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Abstract

MQTT is a multi-party communication protocol widely used
in IoT environments, where MQTT brokers act as servers
that connect with numerous devices. Consequently, any flaws
in brokers will seriously impact all participants. Given the
success of fuzzing techniques in finding bugs in programs,
existing fuzzing works targeting MQTT brokers face the lim-
itation of insufficient fuzzing input space because they all
adopt a two-party fuzzing model. Accordingly, the code re-
sponsible for handling multi-party communication will not be
examined. Moreover, existing fuzzers focus on either memory
corruption bugs or logic errors without considering whether a
broker implementation is specification-compliant.

In this paper, we design a black-box fuzzing approach,
MBPFuzzer, for brokers to address the above limitations. We
first design a multi-party fuzzing framework containing two
fuzzing input senders to facilitate the exploration of code
space that handles multi-party communication. To improve
fuzzing efficiency, we design a message priority scheduler,
six dependency rules, and a dependency queue to guide test
case generation and coordinate the message sending of the
two senders, respectively. We leverage differential testing to
identify non-compliance bugs and design an LLM-based non-
compliance bug analysis method to automatically analyze
the bug report and validate whether it is a non-compliance
bug. We implemented a prototype MBFuzzer and evaluated
it with six mainstream MQTT brokers. MBFuzzer success-
fully identified 73 bugs including 20 memory bugs and 53
non-compliance bugs with 11 CVEs assigned. The compar-
ison with state-of-the-art fuzzers indicates that MBFuzzer
outperforms them in both code coverage and bug finding
capabilities.

1 Introduction

Message Queue Telemetry Transport (MQTT) is a popular In-
ternet of Things (IoT) protocol that uses a publish/subscribe
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(pub/sub) message delivery model for multi-party commu-
nication [54, 60]. The communication of MQTT has three
roles: publisher, subscriber, and broker, where the broker is
the server-side protocol implementation for managing and
routing messages. Brokers can simultaneously connect to
numerous entities, such as clients, brokers, and commercial
IoT platforms (e.g., AWS IoT Core [2]), enabling multi-party
message transmission. With the flexible messaging model
and reliability, brokers have been widely used in production
environments [5,26]. Therefore, any bug in brokers would
pose a serious security risk to thousands of communication
participants.

Notably, recent research has proposed various strategies
to find bugs in brokers, including static analysis [33], formal
verification [56,59] and fuzzing [27,48,57,60]. Among these
strategies, fuzzing is one of the most efficient ways to discover
bugs automatically and achieve great results [24, 66]. Despite
the measurable success of fuzzing, existing fuzzers have lim-
ited ability to explore the logic of multi-party communication
in brokers, thus limiting bug discovery.

In detail, the broker is responsible for routing and distribut-
ing all messages in MQTT. Publishers send messages with
specific topics to the broker, and subscribers receive these
messages by subscribing to the relevant topics through the bro-
ker. Consequently, there are message dependencies not only
between the publisher and the broker or the subscriber and
the broker but also between the publisher and the subscriber.
However, existing fuzzers [29, 48, 50, 57] use a two-party
fuzzing model (i.e., the fuzzer acts as a client, and the broker
acts as the fuzz target) and only considers message dependen-
cies in the two-party communication scenario (i.e., publisher-
/subscriber-broker). These approaches limit the exploration
of fuzzing input space for brokers, reducing the effectiveness
of discovering bugs. Additionally, existing fuzzers either fo-
cus on memory corruption bugs [29,48] or logic errors [59],
without considering if an implementation is specification-
compliant.

To address these challenges, we design MBFuzzer by
proposing a novel black-box fuzzing approach for brokers to



discover both memory and non-compliance bugs. To explore
the input space for multi-party communication, we design
a multi-party fuzzing framework containing two message
senders, playing the roles of subscriber and publisher. We
first design six dependency rules and a dependency queue
shared by senders, considering the message dependencies be-
tween publisher/subscriber and broker and the dependencies
between the publisher and subscriber, to coordinate and fa-
cilitate the generation of fuzzing messages across different
senders. Then, we use extended Petri net [41,49] to model
the communication behavior of these two parallel senders to
clarify the process of collaboration. We design a message
priority scheduler to improve the efficiency of exploring the
input space and bug discovery. Moreover, we employ differen-
tial testing [44] to detect non-compliance bugs. To streamline
the validation process for non-compliance bugs that would
otherwise require substantial manual efforts, we propose a
non-compliance bug analyzer based on Large Language Mod-
els (LLM). This tool automatically verifies whether a bug is
non-compliant and pinpoints the specific violation behind this
bug.

We implemented MBFuzzer and evaluated it on six open-
source MQTT brokers, covering four different programming
languages. MBFuzzer discovered a total of 73 new bugs, in-
cluding 20 memory bugs and 53 non-compliance bugs. We
responsibly reported these bugs to related vendors, and at the
time of paper writing, 69 bugs are confirmed with 61 bugs
fixed and 11 CVEs received. The comparison with three state-
of-the-art fuzzers shows that MBFuzzer outperforms existing
fuzzers in code coverage and bug discovery. Our evaluation of
the LLM-based non-compliance bug analyzer indicates that it
can achieve an accuracy of more than 90%.

Overall, we make the following contributions in this paper:

* We designed a novel multi-party black-box fuzzing
framework for MQTT brokers that considers message
dependencies across multiple parties.

* We proposed an LLM-based non-compliance bug ana-
lyzer to automatically validate and pinpoint the viola-
tions in these bugs, which achieves high accuracy.

* We implemented a prototype MBFuzzer, and evaluated
it on six popular brokers. MBFuzzer revealed 73 new
bugs and received 11 CVEs.

2 Background and Motivation

In this section, we first introduce the basics of the MQTT
protocol and then use a real-world case to illustrate the mo-
tivation of our work and the limitations faced by existing
research.
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Figure 1: Multi-party communication scenario of MQTT bro-
kers.

2.1 MQTT Protocol

MQTT uses a pub/sub message delivery model [8], a multi-
party communication paradigm widely used in distributed
environments [54], consisting of four main components: pub-
lishers, subscribers, brokers, and topics. The client sending
messages (publisher) and the client receiving messages (sub-
scriber) do not need to establish a direct connection. The
brokers handle all message routing and distribution based on
topics. Notably, the brokers can not only connect with various
clients but also enable message transmission through MQTT
bridge [31] with other brokers and commercial IoT platforms
(can be considered as a kind of broker). The MQTT bridge is
a core feature and enables message interchange under various
edge networks. In bridging scenarios, the broker that initiates
the bridge request to another broker or IoT platform is called
the bridge broker [31]. This functionality has proven useful
in production environments with multiple levels of message
aggregation [11], becoming a de facto standard [10].

Figure 1 shows a common multi-party communication sce-
nario involving a client, a broker, and an [oT platform, where
the client and platform are labeled Subscriber and Publisher.
In this scenario, the broker must first initiate a connection re-
quest to the Publisher to establish a data transmission channel
between them (I). Subsequently, the Subscriber within the
local network connects to the broker (2) and subscribes to the
topic Notification 3). The Publisher then pushes a mes-
sage with the topic Cloud/Notification to the broker 3.
The broker processes the message by parsing and remapping
the topic @), converting the topic from other platforms to the
required local network topic Notification, which is a logic
specific to paring messages from broker and IoT platform in
the broker. Then, the broker encodes the message before for-
warding it to the Subscriber (b). At this point, the multi-party
communication between the client, broker, and IoT platform
is complete.



2.2 Motivation

We use a real-world bug to illustrate the motivation behind
our approach and the limitations of existing work.
Real-world Example. The bug with a CVE number CVE-
2024-42655 allows for unauthorized access to sensitive sys-
tem topics and leakage of sensitive information, such as the
broker’s version and details about connected devices, which
can be highly valuable to hackers [21, 39]. Figure 2 illus-
trates how this bug can be triggered. Upon startup, the bro-
ker loads an access control configuration file that explicitly
prohibits clients with the username sub from subscribing to
topics that start with $SYS, which represents the system topic
in MQTT [21]. A subscriber connects to the broker using
the username sub (Step (D). Subsequently, the subscriber
subscribes to the topic pattern +/+/+ (Step @), where the +
symbol represents a wildcard that can represent any topic [14].
After that, a publisher connects to the broker and prepares to
publish messages (Step 3)). The broker responds to the pub-
lisher with a CONNACK message to acknowledge the connec-
tion (Step @). Meanwhile, the broker constructs a PUBLISH
message containing information about all currently connected
devices to the topic $SYS/broker/connected and forwards
this message to the subscriber with the username sub (Step
®). However, the forwarding action violates the access con-
trol mechanism, as the user sub is explicitly prohibited from
subscribing to system topics.

Limitations in Existing MQTT Fuzzers. The root cause
of this bug is a failure to adhere to the protocol specification:
"The server must not match topic filters starting a wildcard
character with topic names beginning with a $ character’.
Existing fuzzers [27,29,48,50,57,60] are limited in detect-
ing such multi-party non-compliance bugs because they are
implemented on the two-party fuzzing model. This makes it
impossible to trigger the broker to forward PUBLISH messages
in step (O, as this behavior requires a certain message from a
third participant. Moreover, the unexpected behavior does not
cause any crash in any participants, making it impossible for
fuzzers relying on memory sanitizers to detect the bug [64,67].
All these limitations call for a fuzzer that supports multi-party
communication and the detection of non-compliance bugs
that do not result in crashes.

