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Abstract

Protecting industrial control systems against cyberattacks is
crucial to counter escalating threats to critical infrastructure.
To this end, Industrial Intrusion Detection Systems (IIDSs)
provide an easily retrofittable approach to uncover attacks
quickly and before they can cause significant damage. Current
research focuses either on maximizing automation, usually
through heavy use of machine learning, or on expert systems
that rely on detailed knowledge of the monitored systems.
While the former hinders the interpretability of alarms, the
latter is impractical in real deployments due to excessive
manual work for each individual deployment.

To bridge the gap between maximizing automation and
leveraging expert knowledge, we introduce GeCo, a novel
IIDS based on automatically derived comprehensible models
of benign system behavior. GeCo leverages state-space mod-
els mined from historical process data to minimize manual
effort for operators while maintaining high detection perfor-
mance and generalizability across diverse industrial domains.
Our evaluation against state-of-the-art IIDSs and datasets
demonstrates GeCo’s superior performance while remaining
comprehensible and performing on par with expert-derived
rules. GeCo represents a critical step towards empowering
operators with control over their cybersecurity toolset, thereby
enhancing the protection of valuable physical processes in
industrial control systems and critical infrastructures.

1 Introduction

Cybersecurity for Industrial Control Systems (ICSs) is a flour-
ishing research topic [30] as more attacks endanger the envi-
ronment, humans, and, in the case of critical infrastructure, our
society [11]. Consequently, tremendous efforts are invested in
securing industrial facilities, especially with the help of Indus-
trial Intrusion Detection Systems (IIDSs) [22,30,42]. IIDSs
monitor the physical process of an ICS and alert the operators
in the case of identified abnormal behavior. Thereby, they
serve as a last line of defense if existing upstream security
measures (e.g., firewalls or authentication) are breached.
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Concerning the tremendous research efforts put into de-
signing appropriate IIDSs, current approaches can be roughly
divided into two areas: First, data-driven IIDSs that learn
purely on historical data samples and, therefore, usually base
their detection algorithm on machine learning. On the other
end of the spectrum, some IIDSs depend on external expert-
or system-information provided, e.g., in the form of mathe-
matical models of the ICS process. Thus, the latter require
significant manual engagement by operators.

However, both directions exhibit opposing advantages and
disadvantages. Data-driven IIDSs facilitate applicability to
different ICS applications as long as the required training data
is available [63]. But, their machine learning background hin-
ders the transparency needed to comprehend alerts [28]. In the
end, a simple alert from the entire system does not suffice to
efficiently identify false positives or localize anomalies or at-
tacks [43]. In contrast, IIDSs relying on expert knowledge are
severely limited w.r.t. transferability to new domains. These
systems demand manual configuration based on scarce expert
knowledge and thus risk operating with incomplete models.
Still, as experts are an integral part of the training process,
alerts promise to be more easily comprehensible, potentially
leading to faster mitigation of attacks.

Large cooperations may tackle some of these disadvan-
tages through e.g., additional personnel, but smaller facilities
lack the resources for such measures. However, also smaller
operators of ICSs, especially critical infrastructure, regularly
become the target of cyberattacks. A recent attack on a Texas
water facility, leading to overflowing tanks for up to 45 min-
utes before detection, is only one of an exploding number of
recent cyberattacks on critical infrastructure [45]. To address
these concerns, the upcoming European NIS-2 regulation even
requires the deployment of appropriate intrusion detection for
a broad scope of relatively small businesses [1].

With this paper, we strive to combine the advantages of
explainability and automation into an IIDS. Thus, we want
to offload the hard manual work of experts to computers,
thereby avoiding human error or incompleteness in modeling.
Meanwhile, alerts should remain easily explainable for quick
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Figure 1: Exemplary ICS of a water reservoir to provide a
constant supply of water to subsequent processes. Actuators
are drawn with rectangles, sensors with rounded rectangles.

reactions to eventual anomalies. As ICS operators likely have
a background in control theory, we consider state-space mod-
els that describe the physical behavior and dependence of each
sensor and actuator individually [17], as a viable modeling
strategy for automatic learning and interpretability.
Concretely, we propose GECO, a generalizable and
comprehensible IIDS that lowers the burden for ICS oper-
ators to deploy IIDSs. In contrast to prior works that rely on
the labor-intensive manual specification of state-space mod-
els [9, 18,51], GECO automatically derives appropriate mod-
els expressed as mathematical correlations from historical
process data based on function templates suitable for various
ICSs and domains. An alarm is thus always associated with
one or multiple sensor readings, such that it can be easily
verified by operators who know the control logic.
Contributions. In order to address the need for effective
and easy-to-use IIDSs, we make the following contributions:
* We design and implement GECO, a highly effective [IDS
automating the work of ICS experts, providing comprehen-
sible alarms, and generalizing to various industrial domains.
* We demonstrate GECO’s effectiveness in a detailed eval-
uation against five state-of-the-art IIDSs, surpassing their
detection performance in most metrics.
* We show that GECO keeps up with expert-derived rules and
prove its effectiveness and understandability across four
datasets without requiring experts during training.

2 Background on Industrial Control Systems

ICSs enable the automation of e.g., water distribution or
power generation. In the following, we introduce ICSs along
an example, explain how digital control-loops implement the
underlying process logic, and discuss the emerging risks of
cyberattacks and their mitigation through intrusion detection.

2.1 A Simple ICS Example

Throughout this paper, we use a water storage tank subsystem
of the prominent SWaT research testbed [31] as illustrative
example. This system (cf. Fig. 1) stores water in a tank for
further processing. The tank is equipped with sensors and
actuators to monitor and manipulate the physical state. Flow
meters measure the inflow (FIT101) and outflow (FIT201)
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Figure 2: Digital control loops automatize physical processes
according to a model provided by experts. Yet, [CSs’ advances
in digitalization pose vulnerabilities to cyberattacks.

of the water tank, and a level meter (LIT101) measures the
water level. The actuators involved are a motorized valve
(MV101) that controls the water inflow and a pump (P101) as
well as a backup pump (P102) that forwards water for further
processing. A Programmable Logic Controller (PLC) controls
the binary state of these actuators (on or off). Here, the PLC
aims to maintain a sufficient water supply and prevent the
tank from draining or overflowing.

2.2 Digital Control Loops

Experts program PLCs to automatize the underlying process
logic based on the sensors and actuators (cf. Fig. 2). The PLC
continuously sends commands to the actuators, and obtains
reports of their impact on the physical world through sen-
sor readings. Usually, the effect is compared with a desired
setpoint, which is called a closed-loop system [23].

Our example, i.e., checking whether the water level
(LIT101) is low and then opening the valve (MV101), is
a simple control loop. However, they can also control com-
plex systems by leveraging multiple in- and outputs to model
complicated functions. One method to describe the physi-
cal process is through state-space models [17], which are
mathematical equations predicting the evolution of a process:
The change in the water tank’s level can be expressed as

SLISTIIOI = FIT]Ol;FIsz , where A is the area of the tank [9].

2.3 Intrusion Detection for ICS Cybersecurity

ICSs usually have many control loops distributed across mul-
tiple PLCs that communicate via industrial protocols [37].
Ultimately, advanced connectivity demands lead to Internet-
connected ICSs [20]. Previously isolated ICSs are thus now
threatened by cyberattacks that e.g., manipulate the in- our
outputs of a control loop (cf. attacker in Fig. 2). Indeed, ICSs
face an increasing number of cyberattacks [11].

Industrial Intrusion Detection Systems (IIDSs) promise a
viable and retrofittable protection mechanism, which has seen
an enormous increase in (academic) interest, with the number
of yearly publications rising from 5 IIDSs in 2008 to over 130
in 2021 [42]. This research body can roughly be divided along
two important axes: input data and detection technique [42].

The input data may be network traffic, host data, or physical



process data. We are primarily interested in process-aware
IIDSs that monitor the physical process to detect abnormal
behavior, e.g., the upcoming overflowing of a water tank [45].

The detection techniques can be distinguished into
knowledge- and behavior-based IIDSs. Behavior-based IIDSs
expect training data of a normally operating ICS to learn nor-
mal behavior and consequently indicate any deviation as an
anomaly. Knowledge-based IIDSs additionally expect sam-
ples of cyberattacks during training. However, knowledge-
based IIDSs are criticized in the literature because (1) they
tend to overfit detecting only known attacks and (2) it is dif-
ficult to extract attack samples in real world [7,25,41, 62].
Consequently, we focus on behavior-based IIDSs for which
training data can be recorded during regular ICS operations.

3 Related Work

The overarching goal of an IIDS is to notify ICS operators in
case of a cyberattack without emitting too many false posi-
tives [10]. Thus, detection performance is the primary subject
of most scientific evaluations [30, 42]. However, two other
factors are equally relevant, namely generalizability and com-
prehensibility. First, in the ICS sector, two facilities are rarely
built identically, featuring heterogeneous hardware and a wide
variety of industrial protocols [47]. Therefore, the general-
izability of an IIDS, i.e., its ability to apply to multiple ICS
applications or even domains, is crucial [53,63]. Secondly,
[IDSs should provide guidance for operators to understand
the alert, trace its cause, or discard false alarms [25,28,61].

