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Abstract

WebAssembly (Wasm) is a binary instruction format proposed
by major browser vendors to achieve near-native performance
on the web and other platforms. By design, Wasm modules
should be executed in a memory-safe runtime, which acts as
a trusted computing base. Therefore, security vulnerabilities
inside runtime implementation can have severe impacts and
should be identified and mitigated promptly.

Fuzzing is a practical and widely adopted technique for
uncovering bugs in real-world programs. However, to apply
fuzzing effectively to the domain of Wasm runtimes, it is vital
to address two primary challenges: (1) Wasm is a stack-based
language and runtimes should verify the correctness of stack
semantics, which requires fuzzers to meticulously maintain
desired stack semantics to reach deeper states. (2) Wasm acts
as a compilation target and includes hundreds of instructions,
making it hard for fuzzers to explore different combinations
of instructions and cover the input space effectively.

To address these challenges, we design and implement
WALTZZ, a practical greybox fuzzing framework tailored for
Wasm runtimes. Specifically, WALTZZ proposes the concept
of stack-invariant code transformation to preserve appropriate
stack semantics during fuzzing. Next, WALTZZ introduces
a versatile suite of mutators designed to systematically tra-
verse diverse combinations of instructions in terms of both
control and data flow. Moreover, WALTZZ designs a skeleton-
based generation algorithm to produce code snippets that are
rarely seen in the seed corpus. To demonstrate the efficacy of
WALTZZ, we evaluate it on seven well-known Wasm runtimes.
Compared to the state-of-the-art works, WALTZZ can surpass
the nearest competitor by finding 12.4% more code coverage
even within the large code bases and uncovering 1.38× more
unique bugs. Overall, WALTZZ has discovered 20 new bugs
which have all been confirmed and 17 CVE IDs have been
assigned.

* Shouling Ji is the corresponding author.

1 Introduction

Historically, JavaScript (JS) has been the sole programming
option available on the web platform. However, it runs into
severe performance problems when handling computation-
intensive tasks. In response, WebAssembly (Wasm) [23] has
been introduced by four major browser vendors as a portable,
safe, low-level code format for efficient execution. Wasm can
be viewed as a virtual instruction set architecture and thereby
serves as a compilation target for programming languages
like C++. For instance, C++ source files can be compiled into
Wasm modules by Emscripten [64] and run on the web with
a near-native performance.

Wasm modules are typically executed in a memory-safe,
sandboxed host environment. Initially, only web browsers
incorporated such environments. However, with the increas-
ing popularity of Wasm, standalone runtimes have gradually
emerged, making Wasm more versatile and applicable beyond
mere web scenarios [59]. As every coin has two sides, the
growing popularity of Wasm also brings more security threats.
Wasm is designed with safety as a priority, host security is
thereby of paramount importance for Wasm. Breaking the
host security can result in severe outcomes including sandbox
escape and remote code execution, e.g., CVE-2024-2887 in
V8 [39] and CVE-2021-30734 in JavaScriptCore [43] are two
vulnerabilities in Wasm host environments, which have been
further exploited in Pwn2Own [12] to achieve remote code
execution. Therefore, it is imperative to identify and rectify
security bugs in Wasm runtimes promptly to prevent further
malicious exploits.

Fuzzing is one of the most effective techniques for finding
vulnerabilities, which generates a large amount of test cases
and feeds them to the target program to detect any unexpected
behaviors. Unlike static analysis techniques such as symbolic
execution, fuzzing scales effectively to larger programs and
is basically free from false positives. Fuzzers can be broadly
classified into two categories: mutational and generative. Mu-
tational fuzzers generate test cases by modifying existing seed
inputs. For instance, AFL [20] applies byte-level mutations to



seed inputs and adds a test case to the seed pool if it uncovers
new code paths, which has identified thousands of bugs across
numerous software systems. Conversely, generative fuzzers
create test cases from scratch based on predefined rules. For
example, wasm-smith [10] takes a random number as input
and produces a corresponding Wasm module, which has been
integrated into runtimes like SpiderMonkey.

Despite the variety of techniques proposed for enhancing
the effectiveness of fuzzing [26, 33, 35, 48], automatic Wasm
runtime fuzzing remains an underexplored area. Effectively
applying fuzzing to the realm of Wasm runtimes is still non-
trivial due to the following challenges.
Challenge I: Maintenance of appropriate stack semantics.
Wasm is a stack-based language where instructions are con-
ceptualized as operations that pop and push stack values of
specific types. Wasm runtimes are demanded to validate the
correctness of stack semantics of input modules, allowing only
valid modules to be instantiated and executed. However, it is
challenging for mutational fuzzers to maintain desired stack
semantics during mutation since even a single byte flip can
alter the interpretation of stack semantics, hindering fuzzer’s
ability to explore deeper runtime states.
Challenge II: Effective exploration of input space. Given
a fixed fuzzing period, it is essential to cover as much input
space as possible. However, since Wasm comprises hundreds
of instructions aimed for varied purposes, it is difficult for
fuzzers to traverse different combinations of instructions com-
prehensively and effectively. This particularly affects genera-
tive fuzzers, as their exploration of the input space is severely
constrained by predefined rules.

With regard to these challenges, we propose WALTZZ, an
effective greybox fuzzing framework designed specifically
for Wasm runtimes. To solve Challenge I, we propose stack-
invariant transformation to preserve stack semantics during
fuzzing. Our key observation is that one instruction sequence
can be interchanged seamlessly with another if their effects on
stack semantics are compatible. This conclusively guarantees
the validity of generated inputs and serves as the core guiding
principle of the entire design. To tackle Challenge II, we
devise a suite of Wasm mutators that synergistically enhance
the diversity of control and data flow in the input. Moreover,
we design a skeleton-based generation algorithm that isolates
the generation of control flow skeleton from the production
of actual data flow, which enables the construction of code
snippets that are rarely encountered in the seed corpus.

We have implemented WALTZZ and evaluated it on seven
Wasm runtimes: JavaScriptCore, SpiderMonkey, V8, wasm3,
wasm-interp, wasmtime, and wasm-micro-runtime. Compared
to state-of-the-art works such as AFL++, WALTZZ achieves
superior performance on code coverage, outperforming the
nearest competitor by 12.4% even within the sizeable code
bases. In respect of the bug-finding capacity, WALTZZ discov-
ers 1.38× more unique bugs than the second best. Overall,
WALTZZ has detected 20 previously unknown bugs. All of

them have been confirmed, with 17 assigned CVE IDs. While
many of these bugs have been fixed promptly, others demand
further structural modifications to the code base and we dis-
cuss one of them in this study. This highlights the critical
nature of bugs found by WALTZZ.

In summary, this paper makes the following contributions:

• We propose WALTZZ, a practical and effective greybox
fuzzing framework tailored particularly for Wasm run-
times. Our approach incorporates a novel stack-invariant
transformation technique to maintain appropriate stack
semantics throughout fuzzing. The code transformation
leverages the insight that instructions with compatible
stack semantics could be exchanged without violating
validity checks.

• Based on the stack-invariant transformation, we design a
rich set of Wasm mutators that augment both control and
data flow diversity in seed inputs, enabling WALTZZ to
explore the input space more effectively. We also present
a novel skeleton-based generation algorithm to produce
rarely-seen code snippets.

• We have implemented WALTZZ and evaluated it on seven
Wasm runtimes. Compared to the state-of-the-art works,
WALTZZ demonstrates its superiority in achieving 12.4%
more code coverage and discovering 1.38×more unique
bugs than the second best. In total, WALTZZ has found
20 new bugs, all of which have been verified, with 17
received CVE IDs.

To foster further research on this topic, we have made the
prototype implementation of WALTZZ available at https://
zenodo.org/records/14718828 and have provided a more
detailed collection of the artifacts at https://github.com/
mobsceneZ/Waltzz.

