
Bundled Authenticated Key Exchange:
A Concrete Treatment of Signal’s Handshake Protocol and Post-Quantum Security

Keitaro Hashimoto
National Institute of Advanced

Industrial Science and Technology
(AIST)

Shuichi Katsumata
AIST & PQShield

Thom Wiggers
PQShield

Abstract
The Signal protocol relies on a special handshake protocol,
formerly X3DH and now PQXDH, to set up secure conver-
sations. Prior analyses of these protocols (or proposals for
post-quantum alternatives) have all used highly tailored models
to the individual protocols and generally made ad-hoc adap-
tations to “standard” AKE definitions, making the concrete
security attained unclear and hard to compare between similar
protocols. Indeed, we observe that some natural Signal hand-
shake protocols cannot be handled by these tailored models. In
this work, we introduce Bundled Authenticated Key Exchange
(BAKE), a concrete treatment of the Signal handshake protocol.
We formally model prekey bundles and states, enabling us to
define various levels of security in a unified model. We analyze
Signal’s classically secure X3DH and harvest-now-decrypt-
later-secure PQXDH, and show that they do not achieve what
we call optimal security (as is documented). Next, we in-
troduce RingXKEM, a fully post-quantum Signal handshake
protocol achieving optimal security; as RingXKEM shares
states among many prekey bundles, it could not have been
captured by prior models. Lastly, we provide a security and
efficiency comparison of X3DH, PQXDH, and RingXKEM.

1 Introduction

The Signal protocol [36, 42] is likely the most successful
end-to-end encrypted messaging protocol. It is not just used
by the Signal app, but also in many other applications that
are used by billions, including WhatsApp [48] and Facebook
Messenger [37]. To send a Signal message to Blake, Alex
needs to first set up a Signal conversation with Blake. This
initial setup is done using a Signal handshake protocol, after
which the messages are encrypted using the Double Ratchet
protocol [42]. The Signal handshake protocol was initially
X3DH [36], based on Triple Diffie–Hellman [32]. In late 2023,
Signal rolled out a post-quantum iteration of X3DH, called
PQXDH, offering security against a harvest-now-decrypt-later
adversary: a step towards a fully post-quantum Signal protocol.

X3DH and later PQXDH have been analyzed computation-
ally and symbolically using models tailored to the protocols [3,
6, 14, 15, 21, 29]. Proposals for fully post-quantum alterna-
tives also devised protocol-specific models for analysis [9,
10, 16, 20, 25, 26], generally making ad-hoc adaptations to
“standard” AKE models. This issue stems from the so-called
prekey bundles used by the Signal handshake protocol, al-
lowing multiple senders to establish a key with a possibly
offline recipient. To reuse previous AKE models, this was
usually modeled by treating each prekey bundle or even its
components independently. Because of this, it is not possible
to model some natural Signal handshake protocols that use the
batched nature of generating prekeys and share state across
prekeys. Moreover, because the prekey bundles are treated
slightly differently in each model, sometimes deviating from
how they are used in practice, it makes the concrete security
attained unclear and hard to compare.

1.1 Contributions
In this paper, we provide a concrete treatment of the Signal
handshake protocol. We formally model prekey bundles and
their states, enabling us to capture new Signal handshake
protocols while establishing various levels of security within
a unified framework. We showcase this by directly compar-
ing both the security properties and performance of X3DH,
PQXDH, and our new proposal RingXKEM. In the following,
we explain this in more detail.

1.1.1 A New Model for Signal Handshake Protocols

We introduce Bundled Authenticated Key Exchange (BAKE).
It uses a specific function to upload a list of prekey bundles,
modeling Signal’s handshake protocols more true-to-practice.
This enables us to capture protocols that share states across
prekey bundles and facilitates a more formal analysis of
security in the face of state compromises.

A security model for BAKE. Based on our syntax, we
define a game-based security model that treats key indis-

https://orcid.org/0000-0002-2232-9443
https://orcid.org/0000-0002-8496-0476
https://orcid.org/0000-0001-8967-8456

tinguishability and authentication properties separately. For
key indistinguishability, the adversary can reveal both the
long-term identity secret keys and states associated to the
prekey bundles. However, allowing it to reveal secrets without
restrictions leads to an unavoidable attack on key indistin-
guishability. We thus exclude the minimum set of all such
unavoidable attacks that any BAKE protocol is vulnerable
against, and define the optimal confidentiality properties of a
BAKE protocol. If a specific protocol has further (accepted)
weaknesses, we can include them as additional unavoidable
attacks. By comparing the unavoidable attacks for different
protocols, we get an immediate means of comparing their
achieved security properties.

Explicit treatment of authentication. During the develop-
ment of PQXDH, Bhargavan et al. discovered that the protocol
is vulnerable against so-called “KEM re-encapsulation attacks”
if the encapsulation key is not bound to the key exchange [6].
This attack forces two users to establish the same key, unknown
to the adversary, while disagreeing on the encapsulation key
being used. This was previously considered an implicit attack
on key indistinguishability, though not immediately clear why
key indistinguishability should fail. Another subtle attack is
the potential replaying of messages, which the documentation
mentions as a possibility and defers the analysis to be beyond
the scope of the document [36, Sec. 4.2]. While Signal imple-
ments a countermeasure, replays seemingly were not covered
by prior game-based security models as they do not break key
indistinguishability and are very specific to the treatment of the
so-called last-resort1 prekey bundles. (The one exception is
[29], which covers this using symbolic analysis.) In our work,
we treat authentication as a primary goal, making it possible
to capture both attacks as explicit breaks of authentication.

