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Abstract
We present the formal verification of Apple’s iMessage PQ3,
a highly performant, device-to-device messaging protocol
offering strong security guarantees even against an adversary
with quantum computing capabilities. PQ3 leverages Apple’s
identity services together with a custom, post-quantum secure
initialization phase and afterwards it employs a double ratchet
construction in the style of Signal, extended to provide post-
quantum, post-compromise security.

We present a detailed formal model of PQ3, a precise spec-
ification of its fine-grained security properties, and machine-
checked security proofs using the TAMARIN prover. Particu-
larly novel is the integration of post-quantum secure key en-
capsulation into the relevant protocol phases and the detailed
security claims along with their complete formal analysis. Our
analysis covers both key ratchets, including unbounded loops,
which was believed by some to be out of scope of symbolic
provers like TAMARIN (it is not!).

1 Introduction

Research on secure instant messaging goes back over two
decades, with early proposals including Off-the-Record Mes-
saging [9], the Silent Circle Instant Messaging Protocol [31],
iMessage, and Signal [32, 24, 27]. Over time, the security
community’s understanding of the threat models and secu-
rity claims for secure messaging evolved. Modern messaging
protocols now offer strong guarantees and can communicate
messages secretly even in the presence of adversaries who cor-
rupt different parties in different ways during the protocol’s
execution. This is befitting given that strong adversaries, like
nation states, are capable of compromising both messaging
servers and the end points sending and receiving messages.
More recently, security against adversaries with quantum com-
puting capabilities has also become an important concern.
This requires protection against adversaries who can “harvest
now and decrypt later,” namely adversaries who leverage the
decreasing cost of mass storage to store the encrypted data

they intercept and to decrypt it in the future when quantum
computers become sufficiently powerful [30].

In this paper, we present our formal analysis of Apple’s ad-
vanced, widely deployed iMessage PQ3 Messaging Protocol,
or PQ3 for short. PQ3 is used across all of Apple’s devices for
device-to-device messaging and underlies many other Apple
services, e.g., iMessage, FaceTime, HomeKit, and HomePod
hand-off. PQ3 is designed to be performant and to offer strong
guarantees against powerful adversaries, including those who
later possess quantum computers.

PQ3 employs a double-ratchet construction similar to Sig-
nal [32]. The protocol takes a hybrid approach to security
and combines classical cryptographic primitives, like elliptic
curve Diffie-Hellman, and post-quantum primitives, namely
ML-KEM [29], a module-lattice-based key-encapsulation
mechanism. The hybrid construction means that PQ3’s secu-
rity does not solely depend on the security of post-quantum
primitives, which are less well understood than their classic
counterparts. Moreover, PQ3’s integration of hybrid cryptog-
raphy into the double ratchet provides stronger guarantees
than Signal, where a post-quantum Key Encapsulation Mecha-
nism (KEM) is just integrated into the protocol’s setup phase,
but not into its ratcheting (see Section 2).

We analyzed PQ3’s security in detail using the TAMARIN
prover [33, 28], a state-of-the-art security protocol model
checker. Our formal models and proofs are accessible on
Zenodo [25]. We report on our model of PQ3, the adversary
assumptions, and the protocol’s desired properties. We use
TAMARIN’s specification language to specify the messaging
protocol and its use of classical and post-quantum cryptog-
raphy. We also specify all forms of adversary compromise,
including the event in which the attacker obtains a sufficiently
powerful quantum computer, allowing them to break all non-
post-quantum-secure cryptographic primitives. Essentially,
the adversary can compromise any key at any time, either
through dedicated key-reveal rules or because they obtained a
quantum computer. Using TAMARIN’s property language, we
formalize and prove both secrecy and authenticity theorems.
These theorems precisely express the protocol’s security guar-



antees capturing fine-grained notions of key compromise.
Our analysis establishes that PQ3 provides strong security

guarantees against an active network adversary that can com-
promise any secret key, unless explicitly stated otherwise. For
example, PQ3 provides forward secrecy, post-compromise
security, and post-quantum security with respect to a “har-
vest now, decrypt later” adversary. In contrast to Signal, PQ3
provides post-compromise security also against active clas-
sical and “harvest now, decrypt later” adversaries and not
only against passive, classical adversaries. Moreover, the fine-
grained analysis of compromise possibilities and their effects
is useful for guiding secure implementations of PQ3. For ex-
ample, the compromise of a participant’s long-term identity
key impacts all security guarantees and thus should be stored
with extra care, for example, in a device’s secure enclave.

Contributions Our first contribution is the formalization
and machine-checked verification of PQ3 to prove all our
security claims. Namely, we use TAMARIN to prove that PQ3
offers strong security guarantees against a powerful adversary
with quantum computing capabilities. These guarantees are
fine-grained and comprehensive in that omitting any of the
many adversary compromise cases leads to attacks. Our ver-
ification thereby provides a formal, machine-checked proof
that PQ3 meets the high expectations for a modern device-to-
device messaging protocol. This high assurance is important
given the prominent role of this protocol, which is used in
billions of devices worldwide, and its limited prior analysis.

Our second contribution is to show that symbolic security
protocol model checkers, in particular TAMARIN, can verify
substantial, real-world protocols with nested loops, in their
full complexity. This is non-trivial as it entails reasoning about
unboundedly many parallel instances of the protocol, where
the runs (two devices sending messages) are themselves un-
bounded. In fact, it was commonly believed that “unbounded
(looping) protocols like Signal, and protocols with mutable re-
cursive data structures [...] are also out of scope for symbolic
provers, without introducing artificial restrictions” [3]. Our
work shows that this is not the case and provides a general
methodology for carrying out such proofs.

Organization In Section 2 we survey related work on mes-
saging protocols and their verification. Afterwards, in Sec-
tions 3 and 4 we describe PQ3’s threat model, requirements,
and the protocol itself. In Section 5 we present our TAMARIN
model of PQ3, the adversary, the protocol’s properties, and
details on our proofs. We draw conclusions in Section 6.

2 Related work

2.1 Messaging Protocols
Over the past decades, hundreds of secure messaging systems
have been proposed [35]. The underlying protocols differ

in how they bootstrap trust to set up initial keys, the prop-
erties they achieve, the adversaries they consider, whether
bilateral or group communication is supported, and usability.
The strongest protocols support message secrecy and authen-
ticity against very strong adversaries. As servers cannot be
trusted, encryption must be carried out end-to-end. Moreover,
it is common to consider adversaries who can compromise
agents’ long-term secrets, and even their session states.

The security bar is now quite high. Modern protocols like
Signal, which is used for example in the Signal app, What-
sApp, and Facebook Secret Conversations, offer security guar-
antees, even when adversaries compromise the devices of the
agents running the protocol. In particular, Signal supports
both forward secrecy and post-compromise security [14, 8],
also called self-healing or backward secrecy. The former pro-
tects the protocol’s participants against the future compromise
of past sessions, for example, the loss of a long-term secret
should not jeopardize the secrecy of previously exchanged
messages. The latter helps the participants to recover or “self-
heal” from a past compromise to communicate secretly again
in the present and future.

Messaging protocols achieve these strong properties by
using ratcheting, an approach to continually generate new
keys. Ratcheting was first proposed in the Off-the-Record
Messaging [9] protocol where, with each message round
trip, users establish a fresh ephemeral Diffie-Hellman
shared secret. Signal further developed this idea with their
double-ratchet algorithm [32], which nests two ratchets: an
outer public-key ratchet and an inner symmetric-key ratchet.
This mechanism ensures that the symmetric keys used for
encryption and decryption are updated with every message
sent, as opposed to just on every round trip. The protocol can
recover from past compromises on every round-trip due to
a new Diffie-Hellman secret. Forward secrecy is achieved
for the symmetric keys as the ratchet chain does not allow
one to compute the previous keys from the current message
encryption key, but only the future ones.

More recently, researchers have investigated improvements
offering guarantees against adversaries with quantum com-
puting capabilities. The Signal protocol uses the Extended
Triple Diffie-Hellman (X3DH) Key Agreement Protocol [27]
to negotiate the session key used as the ratchet’s initial root
key. The recently developed PQXDH Key Agreement Proto-
col [24] strengthens X3DH by additionally incorporating a
post-quantum KEM like Crystals-Kyber [10], and has been
verified using both ProVerif and CryptoVerif [4], as well as
with a pen-and-paper game-based reduction proof [19]. It has
been proven (see Section 2.2) that PQXDH provides forward
secrecy even in the presence of an adversary with quantum
computing capabilities, provided all KEM private keys remain
uncompromised. However, as the post-quantum KEM is only
used in the setup phase, the subsequent use of Signal’s double
ratchet does not provide post-compromise security against an
adversary with quantum computing capabilities, which PQ3



does. Note that both X3DH and PQXDH additionally provide
cryptographic deniability [36], which is not provided by PQ3
and hence out of scope for our work.

2.2 Verification of Messaging Protocols
There has been considerable research on verifying messaging
protocols using sophisticated constructions like the double
ratchet to achieve strong security guarantees. Researchers
have studied Signal and variants of it from both a computa-
tional and a symbolic perspective, using both pen-and-paper
and machine-checked proofs.

Computational proofs A number of pen-and-paper proofs
of messaging protocols involving double ratchets have been
constructed in the computational setting. This means, in con-
trast to the symbolic model (introduced shortly), that proto-
cols are analyzed with respect to computational definitions
of security. Agents manipulate bit strings, the adversary’s ca-
pabilities are modeled by probabilistic polynomial-time Tur-
ing machines, and security definitions are thus probabilistic.
These models support a more detailed analysis of cryptog-
raphy than symbolic abstractions. However, the proofs can
be quite complex and hence they typically involve their own
abstractions or protocol simplifications. Moreover, given that
the proofs are traditional pen-and-paper arguments, they are
more error-prone than proofs checked by computers. There
are exceptions, namely computational proofs constructed with
tools like CryptoVerif [6], but these are usually limited to the
study of relatively simple combinations of primitives, not
complex protocols like the full Signal or PQ3 double ratchet.