To understand to which extent existing IIDSs can satisfy the
often ignored aspects of generalizability and comprehensibil-
ity, we investigate relevant publications (cf. Tab. 1). Assessing
these, it becomes apparent that existing IIDSs roughly fall into
two categories: Mechanisms that are purely data-driven and
those that make use of external system-knowledge provided
by experts during the IIDS’s training phase.

Data-driven IIDSs employ vastly distinct detection method-
ologies ranging from classical machine learning such as one-
class SVMs [34], Neural Networks [36], or hidden Markov
models [5] to various ICS-specific approaches [12, 16,26,44,
61, 64]. One common advantage is the minimal amount of in-
put required for training. They merely leverage historical data
samples of the physical process, making them presumably ap-
plicable in various use cases [63]. Additionally, through their
automation, they usually learn a complete model of the entire
ICS, making it harder for attackers to circumvent detection.
On the downside, as machine learning and especially custom
detection methods are heavily used, understandability, e.g.,
through attribution methods, is difficult to achieve [28]. At
the same time, this opaque operation risks model overfitting
as the trained model can hardly be humanly validated [41,62].

Knowledge-based 1IDSs are enhanced with expert knowl-
edge, of which a large portion requires input in the form of
mathematical descriptions (cf. Sec. 2.2) either as a state-space

Table 1: Research is split into IIDSs using data-driven learn-
ing methods and those depending on (manual) input, which
usually leads to incomplete models due to human efforts.

External Comp.
Paper Venue Information  Model
Aggarwal et al. [S]  CPS-SPC X v
Aoudi et al. [12] CCS X X
Cardenas et al. [15]  AsiaCCS X v
= Castellanos et al. [16] ACNS X v
£ Feng et al. [26] NDSS X v
5 Hauetal. [32] CPSS X X
s Inoue et al. [34] IEEE ICDM X v
5 Kim et al. [36] CyberICPS X X
Krotofil et al. [40] AsiaCCS X v
Lin et al. [44] AsiaCCS X X
Wolsing et al. [61]  ESORICS X v
Yang et al. [64] RAID X v
3 Adepu et al. [3] AsiaCCS Process Invariants X
2 Adepu et al. [4] IFIP Process Invariants X
© Ahmed et al. [8] AsiaCCS State-Space Model X
& Ahmed et al. [9] WiSec State-Space Model X
3 Palleti et al. [49] J. Process Control State-Space Model X
= Choi et al. [18] CCS Physical Model X
€ Ghaeini et al. [29] SAC Physical Model X
» Quinonez et al. [51] USENIX Sec Physical Model X

model or a physical model. Given that the foundation is an
expert-provided model, the IIDS becomes comprehensible
for the operator and even allows them to perform corrections
to the model. On the contrary, the IIDS is limited to those
ICSs with the necessary resources to precisely model their
processes, resulting in IIDSs that are often specifically de-
signed for one scenario [18,51]. Moreover, the models might
be incomplete due to the amount of manual effort required by
humans designing them, e.g., modeling just the water flows
in a scenario similar to our example [9, 29], giving attackers
the potential to hide their actions. Hence, the completeness
and generalizability of these IIDSs are severely limited.

It is difficult to judge whether data-driven or knowledge-
based IIDSs yield better results due to inconsistent evaluation
methodologies [27,30,42]. Yet, their competing advantages
motivate us to combine their strengths in a system that can be
configured automatically based on historical data, but is also
generally applicable and delivers comprehensible alarms.

4 Design of GeCo

Manual approaches for constructing expert-based IIDSs do
not scale with an increasing number of ICS components.
Hence, the focus of this work is the development of a data-
driven procedure that does not rely on domain experts but,
at the same time, mitigates the current shortcomings of data-
driven IIDSs (cf. Sec. 3). Capable of a precise prediction of
ICS behavior, state-space models have long been considered a
reliable method for system analysis [17,35,46]. In the context
of industrial intrusion detection, they have been considered
in proof-of-concept deployments [15], use-case-specific sce-
narios still with human input [51], or only with linear mod-
els [8, 15]. However, their broader scalability, generalizability,
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Figure 3: GECO combines expert-knowledge with data-driven
techniques to find state-space models. Then, it analyses the
difference between predicted &; and observed system state x;.

and explainability for IIDSs remain unexplored.

To close this research gap, we design GECO relying on
the automatic data-driven derivation of state-space represen-
tations. Their precise modeling of system behavior combined
with clear comprehensibility of its alert decisions, automated
construction, and quick transferability among different ICS
domains thus promises to alleviate the urgent need for flexible
and easily deployable cybersecurity solutions [1,45].

4.1 High-Level Design Overview

As sensors and actuators of ICSs measure values belonging to
correlated physical processes, data by different components
is frequently coupled to each other. Assuming that one com-
ponent is compromised, i.e., its data deviates from normal
patterns, this can be identified by calculating the expected data
based on a subset of correlated components. The core idea
of this work thus consists of expressing the benign behavior
of every component in a given ICS as a linear or non-linear
combination of suitable sensor measurements and actuator
states. Based on this mathematical model, the future com-
ponent behavior can be predicted and compared to currently
observed measurements, thereby detecting compromises of
one or more components. As all industrial processes abide to
the laws of physics, this high-level approach promises to mit-
igate limitations w.r.t. to deployments in different scenarios.

Concretely, we propose GECO, which is based on auto-
matic learning of a so-called state-space model [17,35] de-
scribing the temporal behavior of an ICS’s underlying physics.
Our model is based on a set of generic function templates,
which are fitted against historic ICS data to find the equation
best describing the observed ICS behavior (cf. D in Fig. 3).

Once learned, the state-space model can be employed to
power GECO. First, the sensor state x; of the ICS at time ¢ is
measured. Then, 2) GECO predicts the state X; based on the
trained model and previously extracted sensor state x;_; and
actuator state u;_;. GECo 3) keeps track of the cumulative
distance A between the predicted and measured states in the
weighted past. If this cumulative distance reaches a predefined
threshold, an alarm is raised as the system has abnormally
different behavior compared previous observations.

4.2 Modeling the Behavior of an ICS

GECO0 models the behavior of ICSs leveraging state-space rep-
resentations. Generally, feedback flows within control loops
determine its future state and can be mathematically modeled
with state-space models [17,35]. This model describes how
the state of a system component evolves over time ¢ € R. It
depends on the observed state x, € R"” and the values of the
control input u; € R? of an ICS containing n measured phys-
ical values and controlling the process with p actuators (cf.
Fig. 2). Data of sensors and actuators y; € R” can be modeled
as a combination of the system state x; and the control input
u,. State-space models are generically defined by the follow-
ing equation [17] that describes the observed state based on
its current observation and the control input with two matrix
functions A : R — R™" and B: R — R"*?:

X =Ax;_ 1 +Bu (D

The A matrix models the behavior of the physical process
under undisturbed conditions. Depending on the dynamics
of the physical system, such undisturbed conditions exhibit
different results. E.g., while the water level of a tank remains
constant without water inflow or outflow, the temperature loss
of a heated system over time represents a system that changes
without control input. A simplification is to model the change
in undisturbed conditions by only depending on the current
state. Then, the A matrix takes the form of a diagonal matrix:

A= € R™*” 2)

dn

Here, a value of 1 e.g., describes the uncontrolled water level
staying constant, while a value < 1, e.g., describes the de-
creasing temperature without external heating.

The B matrix, on the other hand, describes the influence
of control inputs on the system. Accurately describing A and
B enables the precise prediction of an ICS’s behavior at any
time. Consequently, any substantial deviation (besides noise
or inaccuracies) from this prediction can be assumed to be an
anomaly we aim to detect. We thus intend to automatically
learn these state-space models on historical data logs without
any manual engagement by domain experts.

4.3 Learning the State-Space Model

State-space models can be complex differential equations
that may be generated by domain experts for IIDSs. Such
manual effort quickly runs into cost and scaling limitations,
both for small companies that lack expertise as well as larger
companies with complex processes. The failure of a group
of experts from Singapore’s Public Utility Board to derive a
system model for the SWaT testbed despite months of work
shows how challenging this process is [59]. Conveniently,
GECO only needs to predict changes over small time steps.



For the rest of this paper, we consider the state-space model
for each process value individually and refer to the state-
transition function of the i process value as F!. The main
idea of GECO is thus to approximate these state-transition
functions. The approximation of the A matrix in Eq. 2 gives
us a state-transition function of the form:

Fi(xt,l,ut,l) E)?f =aq; -xLl +B(u—1)

B(u;—1) is the change due to control inputs. Since interactions
from control inputs can underlie various physical effects, we
model these effects more precisely compared to our one-fits-
all approach for the A matrix. Thus, we refer to a flexible set
of function templates that are multivariant functions with any
amount of control inputs u,_ and parameters b.

To determine B(u;_;) for a given process, GECO exhaus-
tively tests which function template best describes the state
transition from x,_; to x;. Therefore, each potential function
is fitted with parameters (a and bs) by the least squares op-
timization algorithm (we use SciPy’s curve_fit function)
and keeping track of the best fit according to the lowest mean
squared error for the training data. The best function for each
process value gives us the state-space model that we use dur-
ing the attack detection phase.