3 Challenges and Solutions

There are several challenges that need to be addressed in
designing a fuzzer that supports multi-party communication
and the detection of both memory and non-compliance bugs.

To support multi-party communication, an intuitive ap-
proach is to introduce another sender that can send fuzzing
input to the broker. This leads to the first challenge C1: how
to coordinate message sending across different senders?
Not like existing fuzzers [29,48] with only one sender, with
two senders, after a test case is generated, it needs to be de-
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Figure 2: Steps to trigger the access control bypass bug (CVE-
2024-42655) in NanoMQ.

termined which sender to send this test case. Allocating test
cases randomly to a sender is not feasible since it ignores the
dependencies between the messages sent by the two senders.

Solution: To address this challenge, we first extract six de-
pendency rules from the messages involved in multi-party
communication in the protocol specifications. Then, we de-
sign a dependency queue shared by two senders to coordinate
their message sending. Lastly, we model the communication
behavior of two senders in parallel using Petri net [49] to clar-
ify the coordination process and demonstrate the effectiveness
of the shared queue.

Black-box fuzzing does not require the instrumentation of

source code and is well-suited for MQTT because most open-
source brokers are implemented in different programming
languages [59]. The lack of feedback from the program leads
to the second challenge, C2: how to set fuzzing feedback
for improving the bug discovery efficiency? We observe
that protocol specifications describe the potential errors in
processing each message at different lengths. More detailed
descriptions indicate more complex parsing logic, which in-
creases the likelihood of introducing errors in the implemen-
tation, including memory bugs or non-compliance bugs. Thus,
ideal feedback would guide the black-box fuzzer to allocate
more computational resources to send messages that are more
prone to errors.
Solution: To overcome this challenge, we use the unique in-
consistency found by differential testing as fuzzing feedback
because it indicates that developers have different understand-
ings of the same logic, which could be potentially buggy [65].
Then, we use Q-learning [18] to dynamically prioritize the
sending of each message under different states based on the
number of inconsistencies.

In contrast to memory bugs, non-compliance bugs do not
exhibit any obvious error behavior and require subsequent
manual analysis of the inconsistent results [62]. This leads to
the third challenge, C3: how to efficiently and accurately
confirm non-compliance bugs and pinpoint the violations?
Manual verification not only requires a deep understanding of
the protocol from the analyst but also consumes a significant
amount of time and effort, making it impractical for large-
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Figure 3: Fuzzing framework of MBFuzzer.

scale testing.

Solution: To address this challenge, we design a non-
compliance bug analysis method based LLM, applying
prompt chaining [17] and background-augmented prompt-
ing [55] strategy, to automatically validate and pinpoint the
violation rules defined in specifications behind these bugs.

4 Design and Implementation

4.1 Overview

Figure 3 shows the overall framework of MBFuzzer, which
compromises five components: message senders, test case
generation, message sending coordination, bug detection, and
LLM-based bug analyzer. We set up two message senders
to play the roles of publisher and subscriber to send fuzzing
messages in parallel, and their roles are dynamically specified
according to the message they sent by the Test Case Gen-
eration. To test the relay code in brokers that communicate
with other brokers, we set Sender 2 as a bridged broker for
receiving connection requests from brokers under test and
sending messages once a connection is successfully estab-
lished. Instead of using a real broker, we implement a Python
script, which allows us to set a response cache so that it can
return responses immediately after receiving the connection
request to reduce processing delays and also enable us to send
any format message.

The workflow of MBFuzzer could be divided into five steps:
(1) We extract the dependency rules from MQTT protocol
specifications. These rules are provided for the Message Send-
ing Coordination. (2) In the fuzzing loop, the Test Case Gen-
eration generates and mutates fuzzing messages for each
sender. (3) The Message Sending Coordination coordinates
message sending between senders by influencing message
generation. (4) The Bug Detection discovers memory bugs
and non-compliance bugs by monitoring socket status and dif-

ferential testing. These newly discovered inconsistencies will
be provided for the Message Priority Scheduler as feedback.
(5) After fuzzing, the LLM-based Bug Analyzer replays all
inconsistency test cases to validate and pinpoint the violations
behind these non-compliance bugs.

4.2 Dependency Extraction

To efficiently coordinate message generation and sending
among senders, we identify two types of dependencies in-
fluencing multi-party communication: message dependency
and field dependency. Message dependency refers to pairs of
message types that must be sent in a specific order to affect
the communication process between senders and the broker.
Field dependency refers to specific fields in dependent mes-
sage pairs that the broker used for message matching and dis-
tribution. The values of these fields need to be matched across
messages in multi-party communication. For example, in Fig-
ure 1, the SUBSCRIBE and PUBLISH messages have a message
dependency as the two senders must establish a connection
with the broker to register subscriptions and publish messages
respectively, which is a prerequisite for multi-party commu-
nication. The topic field in both SUBSCRIBE and PUBLISH
messages have a field dependency because it is used by the
broker to match incoming messages with corresponding sub-
scriptions.

We identify these dependencies and construct dependency
rules following three steps: (1) We list all message types de-
fined in the protocol specification and analyze their pairwise
combinations to determine whether one message depends on
another for multi-party communication. We name the first
message in the pair primary message, which represents the
initial message sent in the multi-party communication. The
second is named secondary message, indicating it is sent sub-
sequently. We consider a particular pair of messages to have
a message dependency if their interaction facilitates the es-



Primary Message

Secondary Message

No Type Field Type Field Affect Sender Cache
1 CONNECT will topic SUBSCRIBE topic Another Sender | No
2 CONNECT! client id CONNECT client id Both Sender Yes
3 SUBSCRIBE  topic PUBLISH topic Both Sender No
4 SUBSCRIBE topic UNSUBSCRIBE  topic Same Sender No
5 PUBLISH? topic SUBSCRIBE topic Both Sender Yes
6 PUBLISH topic alias | PUBLISH topic alias | Same Sender No

Table 1: Dependency rules for MQTT pub/sub message delivery model.

! The clean session flag should be 0.
2 The retain flag should be 1.

tablishment or termination of multi-party communication. (2)
We then analyze each field in the two messages to determine if
the fields in the secondary message have a value dependency
with the fields in the primary message. If there is a field in
both messages used by the protocol for message matching or
distribution, and their values must remain matched for mes-
sage transmission, we consider it a field dependency for the
current message pair. Additionally, we examine fields that
trigger message caching in brokers, as the value of such fields
can affect the order of multi-party communication. For in-
stance, when a subscriber sends a subscription request after
a message has already been published, the broker typically
does not forward the published message to the subscriber be-
cause it has been discarded before the subscription request is
processed. However, if a caching field is enabled, the broker
will cache the published message and forward it to subse-
quent new subscribers. Therefore, if a caching field allows
communication of a new combination of messages to affect
multi-party communication, we consider it a field dependency
as well. (3) Finally, we combine the identified message de-
pendencies and field dependencies to construct dependency
rules to coordinate senders for multi-party communication.

We manually analyzed the MQTT protocol specification
and identified six dependency rules listed in Table 1. We use
rule 1 as an example to explain the meaning of these rules
and how they coordinate message sending across senders and
affect multi-party message transmission. When a sender sends
a CONNECT message containing a will message and then re-
ceives a CONNACK with a successful reason code, MBFuzzer
copies the value of the will topic field to the topic field of
the secondary message based on this rule and then saves the
secondary message. Subsequently, MBFuzzer guides another
sender to select the stored secondary SUBSCRIBE message
according to the Affect Sender column, instantiates a sub-
scription message, and sends it to the brokers. After that, if
the sender that sent the primary CONNECT message acciden-
tally disconnects, the broker will automatically send the will
message to another sender according to the feature of the
will message [12], completing the multi-party communica-
tion. Notably, if the sender that sent the primary message
disconnects before another sender sends the SUBSCRIBE, the
secondary message will expire and no longer be used to guide
another sender to generate messages, as specified in the Cache

column.

4.3 Test Case Generation

In the fuzzing loop, MBFuzzer generates test cases for each
sender, based on the protocol state they are under, through
three steps: determining the message type, instantiating the
message, and mutating it. The test case generation process is
illustrated in Algorithm 1.

