
Suda: An Efficient and Secure Unbalanced Data Alignment Framework for
Vertical Privacy-Preserving Machine Learning

Lushan Song
Fudan University & ByteDance

Qizhi Zhang ∗ †

ByteDance
Yu Lin

ByteDance
Haoyu Niu

Fudan University

Daode Zhang
ByteDance

Zheng Qu
Fudan University

Weili Han
Fudan University

Jue Hong
ByteDance

Quanwei Cai
ByteDance

Ye Wu
ByteDance

Abstract

Secure data alignment, which securely aligns the data be-
tween parties, is the first and crucial step in vertical privacy-
preserving machine learning (VPPML). Practical applications,
e.g. advertising, require VPPML for personalized services.
Meanwhile, the data held by parties in these applications are
usually unbalanced. Existing secure unbalanced data align-
ment approaches typically rely on Cuckoo Hashing, which
introduces redundant data outside the intersection, leading
to significantly increasing communication size during secure
training in VPPML. Though secure shuffle operations can
trim these redundant data, these operations would incur huge
communication overhead. As a result, these secure approaches
should be optimized for efficiency in VPPML scenarios.

In this paper, we propose Suda, an efficient and secure un-
balanced data alignment framework for VPPML. By leverag-
ing polynomial-based operations rather than Cuckoo Hashing,
Suda efficiently, directly, and exclusively outputs data shares
in the intersection without expensive secure shuffle opera-
tions. Consequently, Suda efficiently and seamlessly aligns
with secure training in VPPML. Specifically, we first design
a novel and efficient batch private information retrieval (PIR)
protocol based on the oblivious polynomial reduction and
evaluation protocols. Second, we design a batch PIR-to-share
protocol extended from the batch PIR protocol with the obliv-
ious polynomial interpolation protocol. Note that the batch
PIR-to-share protocol securely obtains feature shares rather
than the plaintext features which are the outputs of the batch
PIR protocol. Comprehensive experiment results demonstrate
that: (1) Suda outperforms the state-of-the-art secure data
alignment framework by 31.14× ∼ 210.78× in communi-
cation size and up to 8.21× in running time; and (2) Suda
outperforms the state-of-the-art batch PIR framework by up
to 11.53× in server time.

∗Equal contribution.
†Corresponding author. Email: zhangqizhi.zqz@bytedance.com

1 Introduction

Vertical privacy-preserving machine learning (VPPML) [7,
9, 21, 33, 36, 39] enables multiple parties with vertically dis-
tributed data, i.e. parties share the same sample IDs for com-
mon samples but hold different features or labels, to collabo-
ratively perform machine learning with privacy preservation.
E.g., in the advertising scenario [37], an Internet company,
which holds user IDs and all user features, collaborates with
an advertiser, which holds user IDs and user labels, can lever-
age VPPML to train a click-through rate predicting model.

�� �0 ... ��−1

102 34 … 16
205 57 … 46
497 63 … 27
936 81 … 47
… … … …
793 45 … 38

�� �
793 0
356 1
… …

205 1

 �0 � ... ��−1 � � �

34 … 29 0
… … … …
26 … 13 0

 �0 � ... ��−1 � � �

23 … 17 1
… … … …
19 … 25 0

��

�

�

�′

��

� �0 ... ��−1 �
205 57 … 46 1
… … … … …
793 45 … 38 0

Data shares in the intersection

Data shares in the intersection

Step 1:
Secure

data
alignment

Step 2:
Secure

Training

Figure 1: A brief overview of unbalanced two-party VPPML,
where the server PS holds larger data with size N, and the
client PC holds smaller data with size n.

As is shown in Figure 1, secure data alignment is the first
and crucial step of VPPML. The parties in VPPML first em-
ploy secure data alignment to securely align their data to form
a training set, which consists of data shares in the intersection
of their data. Then, the parties collaboratively perform secure
training over the training set. In the above scenario, designers
usually face an unbalanced setting, where one party holds
larger data with size N, while another party holds smaller data
with size n and n� N [36]. For instance, the Internet com-
pany typically holds billions of samples, while the advertiser
only holds millions of samples.

However, existing secure unbalanced data alignment ap-
proaches, e.g. unbalanced circuit-based private set intersec-

tion (circuit-PSI) [12, 34], are inefficient for VPPML. These
approaches typically use Cuckoo Hashing to enhance effi-
ciency, which introduces redundant data outside the intersec-
tion, leading to significantly increasing communication size
during secure training in VPPML. Specifically, the circuit-PSI
outputs data shares with size εn, where ε (> 1) is a constant.
If a sample is in the intersection, parties obtain boolean shares
of b = 1 and data shares in the intersection; otherwise, they
obtain boolean shares of b = 0 and zero shares (redundant
data shares). These redundant data shares, as part of the train-
ing set, are input into the secure training, which increases the
communication size of secure training in VPPML.

Though these redundant data can be trimmed by secure
shuffle operations, these secure shuffle operations would incur
huge communication overhead. For example, Liu et al. [22]
proposed iPrivJoin to securely trim redundant data outside
the intersection. They improve circuit-PSI and shuffle the
outputs of the circuit-PSI, then reveal b and finally, trim sam-
ples outside the intersection. However, the additional secure
shuffle operations introduce huge communication overhead
to iPrivJoin, making iPrivJoin inefficient.

As a result, a significant technical challenge arises: How to
efficiently achieve secure unbalanced data alignment, which
directly and exclusively outputs data shares in the intersection
for VPPML without secure shuffle operations?

1.1 Our Contributions
In this paper, we propose Suda, an efficient and secure unbal-
anced data alignment framework for VPPML, to overcome
the above challenge. Our contributions are summarized as
follows:
• We propose an efficient and secure unbalanced data align-

ment framework Suda based on polynomial operations.
Suda directly and exclusively outputs data shares in the
intersection, thus efficiently and seamlessly aligning with
the secure training in VPPML.

• We propose two key protocols based on polynomial oper-
ations to enhance the efficiency and security: (1) the bath
PIR protocol based on the oblivious polynomial reduction
protocol and the oblivious polynomial evaluation protocol;
(2) the batch PIR-to-share protocol extended upon the batch
PIR protocol with the oblivious polynomial interpolation
protocol.

• Comprehensive experiment results demonstrate that Suda
achieves significant enhancement over the state-of-the-art
frameworks. Specifically, compared to the secure data align-
ment framework iPrivJoin [22] and the circuit-PSI frame-
work [30], Suda exhibits superior performance during the
secure data alignment phase. Meanwhile, during the train-
ing phase, [30] causes about 2× more communication size
compared to Suda and iPrivJoin. Besides, Suda outper-
forms iPrivJoin by 31.14× ∼ 210.78× in communica-
tion size, and by up to 8.21× in running time. Notably,

Suda achieves close performance in both WAN and LAN
settings. Additionally, compared to the batch PIR frame-
work PIRANA [20], Suda achieves 11.53× faster in server
time.

1.2 Our Approaches
The key insight driving our proposed Suda is that, by leverag-
ing polynomial-based operations rather than Cuckoo Hashing,
Suda efficiently, directly, and exclusively outputs data shares
in the intersection, without expensive secure shuffle oper-
ations. Therefore, Suda’s output efficiently and seamlessly
aligns with secure training in VPPML. Specifically, two par-
ties (a server and a client) align their IDs in the intersection
without leaking any sensitive information about the raw data.
Then the client utilizes its IDs in the intersection to directly
retrieve the corresponding feature shares.

ΠGetNewID

ΠSuda

ΠPIR2Share

ΠBatch_PIR ΠOPI

ΠOPR ΠOPE

Sec. 4.2.2

Sec. 4.2.1

Sec. 4.1

Sec. 4

Secure ID Encoding

Secure Feature Alignment

NTT

Sec. 4.2.2

Sec. 4.2.1 Sec. 4.2.1

ECDH-PSI

Figure 2: Technical roadmap of Suda. The protocols in the
rounded rectangles are proposed in Suda.

As is shown in Figure 2, we are motivated to undertake two
steps, i.e. secure ID encoding and secure feature alignment.

• (Step 1) We design a get new ID protocol ∏GetNewID based
on ECDH-PSI. This protocol enables the server to generate
new IDs and securely synchronize them in the intersection
with the client, thereby achieving ID alignment.

• (Step 2) This step consists of two key protocols, i.e. the
batch PIR protocol and the batch PIR-to-share protocol,
based on polynomial operations. (1) We design a novel
and efficient batch PIR protocol ∏Batch_PIR. Specifically,
the server encodes its features into polynomials using the
Number Theoretic Transform (NTT) based on its new IDs.
The client then retrieves the plaintext features by evaluating
these polynomials at its new IDs in the intersection. Con-
sidering the unbalanced setting, large server-side data size
results in high-degree encoded polynomials, significantly
increasing computational and communication costs dur-
ing evaluation. To resolve this technical issue, we design
an efficient oblivious polynomial reduction protocol ∏OPR
based on the polynomial module rather than Cuckoo Hash-
ing, significantly reducing the polynomial degree. This
makes our batch PIR protocol up to 11.53× faster than the

state-of-the-art batch PIR framework [20], as mentioned in
Section 1.1. Additionally, to avoid the client obtaining the
information outside the intersection during the evaluation,
we design a novel oblivious polynomial evaluation proto-
col ∏OPE based on random polynomial masking. (2) To
securely obtain feature shares rather than the plaintext fea-
tures, we design a batch PIR-to-share protocol ∏PIR2Share
extended from the batch PIR protocol. Specifically, the
client retrieves the feature shares rather than plaintext fea-
tures by evaluating the polynomials encoded by feature
shares at its new IDs in the intersection. To achieve this,
we design a novel oblivious polynomial interpolation ∏OPI
protocol to secure interpolate feature shares into polynomi-
als. During the process of the secure feature alignment step,
two parties efficiently and directly obtain feature shares
in the intersection, thus eliminating the need to perform
secure shuffle operations. Consequently, Suda outperforms
iPrivJoin by up to 210.78× in communication size as
mentioned in Section 1.1.

2 Preliminaries

2.1 Homomorphic Encryption
Homomorphic encryption (HE) [32] enables direct compu-
tation on encrypted data. It ensures that the encrypted result,
which is computed from the ciphertexts, matches the result of
the same operation performed on plaintext after decryption. In
Suda, we utilize two types of HEs, i.e. additive homomorphic
encryption (AHE) and leveled fully homomorphic encryption
(LFHE) by leveraging their strengths. Specifically, we use
AHE to encrypt labels, taking advantage of its shorter cipher-
texts, and use LFHE to encrypt polynomials, taking advantage
of its efficiency in polynomials encryption.

Additive Homomorphic Encryption. AHE, for example,
Paillier HE [28], supports unlimited add operations between
ciphertexts as well as multiplication operations between a ci-
phertext and a constant. The implementation of AHE includes
the following algorithm:
• Key Generation. Generate the public and private key pair
(apk,ask).

• Encryption. Given a plaintext pt, outputs a ciphertext ct
encrypted by the public key apk, i.e. ct = A.Encapk(pt).

• Homomorphic Operations. AHE mainly supports three
types of operations, i.e. homomorphic addition �, homo-
morphic subtraction �, and homomorphic constant multi-
plication �.

• Decryption. Given a ciphertext ct, outputs a plaintext pt
decrypted by the private key ask, i.e. pt = A.Decask(ct).

Leveled Fully Homomorphic Encryption. LFHE, such as
Brakerski-Gentry-Vaikuntanathan (BGV) [6] and Brakerski-

Fan-Vercauteren (BFV) [11] allows a limited number of arbi-
trary operations, including addition and multiplication, to be
performed on ciphertexts.

LFHE is typically defined over a ring R = Z/(xd + 1) of
polynomial modulo xd +1 with d being a power of 2. In BGV,
the plaintext space is Rp = Zp[x]/(xd +1), and the ciphertext
space is (Rq)

2 = (Zq[x]/(xd +1))2, where p and q are plain-
text module and ciphertext module, respectively, and p� q.
To correctly compute the L depth circuit over ciphertext, the
ciphertext module q is required to be logq ≈ (L+ 1) log p.
Besides, the size of plaintext and ciphertext is d log p and
2d logq, respectively. The implementation of LFHE includes
the following algorithm:
• Key Generation. Generate the public and private key pair
(fpk, fsk).

• Encryption. Given a plaintext pt, outputs a ciphertext ct
encrypted by the public key fpk, i.e. ct = F.Enc fpk(pt).

• Homomorphic Operations. In addition to the three
types of operations supported by AHE, LFHE also sup-
ports homomorphic multiplication, i.e. F.Enc fpk(pt1)�
F.Enc fpk(pt2) = F.Enc fpk(pt1 · pt2).

• Decryption. Given a ciphertext ct, outputs a plaintext
message pt decrypted by the private key fsk, i.e. pt =
F.Dec fsk(ct).

2.2 Elliptic Curve Cryptography
Elliptic curve cryptography (ECC) is proposed by Koblitz [18]
and Miller [25] and widely adopted public-key cryptographic
algorithm that offers the same functionality as RSA. The no-
table advantage of ECC is that it uses much shorter key sizes
than RSA to achieve the same security level [5, 38]. There-
fore ECC saves bandwidth and has faster implementations.
In Suda, we use ECC for key exchange to perform secure
ID encoding. Besides, we also use ECC to encrypt binary
labels, taking advantage of its shorter ciphertexts compared
to homomorphic encryption.