2 Background

In this section, we begin by introducing the file structure of
Wasm, followed by an overview of its type system and the
validity check mechanism.

2.1 Wasm File Structure
As illustrated in Figure 1a, the Wasm module serves as the
unit of deployment, loading, and compilation, which contains
the following main components:

• Table: Table section declares any number of tables, and
is used to hold opaque values like function references;

• Memory: Memory section defines a randomly accessible
linear array to store raw uninterpreted bytes;

• Data Segment: Data segments can be used to initialize
a range of memory from a static vector of bytes;

https://zenodo.org/records/14718828
https://zenodo.org/records/14718828
https://github.com/mobsceneZ/Waltzz
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• Element Segment: Similarly, element segments can be
utilized to initialize a specific range of the table using a
static vector of elements;

• Global: Globals act as module-wide locals that can be
declared as mutable or immutable and further provided
with initialization values;

• Function: Function section comprises a vector of func-
tions, each of which defines the function signature, types
of the local variables, and the function body;

• Import/Export: The Wasm module can import (export)
functions, tables, memory, and globals from (to) the host
environment;

In essence, the Wasm module can be regarded as a collec-
tion of instruction sequences, accompanied by surrounding
contexts such as memory to support specific operations. This
forms the foundation for the validity check.

2.2 Wasm Validity Check

According to the core specification [53], a Wasm module must
satisfy all validity checks to ensure its well-formedness. Only
valid modules can be instantiated and executed.

Specifically, validity is intricately linked to the underlying
type system. In Wasm, there exist seven distinct primitive
types: i32, i64, f32, f64, v128, funcref, and externref.
An externref type denotes a reference to an object owned
by the host environment. For a Wasm module to be valid, all
instructions should be type-checked for their stack semantics.
For simplicity, we consider the operation of popping certain
value types [t∗1 ] from the stack and pushing new value types
[t∗2 ] back as instruction’s stack semantics, denoted by the stack
type [t∗1 ]→ [t∗2 ].

Consider an instruction si in the sequence [s0, ...,si−1,si, ...]
with stack type [t∗1 ]→ [t∗2 ], a necessary condition for si to be
type-checked is that the preceding sub-sequence [s0, ...,si−1]
should generate [t∗3 t∗1 ] on the stack, thereby allowing [t∗1 ] to be
correctly consumed by si. Figure 1b demonstrates an example
of the type-checking process. The stack type of i32.add is
[i32 i32]→ [i32], which pops two i32 values and pushes the
sum back. Thus, i32.add can be preceded by i32.const but
not i64.const even if the pushed values are identical, as the
latter one produces an i64 type.

For most instructions, the necessary condition mentioned
above is also sufficient. However, some instructions interact
with the surrounding contexts, thereby demanding additional
validity checks. For example, variable instructions require
locals or globals to be present. Note that the stack semantics
of these instructions might vary according to the context, e.g.,
global.get will push a value matching the type of relevant
global variable. More detailed validity check mechanisms are
elaborated in later sections as necessary.

module "example" 
memory
# 0 min:10 max:20

table
# 0 min:5 max:10 funcref

# 1 min:1 max:1 externref

data segment
# 0 "Hello World!"

element segment
# 0 funcref (ref.func 0)

function

# 0
()->(i32)

i32.const 0
i32.const 1
i32.add

export
export (func 0) as "add"

(a) A demonstrative example of the Wasm file structure.

1 (i32)

0 (i32)

i32.const 1

1 (i64)

0 (i32)

i64.const 1

i32.add
(i32 i32) -> (i32)

(b) The type-checking process of i32.add.

Figure 1: Wasm modules are composed of different parts such
as data segments, as subfigure (a) shows. The validity check
mainly ensures that every instruction is type-checked and the
subfigure (b) presents the type-checking process of i32.add
instruction.

3 Motivation

Currently, mutational fuzzers are predominant in both aca-
demic and industrial settings. While considerable efforts have
been committed to enhancing the effectiveness of mutational
fuzzers, many approaches still share similar mutation strate-
gies, namely, byte-level mutations. For instance, the state-of-
the-art greybox fuzzer AFL++ [16], might perform a simple
bit-flip mutation, converting the value 0x41 to 0x43 within
a seed. In file formats such as PNG, such a minor modifica-
tion generally has minimal impact. However, the situation
is markedly different for Wasm. A substantial portion of the
input bytes are carried with stack semantics, e.g., 0x41 and
0x43 represent the opcodes for i32.const and f32.const
respectively, each operating on different types of stack values.
Since Wasm runtimes ensure that input modules must adhere
to appropriate stack semantics, such a small mutation on valid
inputs can immediately corrupt the stack states and result in
early rejection by the runtime.

Therefore, it is difficult for current mutational fuzzers to
effectively test Wasm runtimes, as they struggle to maintain
desired stack semantics during each mutation step. To fur-
ther consolidate this argument, we have run the representa-



tive mutational fuzzer AFL++ on three JS engines, i.e., V8,
JavaScriptCore, and SpiderMonkey, for 24 hours and repeated
10 times. The initial seed corpus is extracted from the offi-
cial test suite [52] and wasm-validate from the Wasm Binary
Toolkit [50] is utilized to verify the validity of the generated
test cases. Table 1 summarizes the results, showing that over
98% of the test cases generated by AFL++ are invalid. This
demonstrates the inefficacy of stack-ignorant mutations, lead-
ing directly to Challenge I, which our work aims to address.

Another line of work adopts a generation-based approach
to construct valid inputs from scratch, such as wasm-smith
[10]. Generative fuzzers typically depend on random sources
and predefined rules to dictate the appearance of generated
test inputs. However, given that Wasm is an instruction set
with rich semantics, it is challenging for generative fuzzers to
cover the input space thoroughly, as the possible exploration
space is significantly constrained by hand-written rules. For
instance, wasm-smith uses a generation strategy that randomly
selects instructions consistent with the current stack state for
generation. While ensuring the validity of produced modules,
this approach significantly hinders the generation of certain
instructions, e.g., v128.bitselect requires wasm-smith to
produce three v128 values on top of the stack before it can
be selected for generation. Consequently, the input space that
generative fuzzers explore is relatively constrained, which
directly relates to Challenge II that our work seeks to solve.

To achieve the best of both worlds, we design WALTZZ with
a thorough consideration of these challenges. Next, we ex-
plain how we address these challenges throughout the design,
implementation, and evaluation of WALTZZ.

Table 1: The average counts of total and valid test cases from
fuzzing three major JS engines across 10 runs, each with a
24-hour budget using AFL++.

Project NumTestcase NumValid
NumValid

NumTestcase

V8 793041.7 7657.9 0.9656%
JavaScriptCore 241337.1 3894.4 1.6137%
SpiderMonkey 462344.5 16581.2 3.5863%
Avg. 498907.8 9377.8 1.8797%

4 Waltzz Design

We present WALTZZ, an effective greybox fuzzer specifically
designed for Wasm runtimes. Figure 2 illustrates the overall
design and workflow of WALTZZ. At a high level, WALTZZ
takes an instrumented Wasm runtime, a collection of Wasm
seed files, and optionally a harness as inputs, then outputs the
bugs identified within the runtime. Starting with a seed input,
WALTZZ parses it to construct its typed IR and subsequently
fragments the IR into smaller code segments, each labeled
with its corresponding stack type ( 1⃝ in Figure 2). The typed
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Figure 2: High-level overview of WALTZZ.

IR then undergoes a series of stack-invariant mutations and
generations, producing a list of transformed IRs. These IRs
are lifted back into Wasm modules afterward ( 2⃝ in Figure 2).
Finally, the generated modules are sequentially executed by
the runtime. If new code paths are uncovered or the runtime
crashes, the corresponding test case is added to the seed pool
or the crash directory respectively. Otherwise, the test case
is discarded ( 3⃝ in Figure 2). Note that JS engines cannot
directly execute Wasm modules, therefore, a test harness that
invokes relevant APIs is necessary to process Wasm inputs.