Algorithm 1 Workflow of Test Case Generation

Input: ProtocolState, Sender, SharedDepQueue
Output: FuzzingMsg
// Step1: Determine message type
1: if SharedDepQueue.HASAVAILABLEDEP(Sender) then
2 DepMsg <— SharedDepQueue. GETAVAILABLEDEPMSG()
3 MsgType <— DepMsg.GETMSGTYPE()
4: else
S: MsgType <— GETMSGB YPRIORITY (ProtocolState)
6: end if
// Step2: Instantiate message content
7: MsgContent <— CREATEFUZZMSG(MsgType, DepMsg)
// Step3: Mutate message content
8: FuzzingMsg <— MUTATE(MsgContent)

Determine Message Type. MBFuzzer determines the gener-
ated message type in two ways. One is by selecting a message
type from the dependency queue shared by the two senders
(lines 1-3 of Algorithm 1). The shared dependency queue is
responsible for coordinating the message sending between
senders and records secondary messages defined by the de-
pendency rules, which we will explain in detail in Section 4.4.
The other is that when the dependency queue does not have a
secondary message available for the sender, MBFuzzer ran-
domly selects a message type with a higher priority based on
the message priority scheduler (line 5 of Algorithm 1). To
achieve this, we first observed that the protocol specification
provides varying lengths of descriptions on parsing errors
for each message type, suggesting that the likelihood of each
message triggering a bug may differ accordingly. Next, we
employ Q-learning [18], a model-free reinforcement learn-
ing method, to design a message priority scheduler based on
the number of bugs discovered during fuzzing. Q-learning
allows the agent to dynamically learn a state-action policy,
determining the optimal action based on the observed envi-



ronment state. After each action, the agent receives a reward,
updates its policy, and repeatedly learns how to maximize the
accumulated reward. Q-learning is particularly suitable for
scenarios with discrete states and limited action spaces [18],
making it a natural fit for MQTT. Compared to other popular
methods, such as Markov chains [35,48], it performs better
in this application, as demonstrated in Section 5.3.

With Q-learning, MBFuzzer dynamically learns a state-
action policy that records the selection probability of each
message type in different states. After sending the message,
MBFuzzer receives a reward based on new inconsistency
feedback and updates the policy. Following the policy update,
MBFuzzer would select the next message type based on the
refined policy, continuously optimizing the test case genera-
tion to maximize the chances of triggering bugs. The detailed
steps of the Q-learning method are shown as follows.
Capturing States. We represent the sender’s state when com-
municating with the broker using the hash value of the com-
bination of the fixed header and reason code fields from
response messages received from the broker. These fields
contain the information of message type and handling state,
typically reflecting the internal state of the server handling the
current request [50]. Since MBFuzzer tests multiple brokers
simultaneously and may receive different responses, we fol-
low the principle of majority rules and use the most frequently
occurring state values as the state to record in Q-learning.
Learning Policy. We use a two-dimensional Q-table to cumu-
late the experience learned by MBFuzzer, where each column
corresponds to a specific type of message, and each row rep-
resents a distinct response state. Each cell stores the Q-value
for the corresponding state-action pair, which is initially set
to 0 and is iteratively updated based on feedback from the
reward function. To facilitate bug discovery, we use new in-
consistencies discovered as the feedback and assign a constant
reward value to the corresponding cell, as inconsistencies are
usually considered potential bugs [67]. We do not consider
memory bugs as feedback because the black-box fuzzing can-
not infer the crash trigger stack of crashes without program
instrumentation. The reward function is designed as follows.

1
R(s,a,s') = { ’

0, if no or duplicate inconsistency

if new inconsistency 0

Once a reward is received, the scheduler uses the Q function
0 : S5 x A — R to update the Q-value for the specific state-
action pair in the Q-table. After an action « is performed, a
new state s’ is generated from the current state s. We then
update the Q-value using the following formula:

0O(s,a) = Q(s,a) + & |R(s,a) +ymax O (s',d') — O(s,a)

2
where the o € (0, 1] is the learning rate and v € (0,1] is the
discount factor. We set a common value of 0.1 and 0.9 for

them [30], respectively, which performed well in our experi-
ments.

Getting Next Actions. Given a state, the scheduler first con-
verts the Q-values corresponding to each message type into a
probability distribution [52] using the softmax function. The
probability P(a;|s) for each action is computed as follows:

xp(Q(s.a1)/T)
X1 exp(Q(s.4;)/T)

where Q(s,a;) is the Q-value for action ¢; in the state s, and T
is the temperature parameter used to control the smoothness
of the probability distribution. We set 7 to 0.5 to maintain a
balance in the probability distribution.

Subsequently, the scheduler selects the message type

through sampling from the probability distribution to find
the first action with a cumulative probability P(a;|s) exceeds
the random number p € (0, 1]. This method ensures that mes-
sages with higher probabilities are more likely to be chosen,
while messages with lower probabilities still have a chance of
being selected [46].
Instantiate and Mutate Message. After determining the mes-
sage type, MBFuzzer performs message instantiation based on
the syntax-based generation strategy (line 7 of Algorithm 1).
We first define the format template of each message based
on the protocol specification, including the range of valid
values for each field to ensure the validity of the message
format. MBFuzzer then generates random values based on
the range for each field and assembles them in sequence to
form a valid MQTT message. During message instantiation,
if the current message type is determined from the depen-
dency queue, MBFuzzer uses the field values recorded in
the secondary message for instantiation instead of randomly
generating them to satisfy the field dependency (line 7 of Al-
gorithm 1). Lastly, MBFuzzer performs field-level mutation
operations on messages generated by the syntax-based genera-
tion, as the mutation is crucial for detecting various bugs [34]
(line 8 of Algorithm 1). The mutation process includes three
types of mutation operations, such as bit-flipping, arithmetic
operation, and payload operation (e.g., deleting, injecting, and
replacing a random segment of bytes). Notably, fields with
dependencies in messages are preserved without mutation to
ensure that the field dependencies are not broken.

P(a;|s)= 3)

4.4 Message Sending Coordination

To collaborate message sending between two senders and fa-
cilitate multi-party communication, we design a shared depen-
dency queue for them and apply the constructed dependency
rules.

The dependency queue is responsible for managing all
secondary messages defined by the dependency rules and co-
ordinating message sending between senders by influencing
the test case generation process. First, after each sender in
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Figure 4: A Petri net model of the communication behavior of
two parallel senders based on the shared dependency queue.

Figure 3 sends a request and receives a response, MBFuzzer
examines the response code to determine whether the broker
has successfully parsed the request. Next, based on the de-
pendency rules, MBFuzzer checks whether the request has a
dependent message, i.e., the secondary message. If a message
dependency is found, MBFuzzer selects the corresponding
secondary message, copies the dependent field values from
the request into the secondary message, and stores it in the
dependency queue. Subsequently, during message generation
for each sender, MBFuzzer inspects the dependency queue for
available secondary messages and sequentially selects a mes-
sage from the queue. Using the selected message type and the
associated field values recorded in it, MBFuzzer generates the
next fuzzing message for the sender. Since certain secondary
messages are only valid for multi-party communication when
the sender of the primary message is connected, MBFuzzer
prioritizes these messages in the queue to prevent them from
expiring before being sent. Through the shared dependency
queue, MBFuzzer can synchronize the message generation
and sending of two concurrently running senders, facilitating
multi-party communication.

To further clarify the process of collaborative multi-party
message sending, we employ an extended Petri net [41,49]
to formally model the behavior of parallel senders based on
the shared dependency queue. Petri net is an intuitive model
widely used to describe and analyze the dynamic behavior of
events in distributed systems [41]. Figure 4 illustrates the over-
all communication process, including two message senders,
their runtime state represented by the circle, and the associ-
ated events represented by the box. During fuzzing, sender 1
and sender 2 start the process by establishing a connection via
event 71 and entering the waiting state for message genera-
tion and sending (PI), respectively. Subsequently, MBFuzzer
generates a message for sender 1 in event 72 to send, either
by priority selection or by determining the message type from
the shared queue Q. Sender 1 then transitions to state P2,
awaiting and processing response messages in event 73. If

any error occurs, sender 1 transitions to state P3, terminating
the session. Otherwise, sender 1 returns to the waiting state for
message generation and sending (P1), repeating the process.
Meanwhile, MBFuzzer checks whether the message sent by
the current sender has any dependency based on the rules and
stores the corresponding dependent message into the shared
queue Q during event 74. Sender 2 follows a similar process
to sender 1, beginning with establishing a connection and
cycling through states (P1, P2, P3) based on the events (71,
72, T3). With the model, it is possible to visually demonstrate
that the shared queue Q effectively coordinates message gen-
eration and sending across senders, enabling them to follow
dependency rules and generate messages sequentially.

4.5 Bug Detection

Differential Checker. To detect non-compliance bugs that do
not typically cause program crashes, we design a differential
checker based on differential testing [44]. This approach com-
pares the same functionality across implementations, serving
as mutual reference oracles, and has proven effective in de-
tecting non-compliance bugs [64, 67].

The differential checker sequentially collects messages re-
turned by each broker and analyzes them field by field to
identify inconsistencies. Initially, the checker categorizes mes-
sages received by the senders: published messages are saved
to the forwarding message queue, while all other messages are
stored in the response queue. This is because a subscription
request can trigger both a single response (e.g., SUBACK) and
multiple forwarded publish messages. Furthermore, accord-
ing to protocol specifications [13, 14], brokers are allowed
to send publish messages before the response. Such protocol
features can cause false positives during differential testing.
Next, the checker reorders and aligns all forwarding message
queues using combinations of the topic and payload fields in
published messages as digests. This alignment ensures the
consistency of forwarded messages, as network latency and
differences in broker processing logic may cause forwarded
messages to arrive in varying orders for each sender. Finally,
the checker analyzes all messages in the queues by compar-
ing them field by field to identify inconsistencies. During this
process, we classify fields into redundant and non-redundant
categories [48] to avoid false positives. Redundant fields,
such as the assigned client identifier in CONNACK, typically
have their values randomly generated by the broker. For these
fields, only their presence is verified. Non-redundant fields,
on the other hand, are checked for both presence and value
consistency. The checker also filters duplicate inconsistencies
during fuzzing to avoid impact on feedback and subsequent
validation.