The elliptic curve E typically defined over the prime finite
field Ft takes the short Weierstrass form:

y2 = x3 +ax+b mod t, (1)

where t is a prime number, and a,b∈Ft satisfies 4a3+27b2 6≡
0 (mod t). A point (x,y) on the elliptic curve satisfies Equation
(1), and the point at infinity o is said to be on the elliptic curve
(P+ o = P for any P ∈ E). ECC can encrypt a plaintext
message M into a ciphertext C ∈ E using a public key Q, i.e.
C =E.EncQ(M), and decrypt the ciphertext back into plaintext
message using private key κ, i.e. M = E.Decκ(C).
ECDH-PSI: ECC can be used to implement DH-PSI [38],
which is defined as ECDH-PSI. We define PS and PC as two
parties executing the ECDH-PSI protocol, holding the data
s = {s0, . . . ,sN−1} and c = {c0, . . . ,cn−1} respectively, and

Step1: Secure ID Encoding

��

�� �

��

ΠGetNewID

����
� � �

Step2: Secure Feature Alignment

Batch PIR Batch PIR-to-Share
�� ��

����
� �0 … ��−1 ����

�

NTT

�0(�) … ��−1(�)

ΠOPR

F. Enc���(�0(�)) … F. Enc���(��−1(�))

ΠOPE

�0 … ��−1

��� �(�) ≤�−1

LFHE key pair (���, ���)
Compute � = ��

����
�

;
�(�) = Π�=0

�′−1(� − ��)

��� (�(�)) ≤2(� − 1)

�� obtains the plaintext
features corresponding to ����

� .

�� and �� obtain the
feature shares in the

intersection.

�� ��

ΠOPE

ΠOPI

 �0 � … ��−1 �

Generate random
values ℛ and set

 � � = ℛ
�� obtains new IDs and �� obtains new
IDs in the intersection; �� and �� obtain

the label shares in the intersection.

For � ∈ � , ��
�(�)=ℛ

��
�(�) + ��

�(�) = ��(�),
such that ��

�(�) = � − ℛ

����
�

(���, ���); �(�)

F. Enc���(�0
�(�)) … F. Enc���(��−1

� (�))

F. Enc���(�0(�)) … F. Enc���(��−1(�))

 �0 � … ��−1 �

For � ∈ � , ��(�) = �

 � �

�� �0 … ��−1

����
�

Indices of
shuffled
simples

Figure 3: Overview of our batch PIR-based secure unbalanced data alignment framework Suda.

H(·) as a hash function that hashes an element to a point
on the elliptic curve. The ECDH-PSI protocol executes the
following steps:

(1) PS and PC generate their private key α and β respectively.

(2) PS computes αH(s0), . . . ,αH(sN−1) and sends them to
PC, which computes βH(c0), . . . ,βH(cn−1).

(3) PS and PC exchange their computation results in (2).

(4) PS computes αβH(c0), . . . ,αβH(cn−1) and PC computes
βαH(s0), . . . ,βαH(sN−1).

(5) The intersection is {βαH(s0), . . . , βαH(sN−1)} ∩
{αβH(c0), . . . , αβH(cn−1)}.

2.3 Secret Sharing
Secret Sharing is a basic technology in secure multi-party
computation. The main idea of secret sharing is to break a
secret value into multiple shares, each of which is held by a
party. In this paper, we adopt additive secret sharing as our
secret sharing semantic, i.e. the sum of the shares is the secret
value. For example, PS, who holds the secret value x ∈ Fp,
wants to secret share this secret value with another party PC.
To do this, PS first generates a random value r ∈ Fp as its
share 〈x〉S = r, and then sends 〈x〉C = x−r mod Fp to another
party PC. In particular, if x ∈ {0,1} is an binary bit, then
〈x〉S⊕〈x〉C = x.

2.4 Number Theoretic Transform
NTT [1] is defined over a finite field Zp = Z/pZ, where p is
typically a prime. It is a mathematical transform similar to
the Fast Fourier Transform (FFT) but based on number theory
and transforms a sequence of numbers into another sequence
of numbers. NTT is primarily used to accelerate polynomial
multiplication operations.

An N-point NTT is typically denoted as NTTN . Given an
input sequence aaa of length N, i.e. aaa = {a0, . . . ,aN−1}, where

each element ai ∈ Zp for i = {0, . . . ,N−1}, the discrete form
of N-point NTT can be represented as:

Ai = NTTN(aaa)i =
N−1

∑
j=0

a j ·ωi j
N mod p, (2)

where AAA is the transformed output sequence of length N, i.e.
AAA= {A0, . . . ,AN−1}, each element Ai ∈Zp for i= {0, . . . ,N−
1} and ωN is the N−th primitive root of unity in Zp. ωN
satisfies the conditions ωN

N ≡ 1 mod p, and ∀i < N,ωi
N 6=

1 mod p, where p ≡ 1 mod N. The inverse NTT (INTT) is
similar to NTT. An N-point INFF is typically denoted as
INTTN and can be represented as:

ai = INTTN(AAA)i = N−1
N−1

∑
j=0

A j ·ω−i j
N mod p, (3)

where i = {0, . . . ,N−1}, N−1 and ω
−1
N are the inverse of N

and ωN over the finite filed Zp, respectively, i.e. N ·N−1 ≡
1 mod p and ωN ·ω−1

N ≡ 1 mod p.
By multiplying two N-degree polynomials, FFT algorithms

can reduce the complexity from O(N2) to O(N logN). More-
over, FFT algorithms can be applied to NTT by simply replac-
ing complex arithmetic with modular arithmetic. As a result,
NTT can also achieve a complexity reduction from O(N2) to
O(N logN).

3 Overview

We summary the notations used in this paper in Appendix A.

3.1 Scenarios
We consider an unbalanced two-party scenario. The server
PS holds larger data DS = IS||X with size N, consisting of
sample IDs IS and m-dimensional features X , where || refers
to concatenation of two elements, IS = {idS

0 , . . . , id
S
N−1} and

X = X0|| . . . ||Xm−1. The client PC holds smaller data DC =
IC||Y with size n (n� N), consisting of sample IDs IC and
labels Y , where IC = {idC

0 , . . . , id
C
n−1} and Y = {y0, . . . ,yn−1}.

After secure unbalanced data alignment, PS and PC obtain the
shares 〈X 〉S||〈Y〉S and 〈X 〉C||〈Y〉C in the intersection with
size n′, respectively. Then, they could use the data shares as
input to train a machine learning model securely.

3.2 Overview of Suda
As is shown in Figure 3, we divide Suda into two steps: secure
ID encoding and secure feature alignment.

(1) The secure ID encoding step is to align parties’ IDs
and obtain label shares 〈Y〉 in the intersection. To achieve
this, we design a get new ID protocol ∏GetNewID (Protocol 2).
Firstly, PS sets the shuffled sample indices as the new IDs
IS
new (i.e. IS

new = {0, . . . ,N − 1}), which are used to reduce
the computational complexity of feature encoding. Then we
synchronize the new IDs of PS in the intersection with PC
based on ECDH-PSI, thereby achieving ID alignment. At the
same time, ∏GetNewID achieves the label sharing between two
parties.

(2) The secure feature alignment step is to get the feature
shares 〈X 〉 = 〈X 〉0|| . . . ||〈X 〉m−1 in the intersection, which
is the core of Suda. Here, we leverage polynomial opera-
tions to enhance our efficiency and security. We first design a
novel and efficient batch PIR protocol ∏Batch_PIR (Protocol 3),
which encodes m-dimension features into m polynomials and
evaluates these polynomials at the new IDs in the intersection.
The process of batch PIR protocol includes the following
three steps.
• Feature Encoding. PS uses NTT to encode its features into

polynomials fk(x) for k ∈ [m] with degree deg(fk(x)) ≤
N−1 based on its new IDs, thereby reducing the encoding
computational complexity from O(N2) to O(N logN).

• Oblivious Polynomial Reduction. To further reduce the
computational and communication costs, we design an
oblivious polynomial reduction protocol ∏OPR (Protocol 4),
which reduces the degree of fk(x) from O(N) to O(n) and
obtains reduced polynomials f̄k(x), based on the polyno-
mial module.

• Oblivious Polynomial Evaluation. We design an efficient
oblivious polynomial evaluation protocol ∏OPE (Proto-
col 5), which enables PC to securely evaluate the reduced
polynomials f̄k(x) to obtain the features corresponding to
its queries without obtaining any information irrelevant to
its queries, based on random polynomial masking.

Second, to obtain feature shares rather than plaintext fea-
tures which are outputs of the batch PIR protocol, we fur-
ther design an efficient and secure batch PIR-to-share proto-
col ∏PIR2Share (Protocol 6) extended by batch PIR protocol
with oblivious polynomial interpolation protocol ∏OPI (Proto-
col 7). The main idea of ∏PIR2Share is to enable PC to evaluate

the polynomials encoded by feature shares X −R, where
R = {ri,k}i∈[n′],k∈[m] is a random value set. Thereby, PC re-
trieves the feature shares X −R corresponding to its new
IDs in the intersection rather than the raw features X . To
realize this idea, we design a novel oblivious polynomials in-
terpolation protocol to securely interpolate polynomials f̄ S

k (x),
such that f̄ S

k (zi) = ri,k for i ∈ [n′],k ∈ [m]. Then polynomials
encoding X −R can be computed as f̄ C

k (x) = f̄k(x)− f̄ S
k (x).

3.3 Security Model
In Suda, we consider security against static probabilistic poly-
nomial time (PPT) semi-honest adversaries, the same as the
prior works [12, 22]. A static PPT semi-honest adversary A
corrupts one of the parties PS or PC at the beginning of the
protocol and follows the protocol specification honestly. How-
ever, during the processing, A attempts to infer additional
information about the input of the other party by analyzing the
corrupted party’s view. Here, we use the standard simulation-
based security definition as follows.

Definition 1. Let Π be a two-party protocol that computes
an ideal functionality F(iS, iC) = (FS,FC), where iS and iC
are the inputs of PS and PC, respectively. Let viewΠ

S (iS, iC)
and viewΠ

C (iS, iC) be the views (consist of input, messages
that are sent or received, random tape, and the output) of PS
and PC during the execution of Π on inputs iS, iC, Besides,
let out(iS, iC) be the output of Π. We say that the two-party
protocol Π securely computes F on (iS, iC) against a semi-
honest adversary A, if there exist probabilistic polynomial-
time simulators SS and SC such that,

{SS(iS,FS(iS, iC)),F(iS, iC)} ≈c {viewΠ
S (iS, iC),out(iS, iC)}

{SC(iC,FS(iS, iC)),F(iS, iC)} ≈c {viewΠ
C (iS, iC),out(iS, iC)},

where ≈c represents computational indistinguishability.

The security proof of our proposed protocols is shown in
Appendix E.

3.4 Setup and Online Phase
In Suda, all the computations involve parties’ input. There-
fore, there is no offline phase in Suda. Similar to prior
works [12, 20], we divide our protocol into two phases. (1)
Setup phase: the server preprocess its input locally to enhance
online efficiency. Specifically, the setup phase in Suda encom-
passes tasks such as shuffling the server’s data locally and
encoding the feature into polynomials. (2) Online phase: two
parties perform computations on the preprocessed data and
exchange necessary data.

4 Design of Suda

We formalize Suda as the functionality FSuda, which is shown
in Figure 4, whereFSuda receives inputs DS = IS||X and DC =

IC||Y from the server PS and the client PC, respectively. FSuda
outputs feature and label shares 〈X 〉S||〈Y〉S in the intersection
to PS and 〈X 〉C||〈Y〉C to PC, where 〈X 〉S + 〈X 〉C = X and
〈Y〉S+〈Y〉C =Y . Protocol 1 securely and efficiently achieves
the functionality FSuda.

Functionality FSuda

Parameters: Two parties PS and PC, where PS holds larger
data DS = IS||X with size N, consisting of sample IDs IS and
m−dimensional features X , PC holds smaller data DC = IC||Y
with size n (n << N), consisting of sample IDs IC and labels Y .
The intersection size is n′.
Functionality:
• Wait for input DS = IS||X from PS.

• Wait for input DC = IC||Y from PC.

• Find the intersection I = IS ∩ IC and the corresponding
features and labels X||Y .

• Sample 〈X 〉S, 〈X 〉C and 〈Y〉S, 〈Y〉C with size n′ uniformly,
such that 〈X 〉S + 〈X 〉C = X and 〈Y〉S + 〈Y〉C = Y .

• Output feature and label shares 〈X 〉S||〈Y〉S to PS and 〈X 〉C||
〈Y〉C to PC .

Figure 4: Ideal functionality of FSuda

Protocol 1: ∏Suda

Input: PS inputs its data DS = IS||X with size N and PC
inputs its data DC = IC||Y with size n.

Output: PS and PC output feature and label shares 〈X 〉S||
〈Y〉S and 〈X 〉C||〈Y〉C in the intersection, respectively.

1: Secure ID Encoding:

• PS and PC invoke the get new ID protocol ∏GetNewID
(Protocol 2), where PS inputs DS = IS||X , and PC
inputs DC = IC||Y . After the execution, PS obtains
new IDs IS

new and PC obtains new IDs IC
new in the

intersection. Besides, PS and PC obtain label shares
〈Y〉S and 〈Y〉C in the intersection, respectively.

2: Secure Feature alignment:
PS and PC invoke the batch PIR-to-Share protocol
∏PIR2Share (Protocol 6), where PS inputs IS

new||X , and
PC inputs IC

new. After the execution, PS and PC obtain
feature shares 〈X 〉S and 〈X 〉C in the intersection, re-
spectively.