In [5], the authors analyze variants of the double ratchet
protocol in the Universal Composability framework. As part
of their analysis, they consider when keys must be deleted
for different properties to hold. Their proofs are game-based
with detailed security definitions. Game-based proofs are also
given by [11, 13, 1]. In particular, [13] presents a formal anal-
ysis of Signal in the random oracle model. Their focus is on
Signal’s key agreement and they reason about loops using
induction. [1] carries out game-based proofs for a Signal-like
protocol; they provide a rational reconstruction of a general-
ized protocol that modularly achieves the different kinds of
properties one wants from Signal and the use of double ratch-
ets. In all these works, security is shown using pen-and-paper
proofs, which are not machine checked, and post-quantum
security is not considered.

Concomitantly to our work, Stebila carried out a computa-
tional analysis of PQ3 [34], providing a reduction argument
for its security. He also formalizes the hybrid cryptography
integrated into both PQ3’s initialization and double ratchet,
and establishes that this provides both forward secrecy and
post-compromise security against both classical and “harvest
now, decrypt later” adversaries. The modeling of cryptogra-
phy is, as is standard for computational formalizations, more

concrete and detailed than in our approach. In contrast, the
security model, and the proofs (which are game-based, fo-
cused on deriving a bound on the adversary’s advantages) are
considerably more complex, and proofs are pen-and-paper
based, rather than machine checked.

We believe, as Apple researchers also do, that there is sub-
stantial benefit to having both kinds of proofs, as they both
have their relative strengths. Computational proofs capture
the detailed cryptographic assumptions on the operators used.
They can also capture the adversary’s advantage in attack-
ing a protocol, by bounding the probability of success for an
adversary with given computational resources. In contrast,
symbolic proofs better support machine-checked proofs, us-
ing different computer-supported proof techniques, like con-
straint solving and mathematical induction. This supports
giving detailed models of protocols’ and adversary’s oper-
ational semantics, considering unboundedly many protocol
participants and interleaved parallel sessions, and verifying
these against detailed, fine-grained security properties.

This value of symbolic proofs is exemplified by our anal-
ysis of injective agreement [26] (Section 5.3.2), which for-
malizes that a protocol provides replay protection. [34] did
not consider replay in its analysis, and during our TAMARIN
proofs, we uncovered that injective agreement can only be
provided under additional assumptions (not present in [34])
on the session-handling layer.

Symbolic proofs In terms of verification, the works closest
to ours use the symbolic model of cryptography. In this
model, messages are represented as terms in a term algebra
(rather than bit-strings) and one uses possibilistic rather
than probabilistic definitions of security. TAMARIN [33, 28]
and ProVerif [7] are examples of tools constructing proofs
in this setting. For example, to show that a key is a secret,
one would use these tools to prove that, no matter how
arbitrarily many protocol runs are interleaved, including runs
where the adversary is active, the adversary cannot possibly
learn the intended secret. Such proofs may be constructed
automatically or interactively, and attempts to prove false
statements generally yield attacks on the specified properties.

[18] analyzes Signal’s session-handling layer Sesame. They
use TAMARIN to show that, when sessions are accounted for,
Signal does not achieve post-compromise security despite the
double ratchet having this property. In this work, we do not
consider PQ3’s session-handling layer as its specification was
not made available to us. Analyzing PQ3 in conjunction with
session handling is an interesting line of future work.

[22] use ProVerif and CryptoVerif [6] to analyze a variant
of Signal where they extract the models they analyze from an
implementation in a JavaScript dialect. Their models are sub-
stantially simplified. For example, they lack the inner ratchet
based on symmetric cryptography and only consider a fixed,
finite number of protocol sessions without loops.

As previously explained, Signal uses the X3DH protocol



to agree on a shared key (the initial root key) prior to the
double ratchet’s start. The post-quantum version PQXDH has
been analyzed in [4] both symbolically, using ProVerif, and
computationally, using CryptoVerif. As the authors explain
“Notably, this is the first machine-checked post-quantum secu-
rity proof of a real-world cryptographic protocol.” While this
is indeed the case, they only consider the initialization part
of the Signal protocol. They do not reason about the double
ratchet construction, which is based on classical cryptography
and thus provides no post-quantum security guarantees.

In [3], the authors analyzed Signal based on an F* im-
plementation. They observe: “Notably, Signal has not been
mechanically analyzed for an arbitrary number of rounds be-
fore. The ProVerif analysis of the Signal protocol in [22]
was limited to two messages (three ratcheting rounds), at
which point the analysis already took 29 hours. (With Cryp-
toVerif, the analysis of Signal has to be limited to just one
ratcheting round).” Their own proof is however also limited
and only verifies properties for the outermost ratchet. In con-
trast, our proof uses induction within TAMARIN to machine
check proofs about both ratchets of PQ3. Even in the classical
setting, ignoring our post-quantum extensions, verifying the
inner ratchet allows us to establish security properties against
stronger adversaries who can compromise session state during
the inner ratchet’s execution.

3 Requirements and Threat Model

3.1 Security Requirements
Secrecy PQ3 was designed to provide strong secrecy guar-
antees, namely message secrecy, forward secrecy, and post-
compromise security. Message secrecy means that as long
as neither participants’ session states are revealed, the adver-
sary cannot learn any of their exchanged messages. Forward
secrecy and post-compromise security limit the window in
which an adversary can learn exchanged messages after they
compromise parts of the session state. We discussed forward
secrecy and post-compromise security already in Section 2.1.
In short, forward secrecy protects protocol participants against
the future compromise of past sessions, and post-compromise
security helps to recover or “self-heal” from a past compro-
mise to communicate secretly again in the present and future.

In our security analysis, we define a secrecy lemma that
captures all three notions of secrecy and that addresses the
precise implications of partial session state compromise. De-
scribing this fine-grained secrecy lemma requires a detailed
understanding of the key material used in PQ3, and is thus
deferred to Section 5.3.1.

Authentication and Replay Protection A message recipi-
ent can identify the message’s sender. We formulate this as an
agreement property: the recipient and sender agree on their
view of the message. For any message received, allegedly

originating from the peer at message counter i, the peer must
have actually sent the message using counter i, intending it to
go to the receiver. Moreover, this agreement is injective [26].
Namely, a given message is only accepted once by the recipi-
ent; hence the protocol provides replay protection.

3.2 Threat Model

PQ3 seeks to provide the above security properties even when
the protocol is run in the presence of a strong active net-
work adversary who may have access to a powerful quantum
computer in the future. As an active network adversary, the
adversary can read, reorder, intercept, replay, and send any
message to any participant. We assume though that devices
use strong randomness and that, short of possessing a quan-
tum computer, the adversary cannot factor large numbers or
compute discrete logs. Hence, in the pre-quantum era, cryp-
tographic primitives like (elliptic curve) Diffie-Hellman are
secure against the adversary.

By default, the adversary can access every participants’ key
material unless we explicitly forbid this. We will refine our
threat model for each security property and list all the keys
that the adversary must not access for the security property
to hold. This allows us to focus on which key material the
adversary must access to violate a security guarantee and to
abstract from whether this compromise is plausible. For ex-
ample, recently developed cryptographic primitives, designed
to provide post-quantum security, may turn out to be flawed.
Some keys are stored in a devices’ main memory and rela-
tively easy to compromise, whereas others, like identity keys,
are stored in Apple’s Secure Enclave and are thus much harder
to compromise. The fact the adversary can access every key
by default allows us to consider all of these cases.

In addition, our threat model accounts for the possi-
bility that the adversary may at some point possess a
cryptographically-relevant quantum computer. When this hap-
pens, the adversary will be able to break all non-post-quantum-
secure primitives, such as elliptic curve Diffie-Hellman, and
can access all such secret key material, independently of what
a refined threat model may state.

We constrain the adversary’s future quantum computing
capabilities by assuming that as soon as the adversary
possesses a quantum computer, no honest participant runs
the protocol. This models an adversary that anticipates
future developments in quantum computing and stores all
messages sent by the protocol participants. For this reason,
the adversary is a passive quantum attacker and is referred
to as a “harvest now, decrypt later” adversary.1

For setup and session establishment, the protocol leverages
Apple’s IDentity Services (IDS) key directory. We assume

1Note that PQ3 only protects past sessions against quantum attackers. To
protect active sessions, PQ3’s relies on an elliptic curve signature scheme,
which can be broken by a quantum computer.



that this directory is secure in that it only distributes the par-
ticipants’ authentic public keys. The problem of key authenti-
cation is orthogonal to PQ3 and has recently been addressed
by Apple with their rollout of “Contact Key Verification” [2].

4 PQ3 Messaging Protocol

PQ3 is a device-to-device messaging protocol where either
device can asynchronously exchange messages at any time,
independent of the connection status of their peer’s device.
We first describe PQ3 at a high-level of abstraction, followed
by a more detailed account. We provide a full pseudocode
specification of PQ3 in [25].

4.1 High-level Account

In PQ3, communication between two parties, say Alice and
Bob, works roughly as follows. Suppose that Alice wants to
initiate messaging with Bob.

1. Alice queries Apple’s IDentity Service (IDS) for Bob’s
pre-key material and a long-term identity public key.

2. Alice derives an initial root key, chain key, and message key.
Alice encrypts her first message for Bob using the message
key and sends Bob the ciphertext along with a signature
and the key material necessary to derive the initial root
key.

3. Upon receiving this new message, Bob lacks the key to
decrypt the ciphertext, and so he must derive it. Bob first
queries the IDS to verify Alice’s long-term identity public
key and checks the received signature. He uses the key ma-
terial received from Alice to derive the initial root, chain,
and message key and decrypts the initial message. Alice
and Bob have now established a shared session.