Classic, harvest-now-decrypt-later, and quantum adver-
saries. We can fine-tune the attacker to capture not just
classical and quantum adversaries to key indistinguishability
and authentication, but also the intermediate “harvest-now-
decrypt-later” (HNDL) adversary. We can adjust the powers
of the adversary depending on the attack attempted by the
adversary: while certain attacks are unavoidable if the adver-
sary is quantum from the outset of the security game, they
may become avoidable assuming the adversary is classical
up to some point. To the best of our knowledge, this is the
first work to formally model what it means for a general Sig-
nal handshake protocol to be HNDL secure. Indeed, such
a fine-grained security model is essential to formally prov-
ing security of PQXDH. We note that while there are some
works [6, 21] showing (a slight variant of) HNDL security of
PQXDH, the security model is highly tailored to PQXDH and
is non-reusable for general protocols.

1Following the Signal source code and the specification for PQXDH.

1.1.2 Analyzing X3DH and PQXDH as BAKE Protocols

We instantiate and analyze both X3DH and PQXDH as BAKE
protocols, and formally prove that they meet the security level
described in the documents. Both of these protocols have
well-documented weaknesses and thus cannot fully meet our
optimal security targets. Both are known to be vulnerable to
an attack in which a sender can be impersonated to a receiver
if the receiver’s state is compromised. Additionally, because a
component of the prekey bundles is not signed, sender sessions
only have weak forward secrecy. Finally, because PQXDH
only gives HNDL security, we cannot allow the HNDL adver-
sary to obtain any post-quantum KEM prekeys. We are able
to explicitly quantify these known weaknesses as additional
unavoidable attacks (and thus demonstrate the weaker security
guarantees), which gives a very clear comparison to other
protocols. As described above, we also show that by including
replay protection in the protocol and adding so-called con-
firmation tags, these protocols are able to avoid replay and
re-encapsulation attacks on authentication.

Real-world relevance. During the development of this work
we have been in continuous dialog with the Signal developers.
Our findings have been confirmed by Signal and, in response,
Signal are considering ways to better separate the Signal
handshake from the Double Ratchet protocol including the
user’s view into the key derivation function.

1.1.3 A Post-Quantum Signal Handshake Protocol

In Sec. 5, we present a fully post-quantum Signal hand-
shake protocol called RingXKEM. This protocol relies on
post-quantum ring signatures for (deniable) post-quantum
authentication and post-quantum KEM key exchange for post-
quantum secrecy, and was inspired by prior proposals [9, 25,
26]. We optimize prekey bundle storage by authenticating
them using a Merkle tree, the root of which is signed by the
identity key. This way, the server needs to store only a single
large post-quantum signature instead of one per prekey bundle.
This reduces the cost of uploading prekey bundles and the de-
ployment of post-quantum authentication at the central server.
It is worth highlighting that as RingXKEM shares states across
many prekey bundles, it could not have been captured in pre-
vious models. Lastly, RingXKEM achieves optimal security2

in our BAKE model against fully quantum adversaries.

Instantiations and efficiency comparison. We compare
X3DH, PQXDH, and RingXKEM when instantiated with cryp-
tographic primitives. For X3DH and PQXDH, we base the
numbers on the deployed protocols. For RingXKEM, we base
our numbers on the recent Gandalf ring signature scheme [23].

2There is a slight ambiguity on what “optimal” means due to the leeway in
the definition of the predicate Origin used to define BAKE protocols. However,
regardless of this, RingXKEM satisfies stronger properties compared to X3DH
and PQXDH. See Sec. 3.3.2 for more detail.

By extrapolating from the runtime performance of the prim-
itives, we also estimate the runtime cost on mobile phones.
These results show that RingXKEM can be deployed at a cost
comparable to PQXDH, especially when considering the cost
of storage of prekey bundles.

Related Work
Several prior works have looked at the security of Signal’s orig-
inal, classically-secure X3DH protocol. Cohn-Gordon et al.
[14, 15] provided a tailored game-based security model, cap-
turing both the X3DH and Double Ratchet protocols. Kobeissi,
Bhargavan, and Blanchet [29] modeled the composition in
the symbolic (namely ProVerif) and computational model
(CryptoVerif). PQXDH has been recently developed alongside
formal analysis by Bhargavan et al. [6]. Fiedler and Günther
[21], building on the model of [14, 15] and [9], provided a
tailored game-based security model for PQXDH and proved
its security. Both [6] and [21] analyze the HNDL security
of PQXDH by (implicitly or explicitly) restricting a post-
quantum adversary from being able to break the classical
signature scheme. In contrast, our model makes no assump-
tion on the cryptographic primitives being used and abstractly
defines HNDL security against any Signal handshake protocol,
making the security model general and reusable.

A fully post-quantum X3DH based on the isogeny-based
SIDH key exchange was proposed by Dobson and Galbraith
[20], but SIDH famously was broken [13, 35]. Proposals
based on lattices were put forward by Brendel et al. [9] and
Hashimoto et al. [25, 26], both basing their designs on ring
signatures. Our proposal RingXKEM extends the Hashimoto
et al. proposal by explicitly defining prekey bundles and using
Merkle trees for more efficient server-side storage. We also
prove the security of our proposal as a BAKE instead of as a
(slight variant of a) standard AKE, allowing us to formally
state the security properties as will be used in practice, and
allows us to make direct comparisons on the obtained security
properties to X3DH and PQXDH considered as BAKE. This is
not true for the AKE-style security analyzes in the papers cited
above papers, as each is tailored to the proposal. Dobson and
Galbraith tailor their model to X3DH’s achieved security prop-
erties, actively forgoing capturing stronger security properties
not attained by X3DH. Brendel et al. adapt the Cohn-Gordon
et al. model; both models require carefully constructed but
hard to understand “clean” predicates to rule out attacks that
X3DH does not protect against. Finally, Hashimoto et al. only
sketch how their proposals can be used with prekey bundles,
strictly limiting their analysis to the AKE setting.