4.1 Secure ID Encoding
In the secure ID encoding step, we design a get new ID pro-
tocol ∏GetNewID (Protocol 2) to securely align two parties’
IDs and obtain the label shares in the intersection, based on
ECDH-PSI. We elaborate on this protocol as follows.

In the setup phase, PS first locally shuffles its data to pre-
vent PC from learning the raw order of PS’s samples in the

Protocol 2: ∏GetNewID

Input: PS inputs its data DS = IS||X , PC inputs its data
DC = IC||Y .

Output: PS outputs its new IDs IS
new and PC outputs its

new IDs IC
new in the intersection. Besides, PS and PC

output label shares 〈Y〉S and 〈Y〉C in the intersection,
respectively.

Parameters: Hash function H(·) used for hashing an ele-
ment to a point on the elliptic curve.

Setup:
1: PS shuffles its data locally, and then sets its new ID as

IS
new = {0, . . . ,N−1}.

2: PS generates an ECC private key α and computes
αH(IS)←{αH(idS

i)}i∈[N].
Online:

1: PC shuffles its data locally.
2: PC generates an ECC private key β and computes

βH(IC) ← {βH(idC
j)} j∈[n]. Besides, PC generates

AHE key pair (apk,ask) and encrypts the label,
i.e. A.Encapk(Y) ← {A.Encapk(y j)} j∈[n]. PC sends
βH(IC) and A.Encapk(Y) to PS.

3: PS computes αβH(IC) and A.Encapk(Y − R) (R
is the random value set) and shuffles them to
αβH(IC)π ← {αβH(idC

π(j))} j∈[n] and A.Encapk(Y −
R)π ← {A.Encapk(yπ(j) − rπ(j))} j∈[n] respectively,
where π is a permutation function. Then PS sends
αβH(IC)π, A.Encapk(Y −R)π and αH(IS) to PC.

4: PC computes αH(IC)π← β−1αβH(IC)π and Y −R←
A.Decask(A.Encapk(Y − R)π). Then PC sends ∆ ←
{π(j)|αH(idC

π(j)) = αH(idS
i)}i∈[N], j∈[n] to PS.

5: PC returns IC
new←{i|αH(idC

π(j)) = αH(idS
i)}i∈[N], j∈[n]

and label shares 〈Y〉C ← {y j − r j} j∈IC
new

. PS returns
label shares 〈Y〉S←{rπ(j)}π(j)∈∆.

intersection. Then PS sets the sample indices as new IDs, i.e.
IS
new = {0, . . . ,N−1}. Besides, PS generates the ECC private

key to encrypt its IDs.
In the online phase, PC first locally shuffles its data to pre-

vent PS from inferring the indices of its samples in the inter-
section. Then PC generates the ECC private key and AHE key
pairs to encrypt its IDs and labels respectively. After that, PC
sends the encrypted IDs βH(IC) and labels A.Encapk(Y) to PS.
Then PS computes αβH(IC), A.Encapk(Y)�A.Encapk(R) =
A.Encapk(Y −R), where R = {r j} j∈[n] is random value set.
To avoid PC obtaining the raw IDs in the intersection, PS
shuffles αβH(IC) and A.Encapk(Y − R) using a permuta-
tion function π . Subsequently, PS sends αβH(IC)π and
A.Encapk(Y −R)π together with αH(IS) to PC. After that, PC
computes β−1αβH(IC)π and decrypts A.Encapk(Y −R)π to
obtain αH(IC)π and (Y −R)π, respectively. Thus, PC can ob-
tain the new IDs IC

new = {id′0, . . . , id′n′−1} = {i|αH(idC
π(j)) =

αH(idS
i)} j∈[n],i∈[N] in the intersection by comparing αH(IC)π

and αH(IS), where n′ is the intersection size. Essentially,
IC
new is the index set of the intersection elements in the

αH(IS) set. Additionally, PC obtains the corresponding la-
bel shares 〈Y〉C = {y j− r j} j∈IC

new
. Furthermore, to avoid PS

obtaining the raw IDs in the intersection, PC sends the index
set ∆ = {π(j)|αH(idC

π(j)) = αH(idS
i)} j∈[n],i∈[N] of the inter-

section elements in the shuffled set αH(I)Cπ instead of IC
new to

PS. Finally, PS obtains the label shares 〈Y〉S = {rπ(j)}π(j)∈∆.
Note that, |IC

new|= |∆|= n′.
Regarding to the binary classification problem, i.e., the

label is a binary value, we propose an optimized get new
ID protocol ∏GetNewID2 (Protocol 8) to further reduce the
communication overhead in Appendix B.

4.2 Secure Feature Alignment
In the secure feature alignment step, parties PS and PC respec-
tively get the feature shares 〈X 〉S and 〈X 〉C in the intersection,
such that 〈X 〉S + 〈X 〉C = 〈X 〉.

4.2.1 Batch PIR

We formalize batch PIR as the functionality FBatch_PIR,
which is shown in Figure 5. Fbatch_PIR receives inputs DS =
IS
new||X from PS, where X = X1|| . . . ||Xm = {xi,k}i∈[N],k∈[m],

and queries IC
new = {id′0, . . . , id′n′−1} from PC. FBatch_PIR out-

puts set X = X0|| . . . ||Xm−1 = {xid′i ,k
}i∈[n′],k∈[m] correspond-

ing to PC’s queries. Because queries IC
new are the new IDs in

the intersection, the outputs X are the features in the intersec-
tion. The batch PIR protocol ∏Batch_PIR (Protocol 3) securely
and efficiently achieves the functionality FBatch_PIR.

Functionality FBatch_PIR

Parameters: Two parties PS and PC.
Functionality:
• Wait for input DS = IS

new||X from PS, where X =
X0|| . . . ||Xm−1 = {xi,k}i∈[N],k∈[m].

• Wait for input IC
new = {id′0, . . . , id′n′−1} from PC.

• Output X = X0|| . . . ||Xm−1 = {xid′i ,k
}i∈[n′],k∈[m] to PC.

Figure 5: Ideal functionality of FBatch_PIR

As is shown in Section 3.2, the batch PIR protocol
∏Batch_PIR consists of three steps. Below, we give more tech-
nical details to illustrate these steps. Note that the setup phase
of the batch PIR protocol ∏Batch_PIR (Protocol 3) is feature
encoding and the online phase consists of the oblivious poly-
nomial reduction step and oblivious polynomial evaluation
step.
Feature Encoding. PS encodes each column feature Xk =
{x0,k, . . . ,xN−1,k} of X into a polynomial fk(x) = ∑

N−1
i=0 ai,kxi

for k ∈ [m]. Here, we use NTT to reduce the encoding com-
putation complexity from O(N2) to O(N logN).

Protocol 3: ∏Batch_PIR

Input: PS inputs its data DS = IS
new||X , where X =

X0|| . . . ||Xm−1 = {xi,k}i∈[N],k∈[m], PC inputs its queries
IC
new = {id′0, . . . , id′n′−1}.

Output: PC outputs set X = X0|| . . . ||Xm−1 =
{xid′i ,k}i∈[n′],k∈[m] corresponding to its queries.

Setup:
1: Feature Encoding:

PS encodes X into m polynomials fk(x) with deg(fk(x))
≤ N−1 for k ∈ [m] based on NTT.

Online:
1: Oblivious Polynomial Reduction:

• PC generates LFHE key pair (fpk, fsk) and con-

structs g(x) ← ∏
n′−1
i=0 (x− zi) where zi = ω

id′i
N for

i ∈ [n′].
• PS and PC invoke the oblivious polynomial reduction

protocol ∏OPR (Protocol 4), where PS inputs fk(x)
for k ∈ [m], and PC inputs (fpk, fsk) and g(x). After
the execution, PS obtains the reduced polynomials
after encrypting F.Enc fpk(f̄k(x)) with deg(f̄k(x))≤
2(n−1) for k ∈ [m].

2: Oblivious Polynomial Evaluation:
PS and PC invoke the oblivious polynomial eval-
uation protocol ∏OPE (Protocol 5), where PS in-
puts F.Enc fpk(f̄k(x)) for k ∈ [m], and PC inputs
(fpk, fsk),g(x) and zi for i ∈ [n′]. After the execution,
PC obtains set X ←{xid′i ,k|xid′i ,k = f̄k(zi)}i∈[n′],k∈[m].

The encoding process can be represented as Equation (4):

xi,k =
N−1

∑
j=0

a j,k · (idS
i)

j, (4)

for i∈ [N]. The computational complexity of solving Equation
(4) is O(N2).

During the secure ID encoding step, we assign N new IDs
IS
new = {0, . . . ,N−1} to PS, then PS computes ωi

N for i ∈ [N],
i.e. ω0

N , . . . ,ω
N−1
N , where ωN is the N-th primitive root of unity

in Zp. After that, we assume N is a power of 2, and replace
idS

0 , . . . , id
S
N−1 with ω0

N , . . . ,ω
N−1
N , then Equation (4) can be

written as:

xi,k =
N−1

∑
j=0

a j,k ·ωi j
N = NT TN(aaak)i, (5)

for i ∈ [N], where aaak = {a0,k, . . . ,aN−1,k}. Therefore, fk(x) =
NT TN(aaak) and the computational complexity of feature en-
coding is reduced from O(N2) to O(N logN) .

If N is not a power of 2, we pad the length of Xk with zeros
to a power of 2. Besides, PS can perform feature encoding
locally in the setup phase.

Oblivious Polynomial Reduction. The key rationale behind

the oblivious polynomial reduction is to reduce the degree
of the polynomials based on the polynomial module, while
guaranteeing that the reduced polynomials have the same
results at the new IDs in the intersection. We elaborate on this
rationale below.

We first propose Theorem 1, which is the core of our obliv-
ious polynomial reduction, based on the polynomial module.

Theorem 1. If F is a field, f (x)∈F[x], g(x) =∏
n−1
i=0 (x−zi)∈

F[x], f̄ (x)≡ f (x) mod g(x), then f̄ (zi) = f (zi) for i ∈ [n].

Proof. Due to f̄ (x) ≡ f (x) mod g(x), there exists a polyno-
mial ϕ(x) ∈ F[x] such that f̄ (x) = f (x)+g(x)ϕ(x). Besides,
g(zi) = 0. Therefore, f̄ (zi) = f (zi)+g(zi)ϕ(zi) = f (zi).

Besides, we observe that the polynomial fk(x) with
deg(fk(x))≤ N−1 for k ∈ [m] can be written as:

fk(x) =
N−1

∑
i=0

ai,kxi

= (a0,k +a1,kx+ · · ·+an−1,kxn−1)x0·n

+(an,k +an+1,kx+ · · ·+a2n−1,kxn−1)x1·n

+ . . .

+(aτn,k +aτn+1,kx+ · · ·+aN−1,kxN−1−τn)xτ·n,

(6)

where τ = dN/ne−1. For simplicity, we represent Equation
(6) in the form of Equation (7).

fk(x) =
τ

∑
j=0

fk, j(x) · x jn, (7)

where deg(fk, j(x)) ≤ n− 1. According to Theorem 1, let
g(x) = ∏

n′−1
i=0 (x− zi), h j(x) = x jn mod g(x) and f̄k(x) =

∑
τ
j=0 fk, j(x) · h j(x), we have f̄k(x) ≡ fk(x) mod g(x) for

k ∈ [m]. Therefore, fk(zi) = f̄k(zi) for k ∈ [m]. Here, the de-
gree of f̄k(x) is deg f̄k(x)≤ 2(n−1)� N, i.e. we reduce the
degree of fk(x) from N−1 to 2(n−1) for k ∈ [m].

Firstly, PC generates LFHE key pair (fpk, fsk) and con-

structs g(x) = ∏
n′−1
i=0 (x− zi) where zi = ω

id′i
N for i ∈ [n′]. Here,

we use ω
id′i
N rather than the new IDs id′i for i ∈ [n′] to construct

polynomial g(x), this is because the polynomials fk(x) is en-
coded by ωi

N for i ∈ [N] in the feature encoding step. Then
PS and PC invoke the oblivious polynomial reduction protocol
∏OPR (Protocol 4).

As is shown in Protocol 4, PS first constructs the polynomi-
als fk, j(x) following Equation (6) and (7). Then PC computes
h j(x) = x jn mod g(x) for j ∈ [dN/ne]. To prevent PS from
inferring the IDs of PC in the intersection through h j(x), we
encrypt h j(x) and then send them to PS. Subsequently, PS
computes

F.Enc fpk(f̄k(x))=
dN/ne−1

∑
j=0

F.Enc fpk(fk, j(x))�F.Enc fpk(hτ(x)),

(8)

Protocol 4: ∏OPR

Input: PS inputs polynomials fk(x) with deg(fk(x))≤N−
1 for k ∈ [m], PC inputs LFHE key pair (fpk, fsk) and
g(x) = ∏

n′−1
i=0 (x− zi) for i ∈ [n′].

Output: PS outputs F.Enc fpk(f̄k(x)) for k ∈ [m]
with deg(f̄k(x)) ≤ 2(n − 1), such that f̄k(x) ≡
fk(x) mod g(x).

1: PS constructs fk, j(x) such that fk(x) =

∑
dN/ne−1
j=0 fk, j(x) · x jn for k ∈ [m].

2: PC computes h j(x)← x jn mod g(x) for j ∈ [dN/ne].
Then PC encrypts h j(x) to F.Enc fpk(h j(x)) for j ∈
[dN/ne] and sends F.Enc fpk(h j(x)) to PS.