4. As long as the session does not change direction (i.e.,
the current sender keeps sending messages), both parties
perform symmetric ratcheting. In the symmetric ratchet,
participants use the old chain key to derive a new chain
and message key.

5. Whenever the session changes direction (i.e., the current
receiver wants to reply), both parties perform public-key
ratcheting. In the public-key ratchet, participants use the
old root key and newly sampled asymmetric key material
to derive a new root key.

At this high level of abstraction, Steps 2–5 resemble the stan-
dard double-ratchet construction. But there are significant
differences in the concrete details on how the ratchets are per-
formed, in particular how a post-quantum KEM is integrated
into the ratcheting.
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Figure 1: Dependency between the keys used by PQ3. Ar-
rows denote that one value is used to derive another. The lock
icons denote KEM encapsulation or decapsulation respec-
tively. Sometimes a zero-byte sequence is used instead of a
root key or KEM shared secret.

4.2 More Detailed Account
We now expand on the above account. Although this account
is more detailed, we still focus on the essential ideas and we
omit some low-level details, like message and key derivation
tags. Moreover, we describe some additional features of PQ3
at the end of this section.

Keys PQ3 specifies many keys. Every participant has a
long-term identity key, a P-256 ECDSA public/private key
pair to authenticate messages and other key material. Long-
term identity public keys are distributed and authenticated
using the IDS. All other keys are used to derive message keys.
Figure 1 depicts the dependencies between these keys.

We start by introducing PQ3’s three types of symmetric
keys. These symmetric keys are always derived with respect
to a given public-key ratchet step (identified by i in Fig. 1).
Message keys (depicted as mki,0) are the message encryption
keys and are derived from chain keys (depicted as cki,0/1).
Chain keys are derived from either previous chain keys or
initially from the same entropy sources as the root keys. Root
keys (depicted as rki/i+1) are used in every public-key ratchet
step and, in particular, maintain the entropy from previous
public-key ratchets.

Root and initial chain keys are derived from three entropy
sources: the session’s previous root key (or a zero-byte se-
quence upon session start; rki in Fig. 1), an ECDH shared
secret (“DH” in Fig. 1), and optionally a KEM shared secret
(replaced with a zero-byte sequence when omitted; “KEM SS”
in Fig. 1). To establish these shared secrets, every client uses
P-256 ECDH public/private key pairs, which we call ECDH



BobAlice

PubPriv Pub

PrivPubPub

PubPriv Pub

PrivPubPub

SS
DH DH

SS HKDFHKDF

0x0
DH

0x0 HKDFHKDF

DH DH
HKDFHKDF

SS
DH DH

SS HKDFHKDF

DH

0x0 0x0

PrivPubPub

PrivPubPub

PubPriv Pub

Pre-Keys

0x00x0

…

…

…

…

…

…

…

…

Root Keys Root Keys

2

3

4

1 Figure 2: PQ3’s public-key ratchet. Each block
1-4 illustrates a public-key ratchet step. We
omit the symmetric ratchet; chain and message
keys are derived from the output of the HKDF
(denoted by “. . . ”). In Step 1, Alice initiates
a session with Bob and uses pre-key material
(white box) to derive a root key. Alice sends a
freshly encapsulated shared KEM secret (lock
icon), and a freshly sampled ECDH public key
to Bob that Bob can use to derive session keys.
New KEM shared secrets are only encapsu-
lated and shared when a new KEM public key
was sent in the previous public-key ratchet (see
block 4). Orange/gray key pairs denote ML-
KEM keys, green/blue key pairs denote ECDH
keys. This figure was inspired by [32].

keys, and ML-KEM 768 or 1024 public/private key pairs,
which we call KEM keys. Clients establish the ECDH shared
secret by combining an ECDH public key from their peer with
their own ECDH private key (“ECDH Pub/Priv” in Fig. 1).
Clients establish the KEM shared secret either by encapsulat-
ing it for their peer using their peer’s KEM public key or by
having their peer encapsulate it for them and decapsulating it
with their own KEM private key (“KEM Pub/Priv” in Fig.1).

In general, every client uses distinct, fresh ECDH and KEM
keys for every session, the public part of which they send in
PQ3 messages to their peer. These session-specific keys are
called ephemeral keys. Ephemeral keys are short-lived and
used only for a specific session. To support asynchronous mes-
saging, clients use ECDH and KEM public pre-keys instead
of their ephemeral counterparts upon session start (the ECDH
and KEM keys depicted in Figure 1 could be either ephemeral
or pre-keys). Clients upload their pre-keys to the IDS using
timestamped pre-key bundles, which are signed with their
long-term identity key. Clients can fetch their peers’ pre-keys
from the IDS to start a new session with any of their peers’
clients without requiring that client to be online. Pre-keys can
be reused in multiple sessions, but are only used upon session
start. PQ3 uses ML-KEM 768 key pairs for ephemeral KEM
keys and ML-KEM 1024 key pairs for KEM pre-keys.

Session Establishment In the following, we assume, as be-
fore, that Alice wishes to establish a new session with Bob.
We depict an example run of PQ3 in Figure 2, specifically
showing the key derivations of both parties. The figure shows
four public-key ratchet steps (numbered 1-4). Step 1 illus-
trates session establishment as explained next. Note that all
messages sent between parties include a signature by the
respective sender for authentication purposes using their long-
term identity key. We omit signatures, long-term identity keys,
the steps of the symmetric ratchet, and sent messages from

the figure to avoid clutter and to focus on the key material
used in root key derivation.

Alice’s actions are depicted in the left, blue half of Figure 2.
Alice initiates her session with Bob by performing an IDS
query for Bob’s identity. Alice thereby learns three keys from
the query’s result: Bob’s long-term identity public key, an
ECDH public pre-key, and a KEM public pre-key. Query-
ing and using pre-keys is depicted within the white box in
Figure 2. Alice then generates a fresh ECDH ephemeral pub-
lic/private key pair (“Priv/Pub” in Step 1) and encapsulates
a fresh KEM shared secret with Bob’s public pre-key (lock
icon in Step 1). The encapsulation algorithm provides Alice
with the cleartext KEM shared secret for her use (shown as
“SS” in Step 1), and ciphertext to be given to Bob (the lock
to the right of “SS”, showing that it used the KEM public
pre-key from above). Bob can decapsulate the KEM shared
secret with his KEM private pre-key to receive the same KEM
shared secret. Alice then combines her ECDH ephemeral pri-
vate key with Bob’s ECDH public pre-key to obtain the initial
ECDH shared secret (depicted as “DH”).

Alice proceeds to derive the initial root key and the associ-
ated initial chain key from the ECDH shared secret, the KEM
shared secret, and a zero-byte sequence, which stands in for
the previous root key. This is depicted on the far left of Fig-
ure 2 as “HKDF” in Step 1. She derives a message key from
the initial chain key and encrypts her initial message with
that message key. She sends Bob the ciphertext, her ECDH
ephemeral public key, the KEM encapsulation (with the lat-
ter two shown in Figure 2), a hash of Bob’s public pre-keys
(the pre-key hash), and a signature on all these elements and
some additional authenticated data. The exact values of the
authenticated data field are unspecified, and the field can be
used freely by applications.

Bob uses that message to derive the initial root and chain
key. Bob’s actions are depicted in the right, green half of



Figure 2. Bob first performs an IDS query to receive Alice’s
long-term identity public key (not depicted in Figure 2), which
he uses to verify the message signature. Bob then looks up
the private parts of his pre-keys used by Alice, which are
identified by the pre-key hash. Bob decapsulates the KEM
encapsulation to obtain the KEM shared secret (the open
lock symbol in Step 1), and combines Alice’s ECDH public
ephemeral key with his ECDH private pre-key to establish the
ECDH shared secret (“DH” in Step 1). With these two values
(and the zero-byte sequence), Bob computes the initial root
and chain key (illustrated by “HKDF” in Step 1) and derives
a message key from that chain key to decrypt the ciphertext.

Symmetric Ratchet With a shared root key established,
Alice can send any number of additional messages to Bob
without the participants updating the root key. Nevertheless,
each of these messages will be encrypted with a distinct key
derived by symmetric ratcheting. Whenever a participant en-
crypts a message, they use the current chain key to derive a
message key, and then ratchet the chain key forward by deriv-
ing a new chain key from the previous one. PQ3 establishes
per-message forward secrecy as soon as the previous chain
and message keys are deleted, i.e., participants should only
store the latest root and chain key. The symmetric ratchet,
though, is only executed as long as the conversation’s direc-
tion does not change, i.e., as long as the current sender keeps
sending. Whenever the current receiver wishes to respond,
they perform a public-key ratchet instead.

Public-Key Ratchet Suppose, after receiving some mes-
sages from Alice, that Bob wants to reply. This means that
the conversation changes direction, and whenever this hap-
pens clients perform the public-key ratchet. Every public-key
ratchet updates the root key and derives a new, initial chain
key. The steps taken to derive these new keys are similar to
the steps taken during session establishment. Figure 2 illus-
trates (next to session establishment) three further public-key
ratchet steps (numbered 2-4).

To perform the public-key ratchet, Bob first generates a
fresh ECDH ephemeral public/private key pair. Depending
on the conversation’s state, Bob may additionally perform
either of the following two actions: (i) use the encapsulation
algorithm to produce a new KEM shared secret and cipher-
text (for decapsulation by Alice), or (ii) generate a new KEM
ephemeral public/private key pair. Action (i) is performed
whenever Bob’s peer, Alice, performed Action (ii) in the pre-
vious public-key ratchet. To save bandwidth, Action (ii) need
not always be performed. Instead, a custom heuristic deter-
mines when a client refreshes its KEM keys. The heuristic
accounts for the threat environment, performance, and other
requirements. As per iOS 17.4, PQ3 clients send a fresh KEM
public key roughly every 50 messages or whenever they have
not sent a fresh KEM public key within a week [21].