Beyond Signal, Apple deployed an update to iMessage with
post-quantum key exchange in early 2024, called PQ3 [1]. Like
PQXDH, PQ3 does not achieve post-quantum authentication.
Stebila analyzed PQ3 using a reductionist approach and Basin,
Linker, and Sasse used Tamarin, both with tailored models
and considering hybrid security [2, 47]. Collins et al. [16]

proposed K-Waay using Split-KEMs, which were initially
proposed for use in X3DH in an early paper by Brendel et al.
[10]. K-Waay deviates from prior protocols as it requires
a receiver to verify the handshake messages in batches for
security, and adds receiver prekey bundles.

Online Version. Due to space limitations, we defer some
appendices to the full version. This version is freely available
online at https://eprint.iacr.org/2025/040.

2 Bundled Authenticated Key Exchange

In this section, we define the syntax for a (two-round) bundled
authenticated key exchange (BAKE) protocol. This definition
is tailored to the semantics and flow of Signal handshake
protocols like X3DH. While we build on prior approaches
(e.g., [9, 14, 15, 16, 21, 25, 26]), our concrete modeling of
the uploading of prekey bundles and the users’ state, allow a
more formal modeling of forward secrecy and state reuse.

2.1 Syntax of Bundled AKE
We give our syntax for BAKE protocols in Def. 1. Signal
protocols pre-generate and publish a number of so-called
prekey bundles to the central server, which can be viewed as
the first message in standard AKE. We model this through
the BAKE.PreKeyBundleGen function, which is the most
significant difference to prior models; prior work typically
treated prekey bundles individually. This function explicitly
returns a single state that contains all (private) information
for the prekey bundles. We use this to model attacks on the
ephemeral keys stored by the users. In the second round of the
key agreement, the person that wants to start a conversation,
whom we refer to as sender, downloads a prekey bundle and
uses it to complete the cryptographic handshake and obtain a
shared secret to encrypt their message with. This is modeled
by the BAKE.Send function. Finally, the receiver (whose
previously uploaded prekey bundle was used by the sender)
takes this generated message and its current state to complete
the handshake in BAKE.Receive.
Definition 1. A two-round bundled authenticated key exchange
protocol BAKE consists of the following four PPT algorithms,
where 𝐿 ∈ poly(𝜆).
BAKE.IdKeyGen(1𝜆)

$→ (ik, isk): The identity key genera-
tion algorithm takes as input the security parameter 1𝜆 and
outputs an identity public key ik and secret key isk.

BAKE.PreKeyBundleGen(isk𝑢)
$→ (®prek𝑢, st𝑢): The prekey

bundle generation algorithm takes a user 𝑢’s identity secret
key as input and outputs a number of prekey bundles ®prek𝑢 =
(prek𝑢,𝑡)𝑡∈[𝐿]∪{⊥} , and a user state st𝑢. Prekey bundles with
𝑡 ̸= ⊥ are called one-time prekey bundles and the special
prekey bundle prek𝑢,⊥ is called the last-resort prekey bundle
(cf. Sec. 2.1.2). The state may for example include the
associated (ephemeral) secret keys to public keys in ®prek𝑢.

https://eprint.iacr.org/2025/040

BAKE.Send(isk𝑠 , ik𝑟 , prek𝑟 ,𝑡)
$→ (𝐾, 𝜌): The sender algo-

rithm takes as input a sender 𝑠’s identity secret key isk𝑠 and
the intended receiver 𝑟’s identity key ik𝑟 and a particular
prekey bundle prek𝑟 ,𝑡 , and outputs a session key 𝐾 and a
handshake message 𝜌.

BAKE.Receive(isk𝑟 , st𝑟 , ik𝑠 , 𝑡, 𝜌) → (𝐾 ′, st𝑟): The (deter-
ministic) receiver algorithm takes as input a receiver 𝑟’s
identity secret key isk𝑟 and state st𝑟 , a sender’s identity
key ik𝑠 , along with the identifier of the used prekey bundle
𝑡 ∈ [𝐿] ∪ {⊥}, and the initial message 𝜌. It then outputs
a key 𝐾 ′ and a possibly updated state st𝑟 . Key agreement
may fail, in which case 𝐾 ′ = ⊥ is returned, and the state is
rolled back to before running the algorithm.

2.1.1 A Single State for Prekey Bundles

A BAKE protocol uses a single state for all prekey bundles
uploaded by a single BAKE.PreKeyBundleGen call. We use
this state in Sec. 3.3 to model forward secrecy properties
related to state compromises that leak the private keys for
prekey bundles that have not been used and deleted. The sin-
gular shared state is one of the functionalities missing in prior
formalization. Looking ahead, our fully post-quantum Signal
handshake protocol RingXKEM could not been captured by
prior work as prekey bundles were treated independently.

Running the BAKE.PreKeyBundleGen algorithm will re-
fresh all prekey bundles and the state. Signal clients call this
function frequently, both to ensure enough prekey bundles
are available at the server, and to rotate last-resort prekey
bundles, which we will describe in the next paragraph. In our
security model described in Sec. 3.3 we use epochs to track
the expiration of secret key material obtained from the state.

2.1.2 Availability Versus Ephemeral Keys

If each prekey bundle would be single use, the number of
prekey bundles uploaded would pose a limit on the number
of Signal handshakes that can be completed. Thus, to ensure
availability of the recipient even if they are offline for extended
amounts of time, so-called last-resort prekey bundles are
used if the list of one-time prekey bundles is depleted. The
last-resort prekey bundle is a specially designated prekey
bundle and, when used, is not deleted from the list of available
prekeys at the server, and its associated secrets are not deleted
from the receiver’s state. Because of this, any exchanges
that use the last-resort prekey bundle are vulnerable to state
compromises even after the handshake completes, until the
next call of BAKE.PreKeyBundleGen, which replaces the
last-resort prekey bundle and the receiver’s state.

For bookkeeping in our models, we will designate a specific
label ⊥ to refer to a last-resort prekey bundle. In protocol
execution, the server will distribute first all one-time prekey
bundles until they are exhausted, after which the last-resort
prekey bundle prek𝑢,⊥ will be used.