The design of WALTZZ centers around the generation of
effective test cases to explore deep and broad program logic
of Wasm runtimes. In Section 4.1, we elucidate the concept
of stack-invariant transformation, which serves as a general
guideline for the whole design and efficaciously addresses the
Challenge I. Building on this fundamental principle, we then
discuss the design of mutators tailored for navigating different
combinations of control flow (see Section 4.2) and data flow
(see Section 4.3). Finally, Section 4.4 outlines the design of
the skeleton-based generator. The synergistic effect of the
mutators and the generator empowers WALTZZ to effectively
traverse the input space, thereby addressing the Challenge II
efficiently.

4.1 Stack-Invariant Transformation
Wasm runtimes enforce validity checks on input modules,
ensuring that all instructions are type-checked according to
the corresponding stack semantics. However, indiscriminate
modifications to input modules are likely to corrupt the stack
states, blocking fuzzers from reaching deep states. Thus, it is
of paramount importance to establish a principle that guaran-
tees the preservation of valid stack semantics.

We propose a concise and practical strategy termed stack-



(func $1 (result i64) (local i64)
  i64.const 1
  i64.const 2
  local.get 0
  i64.add
  i64.div_u)

                              ①

(func $1 (result i64) (local i64)
  i64.const 1
  v128.const i32x4 0 1 2 3
  i64x2.extract_lane 0
  i64.div_u)

                                                 ②

Before

After

Figure 3: An example of stack-invariant transformation.

invariant transformation to address this challenge. The basic
intuition is that when analyzing a sequence of instructions,
we can disregard the specific operations performed on stack
values and instead concentrate exclusively on the cumulative
effects on the stack types, as this is the primary aspect checked
by Wasm runtimes. Therefore, one instruction sequence can
be interchanged with another provided that their impacts on
stack types are compatible, thereby maintaining the invariant
state of the stack. Figure 3 demonstrates an example of stack-
invariant transformation where segments 1⃝ and 2⃝ do not
consume any stack values but each produces one i64 value to
the stack. While the specific value on the stack may vary, both
segments maintain the same stack type [ ]→ [i64]. Since the
subsequent instructions still retrieve values of the expected
types from the stack consistently, the modified code remains
valid.

The stack-invariant transformation can flawlessly preserve
desired stack semantics without imposing any requirements
on the code segments undergoing transformation. Therefore,
it serves as the core guiding principle throughout the design
of the mutators and the generator, which are illustrated in later
sections.

4.2 Control Flow Mutators

The control flow mutators are dedicated to exploring various
possibilities within both intra- and inter-procedural control
flow. However, directly modifying the control flow is a non-
trivial task, since Wasm implements structured control flow,
allowing code execution to be directed only towards specific
labels and enforcing type checks on the control flow integrity.

To solve this, we adjust the stack-invariant transformation
according to the surrounding contexts. Next, we devise three
control flow mutators to enhance the diversity of control flow:
the recursive and branch target mutator (see Section 4.2.1 and
4.2.2) alter the control structure within the function, and the

call target mutator (see Section 4.2.3) modifies the calling
relationships among functions.

4.2.1 Recursive Mutator

The block, loop, and if..else structured instructions form
the basic control structure of a function, serving as containers
for other instructions. All three instructions are declared with
stack types [t∗1 ]→ [t∗2 ] and are type-checked if and only if the
contained instructions consume exactly [t∗1 ] values from the
stack and produce [t∗2 ] values back.

The recursive mutator is designed to create more deeply
nested control structures, which has proven useful in previous
studies [3, 6]. We randomly select a control structure inside
the function and encapsulate it within an additional structure.
However, the control flow structure should offer equivalent
stack semantics to the surrounding context before and after
nesting. We address this by ensuring that the outer structure
mirrors the stack type of the inner structure, effectively creat-
ing a form of self-replication.
Example 1. Given the following randomly selected struc-
tured instruction: block (result i32) ... end, the re-
cursive mutator could encapsulate the block with another
loop structure: loop $O (result i32) (block (result
i32) ... end) end. Externally, both code snippets provide
an i32 type to the stack, so the transformed input remains
valid.

4.2.2 Branch Target Mutator

In Wasm, control flow redirection is achieved through the use
of branch instructions. br and br_if execute unconditional
and conditional jumps to a label respectively, and br_table
performs an indirect branch through an operand indexing into
a label vector.

The branch target mutator is devised to modify the target
label of branch instructions to execute different control flows.
However, unlike traditional instruction sets, labels in Wasm
are accompanied by a stack type denoted as [t∗] that needs to
be satisfied when executing the jump. This requires additional
consideration of the label context during the stack-invariant
transformation. Specifically, the branch target mutator selects
a target label L1 at random and replaces it with another label
L2 that is also randomly chosen from the surrounding context.
Suppose L1 and L2 demand [t∗] and [t ′∗] respectively, branch
target mutator employs the following adjustments:

• As br and br_table execute unconditional jumps, the
stack types of these instructions are unconstrained and
can be dynamically adjusted to meet the requirements
of the surrounding context. We can safely substitute the
original instructions that yield [t∗] with new instructions
that generate [t ′∗].

• br_if leaves the original [t∗] values on the stack. Thus,
direct modification of the stack values to type [t ′∗] will



likely result in an ill-formed stack state. We solve this
through local code transformation, which involves insert-
ing code segments before and after the br_if instruction:
the first segment converts original values of type [t∗] to
new values of type [t ′∗], which are utilized by br_if to
conduct a conditional jump to L2. The second segment
then restores values from [t ′∗] back to [t∗]. This ensures
the overall effect on the stack remains unchanged while
the target label is altered.

Example 2. Consider the branch instruction br_if L1 and
we aim to redirect the target from L1 to L2. Suppose L1 and
L2 need i64 and i32 on top of the stack respectively, we
perform the following transformation: 1⃝ Use i32.wrap_i64
to convert existing i64 value to i32; 2⃝ The new i32 value
together with the unchanged condition value is consumed
by the br_if L2, which produces an i32; 3⃝ The i32 value
is turned back to i64 using i64.extend_i32_s. The whole
process yields the value of the same type as before, therefore,
the resulting code is still valid.

4.2.3 Call Target Mutator

Function calls are handled through call and call_indirect
in Wasm. As the name indicates, the call instruction invokes
a target function directly and the call_indirect instruction
calls a function through an operand indexing into a funcref
table. These instructions are type-checked according to the
specified function signature.

The call target mutator modifies the target function of
the call and call_indirect. To preserve appropriate stack
semantics, it randomly selects another function with the same
signature to serve as the new target. If no suitable functions are
available, we resort to the generator to create a new function
that satisfies the required signature. While the aforementioned
steps suffice for the call instruction, they are not applicable
for call_indirect, since the function invoked is determined
at runtime. We address this by altering the corresponding table
entry immediately before the call_indirect instruction to
ensure the invocation of the new target.
Example 3. To mutate (i32.const 10) (call_indirect
$tbl (param) (result)), we find a function $f with the
same signature [ ]→ [ ] in input, update the table entry with
table.set which requires one function reference and one
table index on the stack, the former is given by the ref.func
$f and the latter is given by the i32.const 10 which aligns
with the table index in call_indirect. By doing this right
before the indirect call, we ensure the new target $f will be
called.

4.3 Data Flow Mutators
The data flow mutators are specifically designed to alter the
stack values manipulated by instructions, as well as the way
by which these values are processed. In particular, we propose

three data flow mutators to augment the diversification of data
generation and processing mechanisms: the operator mutator
(see Section 4.3.1) primarily modifies the processing of stack
values and the interesting value mutator (see Section 4.3.2) fo-
cuses on the modification of stack values, whereas the splicing
(see Section 4.3.3) mutator handles both aspects.