Bob then derives the next root key and the associated initial
chain key. He first combines his freshly generated ECDH
ephemeral private key with Alice’s ECDH ephemeral public
key to obtain the new ECDH shared secret. He then uses the
previous root key, the new ECDH shared secret, and either the
new KEM shared secret or a zero-byte sequence (depending
on whether Bob performed Action (i)) to derive the next root
key and associated initial chain key. He again derives a mes-
sage key from that chain key to encrypt his message and sends
Alice the following values: the ciphertext, his fresh ECDH
ephemeral public key, optionally the new KEM encapsulation
(Action (i)), optionally his new KEM public key (Action (ii)),
and a signature on all the above.

Figure 2 depicts in Step 3 that Alice generates a new
ephemeral KEM public/private key pair and sends the corre-
sponding public key to Bob, i.e., Alice executes Action (ii)
above. This means that Bob will execute Action (i) in Step 4.

Overall, the cryptographic constructions used are hybrid:
all key derivations incorporating a KEM shared secret also
involve classical secrets. This design entails (and we establish
this formally in our proofs) that PQ3’s security is at least as
strong as when using classical cryptography alone. The re-
peated use of the KEM encapsulation in the protocol therefore
strictly strengthens the protocol to provide post-compromise
security even against a “harvest now, decrypt later” adversary
who managed to access some KEM shared secret.

5 Security Proofs

In this section, we describe how we modeled PQ3 and proved
its security using TAMARIN. We briefly introduce TAMARIN
(Section 5.1), describe our protocol model (Section 5.2), the
formal security properties (Section 5.3), and our proofs (Sec-
tion 5.4). Our protocol model covers PQ3 in its full complex-
ity, including its nested loops, all its cryptographic primitives,
and their combinations. We discuss limitations and proof ef-
fort in Section 5.5. All our formal models and proofs are
openly accessible on Zenodo [25].

5.1 Background on Tamarin
TAMARIN works in the symbolic model of cryptography,
which supports a high degree of automation when construct-
ing proofs. TAMARIN uses labeled multiset rewriting rules to
model setup assumptions and the behavior of protocol partici-
pants. The participants play in so-called roles, where the pos-
sible actions of each role are given by sets of rules. TAMARIN
verifies security properties with respect to an active network
adversary who can read, intercept, reorder, replay, and send
messages. In addition to this built-in adversary, modelers can
give the adversary additional capabilities using explicit rules.

Each rule has a premise and conclusion. These consist
of (potentially persistent) facts, which store the terms that
TAMARIN manipulates and reasons about. The rules together



specify an infinite-state transition system. Each state of this
transition system includes the protocol-state associated with
each role instance, the adversary’s knowledge, all messages
being sent on the network, and more. To apply a rule, the facts
in its premise must be found in the current global state. When
a rule is applied, all non-persistent facts appearing in the
premise of the rule are removed from the state and instances
of all facts in the conclusion of the rule are added.

All rules are labeled and TAMARIN reasons about traces,
which are sequences of the instantiated rules’ labels. For this,
TAMARIN supports a subset of first-order logic to specify
the properties one then proves. Furthermore, formulas in this
logic can also be used to specify restrictions on which traces
TAMARIN should consider when proving theorems. Restric-
tions can be used, for example, to state that a participant
performs a certain check, e.g., signature verification, in which
case traces with failed checks would be excluded.

To model different cryptographic primitives, TAMARIN
supports a number of built-in equational theories, for example,
for symmetric encryption and message signing. The user can
additionally define their own equational theories.

TAMARIN reasons using backwards search. Starting from
the protocol’s specification, it negates the property to be
verified and searches for a trace representing an attack. If
there cannot exist any such trace, then the property is proven.
Internally, TAMARIN uses constraint solving, and supports
both an automatic mode and an interactive mode. Each step
is machine-checked, using sound and complete proof rules.
However, as the underlying problem is undecidable, there is
no guarantee of termination. Users can help TAMARIN con-
struct proofs in an interactive mode, where again the prover
checks each proof step. Users can also help TAMARIN by
specifying auxiliary properties that can be proven once and
for all and that can be reused in larger proofs.

Finally, TAMARIN also supports a form of induction. This
is essentially an induction on the length of a trace with a
distinguished special last timepoint. Timepoints in general
provide an order on the steps in the protocol. For the special
last timepoint, the property must be proven, with it being
assumed at all previous timepoints. We explain TAMARIN’s
induction scheme more detailed in Appendix A.1.1.

5.2 Protocol Model

We used TAMARIN to comprehensively model PQ3 as de-
scribed in Section 4.2. Our model comprises a set of rules
and restrictions, modelling PQ3 as a state transition system,
together with an equational theory, modelling cryptographic
primitives. In this section, we describe the rules and restric-
tions and refer to Appendix B for details on our equational
theory. The full protocol model is provided on Zenodo [25].

We provide an overview of our model’s protocol rules in
Figure 3. Our formal model has three parts. The first part
models the generation of long-term signing keys and pre-

keys (rule UserKeyGen), and IDS queries (rule QueryIDS).
These are setup rules, which are the same for all participants,
independent of whether they start a session as the sender or
receiver. The second and third part model the adversary’s
capabilities and PQ3’s protocol flow respectively.

In our model of the adversary’s capabilities, we allow the
adversary to compromise every private, root, chain, and mes-
sage key through dedicated reveal-rules, unless our security
lemmas explicitly forbid a certain key to be revealed. Addi-
tionally, we model the “harvest now, decrypt later” capabil-
ity as follows. Whenever participants generate a non-post-
quantum-secure key, like a fresh ephemeral ECDH private
key, our model saves the key in a persistent state fact (i.e., a
fact that is not consumed when it is used in a rule’s premise).
The adversary can then access any secrets stored this way af-
ter the rule PQAttackerStart is applied, but from that point
on, no honest participant runs PQ3.

Our model of PQ3’s protocol flow is depicted as the big
blue box in Figure 3. The left-hand side depicts all sender-
related rules, the right-hand side all receiver-related rules,
and in the center is a Session fact that stores all information
needed to send and receive messages. For example, a Session
fact stores a participant’s most recently generated ECDH and
KEM private keys and the corresponding public keys of their
peer, as well as any derived root and chain keys.

A new session is started by applying one of the rules
SessionStartAsSender or ReceiverStart. These are the
only two rules that only produce and do not consume a
Session fact. Most other rules update a session, i.e., they
consume and produce a Session fact, and they can be ap-
plied arbitrarily many times per session. After a new session
has started, one of two things can happen. Either the conver-
sation does not change direction and then both participants
will apply the symmetric ratchet rules, or the conversation
changes direction and the public-key ratchet rules are applied.

When being the receiver, a participant may non-
deterministically choose to become sender. When they do,
they perform the public-key ratchet. Depending on whether
their peer had sent them a new KEM public key previously,
they may additionally encapsulate a new KEM shared secret.
Also, the new sender may non-deterministically send a new
KEM public key themself to their peer.

A participant changes from the sender to the receiver role
when they receive a new message while being in the sender
state. When a participant becomes the receiver, they perform
the public-key ratchet as well. In one of the two rules, they do
so using a decapsulated KEM shared secret, and in the other
rule they use a zero-byte sequence instead.

Intuitively, one can consider our model as implementing
two nested loops. First, there is the outer, public-key ratchet
loop where participants generate new ephemeral ECDH secret
keys and derive root and chain keys. Second, there is the inner,
symmetric ratchet loop where participants derive message
keys and send messages. The symmetric ratchet loop always
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Figure 3: Overview of our formal model. Rect-
angles denote rules and ellipses denote facts,
with their respective name printed inside. Ar-
rows denote fact consumption and generation
or rule transition. The white rectangle around
Some/NoFreshKemSk denotes that either of
the rules is applied non-deterministically. The
rule PQAttackerStart can be applied at any
point. When this happens, protocol execution
halts (modeling a “harvest now, decrypt later”
adversary) and thereafter the rule PQAttacker
can be applied, which reveals any non-post-
quantum-secure secret to the adversary. This
figure omits rules that reveal key material.

runs within one iteration of the public-key ratchet loop.

5.3 Properties Specified
5.3.1 Secrecy

PQ3 aims to satisfy three secrecy properties: message se-
crecy, forward secrecy, and post-compromise security. In our
formalization, we combine all three into a single property.
This property is formulated as a formula, called a lemma in
TAMARIN, as one must prove that it holds for the protocol.

Figure 4 contains our secrecy lemma.2 It states that the
adversary cannot know a message (line 4) that has been pre-
viously sent (line 2), unless the adversary succeeds in at least
one of four kinds of compromise, listed below. The kinds of
compromise are formulated with respect to the keys refer-
enced by the SessionSecrets fact. This fact lists all keys
and shared secrets used by the sender when sending the re-
spective message, e.g., their most recently sampled ephemeral
ECDH public key (myEcdhPk) and the most recently encapsu-
lated KEM shared secret (kemSS). We sketch a possible attack
for each kind of compromise to show that dropping any but
the first disjunct yields a counterexample. To learn a message
sent with PQ3, the adversary must compromise at least one of:

• The message key used during encryption from either the
receiver or sender (line 5 in Figure 4). Should the adver-
sary learn the message key, they could simply decrypt the
message themself.

• One of the chain keys used in the symmetric ratchet to
derive the message key from either the receiver or sender
(lines 6-7; a << b denotes that a is a subterm of b [17]).
Should the adversary learn one of these chain keys, they
could simply derive the message key themself.

2In the following, we will sometimes shorten the names of facts in lem-
mas compared to the source files, e.g., RevealIdentityKey may become
RevealIDKey.

• The recipient’s long-term identity key before the message
msg was sent (line 8). In this case, the adversary could gen-
erate a fresh ECDH ephemeral and KEM encapsulation key
and send them to the messaging partner in question. This
attack allows the adversary to carry out all communication
in their victim’s stead.

• One of the ephemeral ECDH secret keys, used to derive
the most recently established ECDH shared secret, and the
KEM shared secret (lines 9-15). This allows the adversary
to perform a public-key ratchet step themself.