3 Correctness and Security of Bundled AKE

We define the correctness and security of a BAKE protocol
borrowing the formalism from recent (standard) AKE protocol
designs [9, 16, 26, 28]. The unique feature of our formalism
comes from handling the state of the prekey bundles, especially
the last-resort prekey bundle that can be reused multiple times.

3.1 Execution Environment

The correctness and security of a BAKE protocol is defined
by an interactive game between an adversary and a challenger,
formally illustrated in Algs. 1 and 2. The challenger plays the
role of the users and the adversary can arbitrarily interact with
the users and execute algorithms BAKE.PreKeyBundleGen,
BAKE.Send, and BAKE.Receive through oracle queries. As
in standard AKE definitions, we rely on a so-called instance
identifier (iID) to track all the information maintained by the
game. In bundled AKE, we must extend prior definitions of
instance identifiers to capture (last-resort) prekey bundles.
Due to its complexity, we first provide an overview of the
information maintained by the game below.

We consider a system of 𝑁 users, where each user is repre-
sented by an identity 𝑢 ∈ U. Each user has an identity key pair
(ik𝑢, isk𝑢) and will periodically publish its prekey bundles.3
As explained in Sec. 2.1.1, each prekey bundle is assigned a
value called epoch. The initial prekey bundle generated by
user 𝑢 has epoch = 1, and every time 𝑢 generates a new set
of prekey bundles, epoch is incremented by one.

The adversary can instruct the users to perform the following
three tasks: (i) ask a receiver to create new prekey bundles
®prek𝑟 = (prek𝑟 ,𝑡)𝑡∈[𝐿]∪{⊥} (via OPubNewPrekeyBundle); (ii) ask

a sender to send a handshake message 𝜌 (via OSend); and (iii)
ask a receiver to process a handshake message (via OReceive).
Task (i) generates 𝐿 + 1 new instances for the receiver and task
(ii) generates a single new instance for the sender. The game
records the creation of new instances by using an instance
identifier iID = (iID, ctr) ∈ N×({ 0,⊥ }∪N). The base instance
identifier iID is a unique integer assigned to each instance,
created when tasks (i) and (ii) are performed. We use base(iID)
to extract iID from iID. We also may simply refer to iID as
an instance. The counter ctr is used to distinguish between a
receiver instance using the last-resort prekey bundle from other
instances. Concretely, when task (i) is performed, the game
creates 𝐿 + 1 instances: 𝐿 instances of the type iID𝑡 := (iID𝑡 , 0)
for 𝑡 ∈ [𝐿] (associated to the one-time prekey bundles) and one
instance of type iID⊥ := (iID⊥,⊥) (associated to the last-resort
prekey bundle). When task (ii) is performed, the game creates
one sender instance with iID := (iID, 0). The reader can think
of instances with ctr = 0 as a normal AKE instance.

3Technically speaking, the adversary will instruct the user to generate a
new set of prekey bundles via the oracle OPubNewPrekeyBundle, but we ignore
this detail for better readability. See Alg. 1 for more detail.

What is unique to a BAKE protocol is that receivers can
reuse the last-resort prekey bundle, i.e., instances with ctr = ⊥.
More precisely, many senders can use the same prekey bundle
associated to the instance iID⊥ to send a handshake message
to the receiver. To this end, we use ctr ∈ N to model the
fact that multiple instances can be associated to iID⊥ when
task (iii) is performed on iID⊥. When task (iii) is performed
on iID⊥ for the 𝑖th (𝑖 ∈ N) time, the game creates a new
instance iID⊥,𝑖 := (iID⊥, 𝑖), where base(iID⊥) = base(iID⊥,𝑖).
Importantly, unlike receiver instances of the type iID = (iID, 0)
that can be completed, iID⊥ will always remain an incomplete
instance. Namely, the game will never assign a session key to
the instance iID⊥ as the session key will be assigned to a newly
created instance iID⊥,𝑖 with the same base instance identifier
(see Alg. 2 for more details).

Capturing last-resort prekey bundles separately from one-
time prekey bundles allows for a fine-grained notion of security
where we can model session key compromise of, say iID⊥,𝑖 ,
while still arguing session key secrecy of iID⊥, 𝑗 for 𝑗 ̸= 𝑖.
Moreover, letting the instance identifiers iID⊥,𝑖 and iID⊥, 𝑗 share
the same base instance identifier iID⊥ allows to succinctly
define security as we show in Sec. 3.3.3.

The game uses these instances iID to record all the infor-
mation handled by the instance associated with iID. Looking
ahead, the game keeps track of multiple lists, initialized to a
special empty symbol 𝜖 , and updated when the game oracles
are called by the adversary. They are defined as follows:
role[iID] ∈ { sender, receiver } records the instance’s role,

i.e., whether the instance acts as the sender or the receiver.
(Sender[iID],Receiver[iID]) ∈ (U ∪ {⊥}) × U records the

identities of the sender and the receiver relative to the
instance iID. Sender[iID] = ⊥ captures the fact that the
sender is undefined when the receiver creates the prekey
bundles.

prek[iID] records the prekey used by the instance iID.
prekidx[iID] records the index of the prekey used by the

receiver instance iID (i.e., role[iID] = receiver) in the cor-
responding prekey bundle. When role[iID] = sender, the
sender is not assumed to know the index of the receiver’s
prekey bundle, i.e., prekidx[iID] = 𝜖 .

epoch[iID] records the epoch in which the prekey bundle
used by the receiver instance iID was published. Similarly
to prekidx, we do not assume the sender to know this, i.e.,
epoch[iID] = 𝜖 when role[iID] = sender.

prekreuse[iID] records the numberof time a last-resort prekey
of a receiver instance has being reused. Specifically, we
have prekreuse[iID] ̸= 𝜖 only for iID ∈ N × {⊥}.