3: PS computes F.Enc fpk(f̄k(x)) according to Equation (8)
for k ∈ [m].

for k ∈ [m] to get the reduced polynomials after encrypting.
Oblivious Polynomial Evaluation. After executing the
oblivious polynomial reduction protocol ∏OPR (Protocol 4),
a naive method for obtaining the set X = {xid′i ,k

}i∈[n′],k∈[m]

corresponding to PC’s queries is represented as follows: PS
sends F.Enc fpk(f̄k(x)) for k ∈ [m] to PC. Subsequently, PC de-
crypts them to f̄k(x) for k ∈ [m] and then computes f̄k(ω

id′i)
for i ∈ [n′],k ∈ [m] to obtain X .

However, this method would leak sensitive information
outside the intersection to PC. Therefore, we design a secure
polynomial evaluation protocol, denoted as oblivious polyno-
mial evaluation protocol ∏OPE as shown in Protocol 5. The
key rationale behind this protocol is to use random polynomi-
als to mask the reduced polynomials, thereby preventing PC
from inferring PS’s feature information outside the intersec-
tion through f̄k(x).

As shown in Protocol 5, PC first encrypts g(x) = ∏
n′−1
i=0 (x−

zi) and sends F.Enc fpk(g(x)) to PS . Then PC generates ran-
dom polynomials to mask f̄k(x) for k ∈ [m] while ensuring
that the masked polynomials have the same results at the
queries of PC. Finally, PC decrypts the masked polynomi-
als and computes the evaluation results corresponding to its
queries.

4.2.2 Batch PIR-to-Share

We formalize batch PIR-to-share as the functionality
FPIR2Share, which is shown in Figure 6. FPIR2Share receives
the same input as FBatch_PIR, but outputs shares of X corre-
sponding to PC’s queries. The batch PIR-to-share protocol
∏PIR2Share (Protocol 6) securely and efficiently achieves the
functionality FPIR2Share.

Below, we give more technical details to illustrate the obliv-
ious polynomial interpolation step.
Oblivious Polynomial Interpolation. PS first generates ran-
dom values ri,k for i ∈ [n′],k ∈ [m]. Then PS and PC invoke the
oblivious polynomial interpolation protocol ∏OPI (Protocol 7)

Protocol 5: ∏OPE

Input: PS inputs F.Enc fpk(f̄k(x)) for k ∈ [m]. PC inputs
LFHE key pair (fpk, fsk),g(x) and zi for i ∈ [n′].

Output: PC outputs X = {xid′i ,k|xid′i ,k = f̄k(zi)}i∈[n′],k∈[m].
1: PC encrypts g(x) to F.Enc fpk(g(x)) and sends it to PS.
2: PS constructs random polynomials γk(x) ∈ F[x]

for k ∈ [m] with deg(γk(x)) < d − n′, where d is
the degree of LFHE polynomial modulo. Then
PS computes F.Enc fpk(f ′k(x)) ← F.Enc fpk(f̄k(x)) �
(F.Enc fpk(g(x)) � F.Enc fpk(γk(x))) for k ∈ [m] and
sends them to PC.

3: PC decrypts F.Enc fpk(f ′k(x)) to f ′k(x)← f̄k(x)+g(x) ·
γk(x) for k ∈ [m]. PC returns xid′i ,k ← f ′k(zi) for i ∈
[n′],k ∈ [m].

Functionality FPIR2Share

Parameters: Two parties PS and PC.
Functionality:
• Wait for input DS = IS

new||X from PS, where X =
X0|| . . . ||Xm−1 = {xi,k}i∈[N],k∈[m].

• Wait for input IC
new = {id′0, . . . , id′n′−1} from PC.

• Sample 〈X 〉S and 〈X 〉C with size n′ uniformly, such that
〈X 〉S + 〈X 〉C = X = {xid′i ,k

}i∈[n′],k∈[m].

• Output the shares 〈X 〉S to PS and 〈X 〉C to PC.

Figure 6: Ideal functionality of FPIR2Share

to enable PS obtain F.Enc fpk(f̄ S
k (x)), where f S

k (zi) = ri,k for
i ∈ [n′],k ∈ [m]. Finally, PS locally sets F.Enc fpk(f̄ C

k (x))←
F.Enc fpk(f̄k(x)) = F.Enc fpk(f̄ S

k (x)).
The key rationale behind the oblivious polynomial inter-

polation protocol ∏OPI (Protocol 7) is that PC generates n′

polynomials to assist PS securely interpolate polynomials
f̄ S
k (x), such that f S

k (zi) = ri,k, while guaranteeing PS cannot
obtain any information about zi. Furthermore, in order to re-
duce the communication size of sending n′ polynomials, we
propose Theorem 2 to obtain n′ polynomials by combining
2 d
√

n′e basis polynomials. We elaborate on this rationale
below.

PC constructs n′ polynomials BF0(x), . . . ,BFn′−1(x) with
deg(BFj(x))< d, where d is the degree of LFHE polynomial
modulo, such that BFj(zi) = 1 if and only if i = j, and 0
otherwise for i, j ∈ [n′]. Therefore, ∑

n′−1
j=0 r j,kBFj(zi) = ri,k for

i, j ∈ [n′],k ∈ [m]. Then PC encrypts these n′ polynomials and
sends these encrypted polynomials to PS. Subsequently, PS

computes F.Enc fpk(f̄ S
k (x)) = ∑

n′−1
j=0 r j,k � F.Enc fpk(BFj(x)),

such that f̄ S
k (zi) = ∑

n′−1
j=0 r j,kBFj(zi) = ri,k.

However, the communication size of n′ polynomials cipher-
texts is too huge. Therefore, we design an efficient oblivious
polynomial interpolation protocol ∏OPI (Protocol 7) based on

Protocol 6: ∏PIR2Share

Input: PS inputs its data DS = IS
new||X , where X =

X0|| . . . ||Xm−1 = {xi,k}i∈[N],k∈[m], PC inputs its queries
IC
new = {id′0, . . . , id′n′−1}.

Output: PS and PC outputs the shares 〈X 〉S and
〈X 〉C respectively, such that 〈X 〉S + 〈X 〉C = X =
{xid′i ,k}i∈[n′],k∈[m].

Setup:
1: Feature Encoding:

The same as the protocol ∏Batch_PIR (Protocol 3).
Online:

1: Oblivious Polynomial Reduction:
The same as the protocol ∏Batch_PIR(Protocol 3).

2: Oblivious Polynomial Interpolation:

• PS generates random values R = {ri,k}i∈[n′],k∈[m]

and sets 〈X 〉S←R.
• PS and PC invoke the oblivious polynomial inter-

polation protocol ∏OPI (Protocol 7), where PS in-
puts R = {ri,k}i∈[n′],k∈[m], and PC inputs (fpk, fsk)
and zi for i ∈ [n′]. After the execution, PS ob-
tains F.Enc fpk(f̄ S

k (x)), such that f̄ S
k (zi) = ri,k for

i ∈ [n′],k ∈ [m].
• PS computes F.Enc fpk(f̄C

k (x))← F.Enc fpk(f̄k(x))�
F.Enc fpk(f̄ S

k (x)).

3: Oblivious Polynomial Evaluation:
PS and PC invoke the oblivious polynomial eval-
uation protocol ∏OPE (Protocol 5), where PS in-
puts F.Enc fpk(f̄C

k (x)) for k ∈ [m], and PC inputs
(fpk, fsk),g(x) and zi for i ∈ [n′]. After the execution,
PC obtains set 〈X 〉C←{ f̄C

k (zi)}i∈[n′],k∈[m].

the Theorem 2 to reduce the communication size from O(n′)
to O(

√
n′).

As shown in Protocol 7, PC first generates ι basis polyno-
mials RFµ(x) and ι polynomials CFν(x) for µ,ν ∈ [ι] based
on Theorem 2. Then, PC encrypts RFµ(x) and CBν(x) to
F.Enc fpk(RFµ(x)) and F.Enc fpk(CFν(x)) for µ,ν ∈ [ι] respec-
tively and sends them to PS. Finally, PS computes

F.Enc fpk(f̄ S
k (x))=

ι−1

∑
µ,ν=0

xS
µι+ν,kF.Enc fpk(RFµ(x))�F.Enc fpk(CFν(x)),

(9)
for k ∈ [m]. Therefore, f̄ S

k (zi) = ri,k for i ∈ [n′],k ∈ [m].

Theorem 2. Let Fp be a prime finite field, {zi}i∈[ι2] be a
set of distinct elements on Fp, and there exist ι polynomials
{RFµ(x) ∈ F[x]}µ∈[ι] and ι polynomials {CFν(x) ∈ F[x]}ν∈[ι]
which satisfy:

1. deg(RFµ(x)),deg(CFν(x))< ι2;

2. RFµ(zi) = 1 if and only if µ = i/ι, and RFµ(zi) = 0 oth-
erwise;

3. CFν(zi) = 1 if and only if ν = i%ι, and CFν(zi) = 0 oth-
erwise.

Then RFµ(zi) ·CFν(zi) = 1 if and only if i = µι + ν, and
RFµ(zi) ·CFν(zi) = 0 otherwise.

Proof. The detailed proof is shown in Appendix D.

Furthermore, for the case of n≤ d/4, where n is the smaller
data size and d is the degree of LFHE polynomial modulo,
we proposed an improved oblivious polynomial reduction
protocol ∏OPI2 (Protocol 10), an improved oblivious polyno-
mial evaluation protocol ∏OPR2 (Protocol 9) and an improved
oblivious polynomial interpolation protocol ∏OPE2 (Proto-
col 11) in Appendix B.

Protocol 7: ∏OPI

Input: PS inputs {ri,k}i∈[n′],k∈[m]. PC inputs LFHE key pair
(pk,sk) and zi for i ∈ [n′] .

Output: PS outputs F.Enc fpk(f̄ S
k (x)), such that f̄ S

k (zi) =
ri,k for i ∈ [n′],k ∈ [m].

1: PC generates ι basis polynomials RFµ(x) and ι poly-
nomials CFν(x) with deg(RFµ(x)),deg(CFν(x)) < ι2

for µ,ν ∈ [ι], where ι = d
√

n′e. RFµ(x) and CFν(x) sat-
isfy RFµ(zi) ·CFν(zi) = 1 if and only if i = µι+ν for
µ,ν ∈ [ι], i ∈ [n′]. PC encrypts RFµ(x) and CBν(x) to
F.Enc fpk(RFµ(x)) and F.Enc fpk(CFν(x)) for µ,ν ∈ [ι]
respectively and sends them to PS.

2: PS computes F.Enc fpk(f̄ S
k (x)) following Equation (9).

5 Performance Evaluation

5.1 Implementation and Experiment Setting
Implementation. We implement Suda in C++ based on the
HE library Microsoft SEAL (version 4.1.2)1, the ECC li-
brary libsodium (version 1.0.18)2. Besides, we utilize BFV
as our LFHE scheme with the degree of LFHE polyno-
mial modulo d = 8192, plaintext module p = 19 · 246 + 1,
ciphertext module q ≈ 2168 for batch PIR and q ≈ 2218 for
batch PIR-to-share and security parameter λ = 128. At the
same time, we utilize the Ed25519 algorithm [14], defined
on the twisted Edwards curve, to fast execute 128-bit secu-
rity ECC. The curve equation of Ed25519 is −x2 + y2 =
1+ 121665

121666 x2y2 mod (2255−19), which is birationally equiva-
lent to Equation (1).

Experiment Setting. We conduct all experiments on a Linux
server equipped with an Intel(R) Xeon(R) Platinum 8260
CPU @ 2.40GHz and 720GB RAM. Each party in Suda is
simulated by a separate process with one thread. We also con-
sider two network settings: the LAN setting with a bandwidth
of 1GBps and sub-millisecond round-trip time (RTT) latency.
The other is the WAN setting with 75Mbps bandwidth and

1https://github.com/Microsoft/SEAL
2https://github.com/jedisct1/libsodium

40ms RTT latency. We apply the tc tool3 to simulate these
two network settings.

5.2 Evaluation of Secure Data Alignment

Baseline. We consider the following two baselines to evaluate
the efficiency of Suda.

• iPrivJoin [22]: To the best of our knowledge, iPrivJoin
is the only framework with functionality similar to Suda.
However, unlike Suda, which directly and exclusively out-
puts only the data shares in the intersection, iPrivJoin
employs a secure shuffle protocol to trim redundant data
outside the intersection. Since iPrivJoin is not open-
sourced, we re-implement it. Both Suda and iPrivJoin
are evaluated under identical experimental settings, e.g.
thread counts. Here, we adopt the configuration where the
server PS (holding the larger dataset) performs simple hash-
ing and the client PC (holding the smaller dataset) performs
Cuckoo Hashing, as this setting is more efficient than the
reverse configuration (see Appendix F for details).

• CPSI [30]:We also include a circuit-PSI approach [30],
referred to as CPSI, as a baseline. Notably, CPSI differs
significantly in functionality from Suda. Specifically, CPSI,
based on Cuckoo Hashing, while Suda leveraging polyno-
mial operations. We re-run CPSI with their open-sourced
code4 under our experiment setting.

Besides, we consider the total running time, i.e. the sum
of setup time and online time during the evaluation of secure
data alignment.

5.2.1 Evaluation over Public Datasets

We perform efficiency evaluation of Suda over two public
datasets, SVHN [27] and Character Font Images [23] under
the WAN setting. The SVHN dataset contains 73257 training
samples and 26032 test samples, each represented as a 32
× 32 RGB image. The Character Font Images dataset con-
tains 832670 samples, for each sample we select a 20 × 20
grayscale image and 8 additional features. We set the intersec-
tion rate as 80% and the smaller data size n = 1024. Besides,
all data in the intersection are selected randomly.