The adversary can learn an ECDH secret key either through
direct compromise (lines 10-11) or using a quantum com-
puting attack should a sufficiently powerful quantum com-
puter be available (line 9). The compromise of the sender’s
ECDH pre-key has no effect because a sender will always
sample a fresh ECDH ephemeral key upon session start.

The KEM shared secret can be effectively compromised in
two ways. First, the adversary can compromise the KEM
secret key used for encapsulation (lines 12-13). Second, the
adversary can circumvent the need to compromise the KEM
shared secret by compromising a root key derived after that
KEM shared secret was established (lines 14-15). In the
latter case, if the adversary additionally learns an ECDH
secret key used in a subsequent public-key ratchet step, they
can derive the respective initial chain key themself.

In addition to the ECDH and KEM shared secret, the adver-
sary also requires the root key from the previous public-key
ratchet to perform the current public-key ratchet themself.
Our threat model, however, permits this root key to be re-
vealed to the adversary anyway.

Recall that our threat model assumes that the adversary
can access all key material unless explicitly forbidden. Our
secrecy lemma only forbids the adversary to access key mate-
rial related to sending the message in question. All key-reveal
assumptions in lines 5-15 use the key material introduced



1 All id me them msg ad myEcdhPk theirEcdhPk kemSS encapPk rk chainKey msgKey #t.
2 ( Sent(id,_,me,them ,msg,ad) @ t
3 & SessionSecrets(myEcdhPk ,theirEcdhPk ,kemSS ,encapPk ,rk,chainKey ,msgKey) @ t)
4 ==> (not Ex #x. K(msg) @ x)
5 | (Ex #x. RevealMessageKey(me,msgKey) @ x) | (Ex #x. RevealMessageKey(them ,msgKey) @ x)
6 | (Ex ckC #x. RevealChainKey(me,ckC) @ x & (ckC << chainKey | ckC = chainKey))
7 | (Ex ckC #x. RevealChainKey(them ,ckC) @ x & (ckC << chainKey | ckC = chainKey))
8 | (Ex #x. RevealIDKey(them) @ x & x < t)
9 | ( ( (Ex #x. PQAttack() @ x)

10 | (Ex #x. RevealECDHPreKey(them ,theirEcdhPk) @ x)
11 | (Ex #x. RevealECDHKey(id,me,myEcdhPk) @ x) | (Ex #x. RevealECDHKey(_,them ,theirEcdhPk) @ x))
12 & ( (Ex #x. RevealKemKey(me,encapPk) @ x) | (Ex #x. RevealKemKey(them ,encapPk) @ x)
13 | (Ex #x. RevealKemPreKey(me,encapPk) @ x) | (Ex #x. RevealKemPreKey(them ,encapPk) @ x)
14 | (Ex k #x. RevealRootKey(me,kemSS ,k) @ x & k << rk)
15 | (Ex k #x. RevealRootKey(them ,kemSS ,k) @ x & k << rk)))

Figure 4: Secrecy lemma. The lemma formalizes that if a message msg was sent using the secret values referenced by
SessionSecrets, then either the message cannot be known by the adversary (line 4) or the adversary compromised a specific
combination of keys (lines 5ff.). Section 5.3.1 explains this lemma, line-by-line, in further details.

𝑘! 𝑘" 𝑘# 𝑘$

𝑡! 𝑡"
Key Compromise

Key Usage

Figure 5: A participant derives four initial chain keys (k1-k4)
over time and the adversary compromises k2 and k3 at times t1
and t2 respectively. Independent of when it occurs (compare
t1 with t2), key compromise has a similar and limited effect:
The adversary can only learn messages sent before the next
initial chain key is derived (the shaded areas).

in line 3, which in turn is bound to the Sent event in line 2
by the variable t. Thus, proving secrecy establishes forward
secrecy and post-compromise security as we explain next.

For long-term identity keys, we show that PQ3 provides
forward secrecy in that all messages exchanged prior to the
compromise of such a key remain secure (see line 8). For
most encryption keys (exceptions and details below), we es-
tablish forward secrecy and post-compromise security in that
to compromise a given message, the adversary must learn the
respective key used for that message and the compromise of
past or future keys has no effect. Note that “past” and “future”
here refer to the points in time when a key was used, not when
it was compromised. In particular, this allows us to establish
post-compromise security guarantees even after the adver-
sary obtained a quantum computer and participants stopped
running the protocol. Although participants will no longer
rotate keys, as they no longer run the protocol, they will have
self-healed from the compromise of any other key than the
most recently used one. For an illustration, see Figure 5.

To provide an example for why our secrecy lemma entails
forward secrecy and post-compromise security, consider the
lemma modelling ECDH key forward secrecy in Figure 6. The
lemma resembles our secrecy lemma in Figure 4, but addition-

1 All id ecdhKey1 ecdhKey2 m #t1 #t2 #t3.
2 ( SessionSecrets(ecdhKey1 , ...) @ t1
3 & SessionInfo(id, ...) @ #t1
4 & K(ecdhKey1) @ t2
5 & SessionSecrets(ecdhKey2 , ...) @ t3
6 & Sent(id, ..., m, ...) @ t3
7 & t3 < t1)
8 ==> (not Ex #x. K(m)@#x)
9 | (...) // as in secrecy lemma

Figure 6: Sketch of a potential formalization of ECDH key for-
ward secrecy. Observe that this property is strictly weaker than
our secrecy lemma in Figure 4 because we only add conjuncts
to the implication’s left-hand side. Thus, this formalization of
forward secrecy is implied by our secrecy lemma.

ally assumes that the adversary learned a relevant ECDH key
derived before the current message was sent. This modified
lemma accurately models ECDH key forward secrecy, but it is
strictly weaker than our secrecy lemma. Formally, this is the
case because we only strengthen the implication’s left-hand
side. We also cannot drop any disjunct on the implication’s
right side because, if we could, our secrecy lemma would
not be provable (we sketched attacks on the previous page).
Intuitively speaking, the adversary does not gain more power
when we explicitly add the event that they learn a respective
ECDH key to the trace because we assume that the adversary
can access all keys by default anyway.

In general, we establish per-key forward secrecy and post-
compromise security upon key rotation. For some keys, for-
ward secrecy and post-compromise security are only estab-
lished under further constraints. In these cases, our secrecy
lemma precisely defines the point in time at which forward-
secrecy or post-compromise security are established. We list
all forward secrecy and post-compromise security guarantees
entailed by our secrecy lemma below and, wherever necessary,



describe the constraints on these guarantees. When the adver-
sary does not possess a quantum computer, PQ3 provides:

• Long-term identity key forward secrecy.

• ECDH ephemeral key forward secrecy and post-
compromise security.

• ECDH pre-key post-compromise security as soon as a new
ECDH ephemeral key is generated by a session’s initial
recipient.

In practice, PQ3 also provides forward secrecy for ECDH
pre-keys as it requires that participants update their pre-keys
registered at the IDS every 2 weeks. As soon as a client
registers a new pre-key, they establish forward secrecy for all
previous session-start messages sent to them.

Should the adversary at some point break all non-ML-KEM
keys using a quantum computer, PQ3 still provides:

• ML-KEM key post-quantum forward secrecy and post-
compromise security.

• Chain and message key forward secrecy and post-
compromise security. These properties are established un-
conditionally except for chain key post-compromise secu-
rity, which is established upon the next public-key ratchet.
PQ3 establishes these properties even when the adversary
possesses a quantum-computer because these keys depend
on KEM-encapsulated secrets.

Note that working out and rigorously proving such fine-
grained notions of secrecy is nontrivial and one strongly ben-
efits here from a proof assistant. Overall, our TAMARIN proof
of secrecy establishes that, in the absence of the sender or
recipient being compromised, all keys and messages trans-
mitted are secret. The secrecy property is fine-grained in that
compromises can be tolerated in a well-defined sense where
the effect of the compromise on the secrecy of data is limited
in time and effect as described above. Moreover, we show
that PQ3 combines the security of both classical and post-
quantum-secure cryptographic primitives. Hence, to break
PQ3 one must break both.

5.3.2 Agreement

In contrast to secrecy, formalizing agreement is much sim-
pler. This is because PQ3 relies on the participants’ long-term
identity keys’ security to provide agreement. Compromise
of a participant’s long-term identity key is both necessary
and sufficient to break agreement. It is necessary because an
attacker must generate a message signature when trying to
spoof a sender, and it is sufficient because a sender need not
compromise the sender’s encryption keys to send an inau-
thentic message; they can simply generate their own and send
them alongside the faked message.

1 All id i s r m ad #t.
2 Received(id, i, s, r, m, ad) @ t
3 ==> ( (Ex #x. Sent(_, i, s, r, m, ad) @ x & x<t)
4 | (Ex #x. RevealIDKey(s) @ x & x<t))

Figure 7: Agreement lemma. For every message-receive event,
there must be a corresponding message-send event for which
the participants agree on the authenticated data, sender, re-
ceiver, and message counter, unless the sender’s long-term
identity key was previously compromised.

1 All s1 s2 r1 r2 m ad ecdhPk1 mk1 ecdhPk2 mk2 #t1
2 #t2.
3 ( Received(_,_,s1,r1,m,ad) @ t1
4 & SessionSecrets(ecdhPk1 ,_,_,_,_,mk1) @ t1
5 & Received(_,_,s2,r2,m,ad) @ t2
6 & SessionSecrets(ecdhPk2 ,_,_,_,_,mk2) @ t2)
7 ==> ( (t1 = t2)
8 | ( ecdhPk1 = ecdhPk2 & mk1 = mk2
9 & s1 = s2 & r1 = r2

10 & Ex #x. ECDHPreKeyGen(r1, ecdhPk1) @ x)
11 | (Ex #x. RevealIDKey(s1) @ x & x < t1 )
12 | (Ex #x. RevealIDKey(s2) @ x & x < t2))

Figure 8: Injective agreement lemma. It formalizes that for
two message-receive events with the same message m and
authenticated data ad, these events must be the same (line 7),
or they were sent using the recipients pre-key (lines 8f.), or
one sender’s identity key was compromised (lines 11ff.).