𝜌[iID] records the handshake message used by iID.
key[iID] records the session key computed by the instance

iID. This is set to ⊥ if iID does not accept the protocol
execution. As explained above, we have key[iID] = 𝜖 for
iID ∈ N × {⊥}.
For more detail, we refer the readers to Algs. 1 and 2.

While the game records more information associated to iID,

we postpone their explanations to Sec. 3.4 as they only relate
to security. In the next subsection, we define correctness.

3.2 Correctness of BAKE
Correctness requires that when all the users in the system
honestly execute the BAKE protocol without the adversary
tampering the protocol messages, then they derive an iden-
tical session key except with all but a negligible probability.
Formally, we model this through a game between a passive
adversary P and a challenger. Here, a passive adversary P
can arbitrary interact with the users under the restriction that
it must honestly deliver the protocol messages. For instance,
if a sender 𝑠 outputs a handshake message 𝜌 to sender 𝑟 , then
P can not invoke receiver 𝑟 on anything other than 𝜌.

Definition 2 (Correctness). We define the correctness game
in Alg. 1 and define the advantage of a passive adversary P as

AdvCORR
BAKE,P(1𝜆) := Pr

[
GameCORR

BAKE,P(1𝜆) = 1
]
.

We say a BAKE protocol is correct if AdvCORR
BAKE,P(1𝜆) = negl(𝜆)

for any efficient passive adversary P.

3.3 Security of BAKE: Key Indistinguishability
We model the security of a BAKE protocol via a key indis-
tinguishability game. Informally, we want to argue that a
particular session key key[iID] established by an instance iID
looks random to the adversary. However, as with any standard
AKE protocol, to formally argue this, we must establish a set
of unavoidable attacks4 through a predicate called safe and
declare the adversary to be successful only if the predicate
safe holds true at the end of the game. The set of unavoidable
attacks is to some degree protocol dependent, and as such, an
appropriate predicate safe must be defined for each protocol.

Below, we provide the definition of key indistinguishability
assuming the existence of such a predicate safe and defer the
definition of the predicate safe to Secs. 3.4 and 3.5.

3.3.1 Key Indistinguishability

We define key indistinguishability of a BAKE protocol as
follows, assuming a predicate safe defined in Secs. 3.4 and 3.5.

Definition 3 (Key Indistinguishability). We define the key in-
distinguishability security in Alg. 1 (with respect to a predicate
safe) and define the advantage of an adversaryA = (A1,A2)
as

AdvKIND
BAKE,A(𝜆) :=

����Pr
[
GameKIND

BAKE,A(1𝜆) = 1
]
− 1

2

���� .
4This is often termed trivial attacks in the literature. We chose the term

unavoidable as the triviality of an attack is in many cases subjective. Indeed,
as we see later, some attacks are quite contrived yet unavoidably necessary to
rule out for some protocols.

A BAKE protocol is key indistinguishable if AdvKIND
BAKE,A(1𝜆) =

negl(𝜆) for any efficient A.
As a special case, if A1 is classical, but A2 is quantum,

then we say it is key indistinguishable against harvest-now-
decrypt-later adversaries.

In a harvest now, decrypt later (HNDL) attack a classical
adversary records the communication in the present time and
then retroactively tries to attack the protocol when quantum
computers are available. Indeed, the motivation for Signal to
update X3DH to PQXDH was to exactly secure against HNDL
attacks; note the authentication, which must happen in present
time, is still only classically secure.

Our formalization of a two-stage adversary A = (A1,A2)
allows to explicitly distinguish the security property of X3DH
and PQXDH. We allow A1 to interact with the users through
oracle queries butA2 is only givenA1’s state. We can model
classical,HNDL, and quantum adversaries by setting (A1,A2)
to be (classical, classical), (classical, quantum), and (quantum,
quantum), respectively. Note that ifA2 is quantum, this might
result in (additional) unavoidable attacks.

3.3.2 Origin Instances and Partners

Before defining the predicate safe, we define the predicates
Origin and Partner, used internally by safe. These are fun-
damental predicates used by any standard AKE protocol to
define the set of “unavoidable” attacks. Recall that for key
indistinguishability, we must argue that a session key derived
by some instance is indistinguishable from random. Then
clearly, we must at least restrict the adversary from obtaining
the session key derived by an “associating” peer instance.

Below, we rely on the concept of origin instances and
partners, defined through the predicates Origin and Partner,
to formalize the adversarial capabilities.

Origin instances. Consider the following example: The
adversary invokes a receiver 𝑟 to create prekey bundles ®prek𝑟
and invokes a sender 𝑠 to create a handshake message with
respect to one of the prekey bundles in ®prek𝑟 . Accordingly, the
game creates two instances iID′ and iID, one for the receiver 𝑟
and the other for the sender 𝑠. We also have key[iID′] = 𝜖 but
key[iID] ̸= ⊥ as the receiver has not processed the handshake
message while the sender has derived a session key. Now,
assume the adversary declares iID as the test instance. While
key[iID′] ̸= key[iID], it is clear that we cannot allow the
adversary to obtain both the receiver’s identity public key
ik𝑟 and the receiver state st𝑟 . If we allow such an attack,
the adversary can simply run BAKE.Receive by himself and
derive the same session key as the sender.

To disallow such an unavoidable attack, we will say that
the receiver instance iID′ is an origin instance to the sender
instance iID, and disqualify the adversary from performing
certain types of attacks on the origin instance. A common
way is to define the origin instance of a sender instance iID to

be the receiver instance iID′ such that prek[iID] = prek[iID′];
in the AKE literature, this corresponds to setting the origin
instance identifier as the first message of a two-round AKE
protocol [17, 18, 28, 39, 40]. More generally, we use an origin
function Φorigin and say that iID′ is the origin instance of iID
if Φorigin(iID) = Φorigin(iID′). In some cases where prek[iID]
contains malleable components unnecessary for the secrecy
of the session key (e.g., prek[iID] contains a non-strongly
unforgeable signature), this general definition captures security
more appropriately (see Li and Schäge [34] for more detail).