We compare the efficiency of Suda with iPrivJoin [22]
and CPSI [30] in terms of two steps of VPPML: secure data
alignment and secure training using the outputs of secure data
alignment. For the second step, we employ a state-of-the-art
secure multi-party learning framework Crypten [17] to train
a logistic regression model in 100 epochs.

As is shown in Table 1, the experimental results demon-
strate that Suda outperforms iPrivJoin and CPSI during

3https://man7.org/linux/man-pages/man8/tc.8.html
4https://github.com/Visa-Research/volepsi.git

https://man7.org/linux/man-pages/man8/tc.8.html

Table 1: Comparison of Suda with iPrivJoin and CPSI over public datasets.
Dataset SVHN Character Font Images

Framework Suda iPrivJoin [22] CPSI [30] Suda iPrivJoin [22] CPSI [30]

Secure
Data

Alignment

Time (s) 2545.99 12203.20 9286.06 433.30 1802.68 2527.80
Communication (MB) 455.44 63259.04 60988.85 139.59 8439.01 10698.95

Memory Server (MB) 55263.50 77105.80 223810.00 9831.62 15980.70 39528.00
Client (MB) 1163.72 3565.07 61029.60 310.02 2916.68 10713

Secure
Training

Time (s) 7182.55 11795.57 6358.21 10048.89
Communication (MB) 8939.01 18320.48 1439.93 2832.04

secure data alignment in terms of running time and commu-
nication size. Furthermore, CPSI incurs a 1.58× to 1.66×
increase in running time and a 1.98× to 2.19× increase in
communication cost during secure training. This inefficiency
stems from CPSI outputting data shares with size εn (ε > 1),
whereas both Suda and iPrivJoin exclusively output data
shares in the intersection with size n′, where n′ < n. As a
result, CPSI is inefficient for VPPML and is excluded from
subsequent evaluations of secure data alignment.

5.2.2 Evaluation over Varied Data Sizes

We fix the feature dimension at m = 100, and vary the larger
data size across N ∈ {220,222,224} and the smaller size across
n ∈ {1024,2048,4096}.

Table 2: Comparison of Suda with iPrivJoin over varied
larger data size N and smaller data size n, while maintaining
a fixed feature dimension m = 100.

N n Framework Comm.(MB) Time (s)

220

1024 Suda 89.80 187.55
iPrivJoin [22] 2655.32 487.92

2048 Suda 108.16 236.46
iPrivJoin [22] 3012.62 545.65

4096 Suda 138.30 442.72
iPrivJoin [22] 3389.94 603.55

222

1024 Suda 284.26 703.34
iPrivJoin [22] 9833.19 1840.37

2048 Suda 302.63 740.43
iPrivJoin [22] 9989.60 1821.26

4096 Suda 332.76 959.73
iPrivJoin [22] 10682.27 1940.06

224

1024 Suda 1062.11 2783.65
iPrivJoin [22] 37913.63 7331.64

2048 Suda 1080.48 2778.59
iPrivJoin [22] 39389.21 7237.67

4096 Suda 1110.62 2964.39
iPrivJoin [22] 39464.18 7215.45

The experimental results demonstrate that:

• Suda outperforms iPrivJoin by 24.51× ∼ 36.45× in
communication size across all data sizes N and n. Besides,
Suda exhibits greater advantages when the larger data size
N is significant. Concretely, when N = 220, Suda outper-

forms iPrivJoin by up to 29.57×, while when N = 224,
Suda outperforms iPrivJoin by up to 36.45×.

• Suda outperforms iPrivJoin by up to 1.36× ∼ 2.63×
in terms of running time across all data sizes N and n.
As N increases, the reduced communication size of Suda
will increase. Similar to communication size, Suda exhibits
greater advantages when the larger data size N is significant.
Specifically, when N = 220, Suda outperforms iPrivJoin
by up to 2.60×, while when N = 224, Suda outperforms
iPrivJoin by 2.63×.

These improvements of Suda over iPrivJoin all stem from
our reduction in communication size from O(m(N + n)) to
O(N +n+mn′). As N increases, the reduced communication
size further enhances efficiency, resulting in shorter running
times.

Furthermore, we conduct the experiment to demonstrate the
efficiency of Suda with the fixed feature dimension m = 1000,
and the experimental results are shown in Appendix F.

5.2.3 Evaluation over Varied Feature Dimensions

We fix the larger data size at N = 220 and the smaller data
size at n = 1024. Subsequently, we conduct experiments
to compare the communication size and running time be-
tween Suda and iPrivJoin across varying feature dimen-
sions m = {100,200,500,1000,2000} under both LAN and
WAN settings.

The experimental results shown in Table 3 demonstrate
that Suda outperforms iPrivJoin by 31.14×∼ 210.78× in
communication size. Besides, Suda outperforms iPrivJoin
by 1.07×∼ 2.83× and 2.67×∼ 8.21× in the running time
under the LAN and WAN settings, respectively. Moreover,
we observe that Suda exhibits greater advantages when the
feature dimension m is significant. These improvements of
Suda over iPrivJoin also stem from our reduction in the
communication size from O(m(N + n)) to O(N + n+mn′).
As m increases, the reduced communication size further ef-
ficiency, resulting in shorter running time (especially in the
WAN setting). Additionally, we observe that the running time
of Suda in the WAN setting is comparable to the LAN setting.
This is attributed to Suda’s significantly smaller communica-
tion size, which reduces the impact of network conditions on
performance.

Table 3: Comparison of Suda with iPrivJoin over varied
feature dimensions m, while maintaining fixed larger data size
N = 220 and smaller data size n = 1024.

m Framework Comm.(MB) LAN (s) WAN (s)

100 Suda 89.80 171.73 187.30
iPrivJoin [22] 2796.40 183.21 495.82

200 Suda 101.37 233.37 245.61
iPrivJoin [22] 5589.09 364.40 981.18

500 Suda 136.11 407.18 420.55
iPrivJoin [22] 13832.11 832.57 2372.42

1000 Suda 194.00 693.15 718.54
iPrivJoin [22] 29246.99 1642.92 4907.89

2000 Suda 309.78 1278.14 1304.00
iPrivJoin [22] 65297.77 3618.93 10711.26

5.2.4 Evaluation over Varied Intersection Size

We fix the larger data size at N = 220, the smaller data size
at n = 4096, and the feature dimension at m = 1000. Subse-
quently, we conduct experiments to compare the communi-
cation size and running time between Suda and iPrivJoin
across varying intersection size n′ = {100%n,50%n,25%n}.

Table 4: Comparison of Suda with iPrivJoin over varied
intersection size n′, while maintaining fixed larger data size
N = 220, smaller data size n = 4096 and feature dimension
m = 1000.

n′ Framework Comm.(MB) LAN (s) WAN (s)

100%n
Suda 565.85 3072.43 3119.86

iPrivJoin [22] 33155.39 1813.22 5502.78

50%n
Suda 327.77 1178.93 1195.76

iPrivJoin [22] 33155.39 1813.22 5502.78

25%n
Suda 205.42 660.492 679.639

iPrivJoin [22] 33155.39 1813.22 5502.78

The experimental results shown in Table 4 demonstrate
that as the intersection size decreases, the efficiency of Suda
improves, while the efficiency of iPrivJoin remains con-
stant. This is because, in the secure feature alignment phase
of Suda, PC utilizes n′ IDs in the intersection to retrieve cor-
responding feature shares. Therefore, the overhead of Suda
scales proportionally with the intersection size n′. However,
the overhead of iPrivJoin depends on the number of hash
bins, which is independent of n′.

5.3 Evaluation of Batch PIR

Baseline. We compare Suda with the state-of-the-art batch
PIR framework PIRANA [20] to evaluate the efficiency of
the batch PIR protocol ∏Batch_PIR (Protocol 3). PIRANA uses
SIMD to achieve the homomorphic equality operator in Cw-
PIR to improve efficiency. In contrast, Suda uses polynomial
operations to improve efficiency. We re-run PIRANA with their

open-sourced code5 under our experiment setting.
We consider three data sizes {220,222,224}, three batch

sizes {1024,2048,4096} and two types of payload sizes {256
bytes, 1KB}. The experimental results are shown in Table 5.

Here, the data size refers to the size of the data held by PS,
the batch size refers to the number of queries requested by
PC, and the payload size refers to the feature size. Besides
the request size refers to the communication size sent by PC
during the batch PIR protocol, i.e. the sum of communication
size in Step 2 of the oblivious polynomial reduction protocol
∏OPR (Protocol 4) and Step 1 of the oblivious polynomial
evaluation protocol ∏OPE (Protocol 5). These steps could be
executed in parallel within one communication round. The
response size refers to the communication size sent by PS
during Step 2 of the oblivious polynomial evaluation protocol
∏OPE (Protocol 5). Additionally, the server time refers to the
sum of the setup time and the local computation time of the
server in the online phase, while the client time refers to the
local computation time of the client in the online phase.

The experimental results demonstrate that Suda outper-
forms PIRANA by up to 11.53× and 3.79× in server time and
client time, respectively. Besides, Suda outperforms PIRANA
by up to 3.68× and 5.97× in the memory cost of server
and client, respectively. Furthermore, PIRANA claims to be
friendly for scenarios with dynamic data due to its efficient
setup phase. However, Suda outperforms PIRANA by up to
12.58× in setup time. Therefore, Suda is more friendly for
scenarios with dynamic data.

6 Discussion

Practical Applications of Suda. Suda has been applied in
practical scenarios to achieve secure large-scale data (billion-
level) alignment. Suda only costs around 24 hours to se-
curely align data between one billion samples with thousand-
dimensional features held by the server PS and one million
samples held by the client PC. Firstly, PC maps its data to T
bins {tC

0 , . . . , t
C
T } by calculating H(IC)%T , where T = d n

d/2e,
d is the degree of the LFHE polynomial module and H(·)
is a hash function. This ensures that the sample number of
PC in each bin is nb < d/2. Similarly, PS maps its data to T
bins {tS

0 , . . . , t
S
T} by calculating H(IS)%T . Then, PS and PC

perform secure data alignment on the data in each pair bin
tS
i and tC

i for i ∈ [T]. Finally, PS and PC respectively merge
their feature and label shares obtained from each bin. In addi-
tion, we utilize Spark for parallel optimization to accelerate
computations.

Exposing the Intersection Size. Suda exposes the intersec-
tion size n′, but this should be acceptable in VPPML. That is
because the parties usually need the intersection size to de-
cide whether to perform the proceeding training process. For
example, in advertising scenarios, if the intersection rate is

5https://github.com/zju-abclab/PIRANA

Table 5: Comparison of Suda with PIRANA.
Data
Size

Batch
Size

Payload
Size Framework Request

Size (MB)
Response
Size (MB)

Time (s) Memory (MB)
Setup Server Client Server Client

220

1024
256 bytes Suda 36.55 2.40 13.19 18.06 5.46 3238.68 71.55

PIRANA [20] 1.94 4.07 136.69 148.38 20.70 8371.47 291.08

1KB Suda 36.55 8.00 43.12 51.71 5.74 9520.38 71.68
PIRANA [20] 1.94 15.91 510.44 548.62 20.79 31732.14 291.38

2048
256 bytes Suda 36.55 4.80 13.16 16.21 5.71 3018.41 99.86

PIRANA [20] 1.94 4.07 136.68 148.37 20.69 8371.52 291.16

1KB Suda 36.55 16.00 42.92 49.61 6.34 9303.89 100.63
PIRANA [20] 1.93 15.91 497.58 531.03 20.85 31732.43 291.12

4096
256 bytes Suda 36.55 9.60 12.33 14.68 6.48 2824.55 131.04

PIRANA [20] 2.87 8.14 142.37 154.72 21.06 8861.11 292.17

1KB Suda 36.55 32.00 41.04 47.83 8.23 9164.92 138.27
PIRANA [20] 2.87 31.82 516.30 551.49 21.15 33717.08 292.14

222

1024
256 bytes Suda 146.19 2.40 64.04 86.45 24.79 12883.72 138.61

PIRANA [20] 3.67 4.07 551.49 595.01 87.36 31548.84 1046.81

1KB Suda 146.19 8.00 210.21 253.59 25.03 37992.49 138.16
PIRANA [20] 3.68 15.91 2102.11 2229.87 89.26 119691.21 1046.66

2048
256 bytes Suda 146.20 4.80 64.02 75.49 25.25 11993.43 266.50

PIRANA [20] 3.70 4.07 582.00 626.19 88.37 31549.80 1046.73

1KB Suda 146.19 16.00 211.39 236.51 25.79 37107.08 266.61
PIRANA [20] 3.69 15.91 2093.34 2222.58 88.36 119691.35 1046.73

4096
256 bytes Suda 146.19 9.60 60.95 69.37 26.34 11150.46 330.97

PIRANA [20] 5.31 8.14 600.33 645.46 87.57 31901.92 1048.31

1KB Suda 146.20 32.00 198.62 219.73 27.83 36302.23 330.77
PIRANA [20] 5.31 31.82 2184.50 2312.15 88.08 121563.27 1048.67

224

1024
256 bytes Suda 584.78 2.40 294.27 367.42 111.31 51461.09 425.88

PIRANA [20] 7.18 4.07 2526.28 2702.53 378.06 122828.41 4074.64

1KB Suda 584.77 8.00 970.32 1088.01 112.12 151880.52 425.77
PIRANA [20] 720.17 159.09 9136.15 9843.09 375.51 466250.22 4074.62

2048
256 bytes Suda 584.77 4.80 313.09 369.09 114.78 47881.51 938.11

PIRANA [20] 7.20 4.07 2537.15 2710.68 377.64 122829.20 4074.38

1KB Suda 584.77 16.00 967.53 1058.53 113.65 148305.40 938.64
PIRANA [20] 719.58 159.08 9539.32 10538.30 379.59 466249.47 4074.60

4096
256 bytes Suda 584.77 9.60 280.95 310.99 115.68 44443.95 1194.63

PIRANA [20] 10.35 8.14 2786.19 2967.39 378.38 123749.79 4089.31

1KB Suda 584.77 32.00 926.80 998.61 117.19 144923.12 1194.92
PIRANA [20] 103.16 318.11 10184.50 10886.30 376.08 471926.59 4089.57

too small (e.g. < 30%) to train a high-performance model, ad-
vertisers may choose not to continue with the secure training
to avoid unnecessary overhead.