Crash Oracle. To detect bugs related to memory and non-
memory crashes, we monitor the target brokers via socket
connection state like connection refusal and timeouts. Notably,
we enable ASAN [1] for open-source brokers implemented in
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Figure 5: Framework of LLM-based non-compliance bug
analyzer.

# Instruction M

(1) The following is a sequence of MQTT requests sent by the sender.
{req_id} {message name}: {message_description}

(2)The following is the sequence of responses from several brokers.
{broker_name}: {response_message_ description}

(3) Now you are an expert in the MQTT protocol, please describe what the
differences between these brokers in responding to handle such request.
Please provide a detail description of the analysis.

(Prompt B)
# Instruction

(1) The following is protocol violations related to several MQTT messages.
Message {message_name} has following relevant violation definitions:
{protocol violation details}.

(2) The following is a sequence of MQTT requests sent by the sender.
{req_id} {message _name}: {message_description}

(3) The processing of the above requests by each broker has the following
differences:

{response differences summarized by LLM}

(4) Now that you are an MQTT protocol expert, determine whether the client
request violates the violations listed in (1) based on the response differences.
Answer in such format: first give the analysis process, starting with

'# Analysis Process.'. Then give the final conclusion, if there is an explicit
violation, response with 'Protocol Violation Found!' or 'No violation!'

Figure 6: Prompt templates used in bug analyzer.

the C/C++ programming language to improve the efficiency
of memory bug detection as a complementary measure.

4.6 LLM-based Bug Analyzer

Inconsistency results do not always equate to non-compliance
bugs and require manual verification to determine their va-
lidity and root cause [36, 64]. However, manual analysis is
always daunting and labor-intensive. Inspired by recent ad-
vancements in LLM for root cause analysis [51] and their deep
understanding of protocols [45], we design a non-compliance
bug analyzer based on LLM to automatically verify and ana-
lyze the protocol violation behind inconsistencies.

We use the background-augmented prompting ap-
proach [55] to design prompts. Although the pre-training
corpus of popular LLMs includes various protocol specifica-
tions [45], directly providing test case content to the LLM can
lead to significant hallucination issues. Since MQTT specifi-
cations often use a standardized format to indicate violations,
such as phrases like ’It is a Protocol Error’ and keywords
like MUST and MUST NOT, we incorporate these elements
into the prompts provided to the LLM, making the prompts

more accurate and generalized [55]. To overcome context lim-
itations, we use regular expressions to automatically extract
violation descriptions from MQTT specifications, and store
them in the format ’Protocol version | Message type’. Only
violations relevant to the protocol version and message type
of the current test case are included in the prompt.

To ensure the stability of the LLM’s analysis, we employ
the prompt chaining strategy [17], dividing the analysis pro-
cess into two parts, as shown in Figure 5. First, we replay the
inconsistency test cases and convert the messages exchanged
in the communication process into a readable text format.
Next, we use the LLM to analyze and summarize the request
and broker response information from the replay. The Prompt
A in Figure 6 shows the prompt template for this step. The
summary result is included in the prompts of violation analy-
sis, with the augmented LLM determining if the current test
case exhibits any violations as shown in Prompt B. If viola-
tions are found, we conduct further manual verification and
report the findings to the developers. We used the OpenAl gpt-
40-2024-05-13 model with its default temperature parameter
for our analysis.

5 Evaluation

We wrote about 6k lines of Python code to implement MB-
Fuzzer. To evaluate the effectiveness, we conducted exper-
iments on real-world and production-level MQTT brokers.
Specifically, our evaluation aims to answer the following ques-
tions:

* RQ1. Can MBFuzzer find bugs in real-world MQTT bro-
kers and what about the security influence of these bugs?
(Section 5.1)

¢ RQ2. Can MBFuzzer outperform other state-of-the-art
MQTT fuzzers? (Section 5.2)

* RQ3. How does each component contribute to MBFuzzer?
(Section 5.3)

Benchmark. We selected six mainstream MQTT bro-
kers from the open-source community for production en-
vironments as the benchmark: EMQX [9], Mosquitto [4],
NanoMQ [22], VerneMQ [23], HiveMQ [7] and FlashMQ [6]
as shown in Table 2. These brokers were chosen based on
four criteria: (1) High community impact [3] (as indicated by
the Stars in Table 2), where the vendors of EMQX, NanoMQ,
and HiveMQ are the members of OASIS MQTT Technical
Committee [15]; (2) Active project maintenance, as indicated
by the Recent Commits column, which shows the most recent
year of developer commits as of August 2024); (3) Compre-
hensive support for all MQTT version features; (4) Support
for MQTT bridge.

Environment. We ran all experiments through Docker images
on a local machine with one Intel(R) Xeon(R) Gold 6226R
CPU and 256 GB RAM, and a Ubuntu 20.04 LTS system.



Subject \ Language Stars Recent Commits Version
EMQX Erlang  13.7k 4022 5.6.0
Mosquitto C/C++ 8.8k 39 2.0.18
NanoMQ C 1.5k 806 0.21.10
VerneMQ Erlang 3.2k 98 1.13
HiveMQ Java 1.1k 151 4.24.0
FlashMQ C/C++ 0.18k 305 1.12.1

Table 2: MQTT brokers used for comparison. The Stars de-
notes the number of stars the GitHub repository acquires. The
Recent Commits denotes the number of commits by develop-
ers in the past year.

5.1 Discovered Real-world Bugs

We evaluated the effectiveness of MBFuzzer in identifying
bugs in MQTT brokers, as the primary purpose of fuzzing is
to discover such issues [40].

Table 3 presents the comprehensive results of the bug dis-
covery process across the six evaluated brokers. MBFuzzer
discovered a total of 73 bugs, including 20 memory bugs (all
confirmed, with 19 fixed) and 53 protocol non-compliance
bugs (49 confirmed, and 42 were fixed). Notably, some non-
compliance bugs are shared across different brokers. As a
result, the total number of non-compliance bugs reported in
the last row of Table 3 is not a simple sum of the bugs found
in each individual broker. Table 4 summarizes the detailed
results of 20 memory bugs, most of which could lead to denial
of service, memory leaks, or even remote code execution in
brokers. Table 10 presents the detailed findings of 53 protocol
non-compliance bugs, including confirmation and fix statuses
from each vendor. While most of these bugs do not directly
compromise broker security, they can affect the functional
availability of brokers or pose security risks to other commu-
nication participants. Due to space constraints, the full details
of Table 10 are provided in Appendix A.1.

Subject Memory Bug Non-Compliance Bug
Report  Confirmed  Fixed Report  Confirmed  Fixed
EMQX 1 1 1 17 13 7
Mosquitto 1 1 1 11 9 3
NanoMQ 15 15 14 28 28 14
VerneMQ 0 0 0 16 15 15
HiveMQ 0 0 0 7 7 3
FlashMQ 3 3 3 23 23 22
Sum 20 20 19 53 49 42

Table 3: Detail bug discovery results of MBFuzzer.

We further analyzed these two categories of bugs and
observed that they are predominantly associated with a
few MQTT message types. For instance, 10 memory bugs
were related to PUBLISH messages, while SUBSCRIBE and
CONNECT each accounted for two. Similarly, 98% of the non-
compliance bugs were concentrated in CONNECT, SUBSCRIBE,
UNSUBSCRIBE, and PUBLISH message types. This concentra-
tion of bugs is unsurprising, as these four message types are
central to pub/sub message delivery and involve more exten-
sive code and parsing logic. For instance, the MQTT specifica-

tion provides significantly more detail for CONNECT, PUBLISH,
and SUBSCRIBE than for the other 13 message types. Corre-
spondingly, their handler functions in Mosquitto also have
the most extensive codebases, increasing the likelihood of
bugs [53].

To better understand the security impact of bugs found by

MBFuzzer, we discuss four representative confirmed bugs as
case studies, one of which has been introduced in Motivation
(Section 2.2).
Case study 2: Double free in Mosquitto. This vulnerability
is classified as medium severity, is marked as M2 in Table 4,
and is assigned CVE-2024-3935. Listing | in Appendix A.2
presents the simplified code where the vulnerability occurs. It
occurs when Mosquitto parses published messages received
from other brokers. Unlike parsing published messages from
clients, the broker would perform topic remapping, convert-
ing the topic in the message to a new topic that conforms to
the current network communication format (line 3). When
the broker receives a publish message with an invalid format
topic, the topic remapping function returns INVALID_VALUE
and subsequently frees the topic (lines 12-13). However, the
broker would free the message that contains the topic, leading
to a double-free occurrence (lines 4-5). MBFuzzer discovered
this bug using a novel multi-party fuzzing framework that en-
ables the exploration of inter-broker interactions to find bugs.
The vulnerability impacts all Mosquitto v2.x releases from
2020 to the present while existing MQTT fuzzers proposed
during this period could not detect it. Bug M10 in Table 4
is similar to this vulnerability, which occurs in the code that
parses published messages from brokers.