Formally, we define origin instances as follows.
Definition 4 (Origin Instance). Let Φorigin be an efficiently
computable function called an origin function. An instance
iID′ ∈ N × ({ 0,⊥ } ∪ N) is an origin instance of iID ∈
N × ({ 0,⊥ } ∪ N) if the predicate Origin(iID, iID′) defined
below holds true:

⟦Receiver[iID] = Receiver[iID′]⟧
∧ ⟦(role[iID], role[iID′]) = (sender, receiver)⟧
∧ ⟦Φorigin(iID) = Φorigin(iID′)⟧.

We define the predicate Origin in an asymmetric manner.
A receiver does not need an origin instance as it either has
no information of the sender to begin with or can use the
predicate Partner, defined next, to specify the peer instance.

Partners. The notion of partners concerns two instances that
have agreed on the communicating user and a same session
key. Clearly, if the adversary challenges one of the instances,
then we must disallow the adversary from revealing the session
key from the other partnered instance. Formally, we define
partners as follows.
Definition 5 (Partner). Two instances iID, iID′ ∈ N×({ 0,⊥ }∪
N) are partners if the predicate Partner(iID, iID′) defined
below holds true:

⟦Sender[iID] = Sender[iID′]⟧
∧ ⟦Receiver[iID] = Receiver[iID′]⟧
∧ ⟦role[iID] ̸= role[iID′]⟧ ∧ ⟦key[iID] = key[iID′]⟧.

We note that the partnering definition captures unknown
key share attacks [8]. The two instances will not be partnered
as they disagree on the view of the peer, even if they derive
the same key. Also, it is worth noting that an instance of the
form iID⊥ = (iID,⊥) (i.e., a receiver instance associated with a
last-resort prekey bundle) cannot be partnered with any other
instance as key[iID⊥] = 𝜖 by definition. Here, we implicitly
use the fact that for a two-round protocol, a sender instance
iID will always satisfy key[iID] ̸= 𝜖 .

Similarly to origin instances, we can define partners via
a general function Φpart(iID) as opposed to using key[iID].
However, for the notion of partners, it has been shown that
they are essentially identical for natural schemes [11], and
as such, we opt to use the simpler definition. This comes
with the benefit of the partner definition being much more

Algorithm 1 Games for correctness, key indistinguishability, and match soundness. Below,U denotes the set of users in the
system, P denotes a passive adversary, O★ denotes the set { OPubNewPrekeyBundle,OSend,OReceive }, and O denotes the set of all
oracles defined in Alg. 2. Additionally, mode ∈ { KIND,MATCH }.

1: function GameCORR
BAKE,P (1𝜆)

2: SiID := ∅ ⊲ Admin variable for O★: Set of existing instances.
3: NumiID := 0 ⊲ Admin variable: Number of instances.
4: for user 𝑢 ∈ U do
5: ⊲ Initialize epoch and counter. ⊳

6: (epoch𝑢, ctr𝑢) := (0, 0)
7: (ik𝑢, isk𝑢)

$← BAKE.IdKeyGen(1𝜆)
8: 1← PO★ ((ik𝑢)𝑢∈U) ⊲ P always terminates with 1
9: for (iID, iID′) ∈ SiID × SiID do

10:

cond := ⟦role[iID] ̸= role[iID′]⟧
∧ ⟦sender[iID] = sender[iID′]⟧
∧ ⟦receiver[iID] = receiver[iID′]⟧
∧ ⟦prekidx[iID] = prekidx[iID′]⟧
∧ ⟦𝜌[iID] = 𝜌[iID′]⟧ ∧ ⟦key[iID] ̸= key[iID′]⟧

11: if cond then
12: return 1
13: return 0

14: function Gamemode
BAKE,A (1𝜆)

15: 𝑏
$← { 0, 1 }

16: SiID := ∅ ⊲ Admin variable: Set of existing instances.
17: NumiID := 0 ⊲ Admin variable: Number of instances.
18: iID∗ := ⊥ ⊲ Tested instance.
19: for user 𝑢 ∈ U do
20: ⊲ Initialize epoch and counter. ⊳

21: (epoch𝑢, ctr𝑢) := (0, 0)
22: (ik𝑢, isk𝑢)

$← BAKE.IdKeyGen(1𝜆)
23: st $← AO1 ((ik𝑢)𝑢∈U)
24: 𝑏′

$← A2 (st)
25: if ⟦mode = KIND⟧ then ⊲ Key ind. game.
26: if ⟦iID∗ = ⊥⟧ ∨ ⟦safe(iID∗) = false⟧ then
27: 𝑏′

$← { 0, 1 }
28: return ⟦𝑏 = 𝑏′⟧
29: else ⊲ mode = MATCH, Match soundness game
30: return ⟦Match(SiID) = false⟧

intuitive and easier to compare between different protocols.
At this point, we would like to highlight that our usage of
the protocol-specific origin function Φorigin(iID) will have
implications when defining what an “optimally” secure BAKE
protocol is. See Sec. 3.4 for more discussion.

3.3.3 Match Soundness

Lastly, we provide soundness guarantees for the predicates
Origin and Partner. Observe that an origin instance highly
depends on the definition ofΦorigin. For instance, we can define
Φorigin(iID) = ⊥ for any instance iID, making every receiver
instance to be an origin instance to every sender instance.
However, such a definition does not seem “good” (i.e., sound).
We thus use a predicate Match to define the classes of sound
predicates Origin and Partner.