For now, we only consider additive Bt and multiplicative
B* function templates of the form:

BT =B(u,_1) =bo+ Z bi-u",
0<i<I<p
B*EB(utfl):bo-i- H b,"u;lil

0<i<I<p

These two sets of function templates consider up to their
length [ many control inputs. We observe promising results
even when limiting / to reduce the search space. Yet, the list
of function templates can be expanded by domain-experts to
more accurately model specific physical phenomena. They
could even be pooled together by different experts. New func-
tion templates can, after all, only improve GECO’s perfor-
mance at the cost of slightly prolonged training.

4.4 Two Illustrative Examples

GECO learns the physical processes of an ICS based on func-
tion templates. To better understand how GECO works, we
review two illustrative examples: (i) the water level in the
processes introduced in Fig. | and (ii) the water temperature
in a tank with hot inflow as seen in the HAI [54] process.
Water Level. In particular, we look at the learned state-
transition function for the LIT101 sensor of the SWaT
dataset [31] with a function length of 2 for the B matrix:
£PTTI0T — 1 0. X110 10,192 £ 15100 — 0,197 f 11290 +0.009  (3)

——
A B

The water level LIT101 is described by the inflow and outflow
meters, FIT101 and FIT201 respectively. The A-coefficient

matrix of the mined function describes how the system be-
haves if no control command is issued, i.e., the water level
remains constant if no flow is recorded at FIT101 or FIT201.
The B matrix describes how the water level increases or drops
if the in- or outflow meters measure movement. The factors
0.192 and —0.197 are automatically derived by the mining
algorithm and the unit measured by the flow meters is con-
verted into a change of water level for the given tank size.
Finally, we see a mostly negligible corrective summand b
that likely stems from inaccuracies and noise in training data.

Water Temperature. To see how additional function tem-
plates can improve a model’s accuracy, we look at the approx-
imated temperature of a tank with an inflow of heated water.
Currently, GECO approximates process linearly. However, we
can easily extend the set of function templates with a template
that describes the change in temperature of two mixed fluids
(assuming a constant specific heat capacity):

a0
bl -MFI

’ aj ao
by - U +by - U,

B(us—1) = bo ’(”?31*“?31)

Here, utaﬂl is the volume of the inflowing fluid, ufil is the
volume of fluid in the tank, and u; | and /| are the respec-
tive temperatures. Indeed, when adding this function template
and training on the HAI, GECO identifies the correct control
inputs and finds fitting parameters to predict the temperature
TWITO04 of the tank TK03 in the HAI testbed, where TITO01 is
the temperature and FT01Z is the flow rate of the incoming
warm water, and LIT01 is its fill level of TK03:

0.00217-9.70 - uf§2
22.6-ul +9.70 - w141

xAtTWITOZl — LO'x’TE%TOé_’_
——
A

TITO1 TWIT04
(=~ )

B

Among all the possible combinations, the learned state-
transition functions for LIT101 and TWIT04 explain the phys-
ical process similarly to how an expert may have described
the system [9]. Importantly, GECO does not require an expert
to describe the system dynamics. The automatic learning of
state-space representations can uncover complex correlations
across different parts of the ICS that even domain experts may
not be aware of, making anomaly detection more robust.

4.5 Online Attack Detection with GECO

The trained model is used to perform anomaly detection by
analyzing the deviation of real-time system data from the pre-
dictions. To this end, GECO periodically extracts the current
state of the system x;, and the control inputs u,;. Together with
the learned state-space model, GECO computes a prediction
for the next system state £; as described in Sec. 4.3.

For anomaly detection, GECO compares the predicted state
X; and the later measured actual physical state x; by calcu-
lating the absolute residue ||x; — % ||. Aiming to make the
detection more robust, we not only consider the step-wise
residuals, but take into account their development over time as
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(a) Example of an detected attack (red) by
GECO against the level meter LIT101 increas-
ing its measurements by 1 mm every second.
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(c) Example of GECO monitoring the discrete
values of the pump P101 which was forced to
remain turned off by the attacker.

Figure 4: Applying our IIDS to three exemplary components, we find that GECO correctly alerts not only attacks within the
opening example discussed in Sec. 4.4, cf. Fig. 4a, but also demonstrates high detection confidence for components with volatile

behavior and noisy residues, cf. Fig. 4b, as well as components working only with discrete values, cf. Fig. 4c.

recommended in related work [51, 58]. To this end, we apply
the change detection algorithm CUmulative SUM (CUSUM),
which accumulates the deviations relative to a specific target
mean over time and warns whenever the accumulated sum
exceeds a predefined threshold. This way, small gradual devia-
tions are better picked up and errors within our predictions in-
troduced by noise or inaccuracies in the modeling and mining
step are compensated for. We again consider state-transition
functions F' individually for the CUSUM calculation as they
may have different scalings and sensitivities to influences
from the outside, resulting in the following definition:

CUSUM}, :=0 A
CUSUM: := max(0, CUSUM!_, + ||x' — zi|| — &) ®
CUSUM: iteratively computes the cumulative absolute pre-
diction error of F! up to the time ¢. In each step, this value
is corrected by the drift &', which expresses a constant but
expected drift tendency. This drift & is set during the train-
ing phase as the mean residue plus one standard deviation.
Next, T is the detection threshold for the state variable x' that
determines when an alert should be raised. For T?, we use
the maximum CUSUM value observed during training and
consider a safety margin expressed by a scaling factor S.

T' = Ss max(CUSUM!) 5)

Lastly, and in line with common practice [58], we limit the
absolute growth of the CUSUM score to prevent massive
overshooting of the threshold and long recovery periods to
the area below the threshold, especially if 8 is small. Thus,
a second parameter G (growth factor) restricts the maximum
CUSUM value to min(CUSUM! , T' 4+ G - §').

In summary, GECO computes the CUSUM' of the devi-
ations between the predicted %' and the measured value x’

at each time step for every process value. If the CUSUM!
value of any state variable surpasses the predefined threshold
T', GECO assumes anomalous behavior and raises an alert
until the value has fallen below the threshold. These alerts
not only inform the operator of anomalous activities but also
provide context information to help locate the source of the
disturbance as each sensor is monitored individually.

4.6 GECO in Practice

To summarize the construction procedure, we demonstrate
GECO’s operations as a well-functional IIDS. To this end, we
show the alert behavior for three examples from diverse data
types (linear, noisy, and binary data) to provide evidence that
GECO can function in all these situations in contrast to related
work usually focusing on a single, linear use-case [15].

Starting with Fig. 4a, GECO is applied to the level meter
LIT101 (cf. Sec. 4.4), while the testbed is under attack. This
also includes one direct attack against LIT101, steadily in-
creasing its measurements by lmm per second (cf. red area in
Fig. 4a). GECO successfully registers this compromise and
correctly alerts during the ongoing attack. This is initiated
by higher than normal residues between predictions and real
data (cf. middle plot). The final alert is later launched by the
corresponding CUSUM values distinctly overshooting the
predefined threshold (cf. red line). The alert precisely over-
lapping with the relevant attack shows that GECO quickly
and precisely unveils the LIT101 sensor’s abnormal behavior.
Meanwhile, no alert is raised while other system components
are under attack (cf. yellow areas), such that GECO also helps
in understanding and localizing the source of anomalies.

To demonstrate that GECO also correctly alerts if the be-
havior of a component is less foreseeable, we examine the
sensor L-T7 included in the BATADAL dataset [55]. This



sensor monitors the water level in a tank of a municipal wa-
ter distribution network with just a single measurement per
hour. Thus, the residues between predictions and real data are
much noisier (cf. Fig. 4b). Still, both attacks targeting L-T7
are identified by GECO as both the residues and the CUSUM
values are deviating clearly from their norm. Even though the
value dispersion among the residues is much higher making it
more difficult to detect attack. This confirms the assumption
from Sec. 4.3 that even a model with a lower level of precision
in the predictions suffices for accurate attack detection.
Lastly, we consider a discrete data example with the pump
P101 in Fig. 4c. This example showcases the need for the
CUSUM algorithm instead of deriving alert decision directly
from the calculated residues. While the momentary deviations
between predictions and real data plotted in the middle sub-
plot of Fig. 4c do not allow a definite revelation of anomalous
behavior produced by the attack against P101, the CUSUM
mechanism results in a successful attack detection. Therefore,
we conclude that CUSUM, as a stateful change detection
algorithm, is a necessary design element of GECO.

4.7 Data Input required by GECO

To showcase the generalizability of GECO to any given do-
main and use case, we further refine the input GECO needs
to train a model and perform online attack detection. Simi-
lar to other data-driven IIDSs, GECO works fully automati-
cally. The only required information that must be included in
training and live datasets are historical time series of process
values with regular time intervals. The amount of data varies
across processes, as we later show in Sec. 6.3. To make our
implementation easily accessible, we implemented GECO on
top of the IPAL framework, providing a proven standardized
format of such time series data [63]. If GECO is supplied with
these time series of process values and suitable hyperparam-
eters, GECO automatically infers the relationships between
the process values during training without any outside assis-
tance. This sets GECO apart from knowledge-based IIDSs
that require manual and time-intensive labour by ICS op-
erators to derive meaningful invariants [3,4] or state-space
models [9,49,51] (cf. Tab. 1). During live operation, GECO
then also only requires state snapshots, i.e., a list up-to-date
process values, in regular time intervals.