Compatibility with Multi-client Settings. In multi-client
settings, a server with larger data executes the secure data
alignment protocol with multiple clients, each with its smaller
data. Suda should be compatible with such settings. Specifi-
cally, the server PS encrypts its IDs and encodes its features
once during the setup phase, and then repeatedly executes the
online phase of the secure data alignment protocol ∏Suda with
multiple clients. During this phase, PS’s initial encryption and
encoding are reusable, so only need to be computed once.

The efficiency of Suda in multi-client settings still remains
acceptable, though Suda is less efficient than the state-of-the-
art framework [35], which is designed specifically for multi-
client settings. Suda achieves client complexity linear with the

large data size, while [35] achieves linear with each client’s
data size. Besides, as is shown in Table 5, the setup phase in
Suda also accounts for a significant proportion of the overall
time, especially with the large payload sizes. Therefore, the
running time of each client executed the online phase in the
secure data alignment protocol is relatively small.

Scenarios where PC Holds Features. Suda can be simply
extended to support the scenario where PC also holds features,
that is, PS holds data DS = IS||XS, and PC holds data DC =
IC||XC||Y . Specifically, we only need to perform the same
computations on the features held by PC as on the label in the
get new ID protocol ∏GetNewID (Protocol 2).

Future Work. We aim to efficiently extend Suda to support
more parties securely aligning their data.

7 Related Work

Unbalanced Circuit-PSI. There are some efficient unbal-
anced PSI methods [8, 10, 15, 16, 31] but they directly re-
veal the plaintext IDs in the intersection, potentially exposing
sensitive information about the involved IDs. This poses a
significant risk in practical applications where the IDs them-
selves are sensitive (e.g. customer or patient lists). To protect
all the sample information in the intersection, several works
have proposed unbalanced circuit-PSI methods. Lepoint et
al. [19] introduced unbalanced private join and compute (PJC)
functionality that enables secure computation over the data in
the intersection. They provided two constructions. The first
one has a highly efficient online phase but requires an expen-
sive offline overhead and large storage in the smaller data
holder. The second one does not require offline preprocess-
ing but introduces expensive computation overhead. Son and
Jeong [34] optimized the constructions of [19]. They removed
the large storage requirement of the first construction in [19]
and achieved similar online performance. Very recently, Hao
et al. [12] designed a more efficient unbalanced circuit-PSI
method, exhibiting communication size that scales sublinearly
with the size of the larger data. They presented a new function-
ality named Oblivious Key-Value Retrieval to retrieve values
corresponding to keys from a key-value store obliviously. Be-
sides, they conducted the OKVR protocol based on a new
notion termed sparse Oblivious Key-Value Store. However,
these unbalanced circuit-PSI methods typically use Cuckoo
Hashing to enhance efficiency, which introduces redundant
data outside the intersection, resulting in more communica-
tion size for further secure training.
Balanced Secure Data Alignment Method. Liu et al. [22]
proposed iPrivJoin. They introduced a new private encod-
ing technique to avoid the expensive circuit evaluation needed
in circuit-PSI. Besides they also designed an efficient secure
shuffle protocol to trim the redundant data outside the inter-
section. Though iPrivJoin optimizes circuit-PSI and only
outputs data shares in the intersection, it introduces additional
communication overhead by secure shuffle operations.
Batch Private Information Retrieval. Beimel et al. [3] pro-
posed a multi-server batch PIR method with preprocessing.
The servers preprocess their data and move most of the com-
putation to the offline phase to improve the efficiency of on-
line queries. Ishai et al. [13] proposed and applied the batch
code approach to batch PIR, which transforms any single-
query PIR into a batch PIR, thereby reducing computational
costs. Angel et al. [2] proposed a batch PIR protocol based
on probabilistic batch code. They introduced a small proba-
bility of failure (about one in a trillion) so that the client gets
only part of its queries. Although [2] has weaker properties,
it exhibits significantly higher efficiency compared to [13].
However, these batch PIR methods [2, 3, 13] all suffer from
high communication size. Mughees and Ren [26] introduced
vectorized HE to improve communication efficiency. Instead

of issuing one query to each batch bucket in (probabilistic)
batch code-based batch PIR methods, they merge the query
and response ciphertexts across buckets. Because they en-
code multiple entries into a single ciphertext, their method is
not suitable for large entry sizes. Patel et al. [29] presented
keyword PIR schemes where clients issue queries based on
keywords rather than indices. The key technique is an encod-
ing algorithm that encodes key-value pairs as a function of
multiple entries. Bienstock et al. [4] proposed a batch PIR
method that reduces response size regardless of entry sizes.
Specifically, they design oblivious ciphertext compression
techniques to avoid encoding non-essential values, thereby re-
ducing the communication overhead. Liu et al. [20] proposed
a constant-weight codes-based [24] batch PIR and designed
PIRANA. PIRANA replaces the holomorphic equality operator
in the original constant-weight PIR with a SIMD-based one
to enhance efficiency. However, Suda uses polynomial opera-
tions to enhance efficiency and does not require the expensive
homomorphic equality operator.

8 Conclusion

In this paper, we propose an efficient and secure unbal-
anced data alignment framework, referred to as Suda, for
VPPML. By leveraging polynomial-based operations rather
than Cuckoo Hashing, Suda efficiently, directly, and exclu-
sively outputs data shares in the intersection without expen-
sive secure shuffle operations. Consequently, Suda efficiently
and seamlessly aligns with secure training in VPPML. Specif-
ically, we first design a novel and efficient batch PIR protocol
based on the oblivious polynomial reduction and evaluation
protocols. To securely obtain feature shares in the intersection,
we further design a batch PIR-to-share protocol extended by
the batch PIR protocol with the oblivious polynomial interpo-
lation protocol. Compared with the state-of-the-art secure data
alignment framework iPrivJoin [22], Suda outperforms it
by up to 210.78× and 8.21× in communication size and run-
ning time, respectively. Besides, Suda achieves comparable
efficiency in the WAN setting as it does in the LAN. Addi-
tionally, compared with the state-of-the-art batch PIR work
PIRANA [20], Suda outperforms PIRANA by up to 11.53× in
server time. These results show that Suda is much more prac-
tical for secure data alignment in VPPML.

9 Ethics Considerations

We analyze the ethics of our paper from the following three
principles: beneficence, respect for persons, and justice. Re-
garding beneficence, because we do not provide any live ser-
vices or APIs that give access to otherwise non-public algo-
rithms or models, our results would not cause any financial
loss. Regarding respect for persons, our study aims to improve
the efficiency of secure data alignment and does not cause

disrespect to persons. Regarding justice, the results of our
study would expand the practical applications of secure data
alignment and not impact any specific stakeholder group.

10 Open Science

We open-source our artifacts in https://doi.org/10.
5281/zenodo.14738503, and they are accepted in the arti-
fact evaluation.

Acknowledgments

This paper is supported by Natural Science Foundation of
China (92370120, 62172100) and the National Key R&D
Program of China (2023YFC3304400). We thank all anony-
mous reviewers, Guopeng Lin, Shuyu Chen, Wenyan Li and
Wenqiang Ruan for their insightful comments.

References

[1] Ramesh C Agarwal and C Sidney Burrus. Number the-
oretic transforms to implement fast digital convolution.
Proceedings of the IEEE, 63(4):550–560, 1975.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. Pir with compressed queries and amortized query
processing. In 2018 IEEE Symposium on Security and
Privacy (S&P), pages 962–979, 2018.

[3] Amos Beimel, Yuval Ishai, and Tal Malkin. Reduc-
ing the servers computation in private information
retrieval: Pir with preprocessing. In Advances
in Cryptology—CRYPTO 2000: 20th Annual
International Cryptology Conference Santa Barbara,
California, USA, August 20–24, 2000 Proceedings 20,
pages 55–73. Springer, 2000.

[4] Alexander Bienstock, Sarvar Patel, Joon Young Seo,
and Kevin Yeo. Batch pir and labeled psi with oblivi-
ous ciphertext compression. In 33th USENIX Security
Symposium (USENIX Security 24), 2024.

[5] Joppe W Bos, J Alex Halderman, Nadia Heninger,
Jonathan Moore, Michael Naehrig, and Eric Wustrow.
Elliptic curve cryptography in practice. In Financial
Cryptography and Data Security: 18th International
Conference, FC 2014, Christ Church, Barbados, March
3-7, 2014, Revised Selected Papers 18, pages 157–175.
Springer, 2014.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (leveled) fully homomorphic encryption with-
out bootstrapping. ACM Trans. Comput. Theory, 6(3),
jul 2014.

[7] Chaochao Chen, Jun Zhou, Li Wang, Xibin Wu, Wenjing
Fang, Jin Tan, Lei Wang, Alex X Liu, Hao Wang, and
Cheng Hong. When homomorphic encryption marries
secret sharing: Secure large-scale sparse logistic regres-
sion and applications in risk control. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 2652–2662, 2021.

[8] Hao Chen, Kim Laine, and Peter Rindal. Fast pri-
vate set intersection from homomorphic encryption.
In 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1243–1255, 2017.

[9] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian
Chen, Dimitrios Papadopoulos, and Qiang Yang. Secure-
boost: A lossless federated learning framework. IEEE
intelligent systems, 36(6):87–98, 2021.

[10] Kelong Cong, Radames Cruz Moreno, Mariana Botelho
da Gama, Wei Dai, Ilia Iliashenko, Kim Laine, and
Michael Rosenberg. Labeled psi from homomorphic en-
cryption with reduced computation and communication.
In 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1135–1150, 2021.

[11] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, 2012.

[12] Meng Hao, Weiran Liu, Liqiang Peng, Hongwei Li,
Cong Zhang, Hanxiao Chen, and Tianwei Zhang. Unbal-
anced circuit-psi from oblivious key-value retrieval. In
33th USENIX Security Symposium (USENIX Security
24), 2024.

[13] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Batch codes and their applications. In
36th annual ACM symposium on Theory of computing,
pages 262–271, 2004.

[14] Simon Josefsson and Ilari Liusvaara. Edwards-curve
digital signature algorithm (eddsa). RFC, 8032:1–60,
2017.

[15] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile private
contact discovery at scale. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1447–1464,
2019.

[16] Ágnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and
Benny Pinkas. Private set intersection for unequal set
sizes with mobile applications. In Privacy Enhancing
Technologies Symposium, pages 177–197. De Gruyter,
2017.

https://doi.org/10.5281/zenodo.14738503
https://doi.org/10.5281/zenodo.14738503

[17] Brian Knott, Shobha Venkataraman, Awni Hannun,
Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. Crypten: Secure multi-party computation meets
machine learning. Advances in Neural Information
Processing Systems, 34:4961–4973, 2021.

[18] Neal Koblitz. Elliptic curve cryptosystems.
Mathematics of computation, 48(177):203–209,
1987.

[19] Tancrede Lepoint, Sarvar Patel, Mariana Raykova, Karn
Seth, and Ni Trieu. Private join and compute from
pir with default. In International Conference on the
Theory and Application of Cryptology and Information
Security, pages 605–634. Springer, 2021.

[20] Jian Liu, Jingyu Li, Di Wu, and Kui Ren. PIRANA:
Faster multi-query PIR via constant-weight codes. In
2024 IEEE Symposium on Security and Privacy (S&P),
2024.

[21] Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu,
Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin Zhang,
and Qiang Yang. Vertical federated learning: Con-
cepts, advances, and challenges. IEEE Transactions on
Knowledge and Data Engineering, 2024.

[22] Yang Liu, Bingsheng Zhang, Yuxiang Ma, Zhuo Ma, and
Zecheng Wu. iprivjoin: An id-private data join frame-
work for privacy-preserving machine learning. IEEE
Transactions on Information Forensics and Security,
18:4300–4312, 2023.

[23] Richard Lyman. Character Font Images. UCI
Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C5X61Q.

[24] Rasoul Akhavan Mahdavi and Florian Kerschbaum.
Constant-weight PIR: Single-round keyword PIR via
constant-weight equality operators. In 31st USENIX
Security Symposium (USENIX Security 22), pages
1723–1740, Boston, MA, August 2022. USENIX Asso-
ciation.

[25] Victor S Miller. Use of elliptic curves in cryptog-
raphy. In Conference on the theory and application
of cryptographic techniques, pages 417–426. Springer,
1985.

[26] Muhammad Haris Mughees and Ling Ren. Vector-
ized batch private information retrieval. In 2023 IEEE
Symposium on Security and Privacy (S&P), pages 437–
452, 2023.