Definition 6 (Predicate Match). Let SiID ⊂ N × ({ 0,⊥ } ∪N)
be the set of instances generated in the game (cf. Alg. 1).
The predicate Match(SiID) holds true if and only if for any
iID, iID′, iID′′ ∈ SiID, we have the following.
1. If Partner(iID, iID′) = true, then either Origin(iID, iID′) =

true or Origin(iID′, iID) = true.
2. If Partner(iID, iID′) = Partner(iID, iID′′) = true, then

iID′ = iID′′.
3. If Origin(iID, iID′) = Origin(iID, iID′′) = true, then

base(iID′) = base(iID′′). Moreover, we have two cases:
(a) If iID′ ∈ N × {0} (i.e., a receiver instance associated

with a one-time prekey bundle), then iID′ = iID′′.
(b) Otherwise, if iID′ ∈ N × ({⊥} ∪ N∗) (i.e., a re-

ceiver instance associated with a last-resort prekey
bundle), then there exists a unique instance iID⊥ =
(base(iID′),⊥) ∈ SiID, and we have

{
iID′′

���� ∃iID, Origin(iID, iID′′) = true
∧ iID′′ ̸= iID⊥

}
= {(base(iID⊥), 𝑖)}𝑖∈[prekreuse[iID⊥]].

Item 1 demands that if two instances iID and iID′ are partners,
then one of them must be an origin instance of the other. Due
to the asymmetry of the definition of Origin, Origin(iID, iID′) =
true when role(iID) = sender. Item 2 demands that if a partner
exists, then it is unique. The first part of Item 3 demands that
if receiver instances iID′ and iID′′ are origin instances of a
sender instance iID, then iID′ and iID′′must share the same base
instance identifier iID = base(iID). That is, iID = (iID, ctr′)
and iID′′ = (iID, ctr′′) for ctr′, ctr′′ ∈ { 0,⊥ } ∪ N.

Items 3a and 3b add additional checks to Item 3. The first,
Item 3a, demands that if iID′ used a one-time prekey bun-
dle, then ctr′ = ctr′′ = 0. Put differently, a sender instance
has a unique origin instance. This reflects the fact that a
one-time prekey bundle can only be used once, and is a com-
mon check performed for standard two-round AKE protocols.
The second, Item 3b, demands that if iID′ used a last-resort
key bundle (i.e., ctr′ ∈ {⊥} ∪ N), then a sender instance
may have multiple origin instances, all of which having the
same base instance identifier. Moreover, we demand that there
exists one unique instance iID⊥ that must have been gener-
ated during BAKE.PreKeyBundleGen and all other instances
are of the form { (base(iID′), 𝑖) }𝑖∈[prekreuse[iID⊥]], where recall
prekreuse[iID⊥] is the number of time BAKE.Receive was
called on the last-resort prekey bundle. This reflects the fact
that a last-resort prekey bundle can be reused multiple times
and many instances sharing the same prekey bundle exists.

Finally, we check whether predicate Match holds via the
following security game.

Algorithm 2 Oracles used by the correctness, key indistinguishability, and match soundness games. We assume all oracles to
only take users in the system as input, i.e., 𝑢, 𝑠, 𝑟 ∈ U.

1: function OPubNewPrekeyBundle(𝑢)
2: epoch𝑢 ← epoch𝑢 + 1 ⊲ Move to next epoch
3: ctr𝑢 ← 0 ⊲ Reset counter
4: (®prek𝑢, st𝑢)

$← BAKE.PreKeyBundleGen(isk𝑢)
5: ⊲ Assign instances to prekeys ⊳

6: for 𝑡 ∈ [𝐿] ∪ {⊥} do
7: ⊲ Create new base instance ⊳

8: NumiID← NumiID + 1
9: if ⟦𝑡 ̸= ⊥⟧ then ⊲ One-time prekey bundle

10: iID := (NumiID, 0)
11: else ⊲ Last-resort prekey bundle
12: iID := (NumiID,⊥)
13: prekreuse[iID]← 0 ⊲ Record number of reuses
14: SiID ← SiID ∪ { iID }
15: (role[iID],Sender[iID],Receiver[iID])←

(receiver,⊥, 𝑢)
16: (prek[iID], prekidx[iID])← (®prek𝑢[𝑡], 𝑡)
17: epoch[iID]← epoch𝑢
18: return ®prek𝑢

19: function OSend(𝑠, 𝑟, prek)
20: NumiID← NumiID + 1 ⊲ Create new base instance
21: iID := (NumiID, 0)
22: SiID ← SiID ∪ { iID }
23: (𝐾, 𝜌)

$← BAKE.Send(isk𝑠 , ik𝑟 , prek)
24: (role[iID],Sender[iID],Receiver[iID])← (sender, 𝑠, 𝑟)
25: (prek[iID], 𝜌[iID])← (prek, 𝜌)
26: key[iID]← 𝐾

27: PeerCorr[iID]← RevIK[𝑟] ⊲ Check if peer’s isk is corrupted
28: return 𝜌

29: function OReceive(𝑟, 𝑠, 𝜌)
30: ctr𝑟 ← ctr𝑟 + 1
31: if ⟦ctr𝑟 ≤ 𝐿⟧ then ⊲ One-time prekey exists
32: 𝑡 := ctr𝑟
33: Fetch iID s.t. (epoch[iID], prekidx[iID]) = (epoch𝑢, 𝑡)

⊲ Unique
34: else ⊲ One-time prekey depleted
35: 𝑡 := ⊥
36: Fetch iID⊥ s.t. (epoch[iID⊥], prekidx[iID⊥]) = (epoch𝑢, 𝑡)

⊲ Unique
37: (𝐾′, st𝑟)← BAKE.Receive(isk𝑟 , st𝑟 , ik𝑠 , 𝑡, 𝜌)

38: if ⟦𝑡 = ⊥⟧ then
39: ⊲ Create new completed last-resort instance ⊳

40: prekreuse[iID]← prekreuse[iID] + 1 ⊲ prekreuse[iID] =
ctr𝑟 − 𝐿

41: iID := (base(iID⊥), prekreuse[iID])
42: SiID ← SiID ∪ { iID }
43: ⊲ Copy information into new iID ⊳