S Implementation & Evaluation Setup

Bringing the theoretical design of GECO into practice, we
sketch our implementation in Sec. 5.1 and shape our evalua-
tion setup to assess the capabilities of GECO in Sec. 5.2.

5.1 Implementation Details

As our implementation platform, we select the Industrial
Protocol Abstraction Layer (IPAL) framework [63]. IPAL’s

core idea is to facilitate coherent IIDS research by offering a
generic data format with access to plenty of common datasets
and validated (re-)implementations of prominent [IDSs from
related work. Internally, IPAL is based on Python, and thus,
we leverage the curve_fit function from the SciPy library to
find suitable parameters for the functions defined in Sec. 4.3.

One aspect assumed in Sec. 4.3 is that it is well-defined
which process values belong to the observed state x; and
which to the control input u,. To keep the input from external
experts minimal, we relax from that assumption and simply
test all combinations. Also, during training of the state-space
model and the CUSUM detection threshold, we use the first
80 % of the training data to learn the state-space model and
use all 100 % of the data to calculate the CUSUM’s drift
and detection threshold. Thereby, we avoid overfitting the
CUSUM detection method to data on which the state-space
model was trained. Appx. A.l provides a sketch of the code.

5.2 Evaluation Setup

For our evaluation setup, we now outline our decisions for the
utilized datasets, [IDSs from related work compared against,
performance metrics, and hyperparameter decisions.

Datasets. To obtain meaningful results [19], we apply
GECoO to four diverse, publicly accessible, and commonly
used datasets in IIDS research, namely SWaT [31], WADI [6],
HAI [54], and BATADAL [55]. All datasets ship with at least
one attack-free part, which we use for training. The remaining
parts contain varying numbers of attacks: 36 attacks in SWaT,
14 for WADI, 50 for HAI and 14 for BATADAL.

IIDSs. To cover a wide range of IIDSs for comparison,
we rely on the IPAL framework providing various IIDSs
from related work. We select TABOR [44], SIMPLE [61],
Seq2SeqNN [36], PASAD [12], and Invariant [26] as those
are prominently published and openly accessible (cf. Tab. 1).
TABOR [44] is an IIDS that divides process-data into linear
segments to derive timed automata which are complemented
with a Bayesian network to incorporate the relationship to
actuators and an out-of-bounds check for miscellaneous data.
In contrast, SIMPLE aims to reduce complexity to a mini-
mum [61], showing that a combination of four straightforward
heuristics suffices to perform on par with far more complex
IIDSs. Seq2SegNN [36], similar to GECO, predicts the next
measurement and alerts deviations, yet based on neuronal
networks. PASAD [12] utilizes singular value decomposition
and calculates the difference to vectors seen during training.
Lastly, Invariant [26] mines state-invariants as boolean state-
ments that must always be fulfilled. These IIDSs resemble
a broad collection of relevant publications as they were de-
signed for at least one of the datasets and were already subject
in comparison studies [24,27,61,62]. Since these IIDSs were
evaluated originally on a subset of the considered datasets,
we applied them to the other datasets where necessary.

Metrics. To quantify the detection performance, we use



Table 2: GECO performs above average compared to relevant related work and across many metrics and datasets. Cells in grey
resemble the best-performing IIDS for a given dataset and metric. The performance of related work was measured with the
re-produced implementations from the IPAL framework to obtain numbers for all metrics and datasets. The scarcely stated
performance results for related work are added in brackets if provided in the respective original publications.

IDS Prec. Rec. F1 eTaP eTaR eTaF1 FPA Scen.
GECo 94.8 79.0 86.2 83.1 60.7 70.2 4 86.1
- SIMPLE 70.7 (71.0) 86.7 (87.0) 77.9 (78.0) 58.7 47.2 52.3 18 (23) 75.0 (75.0)
< TABOR 81.5(86.2) 74.7 (78.8) 77.9 (82.3) 49.1 18.9 27.3 27 55.6 (66.7)
= Invariant 97.3 69.1 (78.8) 80.8 54.7 29.8 38.6 182 86.1 (91.7)
«n Seq2SeqNN 44.0 10.9 17.5 42.8 47.2 449 36 (20) 75.0 (80.6)
PASAD 324 71.5 44.6 16.0 4.9 7.5 14 44.4
GECo 92.6 32.1 47.7 91.3 56.3 69.7 0 78.6
—_ SIMPLE 58.2 (58.0) 43.6 (44.0) 49.8 (50.0) 57.0 52.1 54.4 8(9) 64.3 (64.3)
=) TABOR 19.1 43.7 26.6 14.9 13.0 13.9 3 57.1
§ Invariant 90.0 21.9 (47.4) 35.2 92.3 32.6 48.1 2 42.9 (100.0)
Seq2SeqNN 44.4 13.4 20.5 454 31.3 37.1 7 64.3
PASAD 16.4 23.9 19.5 54 43 4.8 3 35.7
GECoO 75.4 55.5 63.9 73.8 65.4 69.4 8 90.0
SIMPLE 87.0 (87.0) 39.8 (40.0) 54.7 (55.0) 86.0 61.5 71.7 4(26) 88.0 (86.0)
= TABOR 4.8 45.1 8.7 0.0 0.0 0 4 46.0
e Invariant 77.1 9.1 16.2 79.2 25.2 38.3 12 50.0
Seq2SeqNN 8.5 4.6 6.0 7.7 2.9 4.2 14 26.0
PASAD 33 12.7 5.3 1.0 2.0 1.3 51 16.0
o GECoO 93.8 73.4 82.3 97.0 88.1 92.4 0 100.0
= SIMPLE 52.0 43.3 47.2 49.0 42.8 45.7 4 71.4
=) TABOR 78.5 6.9 12.7 77.7 14.3 24.1 2 14.3
ﬁ Invariant 27.2 45.5 34.0 18.2 74.9 29.3 865 100.0
< Seq2SeqNN 34.2 5.6 9.6 27.0 6.9 11.0 1 14.3
~a PASAD 20.1 52.1 29.1 10.5 21.5 14.1 32 78.6

Precision, Recall, and the F1-Score, as these are the most com-
monly used metrics [42]. However, as they received criticism
in recent years if leveraged in time-aware IIDS research [33],
e.g., since long attacks are over-weighted by these scores, we
also consider their newer time-aware pendants eTaP (Preci-
sion), eTaR (Recall), and eTaF1 (F1) [33]. Additionally, we
state the fraction of detected scenarios (Scen.), i.e., attacks
from each dataset, and the number of continuous false-positive
alarms (FPA). Note that we count an alert only as a false posi-
tive if it is at least 60s away from an attack since an attack’s
effect may persist even shortly after the attack’s end, resulting
from inaccurate labeling for some datasets [61].

Hyperparameters. GECO has just hyperparameters. The
maximum function length (k) is always set to k < 3. The
hyperparameters for CUSUM, the scale factor S and drift
factor G, are set individually for each dataset (cf. Appx. A.3).

Overall, our setup meets the standards stated in the litera-
ture [42] as we evaluate four datasets and compare our results
with modern metrics against five IIDSs. In comparison, the
entire research domain evaluates just 1.3 datasets on average
and compares against 0.5 other approaches on average [42],

which sets our evaluation of GECO significantly apart.

6 Evaluation of GeCo

While GECo0 detects attacks in various data types in Fig. 4, we
now assess whether GECO holds up to its claims to achieve
a middle ground between required expert knowledge, gener-
alization, comprehensibility, and automation. First, Sec. 6.1

considers its detection performance. Next, Sec. 6.2 concerns
the comprehensibility of GECO and its alerts. Lastly, Sec. 6.3
measures the computational performance to judge the tradeoff
between time invested by the computer and the expert.

6.1 Detection Performance

We now analyze GECO’s detection performance in a three-
fold analysis. First, we compare GECO to state-of-the-art
related work in Sec. 6.1.1. Sec. 6.1.2 analyzes GECO’s gen-
eralizability to other industrial domains and we finish with a
comparison to knowledge-based approaches in Sec. 6.1.3.