[27] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in nat-
ural images with unsupervised feature learning. 2011.

[28] Pascal Paillier. Public-key cryptosystems based
on composite degree residuosity classes. In
International conference on the theory and applications
of cryptographic techniques, pages 223–238. Springer,
1999.

[29] Sarvar Patel, Joon Young Seo, and Kevin Yeo. Don’t
be dense: Efficient keyword PIR for sparse databases.
In 32nd USENIX Security Symposium (USENIX
Security 23), pages 3853–3870, Anaheim, CA, August
2023. USENIX Association.

[30] Srinivasan Raghuraman and Peter Rindal. Blazing
fast psi from improved okvs and subfield vole. In
Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’22,
page 2505–2517, New York, NY, USA, 2022. Associa-
tion for Computing Machinery.

[31] Amanda C Davi Resende and Diego F Aranha. Faster
unbalanced private set intersection. In Financial
Cryptography and Data Security: 22nd International
Conference, FC 2018, Nieuwpoort, Curaçao, February
26–March 2, 2018, Revised Selected Papers 22, pages
203–221. Springer, 2018.

[32] Ronald L Rivest, Len Adleman, Michael L Dertouzos,
et al. On data banks and privacy homomorphisms.
Foundations of secure computation, 4(11):169–180,
1978.

[33] Daniele Romanini, Adam James Hall, Pavlos Pa-
padopoulos, Tom Titcombe, Abbas Ismail, Tudor Ce-
bere, Robert Sandmann, Robin Roehm, and Michael A
Hoeh. Pyvertical: A vertical federated learning
framework for multi-headed splitnn. arXiv preprint
arXiv:2104.00489, 2021.

[34] Yongha Son and Jinhyuck Jeong. Psi with computa-
tion or circuit-psi for unbalanced sets from homomor-
phic encryption. In 2023 ACM Asia Conference on
Computer and Communications Security, ASIA CCS
’23, page 342–356, New York, NY, USA, 2023. Associ-
ation for Computing Machinery.

[35] Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp
Schoppmann, and Xiao Wang. Actively secure pri-
vate set intersection in the client-server setting. In
Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, pages
1478–1492, 2024.

[36] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish,
and Ramesh Raskar. Split learning for health: Dis-
tributed deep learning without sharing raw patient data.
arXiv preprint arXiv:1812.00564, 2018.

[37] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng
Huang, and Xing Xie. Fedctr: Federated native ad ctr
prediction with cross-platform user behavior data. ACM
Transactions on Intelligent Systems and Technology
(TIST), 13(4):1–19, 2022.

[38] Guiming Wu, Qianwen He, Jiali Jiang, Zhenxi-
ang Zhang, Yuan Zhao, Yinchao Zou, Jie Zhang,
Changzheng Wei, Ying Yan, and Hui Zhang. Top-
gun: An ecc accelerator for private set intersection.
ACM Transactions on Reconfigurable Technology and
Systems, 16(4):1–30, 2023.

[39] Jie Zhang, Song Guo, Zhihao Qu, Deze Zeng, Haozhao
Wang, Qifeng Liu, and Albert Y Zomaya. Adap-
tive vertical federated learning on unbalanced features.
IEEE Transactions on Parallel and Distributed Systems,
33(12):4006–4018, 2022.

A Notations

We summarize the notations used in this paper in Table 6.

Table 6: Notations used in this paper.
Symbol Description
PS,PC Two parties involved in Suda

N The size of large data held by PS.
n The size of smaller data held by PC (N >> n).
m The feature dimension.
n′ The intersection size.
[N] The set {0, . . . ,N−1}.
IS The IDs held by PS, IS = {idS

0 , . . . , id
S
N−1}.

IC The IDs held by PC, IC = {idC
0 , . . . , id

C
n−1}.

X The features held by PS, X = X0|| . . . ||Xm−1.
Y The labels held by PC.
X The features in the intersection.
Y The labels in the intersection.
DS The data held by PS, DS = IS||X .
DC The data held by PC, DC = IC||Y .
d The degree of LFHE polynomial modulo.
p The LFHE plaintext module.
q The LFHE ciphertext module.
t The modulus of the finite field in ECC.

〈·〉S,〈·〉C The shares held by PS and PC, respectively.

B Improved Protocols

Improved Get New ID Protocol. For the binary classifica-
tion problem, i.e. the label is binary, we proposed an improved
get new ID protocol ∏GetNewID2 (Protocol 8) to reduce the
communication overhead. Our improvements mainly stem
from replacing AHE with ECC, which has shorter crypto-
graphic keys. Compared with ∏GetNewID, ∏GetNewID2 has the
same processes except for the computations related to the

Protocol 8: ∏GetNewID2

Input: PS inputs its data DS = IS||X , PC inputs its data
DC = IC||Y .

Output: PS outputs its new IDs IS
new and PC outputs its

new IDs IC
new in the intersection. Besides, PS and PC

output label shares 〈Y〉S and 〈Y〉C in the intersection,
respectively.

Parameters: Hash function H(·) used for hashing an ele-
ment to a point on the elliptic curve.

Setup:
1: PS shuffles its data locally, and then sets its new ID as

IS
new = {0, . . . ,N−1}.

2: PS generates an ECC private key α and computes
αH(IS)←{αH(idS

i)}i∈[N].
Online:

1: PC shuffles its data locally.
2: PC generates an ECC private key β and ECC key

pair (η,κ), as well as a point e on the elliptic curve.
Besides, PC computes βH(IC)←{βH(idC

j)} j∈[n] and
L ← {` j} j∈[n], where ` j = (2y j − 1)e. Then PC en-
crypts L to E.Encη(L)←{E.Encη(` j)} j∈[n].

3: PC sends βH(IC) and E.Encη(L) to PS.
4: PS computes αβH(IC) and BE.Encη(L) where B =
{2b j−1} j∈[n] and b j ∈ {0,1}. Then PS shuffles them
to αβH(IC)π and (BE.Encη(L))π, where π is a permu-
tation function. PS sends αβH(IC)π, (BE.Encη(L))π

and αH(IS) to PC.
5: PC computes αH(IC)π← β−1αβH(IC)π and BπLπ←

E.Decκ((BE.Encη(L))π), i.e. BπLπ ← {(2bπ(j) −
1)lπ(j)} j∈[n]. After that, PC computes {b′

π(j)←
1
2 −

1
2

lπ(j)} j∈[n]. Then, PC sends ∆← {π(j) |αH(idC
π(j)) =

αH(idS
i)} j∈[n],i∈[N] to PS.

6: PC returns IC
new←{i|αH(idC

π(j)) =αH(idS
i)} j∈[n],i∈[N],

and label shares 〈Y〉C←{b′
π(i)}i∈IC

new
. PS returns label

shares 〈Y〉S←{bπ(j)}π(j)∈∆.

label. Therefore, we only describe the operations of the labels
here and the detailed protocol is shown in Protocol 8.

Specifically, rather than encrypting the label using AHE,
PC computes L = {` j} j∈[n] and encrypts it to E.Encη(L) =
{E.Encη(` j)} j∈[n], where ` j = (2y j − 1)e, e is a point on
the elliptic curve and η is the ECC public key. PC sends
E.Encη(L) to PS. Then, PS generates n random bit b j ∈
{0,1} for j ∈ [n] and computes BE.Encη(L), where B =
{2b j − 1} j∈[n]. After that, PS sends BE.Encη(L) to PC. Af-
ter shuffling it to (BE.Encη(L))π, PC sends (BE.Encη(L))π

to PS. PC computes {b′
π(j) =

1
2 −

1
2 lπ(j)} j∈[n] and returns

〈Y〉C = {b′
π(j)}i∈IC

new
. PS returns 〈Y〉S = {bπ(j)}π(j)∈[n].

Improved Oblivious Polynomial Reduction Protocol. For
the case of n ≤ d/4, where n is the smaller data size and
d is the degree of LFHE polynomial modulo, we proposed

an improved oblivious polynomial reduction protocol ∏OPR2
(Protocol 9). We set θ = dd/2ne. Our improvements mainly
stem from packing θ ciphertexts into one ciphertext. Here,
we assume m%θ = 0, and for the case where m%θ 6= 0, it is
similar, so we omit the details here.

Protocol 9: ∏OPR2

Input: PS inputs polynomials fk(x) with deg(fk(x))≤N−
1 for k ∈ [m], PC inputs LFHE key pair (fpk, fsk) and
g(x) = ∏

n′−1
i=0 (x− zi) for i ∈ [n′].

Output: PS outputs ∑
θ−1
j=0 x jF.Enc fpk(f̄iθ+ j(x)) for i ∈

[m/θ].
1: PS constructs fk, j(x) for k ∈ [m].
2: PC computes h j(x)← x jn mod g(x) for j ∈ [dN/ne].

Then PC encrypts h j(xθ) to F.Enc fpk(h j(xθ)) for j ∈
[dN/ne] and sends F.Enc fpk(h j(x)) to PS.

3: PS computes F.Enc fpk(f̄k(xθ)) following Equation (8)
for k ∈ [m].

4: PS computes ∑
θ−1
j=0 x jF.Enc fpk(f̄iθ+ j(x)) for i ∈ [m/θ].

The improved oblivious polynomial reduction protocol
∏OPR2 is shown in Protocol 9. PS constructs the polynomi-
als fk, j(x) for k ∈ [m] such that fk(x) = ∑

dN/ne−1
j=0 fk, j(x) · x jn

for k ∈ [m]. Then PC computes h j(x) = x jn mod g(x) for
j∈ [dN/ne]. After that PC encrypts h j(xθ) to F.Enc fpk(h j(xθ))
for j ∈ [dN/ne] and sends F.Enc fpk(h j(xθ)) for j ∈ [dN/ne]
to PS. Subsequently, PS computes F.Enc fpk(f̄k(xθ)) following
Equation (8) for k ∈ [m]. Finally, PS computes

F.Enc fpk(f̄0(xθ))� · · ·� xθ−1F.Enc fpk(f̄θ−1(x
θ)),

F.Enc fpk(f̄θ(x
θ))� · · ·� xθ−1F.Enc fpk(f̄2θ−1(x

θ)),

. . .

F.Enc fpk(f̄(m/θ−1)θ(x
θ))� · · ·� xθ−1F.Enc fpk(f̄m−1(xθ)).

That is, PS computes ∑
θ−1
j=0 x jF.Enc fpk(f̄ S

iθ+ j(x)) for i∈ [m/θ]
to pack θ ciphertexts into one ciphertext.

Protocol 10: ∏OPI2

Input: PS inputs {ri,k}i∈[n′],k∈[m]. PC inputs LFHE key pair
(pk,sk) and zi for i ∈ [n′].

Output: PS outputs ∑
θ−1
j=0 x jF.Enc fpk(f̄ S

iθ+ j(x)) for i ∈
[m/θ], where f̄ S

k (zi) = ri,k for i ∈ [n′],k ∈ [m].
1: PC generates ι polynomials RFµ(x) and ι polynomi-

als CFν(x) for µ,ν ∈ [ι], where ι = d
√

n′e, such that
RFµ(zi) ·CFν(zi) = 1 if and only if i = µι + ν for
µ,ν ∈ [ι], i ∈ [n′]. PC encrypts RFµ(xθ) and CBν(xθ) to
F.Enc fpk(RFµ(xθ)) and F.Enc fpk(CFν(xθ)) for µ,ν ∈
[ι] respectively and sends them to PS.

2: PS computes F.Enc fpk(f̄ S
k (x

θ)) following Equation (9).
3: PS computes ∑

θ−1
j=0 x jF.Enc fpk(f̄ S

iθ+ j(x)) for i ∈ [m/θ].

����

�� 205 793 102 497 936

����
� 0 1 2 3 4

�� 793 356 205

� �0 �1 �2

��(��) ��(205) ��(793) ��(102) ��(497) ��(936)

��(��) ��(793) ��(356) ��(205)

�.������(�) �.������(�0) �.������(�1) �.������(�2)

���(��) ���(793) ���(356) ���(205)

�.������(�−�) �.������(�0−�0) �.������(�1−�1) �.������(�2−�2)

Compute

Compute

Shuffle

���(��)� ���(356) ���(205) ���(793)

�.������(�−�)� �.������(�1−�1) �.������(�2−�2) �.������(�0−�0)
Decrypt��(��)� ��(356) ��(205) ��(793)

(� − �)� �1 − �1 �2 − �2 �0 − �0

��(��)�⋂ ��(��)

����
� 1 4

 � � �2 − �2 �0 − �0

Return
Δ 1 2Return

 � � �2 �0
The intersection indices

in the ��(��)� set.

The intersection indices
in the ��(��)set.

Compute and Encrypt

Compute and Decrypt

��(205) ��(793)

�2 − �2 �0 − �0

Return � corresponding to the 1st and 2nd
�. ������(� − �)�, i.e. ��(�) for �(�) ∈ Δ.

Figure 7: Example of the get new ID protocol

Improved Oblivious Polynomial Interpolation and Eval-
uation Protocols. The main ideas of the improved oblivious
polynomial interpolation and evaluation protocols are simi-
lar to the improved oblivious polynomial reduction protocol.
The detailed improved oblivious polynomial interpolation and
evaluation protocols are shown in Protocol 10 and Protocol 11,
respectively.

Protocol 11: ∏OPE2

Input: PS inputs ∑
θ−1
j=0 x jF.Enc fpk(f̄iθ+ j(x)) for i ∈ [m/θ].

