered
and thus triggered iRoutes creation. The results show only
34.6 MB of additional memory usage, which is negligible for
modern routers.

Influxes of RPKI-invalid prefixes: In extreme cases—such
as peering with malicious routers without defenses like route
limits—the adversary could flood ImpROV with invalid pre-
fixes, leading to increased memory consumption. However,
even under the unlikely condition where every prefix in the
global IPv4 routing table is both ROA-covered and hijacked,
the memory usage of routing software (e.g., BIRD or GoBGP)
with ImpROV remains under 3 GB. Since entry-level routers,
such as Cisco’s 4000 series, typically have 4 GB–16 GB of
control-plane memory [18], this growth is unlikely to over-
whelm router resources or introduce new security concerns.
Moreover, large-scale flooding is already recognized as a



threat [34], and standard mitigation techniques—such as rate
limiting and prefix count limits—remain effective regardless
of ImpROV.

8 Conclusion

In this paper, we presented the first comprehensive study of
collateral damage in RPKI, revealing that 85.6% of RPKI-
invalid announcements are vulnerable to such attacks, affect-
ing 34% of ROV-enabled ASes. To address this issue, we intro-
duced ImpROV, a lightweight system that mitigates collateral
damage with minimal overhead. With only 10% deployment
among top-tier ROV ASes, ImpROV reduces the average suc-
cessful hijack ratio from 37.4% to 19.54%, while increasing
memory usage by 2.2-2.7%, CPU usage by 2.1-3.8%, and
FIB entries by 1.1% on average. After deployment, 50% of
ASes can thwart approximately 72.6% of potential attacks.
Despite some limitations, ImpROV offers a practical solution
for enhancing inter-domain routing security in the context of
RPKI deployment.
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A Appendix

A.1 Ethics
This work does not raise any ethical issues.

A.2 Open Science Policy
The authors will make publicly available all source code for
data collection and analyses used in this study, as well as the
detailed descriptions of how public datasets are collected 4.

A.3 De-prioritizing Less-specific Route
To mitigate collateral damage, one can de-prioritize the next
hop that forwards RPKI-invalid prefixes for existing routes
in the routing table instead of generating additional routes.
With this way, there’s no need to generate new routes for each
RPKI-invalid prefix. However, when sub-prefix hijacks occur,
the existing routes in the routing table will be less specific
than the actual hijacked IP blocks. De-prioritizing these less-
specific routes will result in changing the next hop for benign
IP spaces that are not under hijack (benign prefixes).

Figure 14 shows how to mitigate the collateral damage by
de-prioritizing less-specific routes in AS 1, where AS4 an-
nounces 1.2.0.0/16 and AS5 hijacks AS4 with a more specific
prefix 1.2.3.0/24. Before the hijack happens, AS1 selects AS3
as the best route to forward all traffic towards 1.2.0.0/16.

When AS1 receives the invalid announcement of 1.2.3.0/24,
it will re-select the best route for all less specific prefixes with
the modified best route selection algorithms.

Thus, AS1 re-runs the best route selection process for
1.2.0.0/16 and chooses the safer upstream AS2, which looks
similar to the outcome of ImpROV. However, this will not
only impact the IP space that is under hijack (1.2.3.0/24), but
also impact other IPs that are under the less specific prefix
1.2.0.0/16; for example, 1.2.1.0/24 (not impacted by the hi-
jack) should not be affected on the data-plane and could be
forwarded to either AS2 or AS3 since these are not vulnerable
to hijack. Since prefixes that are less specific than the an-
nounced RPKI-invalid prefix are de-prioritized, the next hop
for benign IP spaces like 1.2.1.0/24 will also change to AS2,
which may not be the desired outcome depending on AS1’s
routing policy (e.g., traffic engineering). We call these IP pre-
fixes that are not impacted by the RPKI-invalid announcement,
but forced to be de-prioritized, benign prefixes.

To estimate the impact on creating such benign prefixes, we
first collect all RPKI-invalid prefixes that are covered by valid
less specific prefixes from the dataset we used in §4 (dotted
line in Figure 4). We then calculate the size of IP spaces
impacted by de-prioritizing less-specific route versus the IP

4https://doi.org/10.5281/zenodo.14643447
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Figure 14: The data-plane impact of de-prioritizing less-
specific route. To mitigate collateral damage of a hijacked
/24 prefix, it impacts the data-plane of the entire /16 IP space,
including other 255 /24 prefixes (e.g., 1.2.1.0/24) that are not
being hijacked.
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Figure 15: The distribution of the number of benign prefixes
been impacted for each RPKI-invalid announcement.

spaces that are under hijack; Figure 15 shows the number
of impacted prefixes that each RPKI-Invalid prefixes create
after de-prioritizing shorter routes under sub-prefix hijack. On
average, to mitigate collateral damage of one RPKI-Invalid
prefix, we find that de-prioritizing less-specific route will
impacts 84 times more benign IPs than the actual prefixes
under hijack, potentially leading to unexpected outcomes.

In contrast, ImpROV only prioritizes the next hop (which
does not forward RPKI-invalid prefixes) by adding iRoutes
without modifying the best route selection algorithm, thus
avoiding the creation of such benign prefixes.

A.4 The Number of Increased Entries in FIB
Another concern regarding the performance impact of Im-
pROV is the potential performance downgrade in the data-
plane due to the additional routes installed in the routing
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Figure 16: The percentage of additional entries in FIB.

tables; however, it is important to note that ImpROV does not
install any additional routes in the adj-RIB-In, Loc-RIB, or
adj-RIB-Out. The only routing table affected by ImpROV is
the FIB, which is used for the actual forwarding of packets.
Now, we calculate the actual number of increased entries in
FIB due to the iRoute. To this end, we take each day’s Route-
Views RIB from January 1st, to February 1st, 2024 and run
ImpROV and measure the number of FIB entries and compare
them with the ones when we run the same experiment with
the native implementation. Figure 16 shows the result; we can
confirm that ImpROV only increases the number of entries in
FIB by 1.1% additional routes on average, while having the
maximum increase of 1.5% when there are the most RPKI-
invalid routes during that day, as discussed in §4.1. This result
demonstrates that the impact of ImpROV on the FIB size is
relatively small, even during periods with a higher number
of RPKI-invalid routes; the average increase of 1.1% in FIB
entries suggests that ImpROV can effectively reduce collateral
damage without causing a significant burden on the size of
the FIB.

A.5 CPU and Memory Overhead
The CPU and memory usage of ImpROV and native versions
are shown in Figure 17 and Figure 18, respective.
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Figure 17: The memory usage of ImpROV and native ver-
sions (top and middle) and memory overheads of ImpROV
are shown; on average, we find that ImpROV consumes 2.7%
(GoBGP) and 2.2% (BIRD) additional memories.
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Figure 18: The CPU usage of ImpROV and native versions
(top and middle) and the overheads of ImpROV are shown;
on average, we find that ImpROV consumes 3.8% (GoBGP)
and 2.1% (BIRD) more CPU cycles. Note that the overhead is
calculated as the percentage of increased CPU usage relative
to the native implementation.
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