6.1.1 GeCo Compared to Related Work

One of the most important aspects defining the significance
of an IIDS is its detection performance [13], i.e., its capa-
bility to detect the majority of cyberattacks whilst emitting
few false-positives [10]. To this end, we now discuss the re-
sults objectively with metrics in Tab. 2 and visually along
their alerts displayed in Fig. 5. As the algorithm of GECO is
deterministic, a single snapshot of its performance suffices.
While GECO is not perfect, it outperforms existing IIDSs
in 23 of 32 metrics across all datasets (cf. grey cells of Tab. 2).
Most notably, on BATADAL, our approach performs opti-
mally detecting all attack scenarios with zero false positives,
a currently unmatched performance. Also, on SWaT, the most
prominent evaluation dataset [42], the results are outstanding,
especially since it detects the most attacks, together with In-
variant, but with the fewest false positives. GECO only falls
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Figure 5: GECO precisely indicates the attacks, which can be difficult to infer from other IIDSs as their alerts do not overlap as
consistently with the attacks as GECO. The whole image of all alerts is contained in the appendix in Fig. 12.

behind in precision and recall on SWaT, which are contra-
dictory, valuing either the most detected attacks (recall) or
correct alerts (precision). Thus, it is unsurprising that one
IIDS from related work is better for each metric. Notewor-
thy, GECo beats all I[IDSs in the F1 score on SWaT, which
mediates between these two extremes. On WADI, we exceed
in eTaF1 and again have zero FPA whilst detecting the most
attacks. On HAI, GECoO performs over average compared to
related work. Here, GECO again detects the most scenarios
with few FPA while being dominant in the F1 score and be-
ing just 2.4 percent points behind SIMPLE in eTaF1. In the
end, ICS operators have to decide which characteristic of an
IIDS expressed through the different metrics best fits their
needs [42], of which GECO can satisfy a broad range.

For this reason, we also take a visual approach by looking
at the individual alerting behavior of GECO and related work.
Fig. 5 depicts an excerpt of each dataset (the complete figure
can be found in the appendix in Fig. 12). GECO precisely
indicates the ranges of the attacks in the datasets with only
little deviation and, especially during benign behavior of the
ICS, no apparent false positives are raised. The two false
positives of GECO visible in this example in WADI at around
17.8 and HAI at about 76.8 occur shortly after the attacks
finished and are thus likely still related to fluctuations in the
data from the attack. In contrast, the alerts from related work
are not as consistent throughout all datasets, which highlights
GECO’s ability to function well in all these scenarios.

Lastly, we take a look at attacks that are not detected by
GECO (false-negatives). On SWaT, six attacks are missed.
SIMPLE also misses all these attacks, showing that GECO
does not fail to identify easily detectable attacks [61]. Further-
more, five of GECO’s six false-negatives on SWaT are neither
detected by TABOR, Seq2SeqNN, nor PASAD. Across all

datasets, only five false negatives of GECO are detected by
another IIDS. But, while Invariant detects two false negatives
of GECO on SWaT, Invariant also has many false-positives.
Additionally, while Invariant and Seq2SeqNN detect the first
attack in WADI, this only happens at the end of the attack
when the system is stabilizing again (cf. Fig. 12). Thus, judg-
ing whether GECO should also be able to detect all false-
negatives is difficult as (i) other IIDSs might detect those only
by chance and (ii) datasets contain attacks that are reported
as non-detectable [36]. Still, GECO shows no systematic defi-
ciency compared to related work w.r.t. false-negatives.
GECO shows competitive performance, often better than
related work. Notably, on two datasets, GECO has zero false
positives and just 4 on SWaT, which is important as false-
positives and alert fatigue are issues in practice [10].

6.1.2 Generalizability of GeCo to a New Domain

To show that GECO practically generalizes to another domain,
we analyze the Tennessee Eastman Process [14]. This pro-
cess is a chemical reaction modeling the mixing of substances
and condensation of gasses to synthesize new products. We
leverage the dataset recorded to evaluate PASAD [12], which
includes 41 process values. We use 5.5h of the dataset for
training and 6.7h for evaluation containing five attacks. Two
attacks directly change a critical valve setting or pressure read-
ing while the other three perform more subtly modifications
to be more stealthy (cf. Sec. 3.1.1 in [12] for more details).
No changes to GECO were required, i.e., no additional func-
tion templates. We simply present GECO the training data and
it learns a state-space model for this process. GECO raises an
alert if the data of the test dataset deviates too much from the
trained state-space model (cf. Sec. 4.5). The hyperparameters
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Figure 6: GECO generalizes well to a new chemical domain.

Table 3: Compared to a knowledge-based IIDS leveraging
invariant rules, GECO’s performance is not inferior on SWaT.

SWaT dataset Prec. Rec. F1 eTaP eTaR eTaF1 FPA Scen.
GECo 94.8 79.0 86.2 83.1 60.7 70.2 4 86.1
Knowledge-based 92.1 69.2 79.0 75.7 28.7 41.6 3 528

were set to default values (cf. Tab. 6).

As shown in Fig. 6, GECO detects all five attacks instanta-
neously without any false positives. We achieve a F1 score of
96.0 and an eTaF1 score of 98.0. In contrast, PASAD detects
the attacks later. Given that no manual effort was required to
apply GECO to this scenario, this experiment nicely shows
its ability to generalize to new ICS domains.

6.1.3 Comparison to an Experts’ Knowledge-based IIDS

GECO0 compares highly competitively to data-driven IIDSs.
However, given that GECO targets to supersede the hard man-
ual work of experts, it is equally essential that this high level
of automation does not results in a penalty of detection ca-
pabilities compared to manually created knowledge-based
IIDSs. In contrast to data-driven IIDSs, where implementa-
tions and detailed evaluation results are readily available [63],
obtaining similar input for a comparison with knowledge-
based IIDSs is challenging. Either related work does not state
any metrics [3,4,29], evaluates their IIDSs in practical experi-
ments [18,51], or considers selected subparts of datasets [8,9].

To compare GECO to knowledge-based IIDSs, we consider
publications that propose expert-created invariants (boolean
equations) that must always be satisfied for the SWaT dataset.
Knowing, for example, that FIT101 measures the inflow af-
ter the valve Mv101 (cf. Fig. 1), we can formulate the in-
variant MV101 open=FIT101> x. We identified a total of
six publications that provide manually crafted rules for
SWaT [3,26,48,49,57] and a list of invariants by the SWaT
dataset creators [2]. We collected and implemented 63 in-
variants, of which we omitted 16 due to a high number of
false alerts and 14 because they were duplicated. In total, this
leaves us with 33 invariants (listed in Tab. 8), which we com-
bined into a knowledge-based IIDS (implementation available
in artifacts). These invariants do not require training and the
IIDS raises an alert whenever any invariant is violated.

We measure the performance of the knowledge-based IIDS
on the SWaT dataset and compare it to GECO in Tab. 3 ob-
serving similar performance for both approaches. While the

knowledge-based IIDS detects fewer attacks (Scen.), it yields
one less false positive. Overall, when experts are being re-
placed with GECO, we obtain a detection performance that is
on par with labor-intensively created knowledge-based IIDSs.

6.2 Model and Alert Comprehensibility

Besides detection performance, the comprehensibility of emit-
ted alerts are equally crucial in ICS applications [25]. First, a
transparent IIDS model simplifies supervision and prevents
unintentional overfitting, as the operator can verify whether
the fitted model actually resembles the physical process. Sec-
ond, an IIDS has to provide a degree of transparency that
allows ICS operators to comprehend why the IIDS raised an
alert [61]. Yet, effectively understanding and validating alerts
in retrospect can be cumbersome for machine learning mod-
els [28]. Comprehensibility also eases incident response as
the cause for the fault becomes apparent. We analyze GECO’s
comprehensibility on a theoretical level in Sec. 6.2.1 and by

6.2.1 Localizing and Understanding GECO’s Alerts

Model comprehensibility has already been discussed earlier
in Sec. 4.4. There, the IIDS discovered equations that accu-
rately reflect the datasets’ physical process. Thereby, opera-
tors with knowledge about the concrete ICS can verify the
trained model and correct it if necessary.

Now, we focus more on understanding the alerts. As our
methodology, we show how an operator could trace the cause
of an alert along with one exemplary attack. We consider
attack number eight of the SWaT dataset (cf. red attack for
SWaT in Fig. 5 at 3.1h). Here, the attacker targets a pressure
meter DPIT301, setting it to a higher value.

The first step in investigating an alert is determining which
part of the ICS is under attack. GECO makes this simple
since we model each process value with exactly one equation.
Thus, our intuition is that the attacked location can be nar-
rowed down by the equation(s) that diverge. E.g., an attack
modifying the LIT101 value likely violates the correspond-
ing equation (cf. Eq. 3), as demonstrated in Sec. 4.6, or an
equation that depends on LIT101.

We now validate this intuition along with an example de-
picted in Fig. 7. We start by drawing the dependencies be-
tween the equations in Fig. 7a. The nodes represent the dif-
ferent process values. We draw an edge between two nodes
x1 and x2, if the state-transition function of x1 depends on
x2. E.g., the node for LIT101 is connected to FIT101 and
FIT201 (cf. Eq. 3). The graph is arranged by the Fruchterman-
Reingold force-directed algorithm, drawing related variables
closer together. Nodes not connected to the graph are not de-
pendent on other values. We also mark where the attack took
place (red border), here DPIT301. We highlight the process
values that deviate from their predications and lead to alert
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(a) GECO’s alerts enable inferring where an attack took place as
nearby dependent process values indicate the presence of an attack
in that region. Here, we show attack 8 of SWaT. Videos covering the
complete timespan of all datasets are available on Zenodo.
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(b) Having identified the potential attack points, a closer investigation
of the predicted and measured behavior gives further insights into
the attack. Here, DPIT301 behaves differently than predicted.