Our formalization of agreement is split into two TAMARIN
lemmas (Figures 7 and 8). The first lemma formalizes agree-
ment: Whenever a participant r receives a message m and
authenticated data ad, apparently from s and with message
counter i, then either s had previously sent m to r with counter
i or that senders’ long-term identity has been compromised
in the past.

The second lemma formalizes that the agreement is
injective [26], meaning that there is a one-to-one mapping
from receive-events to send-events. This lemma states that
for every two honest message-receive events with the same
message and authenticated data, these events must either be
identical (#t1 = #t2), or a recipient’s ECDH pre-key rather
than an ephemeral key was used to derive the message key
(lines 8-10), or either of the senders were compromised.
Compromise of one sender suffices to violate injective
agreement because agreement does not entail secrecy. The
adversary could learn a message by compromising the ECDH
and KEM keys of the session. They could then send the
message again, which requires the compromise of a long-term
identity key, however, to produce the necessary signature.

During our proof efforts, we noticed a trivial violation of
injective agreement, which is covered by lines 8-10. PQ3 can-
not provide injective agreement for session-start messages
(and messages sent as part of the symmetric ratchet directly



thereafter) as pre-keys can be reused for session starts. Thus,
recipients will accept session-start messages multiple times.
In practice, this case must be addressed by an application’s
session-handling layer, which defines under which conditions
clients will accept session-start messages from devices they
already have an existing session with. We shared this find-
ing with Apple researchers who confirmed that the iMessage
session-handling layer indeed addresses this case. Put differ-
ently, our formal proofs highlight precisely the assumptions
on session-handling needed to securely deploy PQ3.

5.4 Proofs & Proof Methodology
We describe here our proofs and proof methodology for PQ3.
Our proof methodology applies to theories that include (possi-
bly nested) loops and for which trace formulas like secrecy or
authentication are to be proven. We present our methodology
more generally and with further details in Appendix A.

We encountered two challenges when verifying PQ3. First,
PQ3 employs a nested loop. If not carefully handled, loops
result in prover non-termination as they are unrolled infinitely
often. TAMARIN provides induction to address this prob-
lem, but using induction correctly, especially when loops are
nested, requires postulating nontrivial auxiliary lemmas.

Second, our threat model considers the leakage of “syn-
thetic” key material, derived using a KDF, and our lemmas
naturally must refer to this key material. When proving se-
crecy, we repeatedly encountered cases similar to the follow-
ing. TAMARIN would consider an honest session sending a
message, claiming that the adversary could get the decryption
key for this message (violating secrecy) from a completely
unrelated session. We call such unrelated sessions ghost ses-
sions. In this case, the non-trivial proof goal was to convince
TAMARIN that the ghost session must be the same as the
honest session or the peer’s session. Note that other protocol
models typically only consider the leakage of “atomic” key
material, i.e., key material modelled as a fresh term.

To address these two challenges, our methodology uses
three kinds of auxiliary lemmas.

Loop-Jump Lemmas These lemmas allow one to skip un-
rolling the steps of a (nested) loop and jump to a “relevant”
point in a loop, for example, its beginning or where a spe-
cific term was introduced.

Variable-Linking Lemmas These lemmas establish that
for two instances of the same fact using two variables a
and b, if both facts have the same value for a, they must
have the same value for b.

Adversary-Construction Lemmas These lemmas formal-
ize how an adversary could construct a term. Typically,
the adversary can either construct it or access it using
a dedicated reveal rule (which in turn typically implies
a contradiction to the threat model). Figure 9 depicts
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kemSS

  (Ex #x. RevealKemKey(me, encapPk) @ #x) 

| (Ex #x. RevealKemKey(them, encapPk) @ #x) 

| (Ex #x. RevealKemPreKey(me, encapPk) @ #x) 

| (Ex #x. RevealKemPreKey(them, encapPk) @ #x) 

| (Ex #x. RevealIdentityKey(them) @ #x & #x < #t1) 

KemSSCompromise 

Term Key Reveal ImplicationsLemma

Figure 9: Connection between Adversary-Construction Lem-
mas for Message Secrecy. Arrows denote logical implication.
We omit two conjuncts in RkSecretCompromiseKEMSS that
are only required to prove the lemma by induction. We pro-
vide more details on these conjuncts in our formal model [25].

our model’s adversary-construction lemmas. For example,
CkCompromise states that the adversary can only know a
chain key if they know the value that gets split into the
root and chain key (rkCK), or they compromised this or a
previous chain key.

Loop-jump lemmas are the foundation for proving proper-
ties of models including nested loops. Without such lemmas,
TAMARIN’s induction fails to prove even the simplest proper-
ties of an outer loop. The induction hypothesis will not apply
in cases where a step in the outer loop is directly preceded
by a step in an inner loop. Moreover, adversary-construction
lemmas are required to deal with the complicated terms that
are computed in nested loops, and variable-linking lemmas
are required to address ghost sessions.

We proved secrecy for PQ3 using a series of adversary-
construction lemmas, depicted in Figure 9, which in turn
were proven using the loop-jump and variable-linking lem-
mas in Figures 10 and 11. Concretely, when proving secrecy,
TAMARIN first negates the original lemma and tries to con-
struct a trace satisfying the negated lemma, i.e., TAMARIN
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Figure 10: Loop-Jump (orange) and Variable-Linking Lem-
mas (blue) Related to Key Derivation. Black arrows indicate
which variables are used to construct other variables, e.g., a
message key is derived from a chain key.
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Figure 11: Loop-Jump Lemmas (orange) Related to Establish-
ing Shared Secrets. Black arrows indicate which key material
can be used to establish which shared secret.

tries to construct a trace where a message has been sent and
the adversary knows it. By solving for how the adversary
could learn the message, TAMARIN deduces that the adver-
sary must know the message key used for encryption. This
allows us to apply the first adversary-construction lemma
MkCompromise. This lemma expresses that the adversary
can only know the message key if they either know the re-
spective chain key (allowing us to apply the next adversary-
construction lemma) or if they access a reveal rule (contra-
dicting our threat model assumptions directly). In the case
where the adversary knows a respective smaller term, we can
apply the next adversary-construction lemma, etc. Finally, the
lemmas ECDHSSCompromise and KemSSCompromise directly
contradict the threat model.

We proved these adversary-construction lemma using the
loop-jump and variable-linking lemmas depicted in Fig-
ures 10 and 11. A sequence of variable-linking lemmas
(depicted in blue) connect message to chain to root keys
and to the respective KEM shared secret and ECDH shared
secret (Figure 10). Loop-jump lemmas (depicted in or-
ange) then connect the shared secrets to the asymmetric
key material used to establish them (Figure 11). This al-
lows TAMARIN to deduce that access to the shared secret
requires access to the respective private key material. Be-
yond the lemmas depicted in Figures 10 and 11, we only use
the three loop-jump lemmas RootKeyConnectionReceive,
RootKeyConnectionSend, and SessionStart, which jump
from an instance of the symmetric ratchet to the most re-

cent public key ratchet (switching from sender to receiver or
receiver to sender respectively) and the session start.

We proved both agreement lemmas much like we proved
secrecy, but proving agreement was much simpler. PQ3 pro-
vides agreement by signing every message. When trying to
prove non-injective agreement, TAMARIN immediately finds
that to violate agreement, the adversary must generate this
signature themself, which in turn requires access to the sign-
ing key. The rule that introduces the signing key, however,
can directly be established using the SessionStart lemma
as signing keys are queried only upon session start.

When attempting to prove injective agreement, TAMARIN
will start by constructing a trace with two honest receive
events for the same message. Using variable-linking lem-
mas, we can establish that these two sessions must use the
same ECDH shared secret, and using the respective loop-
jump lemmas, we can jump to the rule instantiation where
the receiver generated their latest ECDH ephemeral key. This
allows TAMARIN to derive that the two receive events must
have happened in the same session (unless a pre-key was
used; but this case is addressed in the lemma directly).

Finally, we only use six auxiliary lemmas not fitting
the categories defined above. These lemmas simply limit
TAMARIN’s search space to reduce proof construction time.
For example, they show that certain events (like session start)
can only occur once, or establish well-formedness conditions
(for example, that the root key is a subterm of the chain key).

5.5 Discussion

5.5.1 Scope of Analysis

We do not consider session handling, long-term identity or
pre-key rollover, and only consider group messaging implic-
itly. Our analysis covers the protocol design as described in
the documentations we received from Apple. PQ3’s imple-
mentation is not part of our analysis. Furthermore, as our
analysis is based on symbolic models, it abstracts away some
details of the concrete implementation, like message lengths
and some algorithmic details of the ciphers used.

We did not model session handling as a specification of
iMessage’s session handling was not available to us. More-
over, PQ3 is not limited in its use to iMessage. Different
applications may have different requirements on their session
handling. Studying PQ3 in isolation is therefore desirable in
its own right.

A security analysis of group aspects, such as members
joining or leaving groups, is not part of PQ3 as it is a device-
to-device messaging protocol. In practice, group messaging
can be implemented using PQ3 by sending messages via pair-
wise runs of PQ3 to all group members. Such functionality
is provided by an application’s session-handling layer and is
thus outside of our analysis. iMessage implements group mes-
saging using multiple, individual device-to-device sessions,



and our analysis establishes the security of each such session.
Beyond the limitations just mentioned, our formal model

incorporates all details that were part of the documentation
provided to us by Apple. In particular, we did not abstract
away any protocol steps that participants may take.