4.3.1 Operator Mutator

Most of the Wasm instructions can be considered operators
that manipulate stack values. For example, the i32.add pops
two i32 values from the stack, adds them together, and then
pushes the resulting value back.

The operator mutator replaces one operator with another,
following the principle of stack-invariant transformation. Op-
erators are categorized into groups according to their stack
semantics, e.g., i32.add and i32.le_s are grouped together
since they share the same stack type [i32 i32]→ [i32]. When
given an operator from the input, the mutator replaces it with
another operator selected randomly from the corresponding
operator group, enabling varied operations on the same stack
values.
Example 4. The i32.add operator in the input can be safely
substituted by the i32.le_s operator, which results in the
stack values being processed differently, since the former is
an arithmetic operator while the latter is a boolean operator.

4.3.2 Interesting Value Mutator

In Wasm, immediate values of various types are pushed onto
the stack using const instructions, e.g., f64.const pushes
a f64 immediate value to the stack. These values are further
utilized for numerical computations, memory addressing, and
other operations.

The interesting value mutator adjusts immediate values
to boundary values like INT_MAX, which denotes the largest
signed 32-bit integer. We maintain lists of interesting values
for i32, i64, f32, and f64. For the v128 type, values are
constructed by combining interesting values of smaller types.
For instance, a single v128 value may be composed of four
i32 values. During the mutation process, the mutator selects
an interesting value of the corresponding type at random and
replaces the original immediate value with it.
Example 5. We could change the value 5 in i32.const 5 to
65535, which represents the largest unsigned 16-bit integer.

4.3.3 Splicing Mutator

The concept of splicing different parts of two seed inputs has
been broadly adopted in the domain of mutational fuzzing
[3,25,40,46,56]. These mutations amalgamate diverse aspects
of the seed inputs to produce more varied test cases, enabling
fuzzers to explore additional code paths. For instance, Nau-
tilus [3] has pointed out in the evaluation that “Eventually
splicing of interesting code fragments becomes by far the most



effective mutation technique.” We have therefore incorporated
this strategy into the design of WALTZZ.

The splicing mutator directly reflects our stack-invariant
transformation. Algorithm 1 illustrates the splicing mutation
process. The mutator is given the typed IR of the current input
S1 along with the typed IR of the splicing input S2. Initially,
it fragmentizes S2 into a pool of segments (see Line 1). Each
segment comprises a single instruction and, recursively, all
instructions whose outputs could influence the result of this
instruction, effectively resembling a program slice. Segments
are tagged with the corresponding stack types. For instance,
i32.clz counts the number of leading zero bits of the i32
value on the stack and pushes the result as i32 back. If the
original value is produced by i32.const 0, then i32.clz
together with i32.const 0 forms a segment tagged with the
[ ]→ [i32]. The mutator then processes each function in S1
and every instruction within those functions (see Lines 2-3).
The mutator first attempts code substitution with a probability
of psub. It identifies a potential closure segmcur for the current
instruction and calculates the stack type of this segment. The
mutator then searches for a segment segmsub in the pool that
meets the stack type (see Lines 4-7). If found, it replaces the
original segment segmcur in S1 with the new segment segmsub
in S2 (see Lines 8-11). The code insertion follows a similar
pattern, but the inserted segment should have a stack type of
[ ]→ [ ] to prevent any negative effects on the stack states (see
Lines 13-19). Additionally, it is important to note that newly
spliced-in instructions are guaranteed not to be replaced by
subsequent substitutions in a single splicing run.

Although the aforementioned process seems intuitive, it
still demands careful consideration during implementation.
The most notable challenge is that many Wasm instructions
interact with the context such as memory and Wasm runtimes
also check the presence of such contexts during the validation
phase. This necessitates the development of a context repair
strategy. We address this in an on-demand manner: given the
context C1 required by the segment S and the current context
C2, we check if each context c1 in C1 can be satisfied by
any context c2 in C2, if so, we adjust segment S to utilize c2
instead of c1, otherwise, we create a new context c3 in C2
and replace c1 with c3 in segment S to meet the requirement.
For instance, if segment S contains an i32.load instruction
which demands a memory context, we will add a new memory
if it is not already present in the current input, otherwise, we
utilize the existing one. We employ this on-demand context
repair strategy immediately before the code substitution and
insertion to fix up contexts such as memory, tables, and local
variables (see Lines 9 and 16).
Example 6. Suppose we have one code segment (i32.clz
(i32.const 1)) in current input and another code segment
(i32.load (i32.const 0)) in splicing input, as they share
the same stack type [ ]→ [i32], the splicing mutator can substi-
tute the former with the latter and introduces a memory when
necessary to satisfy the context requirement of i32.load.

Algorithm 1 Splicing Mutation Algorithm
Input: S1 and S2: the typed IRs of the current and splicing input
Output: S′1: the typed IR of the mutated input

1: segms← f ragmentize_input(S2)

2: for f unc ∈ S1. f unctions do
3: for instr ∈ f unc.instructions do
4: if f lip_coin(psub) == true then # Substitution
5: segmcur← get_one_segment(instr)
6: type← calculate_stack_type(segmcur)

7: segmsub← f ind_matching_segment(segms, type)
8: if segmsub is not null then
9: repair_context(segmsub,S1,S2)

10: substitute_with_new( f unc,segmcur,segmsub)

11: end if
12: end if
13: if f lip_coin(pins) == true then # Insertion
14: segmins← f ind_matching_segment(segms, [ ]→ [ ])

15: if segmins is not null then
16: repair_context(segmins,S1,S2)

17: insert_new_be f ore( f unc, instr,segmins)

18: end if
19: end if
20: end for
21: end for

4.4 Skeleton-Based Generator

Intuitively, it would also be beneficial to generate segments
on our own, potentially yielding constructs that are difficult
to produce solely through the mutational approach. However,
since Wasm runtimes enforce type checks on stack semantics
and control flow, which are intricately interconnected, it is
hard for the generation algorithm to combine distinct aspects
of the standard while simultaneously satisfying the required
checks.

To address this, we propose a skeleton-based generation
algorithm that separates the generation of the control flow
skeleton from the creation of actual stack values, as shown
in Algorithm 2. Specifically, the algorithm takes as input
the target result type, which is the type of values expected
to be generated on the stack, the current recursion depth,
and the current context. It first plans the overall control flow
structure and determines which part of the target result type
each control structure is responsible for generating (see Lines
8-18). For instance, given the target type [i32 i64 f 32 f 64],
the algorithm might select one block instruction to produce
the [i32 i64] values, an if instruction that yields no output,
and a loop instruction to generate the [ f 32 f 64] values.

Control flow skeletons can be recursively generated up to a
predefined maximum recursion depth, enabling the creation
of more complex control flows. When the maximum recursion
depth is reached, we begin filling in instructions that produce



Algorithm 2 Skeleton-based Generation Algorithm
Input: T : target result type; depth: current depth; C: current context
Output: O: generated segment with result type T

1: function generate_top_level(T,depth,C)
2: O← [∅]

3: lst : [t1, t2, ..., tn]← expand_type(T )
4: if depth≥ max_recursion_depth then
5: O← O ∪ generate_base_case(T,0,C)

6: return O
7: end if
8: while lst is not null do
9: T ′← pop_and_build_subtype(lst)

10: switch match (rand() % 3)
11: case Block:
12: block_label← get_label_name()
13: block_body← generate_top_level(T ′,depth+1,

C ∪ { label : block_label })
14: O← O ∪ Block(block_label,block_body,T ′)

. . .