Figure 7: GECO enables operators to analyze attacks quickly
without requiring a profound machine learning background.
Here, the attack increased the value of DPIT301 to a fixed
value above 40 [31], beyond the standard operating limit.

by GECo (blue circle). From this dependency graph, we can
derive that the attack likely targeted LIT401 or DPIT301 as
both predictions deviated from the observed behavior. This
narrows the investigation to a small part of the ICS.

This methodology is just the first step to locating an at-
tack. Next, we consider the measured and predicted values for
DPIT301 and LIT401 in Fig. 7b. For DPIT301, we observe
a clear distinction between its predicted (red) and measured
behavior (green) during the attack. First, the predictions are
much noisier than prior to or after the attack, which hints at
a misbehaving system. Secondly, the predictions presume a
lower value for DPIT301 than actually measured. Indeed, this
coincides with the attack description, which explains that the
attacker sets DPIT301 to a higher value than normal (> 40).
The alerting LIT401 level meter then belongs to the tank after
the pressure measurements and is thus also in close proximity
to the attack. Overall, an ICS operator is able to correctly lo-
cate and comprehend an ongoing attack with GECO without
requiring profound machine learning knowledge.

Fig. 8 shows that this methodology also works for other
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Figure 8: GECO indicates most attacks in short distances to
the formulas that break according to the dependency graph,
cf. Fig. 7a. Note that we omit unconnected values here, cf.
P102 in Fig. 7a, as their distance to other nodes is infinity.

attacks. GECO’s alerts are, on average, over all datasets and
attacks 0.5 hops away from the attack point and often identical
to the target. Thus, GECO facilitates comprehensibility as the
alert usually coincides with the attacked process value.

Another aspect visible in Fig. 7a is that most process values
form a connected graph. Thus, more complicated or stealthy
attacks modifying multiple process values at the same time
are likely to be picked up by more than one equation. The
SWaT, WADI, and HAI datasets already contain such multi-
point attacks that GECO successfully detects. Lastly, since
the graph is mostly connected, an attack would need to spoof
nearly all process values at the same time and correctly to each
other’s dependencies to stay hidden. This is a clear benefit of
GECO in contrast to knowledge-based IIDSs of related work
often modeling the ICS just partially (cf. Sec. 3).

Altogether, GECO’s model and alerts are comprehensible
as they closely correlate to the ICS’s underlying physical
process. In contrast, works such as Seq2SeqNN provide a
single suspicion score for the entire process derived from a
neuronal network’s decision, and the comprehensibility of
machine learning IIDSs is generally limited [28].

6.2.2 ICS Engineers’ View on GeCo

GECo promises comprehensible and actionable alerts. To
support our theoretical analyses, we perform qualitative inter-
views with experts from various industrial domains, similar
to Fung et al. [28]. We aim to assess the comprehensibility of
GECO’s alarms, i.e., to what extent attacks are understood,
and resulting actionability from ICS engineers’ point of view.

Study Design. At the start of each structured interview, we
asked the participant to name the industry domain they are
working in and to describe their role. Afterward, we presented
the basic industrial process from Fig. 1, which was chosen
as the process can be understood rather quickly. Participants
were then introduced to the context-enriched GECO alarms.
During the interviews, participants were tasked to analyze four
scenarios from the SWaT dataset, three attacks constrained
to the investigated subprocess (3, 21, 30) and one false alarm.
A separate attack (33) is used to introduce participants to
GECo. Participants were presented with the resulting alarms
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Table 4: Backgrounds of interview participants.

Participant Industry Domain Role

P1 Energy Testbed Engineer

P2 IT Security Consulting

P3 Engine Manufacturing IT/OT Interface Engineer

P4 Maritime Manufacturing IT/OT Software Developer
P5 Energy OT Network Planning

P6 Automotive Secure Product Development

of GECO in randomized order and tasked with explaining
the attack and how they would react. We compared their
answers to the actual attack descriptions of SWaT [31]. At
the end of each interview, we asked participants about their
general satisfaction with the context information provided
by GECoO, especially the identification of relevant sensors.
Our study design follows the guidelines of our institutional
ethics committee and is exempt from ethics review (cf. Ethics
Considerations). On average, interviews lasted 35 minutes.

Participants. We contacted potential participants with ex-
perience in OT environments from our professional and per-
sonal networks. In total, we recruited 6 participants from
various industry domains, as listed in Tab. 4. Interviews were
conducted virtually and in person. The participants were not
compensated for their participation.

Results. We start by assessing the comprehensibility of
GECO’s alerts. Overall, the participants were able to identify
the origin of the attacks with high accuracy as only one of the
true positives of 18 scenarios was misinterpreted. The value-
specific alerts of GECO with low detection delays were key to
narrow down the search (P1, P2, P5, P6). This coincides with
our theoretical analysis that GECO identifies those values
directly involved in or influenced by the attack (cf. Fig. 7a).
The false positive was correctly identified by three partici-
pants (P1, P5, P6) while two others stated that they can not
find an attack (P2, P4). Later, P2 acknowledged that “there
will always be false positives....[But] if you are operating
such plants, you will likely know whether a certain behavior
is expected and could identify this as false positive”.

All participants derived suitable mitigation measures or test
procedures for further investigation of all attacks, including
checking the real water levels or turning pumps or valves on
and off to validate that the water levels are tracked as expected.
We can thus conclude that GECO generates actionable alerts.

Regarding the quantity of the presented data, the selection
of the relevant process values by GECO was perceived as help-
ful as there was “not too much information and [information]
was cut away where not necessary”’—P3. The way how the
information was presented and pre-selected by GECO helps
“increase the reaction speed” since it would otherwise “take
longer to obtain an overview of [all] the data”—P5.

Overall, our interviews emphasize GECO’s advantages.
Three participants even proactively asked whether we are
willing to test GECO in their OT environments, highlighting
the demand for comprehensible intrusion detection for ICSs.

Table 5: Computational performance demanded by GECO for
training and live detection. Training times are normalized to
a system with 128 CPU threads.

Dataset Tests Training Live
(Length, n, k) Eq. 6 Total One Fit

SWaT (495k, 48, 3) 1.77M 15.1h 3.92s 0.2ms
WADI (784k, 122, 3) 73.87TM 46.9d 7.02s 0.1ms
HAI (216k, 72, 3) 8.97M 1.3d 1.64s 0.9ms
BATADAL (8k, 42, 3) 1.04M 3.6m 0.03s 1.7ms

6.3 Computational Performance and Training

We are furthermore interested in the computational complex-
ity of GECo0, which encompasses two dimensions. The first
dimension concerns the live detection phase. On a server
equipped with two AMD EPYC 7452 CPUs with 64 cores
and 236G RAM, GECO classifies state snapshots often in a
fraction of 1ms, including the data-parsing overhead of the
IPAL framework, as shown in Tab. 5. Thus, GECO can keep
up with real-time critical applications.

The second dimension concerns the training phase. We be-
gin with a theoretical analysis of the search space for the state-
space model. For an ICS with n process values, ¢ function
templates with lengths of up to &, the number of combinations
in the search space is given by (cf. pseudocode in Appx. A.1):

n!

(6)

k
combinations:=t-n- _—
e ig(’)(n—i)!w'!

We see that adding new function templates (f) impacts the
number of combinations linearly, whereas the facultative im-
pact of n on the complexity is potentially concerning. The
other hyperparameters (scale and drift factor) do not affect
the computational performance. To analyze practicality, we
measured the training time on each dataset, as shown in Tab. 5.

Training times vary drastically between 3.6m for
BATADAL and 46.9d for WADI. Except for WADI, this is
comparable to complex IIDSs from related work, such as
Invariant or Seq2SeqNN. Seq2SeqNN was trained on six
GPUs [36], highlighting the immense hardware requirements.
Due to a different architecture, Seq2SeqNN’s two hours of
training time are difficult to compare to our measurements.
On the contrary, training Invariant on the same hardware takes
on average 9.5h for SWaT, while GECO requires 15.1h.

WADI, as the largest dataset with the most process values,
represents an upper limit for GECO’s feasibility. Alleviating
this situation, training has to be done only once and must
not be repeated for hyperparameter tuning since this step
is performed afterward (cf. Appx. A.l). Furthermore, it is
possible to reduce the search area by restricting the search to
components that are in close proximity to each other.