5.5.2 Proof Effort

Our TAMARIN model comprises 32 lemmas in total. Next to
the auxiliary lemmas used to prove secrecy and agreement
(Section 5.4), our model includes a sources lemma, which aids
TAMARIN in precomputation steps, and two executability lem-
mas. Executability lemmas effectively “sanity check” a proto-
col specification by establishing that the participants can run
the protocol without adversary involvement. This enhances
our confidence that the protocol model faithfully represents
the protocol and that its properties do not hold trivially.

All proofs are guided by custom proof heuristics, imple-
mented in Python, and finding the right heuristics to suc-
cessfully construct proofs required substantial efforts. For
example, checking the proof for the lemma formalizing in-
jective agreement (Section 5.3.2) takes around 7 hours and
requires 20 GB of RAM on a server using two Intel Xeon
CPU E5-2650 v4 @ 2.20GHz. The proofs of other lemmas
require up to 100 GB of RAM to be checked. Overall, we
estimate that proving PQ3 took around 2.5 person-months of
work.

6 Conclusions

We have used TAMARIN to formally verify the device-to-
device messaging protocol PQ3. Our analysis is based on
machine-checked proofs of fine-grained secrecy and authenti-
cation properties. This provides a high degree of assurance
that PQ3 functions securely against an active network ad-
versary who can selectively compromise parties, even when
sufficiently powerful quantum computers become available.
Additionally, the properties we prove give a detailed account
of the impact that the compromise of every individual key has.
Lastly, we show that TAMARIN is up to the task of reasoning
about complex protocols with nested loops, and we have given
a general methodology for doing this.

Future work Of particular interest would be the formal
analysis of PQ3 in conjunction with session handling, as im-
plemented for iMessage. Whether PQ3’s security guarantees
as established here fully transfer to iMessage remains an open
question. For example, [18] established that the Signal appli-
cation may not provide post-compromise security although
the protocol does due to the implementation of session han-
dling (see Section 2.2). Furthermore, our formal model could
be extended to account for IDS key roll-over, i.e., of long-term
identity and pre-keys, and it could be extended to incorporate

enhanced models of cryptographic primitives, such as those
suggested by [20, 16, 12, 15].
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A Proof Methodology

In Section 5.4, we presented our proof methodology, special-
ized to how we applied it to the PQ3 Messaging Protocol.
In this section, we will describe this methodology in more
detail and in its generality: i.e., how one could apply it to
other protocols with similar structure.

TAMARIN provides general support for handling loops,
based on induction and injective facts, and we begin our ac-
count by explaining them. We afterwards introduce two min-
imal TAMARIN theories that illustrate the issues of nested
loops and ghost sessions (see Section 5.4), but on a smaller
and simpler scale. These theories will also help illustrate
the reasoning behind the loop-jump, adversary-construction
and variable-linking lemmas that we have seen. Finally, we
present the resulting proof methodology.

A.1 Handling Loops in TAMARIN

A.1.1 Induction

TAMARIN analyzes formulas directly by backward search, as
explained in Section 5.1, or by induction. When TAMARIN
attempts to prove a formula ϕ by induction, it rewrites it into
the form

BC(ϕ)∧ (IH(ϕ) =⇒ ϕ).

The first conjunct, BC(ϕ), is the base case, and it re-
quires proving ϕ on the empty trace. The second conjunct,
IH(ϕ) =⇒ ϕ, is the induction step, which requires proving
ϕ on the last element of the trace, where ϕ is assumed on all
previous steps of the trace. BC(ϕ) is defined as ϕ, where ev-
ery formula of the form f @i is replaced with ⊥. For example,
for a formulation of secrecy such as

∀m, t.Sent(m)@t =⇒ ¬(∃x.K(m)@x) ,

this replacement results in

∀m, t.⊥ =⇒ ¬(∃x.⊥).

IH(ϕ) is defined as ϕ but every quantified temporal variable
is asserted to not be the last time point. This is done using the
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special predicate last, which is true if and only if it is provided
the last time point as argument. For example, the induction
hypothesis of secrecy as defined above would become

∀m, t.Sent(m)@t =⇒ ¬(∃x.K(m)@x∧¬last(x))∨ last(t).

After translating ϕ into its inductive form, TAMARIN at-
tempts to prove it as any other formula. Effectively, it attempts
to prove the base case and induction step separately, and the
induction hypothesis IH is made available (like an auxiliary
lemma) in the branch proving the induction step.

In practice, induction is used to prove properties of proto-
cols with loops. However, one can only prove properties of
loops by induction when the loops are expressed in terms of
facts that appear repeatedly in the protocol’s trace. Take the
above translation of secrecy as an example. In the induction
step, the induction hypothesis becomes effectively vacuous
as long as the fact Sent(m) only occurs at a last time point t.
In that case, the second disjunct on the right-hand side of the
implication will apply, whereas one usually requires the first
disjunct to apply to make progress on a proof. Only when we
can introduce a new Sent fact in the trace that does not occur
at the last time point can we use the induction hypothesis.

In particular, and applied to loops, this means two things.
(1) Induction can only be applied to formulas that express
invariants of loops, but not to formulas that express something
that holds after a loop has stopped. A loop will only end once,
which makes it impossible to introduce a second end of the
loop not occurring at the last time point. (2) Induction cannot
be used to prove properties for outer loops without further
auxiliary lemmas. When we attempt to prove properties of
outer loops, TAMARIN will always also consider the case that
a step in the outer loop was preceded by an inner loop of
unbounded length. Also in these cases, the fact referenced in
the induction hypothesis (the outer loop step) will only occur
at the last time point. For both of these reasons, induction
must be applied with care and cannot be blindly applied to
prove arbitrary properties of protocols with loops.

A.1.2 Injective Facts

Injective facts are commonly used to model loops in
TAMARIN. They are defined as facts that (for a fixed first
argument) can occur only once in the global state. We call
an injective fact’s first argument its loop identifier. If a fact
satisfies the following constraints, it is automatically detected
as injective by TAMARIN:

• It is not a persistent fact.

• Its loop identifier is a fresh term.

• It never occurs more than once in a rule’s conclusion with
the same loop identifier.

#i
Session(~i,…)

#k
Session(~i,…)

#j
Session(~i,…)

⟹ #𝑖 ≠ #𝑗

Figure 12: Illustration of a contradiction from an injective
instance. The solid arrow indicates premise consumption.
Dashed arrows indicate time ordering, i.e., the rule at #j must
be applied after #i but before #k. The order of time points
requires that #j and #i must be unified as #k consumes a
session fact with the matching ID ~i. However, #j must occur
strictly after #i, which contradicts this unification occurence.
There is a symmetric case where #j and #k must be unified
because #j and #i share a premise.

kdf(   , ~y) kdf('0', ~x) kdf(   , '0') kdf(   , ~z) 

h(   ) h(   ) h(   ) h(   ) 

… … …

…Outer
Loop

Inner
Loop

…

Figure 13: Nested loop example.

• Whenever it occurs in a rule’s conclusion, either (a) its loop
identifier is freshly generated (the loop has started), or (b) it
occurs in the rule’s premise with the same loop identifier (a
loop step is taken).

Injective facts allow TAMARIN to derive contradictions by
exploiting that all injective facts with a shared loop identifier
must be linearizable. In particular, a loop step can never occur
between two directly connected loop steps (as illustrated in
Figure 12). It is possible to prove properties of loops without
using injective facts, but using injective facts can drastically
simplify proofs, so it is generally advisable to make use of
this heuristic.

A.2 Proof Methodology by Example
In what follows, we illustrate the challenges encountered
when constructing proofs about nested loops using three sim-
ple, minimal theories. We will introduce these theories and
our proof methodology on an intuitive level. For full details,
see our artifact that provides all the theory files [25].

Nested Loop Example Figure 13 provides an illustration
of a nested loop from the nested-loop theory in [25]. The
loop models a participant’s key derivation similar to the key
derivation used in PQ3. The inner loop applies a hash function
repeatedly, using non-determinism to leave open how often,
to a value derived from a KDF, which we call the seed. The
outer loop updates the seed. When the outer loop starts, the



seed is derived from a zero-byte sequence and a fresh value.
At every outer-loop iteration, the seed is derived from the
previous seed and either a zero-byte sequence or a fresh value
(determined non-deterministically). The adversary can access
all fresh values used in this loop using a reveal oracle.

The key derivation in this theory is similar to the key deriva-
tion in PQ3 when focussing on KEM shared secrets. The
inner loop abstracts from the chain and message key deriva-
tion, while the outer loop abstracts from establishing new
KEM shared secrets. At the end of this section, we show how
a simpler version of this theory captures the essence of the
double ratchet construction, i.e., repeatedly establishing fresh
Diffie-Hellman shared secrets.

Now consider proving a simple key secrecy lemma: Every
key established in the inner loop either remains confidential,
or the most recently used fresh value in the outer loop was
revealed to the adversary. To prove this lemma, we establish
four auxiliary lemmas:

Outer Loop Step Every step in the inner loop must be pre-
ceded by a step in the outer loop. This lemma can be proven
straightforwardly by induction.

Fresh Seed Source For every step in the outer loop ratchet,
there must be a step in that ratchet deriving the seed that
most recently was derived from a fresh value. We can prove
this by induction using the outer loop step lemma. When
proving this lemma, there is only one case that does not
immediately lead to a contradiction. When the outer-loop
step was immediately preceded by an inner-loop step, there
is neither a contradiction nor does the induction hypothesis
apply. In that case, we can apply the outer loop step to jump
to the previous outer-loop step, which will either have used
a fresh value to derive its seed (direct contradiction) or a
zero-byte sequence (but since it is an outer-loop step, the
induction hypothesis applies).

Seed Construction When the adversary derived a seed,
they must have used the seed most recently constructed
using a fresh value in that derivation. Similarly to the pre-
vious lemma, we can only prove this lemma using outer
loop step as an auxiliary lemma.

Key Construction When the adversary derived a key es-
tablished in the inner loop, they must have used the most
recently generated seed. This lemma can also be proven by
induction straightforwardly.