Case study 3: Use after free in NanoMQ. This vulnerability,
labeled as bug M9 and assigned CVE-2024-42651 in Table 4,
occurs during the pub/sub message transmission process in
NanoMQ. Listing 2 in Appendix A.2 presents a simplified
code snippet illustrating this issue. Specifically, the bug arises
when NanoMQ processes subscribe messages containing mul-
tiple subscription topics (lines 3-16). During this process, the
broker extracts retained messages matching the subscription
topics from the cache (line 8) and adds them to the mes-
sage queue for subsequent delivery (line 11). However, since
NanoMQ does not set the pointer retain to NULL after re-
leasing retain messages (line 14), if a subsequent subscription
topic matches the same retain message, and the retain han-
dling option rh for this topic is set to 1, the broker would skip
allocating the retain message (lines 7-8). Thus, a use-after-free
bug occurs in line 10. The bug is hard to find with existing
approaches because of the message and field dependency.
MBFuzzer effectively utilizes dependency rules to guide the
generation of retained publish messages and corresponding
subscribe messages, enabling the successful detection of this
issue. Bug M5, M14, and M20 listed in Table 4 and CVE-
2024-42655 in Table 10 are the same category of bugs that are
triggered during the process of multi-party pub/sub message
transmission in brokers.



ID Project Version Bug Description Potential Security Issue 0 Day Status

M1 EMQX 5.6.0 Segmentation Fault in the function dump_module_literals Denial of Service X Confirmed & Fixed
M2  Mosquitto  2.0.18 Double free in handling PUBLISH message from brokers Denial of Service v CVE-2024-3935
M3  FlashMQ 1.12.1 Crash in handling will PUBLISH message Denial of Service v Confirmed & Fixed
M4  FlashMQ 1.14.0 Assertion in saving retain PUBLISH message to the database Denial of Service v CVE-2024-42645
M5  FlashMQ  1.14.0 Assertion in forwarding will PUBLISH message Denial of Service v CVE-2024-42644
M6  NanoMQ 0.17.5 Segmentation Fault in handling PUBLISH message Denial of Service v CVE-2024-42650
M7  NanoMQ 0.17.5 Segmentation Fault in handling CONNECT message Denial of Service v CVE-2023-34488
M8  NanoMQ 0.17.5 Heap buffer overflow in handling SUBSCRIBE message Remote code execution v CVE-requested
M9  NanoMQ 0.17.9 Heap use after free in handling SUBSCRIBE message Remote code execution v CVE-2024-42651
M10 NanoMQ 0.17.9 Segmentation Fault in handling PUBLISH message Denial of Service v CVE-requested
MIl NanoMQ 0.21.10  Socket file description exhaustion caused by session keeping feature  Denial of Service v Confirmed

MI12 NanoMQ 0.21.10  Segmentation Fault in handling client requests Denial of Service v CVE-2024-42646
M13 NanoMQ  0.21.10  Stack buffer overflow in handling PUBLISH message Remote code execution v CVE-requested
M14 NanoMQ 0.22.1 Stack buffer overflow in handling PUBLISH message Remote code execution v CVE-2024-42647
M15 NanoMQ 0.22.1 Memory Leak after receiving message Memory leakage v CVE-2024-42649
M16 NanoMQ 0.22.1 Heap buffer overflow in handling CONNECT message Remote code execution v CVE-2024-42648
M17 NanoMQ 0224 Heap use after free in handling PUBLISH message Remote code execution v CVE-requested
M18 NanoMQ 0.22.4 Memory leak in receiving message Memory leakage v CVE-requested
M19 NanoMQ 0224 Segmentation fault in message Denial of Service v CVE-requested
M20 NanoMQ 0224 Memcpy-param-overlap in handling PUBLISH message Memory Corruption v CVE-requested

Table 4: Memory bugs discovered in MQTT brokers by MBFuzzer.

Case study 4: Non-compliance Bug#N41 in NaonMQ. This
non-compliance bug, labeled as bug N41 in Table 10 occurs
when NanoMQ processes a publish message containing in-
valid property values. According to the protocol specifica-
tion [14], A Control Packet which contains an Identifier which
is not valid for its packet type, or contains a value not of the
specified data type, is a Malformed Packet. If received, use
a CONNACK or DISCONNECT packet with Reason Code
0x81 (Malformed Packet)’. However, NanoMQ skips illegal
property values during parsing and subsequently forwards the
malformed packet to eligible subscribers without following
the specification to disconnect. The bug is hard for existing
fuzzers to detect because it does not have obvious erroneous
behaviors. MBFuzzer successfully discovered and identified
the violation of this bug through differential testing and the
LLM-based bug analyzer. Although the bug does not pose a
direct security risk to the broker itself, we found it can lead
to unexpected behavior in other participants connected to
the broker. For instance, we observed that mosquitto_sub
is affected by this bug and it triggers an assertion error and
crashes when receiving such messages. The mosquitto_sub
is a C library provided by Mosquitto, widely integrated into
various devices as clients. Bug N19, N20, and N50 listed in
Table 10 are similar non-compliance bugs that pose a secu-
rity risk to other communication participants. This case study
proves the importance of adhering to protocol specifications
in multi-party IoT environments. Non-compliance bugs in im-
plementations can also lead to significant issues, highlighting
the need for rigorous fuzzing.

5.2 Comparison to Existing MQTT Fuzzers

We compared MBFuzzer with three state-of-the-art protocol
fuzzers (AFLNet [50], SGFuzz [29], and Fume [48]) using

six benchmark brokers in Table 2. AFLNet and SGFuzz are
grey-box state-guided protocol fuzzers, while Fume is a black-
box MQTT fuzzer. The comparison focused on three key
metrics: the number of messages sent, code coverage, and bug
discovery effectiveness. We used the gcov tool to measure the
branch coverage, which is applicable specifically to programs
written in C/C++ program language. To mitigate randomness
in fuzzing results, we repeated each fuzzing campaign five
times, with each run lasting 24 hours.

Table 5 presents detailed fuzzing results of MBFuzzer and
other SOTA fuzzers over 24 hours in terms of the number
of messages sent, code coverage, and bug discovery. Table 6
summarizes the comparative results of memory bug discovery
among these fuzzers, where the column Bug ID corresponds
to the column /D in Table 4. Notably, the comparison was
conducted using the broker versions listed in Table 2. As a
result, the bug discovery results only cover specific versions
of brokers. Additionally, Bug M4 and M5 affect the program
versions listed in Table 2, and therefore they are included in
the results.

Overall, MBFuzzer sent on average 36% more messages
than AFLNet, but 3% and 92.3% fewer messages than SGFuzz
and Fume, respectively. However, MBFuzzer outperformed
the others in both bug discovery and code coverage. MB-
Fuzzer achieved higher code coverage than AFLNet, SGFuzz,
and Fume on the same benchmarks, with increases of 24%,
26%, and 5%, respectively. We employed the Mann-Whitney
U-test [38] to calculate the p-value for code coverage compar-
isons between MBFuzzer and the other fuzzers, all of which
were below 0.05, indicating statistical significance. In terms of
bug discovery, MBFuzzer found 8 memory bugs and 53 non-
compliance bugs across all categories. In contrast, AFLNet,
SGFuzz, and Fume could only find 2, 2, and 6 memory bugs
respectively, and none were able to detect non-compliance



Subject AFLNet SGFuzz Fume MBFuzzer
Message Coverage Bug | Message Coverage Bug | Message Coverage Bug | Message Coverage Bug
EMQX - - - - - - 32886k - 1/0 1060k - 117
Mosquitto 503k 2296 0/0 461k 2046 0/0 20465k 3306 0/0 1060k 3724  1/11
NanoMQ 609k 9747 1/0 - - - 6091k 11436 3/0 1060k 11704  3/28
VerneMQ - - - - - - 10213k - 0/0 1060k - 016
HiveMQ - - - - - - 2148k - 0/0 1060k - 0/7
FlashMQ 1220k 4130 1/0 1733k 4581 2/0 10849k 4263 2/0 1060k 4648  3/23
2/0 2/0 6/0 8/53

Table 5: Detailed fuzzing results over 24 hours of MBFuzzer and SOTA fuzzers. The Bug is presented as the format "Memory
bugs/Non-compliance bugs". The symbol - means that the fuzzer or metric cannot work in that subject.

BugID | AFLNet SGFuzz Fume MBFuzzer
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Table 6: Comparison of memory bug discovery results by
MBFuzzer and SOTA fuzzers after 24 hours.
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bugs.