In the following, we analyze the impact of the amount of
training data on (/) the training time and (2) the accuracy
of the learned model. Therefore, we gradually increase the
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Figure 9: Decreasing the training data of GECO has little
impact on the detection performance, but significantly reduces
the training time. The change of the learned state-space model
can help estimating when the training can be stopped.

amount of training data accessible to GECO while recording
the training time. We then evaluate the learned model against
the entire test dataset. We performed this analysis for all
datasets except for WADI due to its high training demands (cf.
Tab. 5). GECo usually keeps its good detection performance
even if the training data is reduced drastically (cf. Fig. 9). E.g.,
for BATADAL, the training time increases nearly linearly with
the amount of training data such that with 10% of the training
data, about 84% of the training time can be saved. Meanwhile,
detection performance is only reduced by 0.002 (0.048) in F1
(or eTaF1). We see similar potential to reduce training time
without impacting detection performance for SWaT and HAI

While this property relaxes the issue of prolonged training,
operators still need to understand when to stop training. First,
we can infer from Fig. 9 that having more training data does
not diminish detection performance. For more insights, we
now access how the learned state-space models converge. To
this end, we calculate the relative difference between two
trained models as detailed in Appx. A.2. This methodology is
motivated by scree plots used by PASAD [12] or loss curves
from machine learning. When considering the change of the
model over the amount of training data (cf. green lines in
Fig. 9), we observe that saturation is reached if enough train-
ing data is provided. E.g., according to the green curve, GECO
has finished training on SWaT after about 75% of the training
data is used. This coincides with the moment when the F1
and eTaF1 curves (blue and red) stabilize. This metric thus
provides a good estimate on GECO’s training progress.

In Appx. A4, we evaluate the influence of the training
data’s quality on detection performance. GECO yields good
results even if the training data is of worse quality.

7 Hyperparameter Selection and Discussion

GECoO is a potent IIDS with minimal required expert knowl-
edge through maximal automation while providing good com-
prehensibility. Yet selecting hyperparameters, a common topic
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Figure 10: Finding suitable hyperparameters for the GECO
promises to be an easy task since the approach shows good
performance over wide areas. The hyperparameters used for
our evaluation are marked by the x and the black line indi-
cates the area within 5% eTaF1 of the maximum.

in machine learning [50], could complicate its usefulness in
practice. Thus, Sec. 7.1 examines the ease of finding hyperpa-
rameters for GECO. Finally, Sec. 7.2 discusses further aspects
for improvements and whether GECO has achieved a middle
ground between data-driven and expert systems.

7.1 Influence of Hyperparameters

Finding hyperparameters in novel settings is a known is-
sue in deploying anomaly detectors [7,50]. Looking toward
deploying GECO, an IIDS that requires complex hyperpa-
rameters to be tuned, risks yielding inferior performance in
practice [27,60-62], especially since ICS operators are not
necessarily machine learning experts. While for established
approaches such as Random Forests advice on how to tune
their hyperparameters exists [50], this is not the case for a
novel IIDS such as GECo0. Thus, we aim to understand the
influence of GECO’s hyperparameters. We tackle this issue
by i) limiting the number of hyperparameters per design (cf.
Sec. 5.2), ii) transparently assessing how hyperparameters af-
fect GECO’s performance, and iii) by providing guidelines on
how to choose hyperparameters and explain their effect to pre-
vent exhaustive search in the following. In comparison, related
work often disregards this topic entirely [15,16,32,40,44,64].

We assess the influence of GECO’s hyperparameters as pro-
posed by Wolsing et al. [62]. We extend our existing evalu-
ation by examining GECO under randomly sampled config-
urations over all three hyperparameters, namely the growth
factor G, the scale factor S, and the maximal function length k.
For the two factors G and S, we examined a range between 0
and 10, and for the maximum function length k, we examined
values from 1 to 3. Here, we consider the BATADAL dataset
(the other datasets are depicted in Appx. A.3).



For BATADAL (cf. Fig. 10), there are large regions with
“stable” performance, i.e., where the influence of the hyper-
parameters is minimal. Only if the scale factor is chosen too
small or too high, approximately below one or above four, we
observe diminishing performance. A higher function length
seems beneficial for increasing the maximum performance
since the regions marked with black lines, indicating the area
within 5% of the maximum, enlarge from k = 1 to k = 3. On
this dataset, little trends regarding the growth factor are visi-
ble. SWaT and WADI show a similar behavior, but for HAI
a higher scale factor and function length are beneficial. In
contrast, it was shown that some related work performs only
optimally if multiple hyperparameters depending on each
other are set adequately [27,60,62]. As we demonstrated, op-
erators of GECO likely have to spend little time and resources
on tuning these hyperparameters and can rather invest the
time to validate and optimize the trained model.

Besides this analysis, we advise on how to parameterize
GECO based on our experience. First, we recommend fixing
k = 3 (if computationally feasible cf. Sec. 6.3) as it provides a
good trade-off between training duration and detection perfor-
mance. Once a first model has been trained, we recommend
analyzing whether process variables exist for which GECO
cannot find suitable equations. These can often be identified
by false-positives and could either be initially ignored or tried
to improve by adding more suitable function templates (cf.
Sec. 4.4). Only then do we recommend fine-tuning the other
two parameters. Modifying the scale factor (S) affects the
sensibility of the alert threshold. Here, a higher value raises
this threshold and leads to fewer alerts. From our hyperpa-
rameter analysis (cf. Fig. 10 and Fig. 11) we recommend
initially setting S to about 1.5. The growth factor (G) can
affect the length of alerts and smaller values shorten alerts if
the CUSUM values decay slowly. Finding an appropriate G
can be more complicated as we observed variance across our
datasets (cf. Tab. 6). Yet, its impact on detection performance
is usually smaller than that of S.

7.2 Future Improvements and Discussion

After demonstrating the capabilities of GECO as a general-
izable and comprehensible IIDS, we now discuss to which
extent we achieved a middle ground between required ex-
pert knowledge and automation. Furthermore, we identify
potential for further improving this trade-off.

One potential for optimization, especially for larger ICSs
with many process values, results from the current brute-force
approach to learn the correlations (cf. Sec. 6.3). Here, lever-
aging experts could improve this situation, e.g., by guiding
the search with domain knowledge. For example, informing
GECo0 which process values are related can significantly re-
duce the search space. Nonetheless, reducing the search space
through human input risks missing essential but non-intuitive
dependencies between the process values.

Designing additional function templates is another avenue
for improvements that only linearly impacts training time (cf.
Eq. 6). GECo0 supports new function templates to more ac-
curately describe complex physical processes (cf. Sec. 4.4).
Still, GECO does not need to accurately describe all physical
phenomenons, as (linear) approximations often suffice for in-
trusion detection, as demonstrated in various domains: water
treatment (SWaT), water distribution (WADI and BATADAL),
electrical (HAI), and chemical. Overall, GECO achieves bet-
ter detection performance than many existing IIDSs, while it
offers experts options for further improvements.

GECO thus shifts the optimization possibilities back to-
wards the user of the IIDS, i.e., the operators of an ICS. In con-
trast, IIDSs from the machine learning domain try to improve
results with technical solutions, often increasing complexity,
such as varying neural network architectures [21,38,39] or
stacking multiple classifiers [52]. While these improve de-
tection performance on paper, they move further away from
a usable and comprehensible IIDS. Overall, GECO enables
ICS operators to flexibly decide how much expert-knowledge
or automation is necessary to set up the IIDS instead of solely
relying on either expert knowledge or automation, thereby
achieving a new kind of middle ground.

8 Conclusion

In light of numerous cyberattacks against ICSs and critical
infrastructures [11,45], the pressure to secure them has gained
increasing attention both by cybersecurity research [30,42]
as well as legislation [1]. This work concerns protecting in-
dustrial facilities by focusing on the second line of defense in
the form of effective intrusion detection as a means to alert
operators as soon as an attack takes place.

Existing works in this area can be divided into data-driven
IIDSs, denying operators control over model training and im-
peding the understanding of alerts, and IIDSs that require sig-
nificant manual effort by domain experts to construct the un-
derlying models. This work aims to find a middle ground be-
tween these two extremes, combining the best of both worlds.

To this end, we propose GECO — a generalizable and com-
prehensible IIDS that automatically infers system knowledge
with minimal human input. Using a set of generic state-space
model templates, GECO automatically learns a system model
of the ICS. Thereby, we remove the need for manual model de-
sign, as was required in previous works. At the same time, the
underlying model remains comprehensible for ICS operators.

Besides showing a detection performance on par with state-
of-the-art related work, GECO is able to retain high gener-
alizability across various use cases while also being easy to
comprehend in its alert decision process by human operators.
Consequently, GECO paves the way towards giving the users
of an IIDS control back over their tools to protect valuable
physical processes in ICS and critical infrastructure.
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Ethics Considerations

Discussing the ethical concerns among the authors, we could
not identify any significant reasons for not conducting this
work. The topic of intrusion detection is a defensive security
mechanism that can be installed optionally and along existing
or new deployments. Thus we do not put additional strain on
companies to implement this technology. Moreover, publish-
ing (new) IDSs is a common and ongoing topic in research.
Nonetheless, by publishing details about and the source code
of defense strategies, adversaries might learn about the de-
tection capabilities of their target and thus adapt their attack
strategies, e.g., to remain stealthy. However, we deem that
leaving ICSs unprotected is more dangerous than publishing
the underlying detection methodologies especially since se-
curity through obscurity or secrecy is not preferable in our
opinion. Our analyses were conducted with the help of pub-
licly available datasets. Thus, we do not disclose additional
knowledge about ICSs that is not already known to the public.
One group of stakeholders where our research might have
a negative impact on are the experts and ICS operators in
charge of deploying or working with IDSs. Since we claim
with GECO that their workload can be reduced through the
automation of model generation, it could potentially obviate
the need for such experts, in the worst case could lead them to
being unemployed. However, as system experts are a valuable
and scarce resource for companies, they might also get more
time to focus on other essential tasks to improve security
further. Likewise, as discussed in the introduction, small com-
panies that currently have no expertise might obtain access to
IDS methodologies through GECO, which, in return, yields an
overall benefit for the society through improved cybersecurity
for our vulnerable critical infrastructures.