15: end switch
16: end while
17: return O
18: end function

stack values of the desired types (see Lines 4-7). This process
is similar to the tree generation: suppose a value of type T
is required, we randomly select an instruction whose result
type is T and then recursively generate the values required by
this instruction, this generation process terminates when we
encounter instructions that require no further values or when
the maximum recursion depth is reached. To facilitate the
generation of all instructions specified in the Wasm standard,
the generator is provided with a context C that can be updated
dynamically throughout the generation process. This enables
the generation of specific operations, such as branching to a
newly introduced label, thereby strengthening the interplay
between control flow and data flow.
Example 7. When generating a code segment for target result
type [i32 f 32 f 64], the generator can use one block instruc-
tion for [i32] and one loop instruction for [ f 32 f 64], if we
set the maximum recursion depth to 1, then the control flow
skeleton is: block (result i32) □ end loop (result
f32 f64) □ end. The □ can later be filled with instruc-
tions that produce the corresponding types. For instance,
the first □ could be filled with the i32.reinterpret_f32
(f32.const 0.0), which pushes an i32 value on the stack.

5 Implementation

We have developed a prototype of WALTZZ, comprising over
4K+ lines of C. WALTZZ functions as a custom mutator [1]

atop AFL++ 4.08c and leverages AFL++’s existing fuzzing
infrastructure, including its feedback mechanism and seed
scheduling. To achieve the best of both worlds, WALTZZ still
performs byte-level mutations on seed inputs but marks each
seed with a flag indicating its validity. WALTZZ only conducts
customized mutations and generations on valid seed inputs.
Moreover, we set psub and pins to 0.1 and 0.067 respectively
in the current implementation of WALTZZ.

Starting with a valid seed input, WALTZZ uses the official
compiler and toolchain library Binaryen [49] to parse it into
a typed IR. The number of mutations is then determined
based on the performance score calculated by AFL++. Next,
mutations are conducted in a stacking manner: during each
mutation, a mutator is selected randomly to transform the IR,
and the generator is applied as needed to produce the required
constructs. Finally, the transformed IR is lifted back to a new
module and executed by the target Wasm runtime.

It should be noted that Wasm is continuously evolving, with
various language proposals currently under standardization,
including garbage collection and threads. While some Wasm
runtimes have already supported these proposals, WALTZZ
presently adheres to the established Wasm standard for the
sake of generality. Nevertheless, integrating new standardized
proposals should be straightforward, as the stack semantics
of new instructions are similarly type-checked. Besides, we
do not currently propose any mechanisms to mitigate infinite
loops due to diversity concerns. A preliminary experiment
conducted using the settings detailed in Section 6.1 reveals an
average timeout rate of 0.066%, which we deem acceptable.

6 Evaluation

To evaluate the efficacy of WALTZZ, the experiments have
been strategically designed to address the following research
questions:

RQ1: Can WALTZZ surpass existing state-of-the-art fuzzers
in terms of both code coverage and bug-finding capacity? (see
Section 6.2)

RQ2: What is the contribution of each mutator to the perfor-
mance of WALTZZ? (see Section 6.3)

RQ3: How effective is WALTZZ at generating semantically
valid inputs? (see Section 6.4)

RQ4: What are the practical implications of the identified
vulnerabilities? (see Section 6.5)

6.1 Experimental Setup
We conduct experiments on two machines, each running 64-
bit Ubuntu 20.04 LTS with Intel Xeon Gold 6248 (2.5GHz)
CPUs (160 cores) and 256 GB of main memory.
Baselines. We select five prominent fuzzing methods as base-
lines to evaluate the effectiveness of WALTZZ: 1⃝AFL++ [16]



(version 4.20c) represents the state-of-the-art greybox fuzzer
which also serves as the basis for WALTZZ. 2⃝ RedQueen [4]
leverages the relationships between input values and compar-
ison instructions to overcome fuzzing roadblocks, we apply
AFL++’s cmplog mode (with level 3) as an alternative, since it
implements the same technique without imposing additional
hardware support. 3⃝WasmFuzzer [27] (commit 1655d) is
a greybox fuzzer that employs structure-aware mutations to
Wasm modules. 4⃝ wasm-smith [10] (version 1.222.0) is a
random Wasm module generator that is guaranteed to generate
valid test cases. We further utilize AFL++ to track and mutate
the random seeds supplied to wasm-smith, thereby achieving
effects similar to coverage-guided fuzzing. 5⃝Wapplique [66]
(commit d56a2) is a black-box fuzzer that performs splicing
mutations and ensures the validity of the resultant modules.
Benchmarks. Wasm runtimes can be classified into web and
non-web embeddings. In the web embeddings, we select three
widely used JS engines: SpiderMonkey [37] (commit 3609b),
JavaScriptCore [2] (version 2.44.0), and V8 [21] (commit
cbc1b). These engines power major web browsers such as
Safari and Chrome. In the non-web embeddings, we choose
four Wasm runtimes that have been broadly deployed in down-
stream such as Siemens: wasm-micro-runtime [9] (commit
b9740), wasmtime [11] (version 28.0.0), wasm-interp [50]
(commit 1471d) and wasm3 [58] (commit 13907). For each
selected runtime, we use the latest version or commit avail-
able at the time of our evaluation. It is worth noting that while
reproducing known bugs in older versions can be an effective
approach for evaluating the performance of fuzzers [29], we
choose not to adopt this method since Wasm is an evolving
language and the historical commits containing bugs vary in
their support for the Wasm standard. Configuring a replication
environment for each bug and each fuzzer will be error-prone
and time-consuming, especially for large projects like V8.
Seeds. Mutational fuzzers need initial seed corpora to start up.
We construct this corpus by gathering Wasm files from the
official Wasm standard tests [52], where each test comprises
multiple Wasm modules with test assertions. From these, we
extract only those valid modules that do not require imports,
as most of the imports are specific to the spectest interpreter.
Additionally, we modify each module by integrating a new
function that replicates all test actions, e.g., a test assertion
that checks the return value of a function call transforms
into a corresponding function call in this new function. We
export this function with the name main and designate it as the
entry point for Wasm runtimes. For wasm-smith, we provide a
generic seed comprised of various characters selected from the
printable ASCII set: ABC..XYZabc..xyz012..789!"..+.
Configurations. We build all target runtimes with the default
configuration. For testing web embeddings, we utilize the
Wasm-JS APIs [54] to interact with the input modules. Figure
4 illustrates the test harness for V8. To evaluate wasmtime,
we leverage afl.rs [45] for the instrumentation and testing
of the Rust target. Figure 10 of Appendix presents the test

harness for wasmtime. Other runtimes are tested in a similar
manner but no test harness is required. To address potential
infinite loops generated by fuzzers, we set the timeout of
a single execution to 250 ms. Furthermore, we repeat each
experiment 10 times to mitigate the randomness. More details
on configurations will be provided in relevant subsections.

1 var rawBuffer = read(arguments[0], ’binary’);
2
3 var validated = WebAssembly.validate(rawBuffer);
4 WebAssembly.compile(rawBuffer)
5 .then((mod) => WebAssembly.instantiate(mod))
6 .then((instance) => {instance.exports["main"]();});

Figure 4: Test harness for Google V8.

6.2 Comparison to State-of-the-Art Fuzzers

To address RQ1, we have run WALTZZ and other state-of-the-
art fuzzers on seven Wasm runtimes as specified in Section 6.1
over a period of 72 hours. This aligns with the test duration
of previous works [5,31,46]. Given that wasm-micro-runtime
and wasm3 currently lack support for the SIMD proposal, we
exclude related instructions and seeds when testing these two
targets. Notably, although the implementation of reference-
types and bulk-memory-operations proposals is incomplete
in wasm3, we still incorporate these proposals for the com-
prehensiveness of testing.

Wapplique first constructs a fragment pool from the ingre-
dient corpus and then performs splicing mutations 200 times
on each seed within the seed corpus to generate new test cases.
For fairness, we use the seed corpus described in Section 6.1
as both the seed and ingredient corpus for Wapplique. Besides,
we configure wasm-smith to produce Wasm modules that im-
port nothing and export a function named main to align with
the settings in Section 6.1.