We further investigated why MBFuzzer performs better
than other fuzzers. First, MBFuzzer discovered numerous
non-compliance bugs through differential testing, whereas
existing fuzzers only support the detection of memory bugs.
Moreover, most of the inconsistency results in the experiments
are concentrated in four message types, CONNECT, SUBSCRIBE,
UNSUBSCRIBE, and PUBLISH. MBFuzzer dynamically adjusts
the priority of message types through the message priority
scheduler based on inconsistency feedback, thus assigning
more computational resources to send these messages, enhanc-
ing bug discovery efficiency. Since these messages typically
involve the most parsing logic in brokers and specifications,
the scheduler also helps achieve higher code coverage. Sec-
ond, using the proposed new multi-party fuzzing framework
and dependency rules, MBFuzzer successfully detects vul-
nerabilities in the inter-broker interaction code (Bug M2 in
Table 6) and pub/sub message transmission (Bug M5 in Ta-
ble 6), while other fuzzers fail to detect. It also demonstrates
the effectiveness of our approach in guiding the exploration of
multi-party communication input space. Lastly, MBFuzzer in-
curs some performance overhead because it must collect and
analyze each response and forwarded message from six bro-
kers simultaneously, leading to fewer fuzzing messages being
sent. The performance overhead is justifiable because differen-
tial testing allows MBFuzzer to uncover more non-compliance
bugs and dynamically optimize the message generation strat-
egy, effectively offsetting this performance trade-off.

Fume sets an even message generation probability for each
message type manually and cannot dynamically adjust the
generation based on fuzzing runtime information. Addition-
ally, Fume uses response contents and approximate log con-

tents as the fuzzing feedback, which may lack a correlation
with bugs. Therefore, it reduces the performance of Fume
for exploring brokers and detecting bugs in them. SGFuzz
and AFLNet lack awareness of the MQTT message format,
making it easy to break message formats and dependencies
during mutations, which results in many messages being
dropped by the broker. In addition, they perform poorly in
Mosquitto and NanoMQ due to slower speeds. Lastly, SGFuzz
and AFLNet do not support fuzzing brokers implemented in
Erlang and Java, such as EMQX, VerneMQ, and HiveMQ.
Furthermore, the netdriver used by SGFuzz does not sup-
port the fork system calls [29] as well and therefore does not
support NanoMQ.

5.3 Ablation Study

Effectiveness of Dependency Rules and Message Priority
Scheduler. To assess the impact of dependency rules and
the message priority scheduler based on inconsistency feed-
back, we conducted an ablation study by disabling these meth-
ods. Specifically, we designed three variants: MBFuzzer,,,
MBFuzzer,,, and MBFuzzery,,. In MBFuzzer,, the capability
of dependency rules is disabled to evaluate their effectiveness
in facilitating the exploration of the input space for multi-
party communication. In MBFuzzer),, the message priority
scheduler is disabled and replaced with a random message
selection strategy to understand whether they can improve
bug discovery performance. To evaluate the effectiveness
of Q-learning within the message priority scheduler, we de-
signed MBFuzzery,,, which replaces Q-learning with a rule-
based approach. This approach uses the widely used Markov
chain [35,48] to model message generation, assigning selec-
tion probabilities based on the percentage of unique incon-
sistent responses each message triggers [63]. The ablation
study was conducted on the same three metrics using the same
experimental configuration and program version detailed in
Section 5.2.

Table 7 presents the results of the ablation study on MB-
Fuzzer, focusing on the number of messages sent, code cover-
age, and bug discovery. Table 8 details the findings of bugs
in the ablation study, containing all memory bugs and non-
compliance bugs that are assigned CVE numbers.

The results demonstrate the observable impact of each



Subject MBFuzzer; MBFuzzer,, MBFuzzer, MBFuzzer
Message Coverage Bug | Message Coverage Bug | Message Coverage Bug | Message Coverage Bug
EMQX 1023k - 117 1035k - 017 991K - 116 1060k - 117
Mosquitto 1023k 3327  1/10 1035k 3209  1/10 991K 3482 1/10 1060k 3724 1/11
NanoMQ 1023k 11695  3/26 1035k 11414 2/25 991K 11550  3/24 1060k 11704  3/28
VerneMQ 1023k - 0/16 1035k - 014 991K - 0/15 1060k - 0/16
HiveMQ 1023k - 0/6 1035k - 0/6 991K - 0/7 1060k - 0/7
FlashMQ 1023k 4342 2/20 1035k 4582 3/20 991K 4382 2/19 1060k 4648  3/23
7/51 6/48 7/49 8/53

Table 7: Results of ablation study over 24 hours of MBFuzzer. The Bug is presented as the format "Memory bugs/Non-compliance
bugs" . The symbol - means that the fuzzer or metric cannot work in that subject.

BugID | MBFuzzer,; MBFuzzer,  MBFuzzer,, MBFuzzer
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Table 8: Comparison of bug discovery results for MBFuzzer
in ablation study after 24 hours.

component on code coverage and bug discovery performance.
Specifically, disabling dependency rules (MBFuzzer;) re-
duces the fuzzer’s ability to explore the specific execution
paths involving multi-party communication, leading to an av-
erage decrease of 3.6% in code coverage. Moreover, without
dependency guidance, MBFuzzer); struggles to detect bugs
such as M5 and N29, which are related to the pub/sub message
transmission, as shown in Table 8. Similarly, replacing the
message priority scheduler with a random message selection
strategy (MBFuzzer,,) treats all message types equally during
test case generation. This approach diminishes the fuzzer’s ef-
ficiency in both discovering bugs and exploring parsing logic
in brokers. Most bugs and parsing codes are concentrated
in a small subset of message contexts. Thus, MBFuzzer),
fails to detect bugs like M1 and M11, while code coverage
declines by an average of 4.5%. For instance, detecting bug
M11 requires sending a large number of CONNECT messages
with varying client identifiers for persistent sessions within a
short time, which is challenging to achieve using a random
strategy. Lastly, while MBFuzzer),, dynamically calculates
selection probabilities for each message based on historical
data, it overlooks the impact of protocol state changes on
message selection. This limitation causes it to mistakenly
generalize message priority in some states to priority in all
states. For example, 93% of the messages sent by MBFuzzer,,,
were CONNECT and PUBLISH, limiting its exploration of the
other types, such as SUBSCRIBE. This imbalance results in an
average 3.4% reduction in code coverage and prevents the
detection of bugs associated with other message types.

Accuracy of LLM-based Bug Analyzer. To evaluate the
accuracy of the LLM-based bug analyzer in verifying and an-

Truth
LLM (GPT 40) Violation Non-Violation
(Unique/Total) | (Unique/Total)
Prediction Violation 53/340 10/24
Non-Violation 4/11 125T

Table 9: Results of validation of the accuracy of LLM-based
bug analyzer. The row Prediction represents the classifica-
tion of results by the LLM, while the column Truzh indicates
the manually verified outcomes.

! This data does not include duplicate violations, as neither the LLM
predictions nor the facts contain any violation.

alyzing inconsistency test cases generated by the differential
checker, we randomly selected 500 inconsistency test cases
that lead to inconsistent behaviors of different broker imple-
mentations as the evaluation dataset. We then invited two
researchers to manually analyze the results generated by the
module, referencing the protocol specifications. After com-
pleting the analysis process, we compared the results from
the two researchers. Any discrepancies were further given to
a third analyzer for secondary analysis to eliminate potential
biases in the manual evaluation. We also recorded the num-
ber of test cases linked to each non-compliance bug during
manual validation, considering that one test case can trigger
multiple non-compliance bugs or multiple test cases can lead
to the same bug [42]. This resulted in duplicate results in the
LLM-based bug analyzer.

Table 9 shows the results of manually confirming the ac-
curacy of the LLM-based bug analyzer. The LLM identified
72.8% (364/500) of the test cases as containing violations,
while the remaining 27.2% (136/500) were determined to
have no violations. Our manual analysis confirmed that 340
of the 364 test cases flagged by the LLM indeed contained
actual violations, while 125 of the 136 test cases contained
non-violations. Overall, the LLM-based bug analyzer attains
a precision of 93.4% and a recall of 96.9% on the dataset,
highlighting its effectiveness in accurately detecting and iden-
tifying protocol violations. Among the 340 results correctly
identified by the LLM as containing violations, we found
53 unique violations (i.e., non-compliance bugs in Table 10).
Additionally, in the 11 cases where the LLM incorrectly iden-
tified no violations, 4 unique violations were discovered. Fi-
nally, in the 24 cases where the LLM incorrectly identified



violations, it mistakenly flagged 10 unique violations. Sim-
ilarly, the column Count in Table 10 records the number of
effective inconsistency test cases in the dataset associated with
each non-compliance bug. On average, each non-compliance
bug is triggered by seven test cases, with at least one test case
triggering every bug.

Overall, the LLM-based bug analyzer demonstrated an ac-
curacy of over 90% in detecting both protocol violations and
non-violations, showcasing the effectiveness of the designed
prompts and workflow. This accuracy significantly enhances
the efficiency of manually analyzing inconsistencies gener-
ated by differential testing, as it reduces the time and effort
required for human intervention. For instance, the LLM takes
approximately 30 seconds to perform an analysis of a test
case. Researchers in our study then spend an average of just
one minute per case to verify the LLM’s results, making this
approach substantially faster than conducting a full manual
analysis for each test case. Additionally, the LLM-generated
reports offer valuable insights and serve as validation support,
further streamlining the confirmation process and improving
overall analysis efficiency.