PC inputs LFHE key pair (fpk, fsk), g(x) = ∏
n′−1
i=0 (x−

zi) and zi for i ∈ [n′].

Output: PC outputs X = {xid′i ,k|xid′i ,k = f̄k(zi)}i∈[n′],k∈[m].

1: PC encrypts g(xθ) to F.Enc fpk(g(xθ)). Then PC sends
F.Enc fpk(g(xθ)) to PS.

2: PS generates random polynomials γi(x) ∈ F[x] for
i ∈ [m/θ] with deg(γi(x)) < d − θn′. Then PS com-
putes F.Enc fpk(f̃i(x))← ∑

θ−1
j=0 x jF.Enc fpk(f̄iθ+ j(x))�

(F.Enc fpk(g(x))� F.Enc fpk(γi(x)))� F.Enc fpk(0) for
i ∈ [m/θ] and sends them to PC.

3: PC decrypts F.Enc fpk(f̃i(x)) to ∑
θ−1
j=0 x j f ′iθ+ j(x) ←

∑
θ−1
j=0 x j f̄iθ+ j(x)+ g(x)γi(x) for i ∈ [m/θ]. PC returns

xid′i ,k← f ′k(zi) for i ∈ [n′],k ∈ [m].

C Protocol Examples

We provide an example of the get new ID protocol ∏GetNewID
in Figure 7. Besides, we provide an example of how to com-
pute the reduced polynomial in Figure 8.

D Proof of Theorem 2

Proof. For µ,ν ∈ [ι], let Iµ := {i|i/ι = µ}i∈[ι2], Iν := {i|i%ι =

ν}i∈[ι2], Jµ := [ι2] \ Iµ, Jν := [ι2] \ Iν . It is worth noting that
|Iµ|= |Iν|= ι and |Jµ|= |Jν|= ι(ι−1).

����
� �

0 3

1 2

2 2

3 1

����
�

1

2

��

��

� = 4
� = 1

� = 4

Primitive root: �4 = 2

Encode � to polynomial: � � = 2 + � + 3�2 + 2�3

= � + 2 �0 + 2� + 3 �2

�0 � �1 �

Construct: � � = � − �4
1 � − �4

2 = �2 − � + 3

Compute:

Compute reduced polynomial: � � ≡ � � ��� � �
= �0 � ℎ0 � + �1 � ℎ1 �

= � + 2 + 2� + 3 � + 2

= 2�2 + 3� + 3

ℎ0 � = �0 ��� � � = �0

ℎ1 � = �2 ��� � � = � + 2

All computation
are over ℤ5

� �4
1 = � �4

1 = 2

� �4
2 = � �4

2 = 1

Figure 8: Example of how to compute reduced polynomial.

Then we can construct ι2 polynomials {R̃Fµ(x)|R̃Fµ(x) =
∏i∈Jµ(x− zi)}µ∈[ι2] and ι2 polynomials {C̃Fν(x)|C̃Fν(x) =
∏i∈Jν

(x− zi)}ν∈[ι2]. These polynomials satisfy:

1. deg(R̃Fµ(x)) = deg(C̃Fν(x)) = ι(ι−1);

2. R̃Fµ(zi) = 0 if and only if i ∈ Jµ;

3. C̃Fν(zi) = 0 if and only if i ∈ Jν.

After that, we can construct two sets of interpolating poly-
nomials { ˜IRFµ(x)}µ∈[ι],{ ˜ICFν(x)}ν∈[ι2] which satisfy:

1. deg(˜IRFµ(x))< ι,deg(˜ICFν(x))< ι;

2. ˜IRFµ(zi) = R̃Fµ(zi)
−1 for i ∈ Iµ;

3. ˜ICFν(zi) = R̃Fµ(zi)
−1 for i ∈ Iµ.

At last, let RFµ(x) = R̃Fµ(x) ˜IRFµ(x) and CFν(x) =
C̃Fν(x) ˜ICFν(x) for u,v ∈ [ι], and they satisfy the properties
1, 2, and 3.

E Security Proof

Theorem 3. The protocol ∏Batch_PIR (Protocol 3) securely
computes FBatch_PIR (Figure 5) against a semi-honest adver-
sary A.

Proof. We consider the following two cases:
Case 1: Corrupt PS. We conduct the simulator SS(DS,⊥)
that simulates the view of the corrupt PS. It executes as fol-
lows:

• Encode X into polynomials fk(x) for k ∈ [m].

• Construct fk, j(x) such that fk(x) = ∑
dN/ne−1
j=0 fk, j(x) · x jn

for k ∈ [m].

• Construct random polynomials h j(x) for j ∈ [dN/ne]
and encrypted it as F.Enc fpk(h j(x)).

• Compute F.Enc fpk(f̄k(x))← ∑
dN/ne−1
j=0 F.Enc fpk(fk, j(x))

�F.Enc fpk(h j(x)) for k ∈ [m].

• Construct random polynomial g(x) and encrypt it to
F.Enc fpk(g(x)).

• Compute F.Enc fpk(f ′k(x)) following the real protocol.

The view simulated by SS(DS,⊥) is computationally indis-
tinguishable from the real one by the LFHE.
Case 2: Corrupt PC. We conduct the simulator SC(IC

new,X)
that simulates the view of the corrupt PC. It executes as fol-
lows:

• Construct g(x)←∏
n′−1
i=0 (x− zi) where zi = ω

id′i
N for i ∈

[n′].

• Compute h j(x)← x jn mod g(x) for j ∈ [dN/ne] and en-
crypts h j(x) to F.Enc fpk(h j(x)).

• Construct random polynomials f̄k(x) with deg(f̄k(x))≤
2(n− 1), such that f̄k(x) = xid′i ,k

for i ∈ [n′],k ∈ [m],
where xid′i ,k

is PC’s output received by SC.

• Construct random polynomials γk(x) ∈ F[x] for k ∈ [m]
with deg(γk(x))< d−n′.

• Compute f ′k(x)← f̄k(x) + g(x)γk(x) and encrypt it to
F.Enc fpk(f ′k(x)) for k∈ [m] to simulate the message from
PS.

The view simulated by SC(IC
new,X) is computationally in-

distinguishable from the real one due to the f ′k(x) simulated by
SC(IC

new,X) and the f ′k(x) in the real world are both uniformly
distributed on (f̄k(x)+g(x)γk(x)) ∈ F[x] for k ∈ [m].

Theorem 4. The protocol ∏Suda (Protocol 1) securely com-
putes FSuda (Figure 4) against a semi-honest adversary A.

Proof. We consider the following two cases:
Case 1: Corrupt PS. We conduct the simulator
SS(DS,X S||YS) that simulates the view of the corrupt
PS. It executes as follows:

• Shuffle its data locally.

• Compute αH(IS).

• Simple n EC points βH(IC) ← {βH(idC
j)} j∈[n] uni-

formly.

• Simple n values y j uniformly and encrypt to
A.Encapk(y j) for j ∈ [n].

• Compute A.Encapk(R) following the real protocol.

• Compute αβH(IC),A.Encapk(Y −R) and shuffle them
to αβH(IC)π,A.Encapk(Y −R)π.

• Randomly draw n′ values from [N] without replacement
to simulate ∆.

• Set 〈Y〉S←{rπ(j)}π(j)∈∆.

• Execute the same steps as the former four steps of simu-
lator SS(DS, IC

new).

• Construct random polynomials RFµ(x) and CFν(x) for
µ,ν∈ [d

√
n′e] and encrypt them to F.Enc fpk(RFµ(x)) and

F.Enc fpk(CFν(x)) for µ,ν ∈ [d
√

n′e] respectively.

• Compute F.Enc fpk(f̄ S
k (x)) following the real protocol.

• Compute F.Enc fpk(f̄ C
k (x)) ← F.Enc fpk(f̄k(x)) �

F.Enc fpk(f̄ S
k (x)).

• Construct random polynomial g(x), encrypt it to
F.Enc fpk(g(x)).

• Compute F.Enc fpk(f ′k(x)) following the real protocol.

The view simulated by SS(DS,X S||YS) is computation-
ally indistinguishable from the real one by the discrete loga-
rithm assumption and encryption algorithms, including AHE,
LFHE, and ECC.
Case 2: Corrupt PC. We conduct the simulator
SC(DC,XC||YC)) that simulates the view of the corrupt PC.
It executes as follows:

• Shuffle its data locally.

• Compute βH(IC) and A.Encapk(Y) following the real
protocol.

• Simple n EC points αβH(IC)π ← {αβH(idC
π (j))} j∈[n]

uniformly.

• Simple n values R = {r j} j∈[n] uniformly and computes
A.Encapk(Y −R)π.

• Simple N EC points αH(IS)← {αβH(idS
i)}i∈[N] uni-

formly.

• Compute IC
new and 〈Y〉C following the real protocol.

• Execute the same steps as the former two steps of simu-
lator SS(DS, IC

new).

• Simple random values ri,k for i ∈ [n′],k ∈ [m] uniformly.

• Construct polynomials RFµ(x) and CFν(x) following
the real protocol and encrypt RFµ(x) and CBν(x)
to F.Enc fpk(RFµ(x)) and F.Enc fpk(CFν(x)) for µ,ν ∈
[d
√

n′e].
• Construct random polynomials f̄ C

k (x) with
deg(f̄ C

k (x)) ≤ 2(n− 1) such that { f̄ C
k (zi)}i∈[n′],k∈[m] =

〈X 〉C, where 〈X 〉C is PC’s output received by SC.

• Construct random polynomials γk(x) ∈ F[x] for k ∈ [m]
with deg(γk(x))< d−n′.

• Compute f ′k(x)← f̄ C
k (x)+ g(x)γk(x) and encrypt it to

F.Enc fpk(f ′k(x)) for k ∈ [m].

The view simulated by SC(DC,XC||YC)) is computation-
ally indistinguishable from the real one due to the dis-
crete logarithm assumption and the f ′k(x) simulated by
SC(DC,XC||YC)) and the f ′k(x) in the real world are both uni-
formly distributed on (f̄ C

k (x)+g(x)γk(x)) ∈ F[x] for k ∈ [m].

Table 7: Comparison between two settings of iPrivJoin.
N n Framework Comm. (MB) Time (s)

220

1024 iPrivJoin (1) 2655.32 182.90
iPrivJoin (2) 27054.87 2674.89

2048 iPrivJoin (1) 3012.62 207.49
iPrivJoin (2) 89278.87 10272.04

4096 iPrivJoin (1) 3389.94 221.58
iPrivJoin (2) 367854.87 43741.82

222

1024 iPrivJoin (1) 9833.19 688.35
iPrivJoin (2) 54198.08 3960.81

2048 iPrivJoin (1) 9989.60 702.45
iPrivJoin (2) 116422.08 11798.79

4096 iPrivJoin (1) 10682.27 727.89
iPrivJoin (2) 79020.80 45143.92

224

1024 iPrivJoin (1) 37913.63 2718.53
iPrivJoin (2) 162770.58 10243.38

2048 iPrivJoin (1) 39389.21 2815.29
iPrivJoin (2) 224994.58 17710.65

4096 iPrivJoin (1) 39464.18 2800.06
iPrivJoin (2) 263005.50 51425.44

F Additional Evaluations

Comparisons between Different Settings of iPrivJoin.
We evaluate the efficiency of two settings of iPrivJoin,
i.e. iPrivJoin (1): PS which holds the larger data performs
simple hash and PC which holds the smaller data performs
cuckoo hash; and iPrivJoin (2): PS performs cuckoo hash
and PC performs simple hash. The results (Table 7) show that
iPrivJoin (1) outperforms iPrivJoin (2) in both communi-
cation size and running time, therefore we choose iPrivJoin
(1) as our baseline.
Efficiency of Suda with Feature Dimension m = 1000. Be-
sides, we conduct an experiment to demonstrate the efficiency
of Suda with fixed feature dimension m = 1000 and across
N ∈ {220,222,224}, n ∈ {1024,2048,4096}. The experimen-
tal results are shown in Table 8. We observe that the running
time in the WAN setting is comparable to that in the LAN set-
ting. This is because our communication size is small, so the
network environment has little impact on our running time.

Table 8: Efficiency of Suda with feature dimension m = 1000.

N n Comm.(MB) Time (s)
LAN WAN

220
1024 194.00 690.07 703.02
2048 316.53 1199.96 1208.36
4096 565.85 3072.43 3119.86

222
1024 388.46 2628.86 2631.35
2048 511.00 3137.61 3159.88
4096 749.46 5104.59 5153.46

224
1024 1166.31 10198.90 10362.40
2048 1288.84 10713.00 10919.70
4096 1527.30 12593.10 12705.10

	Introduction
	Our Contributions
	Our Approaches

	Preliminaries
	Homomorphic Encryption
	Elliptic Curve Cryptography
	Secret Sharing
	Number Theoretic Transform

	Overview
	Scenarios
	Overview of Suda
	Security Model
	Setup and Online Phase

	Design of Suda
	Secure ID Encoding
	Secure Feature Alignment
	Batch PIR
	Batch PIR-to-Share

	Performance Evaluation
	Implementation and Experiment Setting
	Evaluation of Secure Data Alignment
	Evaluation over Public Datasets
	Evaluation over Varied Data Sizes
	Evaluation over Varied Feature Dimensions
	Evaluation over Varied Intersection Size

	Evaluation of Batch PIR

	Discussion
	Related Work
	Conclusion
	Ethics Considerations
	Open Science
	Notations
	Improved Protocols
	Protocol Examples
	Proof of Theorem 2
	Security Proof
	Additional Evaluations