In this study, we leverage the edge coverage provided by
AFL++’s collision-free instrumentation as a proxy for code
coverage. Figure 5 illustrates the average number of edges
achieved across six Wasm runtimes by different fuzzers. We
present the complete results of log-on-time-scale coverage in
Figure 11 of Appendix. We are not able to evaluate Wasm-
Fuzzer on V8 as the compiler version V8 relies on does not
support WasmFuzzer’s instrumentation pass. Consequently,
Figure 5 only includes the available results.

For all Wasm runtimes except wasm-micro-runtime and
wasm3, WALTZZ consistently outperforms competing fuzzers
with the lower bound of its confidence interval higher than
the upper bound of the confidence interval of any other fuzzer.
For instance, WALTZZ identifies 17.4% more edges than its
closest competitor AFL++ in SpiderMonkey even though the
initial seeds have provided such high edge coverage. If we
exclude the baseline coverage offered by seeds, WALTZZ can
independently discover 94.4% more edges on average than



Table 2: Unique bugs identified by different fuzzers. The best
result is marked in bold.

Fuzzer wasm3 wasm-micro-runtime wasm-interp Others Sum
WALTZZ 23 3 7 0 33
AFL++ 20 1 3 0 24

RedQueen 12 0 0 0 12
wasm-smith 7 5 0 0 12
WasmFuzzer 11 0 1 0 12
Wapplique 0 0 0 0 0

Total 26 6 7 0 39

AFL++ across these targets. For the remaining two runtimes,
WALTZZ does not demonstrate noticeable advantages. This
is mainly because these targets are relatively lightweight and
our seeds already provide satisfactory code coverage. Besides,
some proposals are not fully supported by these runtimes but
we still include them for the sake of comprehensive testing.
Consequently, WALTZZ occasionally generates instructions
not recognized by these runtimes, which can hinder its effec-
tiveness.

Upon closer inspection of Figure 5, we have several inter-
esting observations. Firstly, coverage guidance can improve
the performance of wasm-smith on specific runtimes. Notably,
it achieves steady coverage improvement and approaches the
performance of WALTZZ on JavaScriptCore. However, in
most runtimes, wasm-smith attains even lower edge coverage
than AFL++, which substantiates the judgment in Section 3
that generative fuzzers may struggle to thoroughly traverse
the input space. Secondly, even though RedQueen is gener-
ally considered superior to traditional fuzzers, its performance
falls short when compared to AFL++. This can be attributed
to the fact that while RedQueen can bypass certain roadblocks
like magic values, it fails to account for the validity checks in
Wasm, wasting a large fraction of time generating semi-valid
inputs. A similar phenomenon has been observed with Wasm-
Fuzzer as well. Thirdly, the coverage improvement achieved
by Wapplique over the initial seed corpus is negligible. This
is unsurprising, as the capacity to generate diverse test cases
for black-box fuzzers heavily relies on the initially collected
code snippets. Moreover, Wapplique focuses mainly on four
numeric types and is not able to fix certain Wasm contexts,
which further constrains its performance.

Given that the primary objective of a fuzzer is to discover
bugs, we present the number of bugs identified by each fuzzer
in Table 2. All these bugs have been manually deduplicated
using the stack traces provided by AddressSanitizer [47]. As
shown, WALTZZ has detected the most bugs, outperforming
its nearest competitor by 37.5%. No fuzzers find any bugs in
JS engines, which is expected, since targets like V8 have been
thoroughly tested by internal fuzzers. We will delve into the
key attributes of historical bugs in the Wasm subsystem of
JS engines in Section 7, which sheds light on why WALTZZ
currently fails to detect new bugs in these engines. More-

over, as stated in the official wasmtime documentation, “it is
guaranteed that there is no undefined behavior or segfaults in
either Wasm guest or the host itself,” it is extremely difficult
for existing fuzzers to identify memory corruption bugs or
panics in Rust-based runtimes. Nevertheless, we have triaged
and reported 20 previously unknown bugs found by WALTZZ,
all of which have been confirmed, with 17 received CVE IDs.
We further detail two critical bugs found by WALTZZ in Sec-
tion 6.5. The first demands structural modifications to the
code base, while the second presents a potential exploitation
risk and is difficult to detect under normal conditions.

RQ1: WALTZZ surpasses existing state-of-the-art fuzzers
by achieving 12.4% more code coverage and discovering
1.38× more bugs than the nearest competitor. WALTZZ
has uncovered 20 new bugs in total which have all been
verified and 17 CVE IDs are assigned.

6.3 Evaluation of Fuzzing Methods

To address RQ2 and evaluate the effectiveness of different
mutation methods, we modify WALTZZ and add a counter for
each method. These counters are incremented when the corre-
sponding mutation methods generate an input that finds new
code paths. We do not evaluate the efficacy of the generator
as it is called on demand. We have conducted the experiment
on three web embeddings over a 24-hour period and logged
the counter values at one-minute intervals, which is consistent
with the common practice observed in prior research [3, 22].

Figure 6 presents the relative contribution of each method
over 24 hours averaged across 10 runs. Due to the diminishing
discovery of new paths after the initial stage, we organize the
data into differently-sized bins: 1-minute bins for the first
hour, 5-minute bins up to the three-hour mark, 10-minute bins
until the six-hour mark, and 20-minute bins to the end. Our
analysis reveals that all mutators effectively contribute to un-
covering new paths, with none displaying a disproportionate
advantage. Furthermore, the effectiveness of mutators varies
with different targets. As an example, the splicing mutator is
particularly effective at finding new paths in SpiderMonkey,
whereas it performs moderately on other targets.

RQ2: All mutation methods contribute to the effectiveness
of WALTZZ and different targets potentially favor different
mutators.

6.4 Validity of Generated Test Cases

To tackle RQ3, we conduct a 24-hour evaluation of WALTZZ
on three web embeddings, during which we record the number
of both valid and invalid inputs produced by our mutators and
the generator. Considering that the generation of test cases is
independent of the target program being tested, we believe the
validity evaluation results can be confidently applied to the
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Figure 5: The edge coverage for all the evaluated techniques over time. The main line displays the mean across all runs, whereas
the shaded area denotes the confidence band ranging from minimum value to maximum value.

non-web embeddings. Besides, we use wasm-validate from
the Wasm binary toolkit [50] to ascertain the validity of these
test cases.

Table 3 displays the validity rates. WALTZZ is able to gen-
erate hundreds of thousands of valid inputs with a success rate
of 100%, a result enforced by the stack-invariant transforma-
tion. When compared to the data in Table 1, it is evident that
WALTZZ produces a significantly higher number of valid in-
puts than AFL++. This capability enables WALTZZ to explore
deeper states of the targets, which is a contributing factor to
its superior performance relative to AFL++.

RQ3: WALTZZ can generate 100% valid inputs by virtue
of the stack-invariant transformation, which empowers it
to reach deeper states.

6.5 Case Studies

To answer RQ4, we present case studies of two bugs uniquely
found by WALTZZ.
CVE-2024-33480. This bug is uncovered in wasm3, which
triggers a stack overflow. wasm3 executes Wasm instructions
through a sequence of operation calls and most operations are
executed on an internal virtual stack. Furthermore, wasm3 is
engineered with tail-call optimization, enabling 90% of the
opcodes to operate without consuming the system stack.

To induce a stack overflow bug, the initial approach often

Table 3: The average counts of total and valid test cases from
fuzzing three major JS engines across 10 runs, each with a
24-hour budget using WALTZZ.