6 Discussion and Limitations

MBFuzzer has successfully identified many bugs on six dif-
ferent open-source brokers. However, it still has certain limi-
tations. In this section, we discuss these limitations and solu-
tions for future improvements.

Manual Effort. In our prototype, MBFuzzer requires manual
effort to extract the dependency rules for multi-party commu-
nication from the protocol specification. As experts familiar
with MQTT, we spent approximately one hour following the
extraction method to build rules. Non-experts might need
more time to understand the specification and derive rules.
To further reduce required manual efforts, we believe that
LLMs, with their advanced ability to deeply understand pro-
tocols [55], could accelerate and even automate this process.
Additionally, the dependency rules we identified may only
apply to the MQTT protocol. Nevertheless, we believe that
our dependency extraction approach can be applied to other
multi-party communication protocols, such as DDS [47], OPC
UA [16], and STOMP [20], as well as message middleware
systems like RabbitMQ [19].

Efficiency. The sender 2 in the fuzzing framework that acts
as a broker starts sending fuzzing messages only after the
connection from the brokers under test is established. If the
connection is accidentally disconnected, it usually takes one
to two seconds for the broker to reconnect automatically. Dur-
ing this period, the sender remains idle, which may slightly
degrade the fuzzing performance. However, we can use the
approach of SnapFuzz [28], which implements adaptive time-
outs in the network software by rewriting the code, which
can be used to eliminate delays during reconnection of bridge
interrupts and solve this problem.

Bug Analyzer. The LLM-based bug analyzer focuses on viola-
tions that are explicitly described in the protocol specification
and thus may miss those that are not related to the specifica-
tion. Besides, the bug analyzer automatically filters out test
cases that LLM determines to be non-violating without further
manual analysis, which may result in a small number of test
cases that violate the specification being discarded incorrectly.
Nonetheless, the results of LLM analysis can provide useful
insights into manual validation and significantly improve the
efficiency of manual efforts.

Differential Checker. Due to the inherent limitations of dif-
ferential testing [64], MBFuzzer may fail to detect certain
types of non-compliance bugs. Specifically, when all brokers
exhibit the same responses to a given request, differential test-
ing cannot identify inconsistencies, potentially overlooking
existing bugs. In future work, we will consider integrating
the LLMs into the fuzzing process as a complement to the
differential checker to enhance violation detection.

7 Related Work

Protocol Fuzzing. There have been several fuzzing tech-
niques have been proposed and applied for fuzzing MQTT
protocol implementations. MultiFuzz [60] is a grey-box multi-
party fuzzer for brokers, but it simply adds client socket con-
nections. Fume [48] uses Markov chains to model the process
of message generation for fuzzing MQTT brokers. SHAD-
OWFUZZER [58] proposes a novel fuzzing approach to fuzz
MQTT clients via brokers. SGANFuzz [57] uses generative
adversarial networks to guide test cases for brokers. In addi-
tion, there are generic protocol fuzzers that can also be used
to fuzz brokers. AFLNet [50] is the first grey-box protocol
fuzzer that uses the response code as the state feedback. SG-
Fuzz [29] recognizes the enum-type variables in codes as
state variables automatically to construct the state feedback.
ChatAFL [45] introduces LLM to process Request for Com-
ments (RFCs) and generate fuzzing message sequences. mG-
PTFuzz [43] leverage LLM to automatically convert human-
readable content to machine-readable information to construct
finite-state machines for guiding black-box fuzzing for IoT
devices. Although many fuzzers could be used for fuzzing
MQTT brokers, they cannot fully explore the input space of
multi-party communications, limiting bug discovery capabil-
ities. MBFuzzer addressed these challenges by proposing a
new multi-party fuzzing framework and a series of strategies.
Differential Testing. Differential testing has been widely
used in testing network protocol implementations to identify
semantic bugs. TCPFuzz [67] applies differential testing to
fuzz the TCP stack to find semantic bugs. ResolFuzz [32]
and ResolverFuzz [61] use differential testing to test DNS
resolvers to find non-crash vulnerabilities in them. More-
over, TLS-DeepDiffer [64] detects logic flaws throughout
TLS interactions based on message tuple and differential
testing. However, existing methods are not directly appli-



cable to MQTT. In addition to differences in protocol se-
mantics, multi-party communication can also cause response
messages to be disordered. Moreover, most existing methods
also rely on manual analysis to analyze the root causes of
non-compliance bugs. MBFuzzer designs the first differential
checker for MQTT and introduces LLM to bug analysis to
automatically pinpoint the violations behind inconsistency
results.

Formal Verification. Formal verification is the use of formal
mathematical methods to verify the correctness of a software
implementation and is currently also being used in the detec-
tion of logical flaws in MQTT brokers. MPInspector [56] uses
active learning to automatically infer the state model of bro-
kers and then uses formal verification to identify violations
related to the secrecy and authentication properties. MQT-
Tactic [59] identifies flaws in authorization-related properties
based on static analysis and model check. These methods typ-
ically focus on logic bugs in specific security properties. MB-
Fuzzer applies differential testing to detect non-compliance
bugs in all messages and fields during the parsing of messages
by brokers.

8 Conclusion

In this paper, we proposed MBFuzzer, a novel multi-party
black-box fuzzer for brokers to detect both memory and
non-compliance bugs. MBFuzzer models the communica-
tion behavior of multiple senders using extended Petri net
and designs six dependency rules to coordinate the message
sending between different senders. MBFuzzer then uses a
message priority schedule approach based on inconsistency
feedback to adjust the priority of messages in different states
dynamically to improve the efficiency of bug discovery. Sub-
sequently, MBFuzzer introduces differential testing and LLM-
based bug analysis methods to detect and automatically verify
non-compliance bugs. We implemented a prototype, and ex-
periments show that MBFuzzer is effective in finding bugs in
MQTT brokers, with 73 bugs discovered, of which 11 CVEs
have been assigned. It could also achieve higher code cover-
age and vulnerability discovery than state-of-the-art fuzzers.
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int handle__publish (...) {

rc = bridge__remap_topic_in(context, &msg—>topic);
if (rc){
db__msg_store_free (msg);
return rc;
}
}
int bridge__remap_topic_in (..., char =xtopic) {
rc = mosquitto_topic_matches_sub (..., =xtopic);
if (re){
mosquitto__free (xtopic); // first free
return rc; // rc == INVALID_VALUE 3
}
}

// double free

Listing 1: Simplified code of case study 2.

int sub_ctx_handle (nano_work =xw) {

nng_msg #xretain = w->msg_ret;
while (tn) {
topic_str = tn—>topic.body;
topic_exist = dbhash_check_topic(w—>pid.id, topic_str
)
uint8_t rh = tn->retain_handling;
if (rh == 0 Il (rh == 1 && !topic_exist))
retain = dbtree_find_retain (w-—>db_ret, topic_str);

// malloc retain

w->msg_ret = (w->msg_ret == NULL) ? retain : w—>
msg_ret;
for (i = 0; i < c_size(retain) && w->msg_ret !=
retain; i++) { // UAF here
cvector_push_back (w—>msg_ret, retain[i]);
}
if (retain != w->msg_ret)
c_free(retain); // free retain
tn = tn->next;

Listing 2: Simplified code of case study 3.
A Appendix

A.1 Details of Non-compliance Bugs Found by
MBFuzzer

Table 10 shows the detailed results of 53 non-compliance bugs
discovered by MBFuzzer, where 49 of them have been con-
firmed and 42 have been fixed. Most developers promise to
fix the remaining unfixed bugs in the future. Due to space con-
straints, we use aliases in Bug Description, most of which are
formatted by "protocol version"-"mandatory or customized
rule in specifications". The full description corresponding to

each bug can be found in Table 11.