Next, we discuss ethical considerations w.r.t. the user study

participants, we carefully followed the guidelines of our in-
stitutional ethics committee in designing our study. More
precisely, we ensure that participation is voluntary, the results
are stored anonymously, and we inform the participants about

the expected methodology and the data collected in advance.
During the (virtual) interviews, we only present pictures of the
alerting behavior of GECO (no violence, abuse, or question-
able content). Based on this study design and the guidelines
of our institutional ethics committee, our study is exempted
from institutional ethics committee review.

Open Science

The artifacts of our research are available at https://
zenodo.org/records/14698371. To make a valuable con-
tribution to open science, we made the following considera-
tions: First, we implement and evaluate GECO with the help
of the open-source IPAL IDS framework [63] intending to
unify and assist research in this domain. Second, to bootstrap
further research about GECO, we distribute the precise hyper-
parameters and trained models for the analyzed datasets in
this publication. Thereby, the training process can be avoided
if researchers want to use GECO for other evaluations. Lastly,
we publish the alerts, i.e., the datasets classified by GECO into
benign and anomalous, as another artifact. This was proposed
by Lamberts et al. [42] as a solution to mitigate misconcep-
tions in evaluations, such as different definitions of metrics.
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Appendix

A.1 Pseudocode of GeCo

The following pseudocode summarizes the implementation
of GECO whereas the full implementation is available at
https://zenodo.org/records/14698371.


https://zenodo.org/records/14698371

def train(x, y):
for target in process_values:
for func in function_templates:
for length = 0 To max_function_length:
forall subsets of process_values with length:

# Fit function to first 80% of the data
xt = x[:80%], yt = y[:80%]
parameter = fit(xt, yt, func, target, subset)

# Test if new fit is the current best fit

errors = func(x, parameter) — y
if MSE(error) > current best model for target:
continue

# Calculate drift and threshold

drift = mean(errors) + stddev(errors)

cusum = threshold = 0

for error in errors:
cusum = max(cusum + abs(error) — drift, 0)
threshold = max(threshold , cusum)

def test(state):
for function in functions:
diff = cur_state — function(prev_state , parameter)
# Update CUSUM and limit infinite growth
cusum = max(cusum + abs(diff) — drift)
cusum = min(cusum, threshold + drift s growth_factor)

if cusum >= threshold = scale_factor
raise alert
prev_state = state

A.2 Pseudocode for Model Difference

To estimate when the training of GECO can be stopped, we
calculate the relative change in the learned state-space model
from one training step to another. The following pseudocode
shows how we calculate this difference for two model:

def diff(a, b):
diffs = []
for target in process_values:
if a and b use different function_templates: #1
diffs .append (1)
elif a and b’s process variables differ: #2
diffs .append (1)
else: #3
diffs.append(abs(
(MSE(a) — MSE(b)) / max(MSE(a), MSE(b))
)

return mean(diffs)

We calculate a score for each function learned by the model.

If the models either use different function templates (cf. #1)

or depend on different process values for the prediction (cf.

#2), we attribute the highest difference (1). Otherwise (cf. #3)
we calculate the relative difference between the mean squared
error (MSE). The MSE is the difference between the training
data and the model’s prediction and indicates whether one fit
is better than another. The difference can be between 0 and 1,
with 1 denoting a maximal change between two models.

A.3 Hyperparameters and Analysis

In Tab. 6, we list the precise hyperparameters for each dataset
used to conduct our evaluation. Beyond the results discussed
in Sec. 7.1 regarding the influence of hyperparameters, we
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Figure 11: As discussed for BATADAL in Sec. 7.1, the hyper-
parameters of GECO on the other datasets are likewise stable,
featuring large areas without sudden changes.

also conducted the same analysis for the other datasets as
shown in Fig. 11. Again, the X indicates the hyperparameters
we analyzed for this specific dataset. The black line indicates
the areas within 5% of the maximum achievable performance.

A.4 Tainted Training Data

The training data contained in the datasets may be superfi-
cially clean. In contrast, for real deployments, it is hard to
guarantee clean data since, e.g., it could contain artifacts from
faults or even unnoticed attacks. Moreover, due to changes in
the network or variations of the process, the training might
need to be repeated from time to time. Thus, we want to un-
derstand how GECO performs if the training data is tainted,
i.e., some attack data is contained within the training data.
We adopt a similar methodology as proposed by
Uetz et al. [56]. Instead of training GECO solely on the dedi-
cated (benign) training set, we additionally taint the training
data with some of the evaluation data containing attacks. We



Table 6: Hyperparameters selected for each dataset.

Dataset Function Length  Scale Factor  Drift Factor

k S G
SWaT 3 1.42 5.98
WADI 3 1.32 9.74
HAI 3 8.02 1.44
BATADAL 3 1.39 2.16
TEP 3 1.0 1.0

Dataset Prec. Rec. F1 eTaP eTaR eTaF1 FPA Scen.

SWaT —0.00 —-0.02 —-0.01 —0.01 —0.04 —0.03 —10 +0.03
WADI —0.00 —0.03 —0.04 —0.00 —0.01 —0.02 +0 +0.00
HAI —0.00 -0.13 -0.09 +0.01 —-0.10 —-0.06 —18 —0.12

BATADAL —-0.00 —0.03 —0.02 —0.00 —0.01 —0.01 +0 +0.00

Table 7: GECO finds a good performing model even if the
training data is tainted, i.e., contains two attacks in this case.
The values measure the difference between a model trained
without attacks and one with two attacks in training. A nega-
tive number indicates a performance loss due to the attacks in
percent points. Note that a positive number for Scen. is better.

split each evaluation dataset after the second attack. The first
split, containing two attacks, is added to the training while
the remaining attacks are used for evaluation as before. Tab. 7
compares 'GECO’s detection performance being trained on
the intended benign dataset part (baseline) and the tainted
data. As we are left with two fewer attacks for the evaluation,
we re-evaluated the baseline also on the same evaluation data
missing those two attacks to keep the results comparable.

Overall, tainted training data has a comparable effect on all
scenarios. The F1-scores decrease on average by 4.0 percent
points, and eTaF1 decreases by 3.0 percent points. However,
we cannot draw the expected conclusion that GECO’s per-
formance worsens on tainted data, as the number of FPAs
decreases for SWaT and HAI E.g., we observe 18 fewer FPA
on HAI. Meanwhile, GECO only detects marginally fewer
attacks in HAI while the other datasets see no difference or
even experience a slight increasement (SWaT). We suspect
that these results stem from potential overfitting in a too clean
dataset, yet can not validate these speculations.

We conclude that the overall performance of GECO is not
significantly worsened by tainted training data. Thus, we ex-
pect GECO to work decently outside the lab, as its training
does not require to be perfectly clean of any anomalies.

Table 8: The 33 consolidated invariants from 7 sources [2, 3,
26,48,49,57] that we combine into a knowledge-based IIDS.

ID Invariants

LIT101<490 = P101 off V P102 off

—

2 LIT301<790 = P10lon V P102on
3 LIT301>1010 = P101 off VV P102 off
4 LIT301<790 = Mv201 open
5 LIT301>1010 = Mv201 closed A P101 off
6 FIT201<2 = P201 off A P202 off A P204 off A P206 off
7 AIT201>260 = P201 off A P202 off
8 AIT503>280 = P201 off V P202 off
9 AIT202<695 = P203 off V P204 off
10 AIT203>500 = P205 off \V P206 off
11 AIT402>330 = P205 off VV P206 off
12 LIT301<785 = P301 off V P302 off
13 LIT401>900 = P301 off VV P302 off
14 LIT401<300 = P301on V P302on
15 P40lonV P402on = FIT401>0.1
16 FIT401<1 = UV401 off
17 P401 off = UV401 on
18 Uv401 off = P501 off
19 Uv401 on = P5010n
20 FIT401<1 = P501 off
21 LIT101>810 = P601on
22 LIT101<490 = Mv101open A FIT101>0.1
23 LIT101>810 = MV101closed A FIT101<1
24 P101on = MV201 open
25 LIT301>1015 = Mv201 closed A P101 off
26 LIT301<785 = P301on
27 FIT301>0.1 = P301 off
28 LIT401<290 = P301on V MV302 open
29 FIT401<1 = P301 off
30 MV101open = FIT101>0.1
31 FIT401<1 = P301 off
32 LIT101<490 = FIT101>0

33 LIT301<790 A LIT101>810 A MV201 open = P101 on
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Figure 12: In our visual analysis of GECO in Sec. 6.1, we depicted a partial view on the alerting behavior due to better visibility.
This figure shows the entire alerting behavior of GECO and related work for all analyzed datasets. The areas marked with dotted
lines correspond to the regions shown before in Fig. 5. An enlarged version of this figure is uploaded to Zenodo.


https://zenodo.org/records/14698371
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