Project NumTestcase NumValid
NumValid

NumTestcase

V8 452171.4 452171.4 100.0%
JavaScriptCore 394297.8 394297.8 100.0%
SpiderMonkey 527724.5 527724.5 100.0%
Avg. 458064.6 458064.6 100.0%

involves constructing a simple recursive call that depletes
the system stack. However, this method is impractical with
wasm3, as it checks whether the maximum virtual stack capac-
ity is reached at the function entrance, if so, wasm3 raises a
trapStackOverflow error and aborts the execution. Besides,
even in the absence of this safeguard, devising instructions
that aggressively consume the system stack is challenging, as
most opcodes do not interact with it.

However, a test case constructed by WALTZZ successfully
bypasses the preceding sanity check and exhausts the entire
stack allocated for wasm3. Figure 7 depicts a truncated PoC
of this bug. Notably, the PoC includes a recursive call deeply
nested within the loop structures. It appears that the loop
instruction is not optimized for tail-call operations, as wasm3
must retain certain status information. Thus, each invocation
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Figure 6: Percentage of identified new paths for each mutation method, averaged across 10 runs.

of the op_Loop consumes approximately 0x20 bytes of sys-
tem stack space under the current setting. At the same time,
the virtual stack only increases incrementally at the innermost
call. This disparity ultimately leads to a stack overflow before
the built-in sanity check could intervene. This bug relates to
the tail-call architecture of wasm3, thus demanding structural
changes to the code base.

1 (module
2 (func (;0;)
3 loop (result i32)
4 loop (result i32)
5 loop (result i32)
6 loop (result i32)
7 ;; several more loop (result i32)...
8 call 0
9 i32.const 150

10 ;; several more end...
11 end
12 end
13 end
14 end
15 drop)
16 (func ...)
17 (export "main" (func 0))
18 )

Figure 7: A truncated proof-of-concept code of CVE-2024-
33480.

We argue that other baselines, such as AFL++ or RedQueen,
are unlikely to discover this bug even with considerable time
investment, as they struggle to generate valid test cases and
probe deeper execution logic. Although wasm-smith might
produce inputs that include recursive calls, it rarely generates
instruction sequences that exhaust the system stack to trigger a
stack overflow. In contrast, WALTZZ effectively constructs the
PoC by initially employing a splicing mutator to combine two
seed inputs, thereby crafting the necessary control structure.
It then alters the target function of the call instruction to the
function itself using the call target mutator. This underscores
the synergy effect of our mutators, which helps WALTZZ to

1 (module
2 (func $vul (result i32) (local f64)
3 ... ;; wrong size check at the function entry
4 block
5 ...
6 if
7 f64.const 0x1.e848p+24
8 ...
9 f64.copysign ;; out-of-bounds write!

10 call $long_param
11 ...
12 else
13 ...
14 end
15 ...
16 end)
17 (func $main
18 ... ;; code that almost saturates the virtual stack
19 call $vul
20 drop)
21 (func $long_param (param f64 f64 f64 f64 f64 f64
22 f64 f64)
23 (result f64)
24 ...)
25 ...
26 (export "main" (func $main)))

Figure 8: A truncated proof-of-concept code of CVE-2024-
33477.

uncover bugs that elude other baselines.
CVE-2024-33477. This vulnerability is also identified in
wasm3, leading to an out-of-bounds write that corrupts the
heap metadata. As previously mentioned, wasm3 utilizes a
virtual stack, which is allocated on the heap with a predefined
maximum size. Before execution, wasm3 will “compile” the
function to calculate the amount of virtual stack space it will
require. At the function entrance, wasm3 guarantees that the
execution of the current function does not overflow the virtual
stack. Therefore, Wasm inputs are normally prevented from
writing outside the virtual stack.

Despite this, WALTZZ effectively generates a Wasm input
taking advantage of a miscalculation bug in wasm3 to achieve



out-of-bounds write on the virtual stack. Figure 8 illustrates
a truncated PoC of this bug. The PoC starts with a bunch of
irrelevant operations designed solely to saturate the virtual
stack. Upon invoking the function $vul, wasm3 attempts a
“pre-compilation” to ascertain the number of required stack
slots. However, it underestimates the slots required for the
calling arguments of $long_param, mistakenly assuming that
there has enough space on the virtual stack for $vul, thereby
failing to trigger a trapStackOverflow error. This oversight
permits the out-of-bounds write at f64.copysign. This bug
could potentially be exploited for remote code execution by
carefully structuring the code.

As per the developer, this vulnerability can be difficult to
detect under normal circumstances. Fuzzers like wasm-smith
often struggle to find this bug due to their inability to balance
the avoidance of internal stack overflow errors with the out-
of-bounds write. In contrast, WALTZZ leverages the skeleton-
based generator to produce $long_param whose signature
is crucial for triggering the vulnerability. This highlights the
usefulness of our generator in generating rare code constructs.

RQ4: WALTZZ has identified vulnerabilities that are likely
exploitable or necessitate structural modifications to the
code base, demonstrating the practical impact of WALTZZ.

7 Discussion

Despite the efficacy of WALTZZ, there is still potential for
further enhancement. In this section, we analyze a bunch of
bugs from the SpiderMonkey Bugzilla database, presenting
observations that could potentially strengthen the bug-finding
capacity of WALTZZ.

Specifically, we curate a dataset from the SpiderMonkey
Bugzilla. We consider exclusively memory failures, including
crashes, assertion failures, and ASAN errors. Among these,
we then select only those bugs that are consistently repro-
ducible and accompanied by the PoC. This yields a dataset
comprising exactly 100 memory bugs, which would be made
available alongside the source code.

In the course of investigating each bug, we first concentrate
on the aspects of build configuration and run command. The
first observation is that different bugs typically require distinct
build or run commands, and no single command is universally
effective. Notably, nine bugs are identified under the ARM
architecture, highlighting the potential benefits of targeting di-
verse architectures in finding bugs. Moreover, a large fraction
of run commands adjust JIT tiers, e.g., by mandating test cases
to be compiled by baseline compilers. Lastly, an interesting
bug Bug1500231 highlights the importance of experimenting
with varied combinations of command-line arguments, which
is mainly triggered by the -enable-avx option. In summary,
diversifying target settings could empower WALTZZ to find
more bugs, and we leave this as a future direction.

Wasm is an evolving language, with many proposals cur-
rently under standardization. Presently, WALTZZ supports
only the Wasm core specification as this standard is the most
widely adopted among runtimes. However, we are keen to as-
sess the prevalence of bugs introduced by the implementation
of ongoing proposals. Moreover, we also analyze whether
interactions between Wasm modules and their host environ-
ments impact bug manifestation. Figure 9 shows the result:
around 40% of the bugs involve proposals that are still in
progress. Upon closer examination, we find that newer bugs
tend to relate more frequently to recent proposals and the
implementation of the core specification is less likely to
have bugs nowadays. This agrees with the observation from
AFLChurn [68] that most bugs have been introduced by re-
cent code changes. Therefore, incorporating new proposals
into WALTZZ should help it identify more new bugs and we
consider this as future work. Additionally, 50% of the bugs in-
teract with the JS contexts, e.g., bug Bug1496362 occurs only
when the tracelogger is activated with the Wasm input being
simply (module). This points us towards a viable direction
of exploring the interplay between Wasm inputs and the host
environment, particularly within the context of Wasm System
Interface [51].
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Figure 9: Number of bugs introduced by using ongoing pro-
posals or interacting with JS contexts.

8 Related Work

8.1 Fuzzing
Greybox fuzzers are currently the mainstream in academia
and industry, which utilize instrumentation feedback such as
edge coverage to facilitate the exploration of the target input
space. Since the advent of AFL [20], a large body of research
work has tried to improve the efficiency of greybox fuzzing.