Using these four auxiliary lemmas, Tamarin automatically
proves key secrecy. Note that all auxiliary lemmas above are
proven using induction but the key secrecy lemma is not.

We can describe above lemmas in more general terms.

Outer Loop Step This lemma “jumps to” the most recent
step of the outer loop and allows one to skip unrolling the
inner loop infinitely.

h(   ) h(   ) h(   ) h(~x) …

Reveal?Reveal? Reveal?Reveal?

Figure 14: Revealing loop example.

Fresh Seed Source This lemma “jumps to” the step in the
outer loop that introduces the “relevant term” (in our case,
the fresh term used instead of the zero-byte sequence). It
allows one to skip unrolling the outer loop infinitely.

Seed/Key Construction These lemmas link the adver-
sary’s knowledge of the key and the seed to the adversary’s
knowledge of the respectively “next term” (the previous
seed and the seed established using a fresh value).

Note that lemmas that “jump to” the relevant term in the
outer loop (here fresh seed source) and that connect terms
from the outer loop (here seed construction) are only re-
quired when there can be unboundedly many outer-loop
steps until the relevant step is reached (the relevant step be-
ing the one where the fresh term is introduced). To illus-
trate this point, we also provide a second nested loop theory
(nested-loop-simple in [25]) that always uses a fresh value
to establish the respective seed in the outer loop. In this theory,
the lemmas fresh seed source and seed construction are not
needed and unrolling the outer loop is sufficient.

This simplified theory is similar to the key derivation of
PQ3 when focussing on the Diffie-Hellman shared secrets
and ignoring the KEM shared secrets. It is also similar to the
double ratchet as used in Signal [32]. This simplified theory
suggests that although the double ratchet construction used in
Signal employs a nested loop, no inductive properties must
be proven about the outer loop.

Revealing Loop Example The revealing-loop theory
provided in [25] illustrates the challenges of proving proper-
ties of PQ3 when considering the reveal of root, chain, and
message keys explicitly and thus illustrates how we addressed
the problem of ghost sessions. This example is much sim-
pler than the previous ones and is illustrated in Figure 14.
A participant starts a loop in which they repeatedly apply a
hash function h to some initial seed ~x. Critically, the model
allows the adversary to access any derived value and ~x using
a reveal oracle.

Again, we show how to prove a simple key secrecy lemma:
Every hash value derived is secret, i.e., not known by the
adversary, unless the adversary compromised any of the pre-
vious, intermediate values. To prove this lemma, we require
two auxiliary lemmas:

Loop Start Every loop that computes a hash based on some
initial seed ~x is started, sampling ~x. This lemma is
straightforward to prove by induction.



Seeds Match If the computed hashes of two loops are iden-
tical, their seed must be identical too. Conceptually, this
lemma is again simple and can be proven straightforwardly
using induction.

With both these lemmas, TAMARIN can prove key secrecy
of this example theory using induction. The two auxiliary
lemmas help TAMARIN address the case that the adversary
learns the hash in question from a ghost session. Using the
second lemma, TAMARIN can connect the two sessions using
a shared, fresh term. Then, using the first lemma, TAMARIN
can instantiate the start of the loop where this shared, fresh
term was sampled. From that, TAMARIN can deduce that
both sessions must be the same; this enables it to apply the
induction hypothesis and to prove the key secrecy lemma.

Again, we can generalize these auxiliary lemmas.

Loop Start This lemma is conceptually similar to the outer
loop step lemma from the previous example and introduces
no new kinds of lemmas.

Seeds Match This lemma links the computation of a value
in a loop to the inputs to this computation, not determined
by a loop (here, the seed).

Summary With the previous two examples, we showed
how to handle nested loops and ghost sessions in TAMARIN.
All auxiliary lemmas in these two theories match the three
types of lemmas introduced in Section 5.4, which we briefly
recapitulate:

Loop-Jump Lemmas These lemmas allow one to skip un-
rolling the steps of a (nested) loop. Examples: outer loop
step, fresh seed source, loop start.

Adversary-Construction Lemmas These lemmas estab-
lish that for the adversary to construct one term, they must
use another term. Examples: key construction, seed con-
struction.

Variable-Linking Lemmas These lemmas establish that
for two instances of the same fact using two variables a
and b, if both facts have the same value for a, they must
have the same value for b. Example: seeds match.

A.3 Proof Methodology in General
Our proof methodology applies to theories that (i) use asym-
metric cryptography to establish shared secrets, which in turn
are used to derive symmetric encryption keys, (ii) include a
(nested) loop computing these symmetric encryption keys,
and (iii) for which trace formulas are to be proven of the
following form:

∀⃗x.C(⃗x) =⇒ (¬)∃⃗y.P(⃗x; y⃗)∨T (⃗x) .

For all traces that satisfy some context C, there exists (or
does not exist) an instance of P bound to that context (‘;’
denotes vector concatenation), unless T (which specifies the
threat model) applies. For example, for secrecy, C could be
“a message was sent”, P could be “the adversary learned that
message” (in this case, non-existence would be proven), and
T could be “the message encryption keys were revealed to
the adversary.”

We require that the protocol is modelled such that there is a
single fact that models the protocol’s (nested) loop, which we
call the loop fact. This allows us to do two things: (a) exploit
TAMARIN’s heuristics for injective facts (see Section A.1.2),
(b) clearly identify and relate looping variables, which will be
critical to our proof methodology. We identify the loop fact’s
variables by their position in the fact, and there will generally
be two kinds of variables: shared and derived secrets and key
material used for establishing the shared and derived secrets.
We relate the shared and derived secrets by a strict partial
order. That order is defined as the smallest order closed under
transitivity for which one variable a is smaller than another
variable b if there is a state-transition rule that updates b using
a. We say that a loop fact variable can grow unboundedly if
there is no bound on the size of the terms that the variable can
be unified with, for all ground-instantiated traces.

For example, our PQ3 model uses a Session fact to model
the double-ratchet steps performed by a participant. The order
on the shared and derived secrets is depicted in Figure 10 (the
black arrows). For PQ3, the variables msgKey, chainKey, and
rootKey can grow unboundedly.

Overall, our proof methodology has four steps.

1. For each of the loop fact’s (possibly nested) loops, write
a loop-jump lemma that connects a loop instance to its
beginning, i.e., to the beginning of the loop overall or to
the transition from an outer loop to the respective next
inner loop.

2. Identify all the loop facts’ shared and derived secret vari-
ables that can grow unboundedly (e.g., msgKey for PQ3).
For each of these variables, write a variable-linking lemma
that connects them to the variables that are directly smaller
than them (e.g., a message to a chain key). For some of
these unboundedly growing variables, it might additionally
be necessary to write a loop-jump lemma that jumps to
the rule application assigning a new value to the respec-
tive smaller variable. In our experience, this is the case
for variables that are updated non-determinstically (i.e.,
kemSS for PQ3).

3. Identify all the loop fact’s shared and derived secret vari-
ables that do not grow unboundedly. Typically, these vari-
ables will store shared secrets established using asym-
metric cryptography. For each of these variables, write
loop-jump lemmas that link the usage of that variable to
the instantiation of the respective asymmetric key material



1 functions: hkdf/2, suffix/1, prefix/1, concat/2, h/1
2

3 equations: concat(prefix(x), suffix(x)) = x
4

5 functions: pqpk/1, encap/2, decap/2
6 equations: decap(encap(k, pqpk(sk)), sk) = k
7

8 functions: default/2, Just/1, None/0, unjust/1
9 equations: default(Just(v), t) = v,

10 default(None , v) = v,
11 unjust(Just(t)) = t

Figure 15: Custom functions and equations defined in our
formal model.

used to establish the secret. The details of these loop-jump
lemmas depend on the protocol specification. For example,
the lemmas that link the ECDH shared secret to the respec-
tive ECDH keys substantially differ from the lemmas that
link the KEM shared secret to the respective encapsulation
key.

4. Finally, for all variables connected by variable-linking lem-
mas, write an adversary-construction lemma that states that
in order for the adversary to know the contents of the re-
spective larger variable, they must have either violated the
threat model or know the respective smaller variables.

Following these steps, one would write the lemmas
RootKeyConnectionReceive, RootKeyConnectionSend,
and SessionStart in Step 1, the lemmas depicted in
Figure 10 in Step 2, the lemmas depicted in Figure 11 in
Step 3, and the lemmas depicted in Figure 9 in Step 4.

B Equational Theory for Protocol Model

We use TAMARIN’s built-in equational theories for sign-
ing, symmetric encryption, and Diffie-Hellman key exchange.
These respectively model digital signatures, symmetric en-
cryption under message keys, and ECDH key exchanges. We
additionally use TAMARIN’s natural numbers theory to model
message counters.

In addition to these built-in theories, we specify some
custom functions and equations, shown in Figure 15. First,
we specify the functions hkdf, suffix, and prefix for key
derivation. The function hkdf models an HMAC-based key
derivation function [23] and takes two arguments: the first is
the source of entropy and the second is a domain-separating
tag or salt. The prefix and suffix functions are used for
chain and root key derivations, which are derived by split-
ting a bit-string into a prefix and suffix of equal length. The
function concat allows one to recover a value given its prefix
and suffix. We do not need to use concat in the rules mod-
eling the protocol roles of regular parties in our model, but
the adversary can use it to reconstruct a value from the prefix
and suffix. Additionally, we specify the unary function h to

model the pre-key hash used during session establishment,
see Section 4.

The functions pqpk, encap, and decap model KEM encap-
sulation and follow the standard symbolic model for asym-
metric encryption. Finally, we use the wrapper function Just
and the constant None to model optional values. The func-
tion default (together with the accompanying equations)
unpacks an optional value or replaces it with a default. For
example, we use Just and None to wrap values that are only
sent optionally, e.g., the pre-key hash. The function unjust
allows the adversary to access the contents of any Just value
they intercept.
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