A.2 Source Code of Case Study




1D Bug Description EMQX Mosquitto NanoMQ VerneMQ HiveMQ FlashMQ Count

N1 MQTTv3.1.1-[MQTT-2.3.1-1] v X Vi V& Vi X 2
N2 MQTTvV3.1.1-[MQTT-3.1.2-15] X X X X X Vi 8
N3 MQTTvV3.1.1-[MQTT-3.1.2-19] v TE Ve X ViE V& X 8
N4 MQTTv3.1.1-[MQTT-3.1.2-22] Vi X v X X X 18
N5 MQTTv3.1.1-[MQTT-3.1.2-9] X X X X Vi X 2
N6 MQTTvV3.1.1-[MQTT-3.1.3-11] X X X V& Vi X 11
N7 MQTTvV3.1.1-[MQTT-3.1.3-4] X X X Vi X X 1
N8 MQTTv3.1.1-[MQTT-3.1.3-8] X X V& X X X 9
N9 MQTTV5.0-[MQTT-3.1.0-1] X X X X X VaE 1
NI0 MQTTv5.0-[MQTT-3.1.2-11] vii X Vi X X Vi 6
NIl  MQTTv5.0-[MQTT-3.1.2-13] Vit X VA X X Vi 8
NI2 MQTTv5.0-[MQTT-3.1.2-3] X X Va X X X 2
N13  MQTTv5.0-[MQTT-3.1.2-9] X X X X X Vi 2
NI14 MQTTv5.0-[MQTT-3.1.3-12] X X X ViE v Xt 1
N15 MQTTv5.0-[IMQTT-3.10.3-1] vt X X ViE X X 5
N16 MQTTv5.0-[MQTT-3.10.3-2] X v X X X X 1
N17 MQTTv5.0-[MQTT-3.2.0-2] X X V& X X X 1
Ni18 MQTTv5.0-[IMQTT-3.3.1-2] X X V& X X X 30
N19 MQTTv5.0-[MQTT-3.3.2-1] X X X Vi X X 47
N20 MQTTv5.0-[MQTT-3.3.2-14] X Vai vt Vi X X 4
N21  MQTTv5.0-[MQTT-3.3.2-19] X X Va X X X 3
N22  MQTTv5.0-[MQTT-3.3.2-9] X X Ve X X X 3
N23  MQTTv5.0-[MQTT-3.3.4-6] VA Ve VT V& X Ve 82
N24  MQTTv5.0-[MQTT-3.4.2-1] v X Vi X X e 5
N25 MQTTv5.0-[MQTT-3.6.1-1] X X Va X X v TE 7
N26  MQTTv5.0-[MQTT-3.8.3-1] v X X VTE X X 2
N27 MQTTv5.0-[MQTT-3.8.3-2] X v X X X X 6
N28 MQTTv5.0-[MQTT-3.8.3-4] X VTE X V& X Ve 1
N29  MQTTv5.0-[IMQTT-4.7.2-1] X X Vil X X Va 1
N30 MQTTv5.0-[MQTT-4.8.2-2] X ViE Vi V& X Ve 1
N31  MQTTv5.0-[Authentication Data rule] VT v VT Vit X VTE 2
N32  MQTTv5.0-[Authentication Method rule] X X V& X X X 1
N33  MQTTv5.0-[Content Type rule] X X X X X vtk 2
N34  MQTTv5.0-[Correlation Data rule] v X X X X X 2
N35 MQTTv5.0-[Maximum QoS rule] v X X X X X 1
N36  MQTTv5.0-[Message Expiry Interval rule] X X vt X X Vi 5
N37  MQTTV5.0-[Payload Format Indicator rulel] X X Vi X X VA 6
N38  MQTTvS5.0-[Payload Format Indicator rule2] v Vai X Vi Vai Vi 1
N39  MQTTV5.0-[Payload Format Indicator rule3] X Vai Vi Vi Vai vtk 1
N40  MQTTv5.0-[Payload Format Indicator rule4] Vi X X X X X 3
N41  MQTTv5.0-[Property rule] X X v X X X 2
N42  MQTTv5.0-[Receive Maximum rule] X X X X X vtk 24
N43  MQTTV5.0-[Request Problem Information rule] X X Vai X X Vi 3
N44  MQTTVS5.0-[Request Response Information rulel] X X v X X X 5
N45  MQTTv5.0-[Request Response Information rule2] v/ fi X X X X X 2
N46  MQTTv5.0-[Response Topic rulel] X X X X X V& 4
N47  MQTTv5.0-[Response Topic rule2] v Vi vt X X Vi 1
N48  MQTTVS5.0-[Subscription Identifier rule] X X Vi X X X 3
N49  MQTTVv5.0-[Topic Alias rule] VTiE X X X X Vi 9
N50  MQTTVS5.0-[User Property rulel] X X v X X X 15
N51  MQTTv5.0-[Will QoS rule] X X X v X X 1
N52  MQTTV5.0-[User Property rule2] X X X X X VTE 1
N53  MQTTVS5.0-[Will Topic rule] X X Vi X X X 2

Table 10: Non-compliance bugs in MQTT brokers discovered by MBFuzzer. The Bug Description indicates the description of
the bug in the protocol specifications or the bug itself. The v indicates that the current broker is affected by this bug, and the
x indicates that it is not. The § indicates that the developer has confirmed the bug, and i indicates that the bug has been fixed.
The Count column indicates the number of test cases that triggered that bug in the ablation study.

! CVE-2024-42655.



ID

Detailed Bug Description

N1
N2
N3
N4
N5

N6
N7
N8

N9

N10
NI11
N12
N13

N14
N15
N16
N17
N18
N19
N20
N21
N22

N23
N24
N25

N26
N27
N28
N29
N30

N31
N32
N33
N34
N35
N36
N37
N38
N39
N40
N41
N42
N43
N44
N45
N46
N47
N48
N49
N50
N5l
N52
N53

SUBSCRIBE, UNSUBSCRIBE, and PUBLISH (in cases where QoS >0) Control Packets MUST contain a non-zero 16-bit Packet Identifier.

If the Will Flag is set to 0, then the Will Retain Flag MUST be set to 0.

If the User Name Flag is set to 1, a user name MUST be present in the payload.

If the User Name Flag is set to 0, the Password Flag MUST be set to 0.

If the Will Flag is set to 1, the Will QoS and Will Retain fields in the Connect Flags will be used by the Server, and the Will Topic and Will Message
fields MUST be present in the payload.

The User Name MUST be a UTF-8 encoded string

The Clientld MUST be a UTF-8 encoded string

If the Client supplies a zero-byte Clientld with CleanSession set to 0, the Server MUST respond to the CONNECT Packet with a CONNACK return code
0x02 (Identifier rejected) and then close the Network Connection.

After a Network Connection is established by a Client to a Server, the first packet sent from the Client to the Server MUST be a CONNECT packet.
If the Will Flag is set to 0, then the Will QoS MUST be set to 0 (0x00).

If the Will Flag is set to 0, then Will Retain MUST be set to 0.

The Server MUST validate that the reserved flag in the CONNECT packet is set to 0.

If the Will Flag is set to 1, the Will QoS and Will Retain fields in the Connect Flags will be used by the Server, and the Will Properties, Will Topic, and
Will Message fields MUST be present in the Payload.

If the User Name Flag is set to 1, the User Name is the next field in the Payload. The User Name MUST be a UTF-8 Encoded String.

The Topic Filters in an UNSUBSCRIBE packet MUST be UTF-8 Encoded Strings.

The Payload of an UNSUBSCRIBE packet MUST contain at least one Topic Filter.

The Server MUST NOT send more than one CONNACK in a Network Connection.

The DUP flag MUST be set to O for all QoS 0 messages.

The Topic Name MUST be present as the first field in the PUBLISH packet Variable Header. It MUST be a UTF-8 Encoded String.

The Response Topic MUST NOT contain wildcard characters.

The Content Type MUST be a UTF-8 Encoded String.

A Client MUST NOT send a PUBLISH packet with a Topic Alias greater than the Topic Alias Maximum value returned by the Server in the CONNACK
packet.

A PUBLISH packet sent from a Client to a Server MUST NOT contain a Subscription Identifier.

The Client or Server sending the PUBACK packet MUST use one of the PUBACK Reason Codes.

Bits 3,2,1 and O of the Fixed Header in the PUBREL packet are reserved and MUST be set to 0,0,1 and O respectively. The Server MUST treat any other
value as malformed and close the Network Connection.

The Topic Filters MUST be a UTF-8 Encoded String.

The Payload MUST contain at least one Topic Filter and Subscription Options pair.

It is a Protocol Error to set the No Local bit to 1 on a Shared Subscription.

The Server MUST NOT match Topic Filters starting with a wildcard character (# or +) with Topic Names beginning with a $ character.

The ShareName MUST NOT contain the characters "/", "+" or "#", but MUST be followed by a "/" character. This "/" character MUST be followed by a
Topic Filter.

It is a Protocol Error to include Authentication Data if there is no Authentication Method.

The authentication method’s name is a UTF-8 encoded string.

It is a Protocol Error to include the Content Type more than once.

It is a Protocol Error to include Correlation Data more than once.

It is a Protocol Error if the Maximum QoS field has the value 3.

It is a Protocol Error to include the Message Expiry Interval more than once.

The Payload Format Indicator value is either O or 1.

The Payload Format Indicator value 1 (0x01) means the Will Message is UTF-8 encoded.

The Payload Format Indicator value 1 (0x01) means the Payload is UTF-8 encoded.

It is a Protocol Error to include the Payload Format Indicator more than once.

A Control Packet which contains an Identifier that is not valid for its packet type, or contains a value not of the specified data type, is a Malformed Packet.
It is a Protocol Error to include the Receive Maximum value more than once or for it to have the value 0

It is a Protocol Error to include Request Problem Information more than once or to have a value other than O or 1.

It is a Protocol Error that Request Response Information has a value other than 0 or 1.

It is a Protocol Error to include the Request Response Information more than once.

It is a Protocol Error to include the Response Topic more than once.

The Response Topic should not be NULL.

The Subscription Identifier can have a value of 1 to 268,435,455.

It is a Protocol Error to include the Topic Alias value more than once.

The User Property is a UTF-8 String Pair.

The value 3(0x03) of Will QoS is a Malformed Packet.

The length of Properties in the UNSUBSCRIBE packet Variable Header encoded as a Variable Byte Integer.

The Will Topic can not be empty.

Table 11: Detail bug description of non-compliance bugs.
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