One trend pays more attention to improving the efficiency
of different components in the greybox fuzzers. CollAFL [19]
addresses the hash collision problem of the bitmap to achieve
precise feedback. AFLFast [7], EcoFuzz [63], MobFuzz [65]



and other works [36, 48, 55] optimize which seed is selected
first for mutation and how many test cases should be generated
for each seed according to predefined criteria. MOpt [34]
and DARWIN [26] utilize novel optimization algorithms for
scheduling the mutation process, which achieve satisfactory
results. Another line of work tends to infer more knowledge
about the program under test. RedQueen [4], VUzzer [42] and
other works [18, 33] try to conquer complex path constraints
in a generic manner by tracking the data flow between input
bytes and the operands in comparison instructions. However,
target programs often accept inputs in a specific format which
could be hard to satisfy by previous fuzzers. Thus, structure-
aware fuzzers [3, 6, 15, 40, 56] synthesize test inputs by either
providing a predefined specification or inferring the structure
dynamically.

Inferring input structures is not enough, since inputs often
carry semantics that are checked by the target. This is where
fuzzers transition from general to specialized. Many works
have been proposed to target different research areas such as
kernel [8, 61], compiler [14, 62]. Since Wasm originates from
the web scenario, we discuss some of the works targeting the
JS engine. CodeAlchemist [24] fragments seed inputs into
code bricks and annotates each brick with a set of constraints
such as the type of a variable, and these bricks are later com-
bined with all the constraints satisfied. Fuzzilli [22] designs a
specific IR that focuses on discovering JIT compiler vulnera-
bilities in the JS engine. DIE [38] proposes aspect-preserving
mutations that can maintain interesting properties in the seed
inputs. While all of these works take advantage of the type
system to ensure the semantic correctness of generated inputs
and inspire our work to a large extent, we argue that different
type systems demand entirely distinct designs. Maintenance
of proper stack semantics presents a unique challenge in the
Wasm context and cannot be addressed by previous works.
This underscores the importance of WALTZZ.

8.2 WebAssembly Security

Wasm security can be roughly categorized into application
security and host security. The former generally refers to the
security implications introduced by Wasm binaries. The latter
refers to the security issues in the Wasm implementations.

As for application security, the early adopters of Wasm have
been the websites that use the computing resources of visitors
to mine cryptocurrencies [30]. To mitigate this, several works
[28, 57] have been proposed to detect and prevent malicious
crypto mining. One technical paper [32] demonstrates that
vulnerabilities in memory unsafe languages can transfer to
the Wasm binaries and be exploited more easily due to the
lack of common mitigation. Wasm could also be utilized as
a part of the malware, Wobfuscator [44] moves parts of the
computation from JS to Wasm and evades lots of malware
detectors. JWBinder [60] proposes an inter-language program
dependency graph to detect multilingual malware of this type.

For host security, Google Project Zero demonstrates an
early study [41] towards the vulnerabilities in the Wasm imple-
mentations. WasmFuzzer [27] applies simple mutations on the
Wasm modules such as adding a global variable. WARF [17]
tries out different fuzzing techniques such as structure-aware
fuzzing to find bugs in Wasm implementations. While WARF
incorporates various advanced fuzzing techniques, it demands
manually crafted Rust test harnesses, and its support for many
existing Wasm runtimes remains limited. Wasm-smith [10]
monitors the stack states during the test case generation, i.e.,
the instruction generated by wasm-smith depends on current
stack types. While enforcing the semantic correctness, some
instructions can hardly be generated by wasm-smith since the
required stack types are difficult to meet, thereby hindering the
diversity of its generated test cases. WADIFF [67] leverages
symbolic execution to generate inputs for each instruction and
conducts differential testing. However, WADIFF can generate
simple Wasm modules only and the use of symbolic execution
is heavyweight. WASMaker [13] and Wapplique [66] are two
concurrent works that guarantee the validity of generated test
cases. WASMaker generates Wasm modules by disassembling
and assembling existing Wasm modules, a process similar to
that used by CodeAlchemist [24]. Wapplique utilizes a single
mutator akin to splicing to produce a predetermined number
of new inputs. Both of them are black-box fuzzers and their
capacity to generate diverse test cases largely depends on the
initially collected seed corpus. Unlike these works, WALTZZ
proposes the concept of stack-invariant transformation and
integrates it into the design of mutators and the generator to
effectively explore the target runtimes at a minimal cost.

9 Conclusion

In this paper, we introduce WALTZZ, an effective greybox
fuzzing framework tailored for Wasm runtimes. We propose a
novel approach termed stack-invariant transformation, which
effectively maintains the desired stack semantics and serves
as a foundational principle throughout the design of WALTZZ.
We then devise a suite of Wasm mutators that collaboratively
explore different combinations of the control and data flow.
Besides, we design a skeleton-based generation algorithm,
facilitating the creation of rare code constructs. We have im-
plemented WALTZZ and evaluated it on seven Wasm runtimes.
Compared to the leading fuzzers, WALTZZ distinguishes it-
self by achieving 12.4% more code coverage and detecting
1.38× more unique bugs than its nearest competitor. In to-
tal, WALTZZ has identified 20 new bugs which have all been
verified and 17 CVE IDs have been assigned.
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Appendix

1 #[macro_use]
2 extern crate afl;
3 extern crate wasmtime;
4
5 fn main() {
6 fuzz!(|data: &[u8]| {
7 let engine = wasmtime::Engine::default();
8 let mut store = wasmtime::Store::new(&engine , ());
9 let Ok(module) = wasmtime::Module::from_binary(&engine , data) else { return };

10 let Ok(instance) = wasmtime::Instance::new(&mut store , &module , &[]) else { return };
11 let Ok(main_func) = instance.get_typed_func::<(), () >(&mut store , "main") else { return };
12 let _ = main_func.call(&mut store , ());
13 });
14 }

Figure 10: Test harness for wasmtime.

Table 4: Summary of vulnerabilities found by WALTZZ. In the Status column, Confirmed indicates that the bug has been verified
by developers, Patched signifies that an appropriate code patch has been proposed but not yet merged, Fixed denotes that the
bug has been fixed in the main branch.

Target CVE/Issue-ID Bug Type Crash Location (Function) Status

wasm3

CVE-2024-33473 OOB-Write op_CopySlot_64 Fixed
CVE-2024-33474 OOB-Read op_Select_i64_ssr Confirmed
CVE-2024-33475 OOB-Read RemoveCodePageOfCapacity Confirmed
CVE-2024-33476 OOB-Write op_SetSlot_i64 Confirmed
CVE-2024-33478 OOB-Read op_Select_i64_srs Confirmed
CVE-2024-33479 OOB-Read op_Select_f32_ssr Confirmed
CVE-2024-33480 Stack Overflow op_Entry Confirmed
CVE-2024-33481 OOB-Read op_Select_f64_rsr Confirmed
CVE-2024-33482 OOB-Read op_MemCopy Confirmed
CVE-2024-34247 OOB-Read op_Select_f32_rsr Confirmed
CVE-2024-34248 OOB-Read Environment_ReleaseCodePages Confirmed
CVE-2024-33477 Heap Buffer Overflow op_SetSlot_f64 Patched
CVE-2024-34246 OOB-Read main Patched
CVE-2024-34249 Heap Buffer Overflow DeallocateSlot Patched
CVE-2024-34252 Global Buffer Overflow PreserveRegisterIfOccupied Patched

wasm-micro-runtime
CVE-2024-34250 Heap Buffer Overflow wasm_loader_check_br Fixed
CVE-2024-34251 OOB-Read block_type_get_arity Fixed

wasm-interp
Issue2310 OOB-Read wabt::interp::DataSegment::IsValidRange Fixed
Issue2311 OOB-Write wabt::interp::DataSegment::Drop Fixed
Issue2398 OOB-Read wabt::interp::FreeList<wabt::interp::Object*>::IsUsed Fixed
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Figure 11: The edge coverage for all the evaluated techniques over a logarithmic time scale. The main line displays the mean
across all runs, whereas the shaded area denotes the confidence band ranging from minimum value to maximum value.
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