44: role[iID]← role[iID⊥]
45: Receiver[iID]← Receiver[iID⊥]
46: prek[iID]← prek[iID⊥]
47: prekidx[iID]← prekidx[iID⊥]
48: epoch[iID]← epoch[iID⊥]
49: ⊲ Record completed instance ⊳

50: (Sender[iID], 𝜌[iID], key[iID])← (𝑠, 𝜌, 𝐾′)
51: ⊲ Check if peer’s isk is corrupted ⊳

52: PeerCorr[iID]← RevIK[𝑠]
53: ⊲ Check if own st is corrupted ⊳

54: StateRev[iID]← RevUserSt[𝑟]
55: ⊲ Inform success of BAKE.Receive ⊳

56: return ⟦𝐾′ ̸= ⊥⟧

57: function ORevSessKey(iID)
58: require ⟦base(iID) ≤ NumiID⟧ ⊲ Existing instance
59: RevSessKey[iID]← true
60: return key[iID]

61: function ORevIK(𝑢)
62: RevIK[𝑢]← true
63: return isk𝑢

64: function ORevState(𝑢)
65: ⊲ st𝑢 for epoch𝑢 can’t have been corrupted before ⊳

66: require ⟦UserStCtr[𝑢, epoch𝑢] = 𝜖⟧
67: RevUserSt[𝑢, epoch𝑢]← true
68: UserStCtr[𝑢, epoch𝑢]← ctr𝑢
69: return st𝑢

70: function OTest(iID)
71: require ⟦base(iID) ≤ NumiID⟧ ⊲ Existing instance
72: require ⟦iID∗ = ⊥⟧ ∧ ⟦key[iID] ̸= ⊥⟧
73: iID∗ ← iID
74: 𝐾0 := key[iID];𝐾1

$← K
75: return 𝐾𝑏

Definition 7 (Match Soundness). We define the match sound-
ness game in Alg. 1 (with respect to a predicate Match and
origin function Φorigin) and define the advantage of an adver-
sary A = (A1,A2) as

AdvMATCH
BAKE,A(𝜆) := Pr

[
GameMATCH

BAKE,A(1𝜆) = 1
]
.

We say a BAKE protocol is match sound if AdvMATCH
BAKE,A(1𝜆) =

negl(𝜆) for any efficient A.

Note that for match soundness, we only need to define the
game using A1 as A2 has no effect on the outcome of the
game. We define it as above for readability and consistency
with the key indistinguishability game. Moreover, notice that
match soundness allows the adversary to arbitrary corrupt the
users without consequence, as unlike key indistinguishability,
it is not limited by any predicate safe.

Remark 1 (KEM re-encapsulation attack on PQXDH). The
KEM re-encapsulation attack on Signal’s PQXDH has been
documented in numerous places [5, 6, 21, 31].5 This attack
forces two users to establish the same key, unknown to the
adversary, while disagreeing on the encapsulation key being
used. This was previously considered an implicit attack on key
indistinguishability, though it is not immediately clear why
key indistinguishability should fail. In contrast, we consider
this as an explicit goal as such an attack will violate the first
requirement in predicate Match. This helps better understand
the scope of the attack and prevent similar vulnerabilities in
future works. Indeed, we are able to capture replay attacks
(see Sec. 4), seemingly never covered by any game-based
security model. The one exception being [29], covering this
using symbolic analysis.

3.4 Predicate safeBAKE: Optimal Security
As discussed in Sec. 3.3, the predicate safe defines a set of
unavoidable attacks that break the key indistinguishability of
a BAKE protocol. While the set of such attacks are protocol
dependent, we first identify the minimal set of unavoidable
attacks that no BAKE protocol can be secured against and
define the associated predicate safeBAKE. This allows us to
define the “optimal” key indistinguishability security as it
provides the maximum attack freedom to the adversary.

Keeping track of adversary’s knowledge. To define predi-
cate safeBAKE, we must know what and when secret informa-
tion is revealed. To do so, the security game keeps track of
the adversary’s knowledge by managing the following lists.
RevSessKey[iID] ∈ { true, false } records whether the ses-

sion key of the instance iID is revealed.
RevIK[𝑢] ∈ { true, false } records whether the identity secret

key of the user 𝑢 is revealed.
5Although it is called an “attack”, PQXDH is not vulnerable against this

attack thanks to the design of Kyber. Moreover, there are easy ways to thwart
the attack. See [31, Sec. 4.2] and Sec. 4 for more details.

RevUserSt[𝑢, epoch] ∈ N ∪ { false } records whether the
user state of user 𝑢 in epoch ∈ N, denoted as st𝑢,epoch, is
revealed. If not, it records false. Otherwise, it records an
integer value indicating how many times st𝑢,epoch was used
by the Receive algorithm on time of reveal. For instance, if
𝑡 = RevUserSt[𝑢, epoch] satisfies 𝑡 ≤ 𝐿, then it indicates
that 𝑢 used 𝑡 of the one-time prekeys, otherwise if 𝑡 > 𝐿,
then 𝑢 used the last-resort prekey.

PeerCorr[iID] ∈ { true, false } records whether the identity
secret key of the peer of instance iID has been revealed when
iID computed the session key, to model forward secrecy.

StateRev[iID] ∈ { true, false } records whether the user state
of the owner of the instance iID is revealed when iID
computes the session key, conditioning on iID being a
receiver instance. That is, the game does not need to keep
track if iID is a sender instance; StateRev[iID] = false if
role[iID] = sender (see Rem. 2 for more details).

Algorithm 3 The predicates safeprotocol where protocol ∈
{ BAKE,X3DH,PQXDH }.
1: function safeprotocol(iID∗)
2: (𝑠∗, 𝑟∗)← (Sender[iID∗],Receiver[iID∗])
3: ⊲ Origin instances ⊳

4: 𝔒(iID∗)← { iID ∈ SiID | Origin(iID∗, iID) = true }
5: ⊲ Partner instances ⊳

6: 𝔓(iID∗)← { iID ∈ SiID | Partner(iID∗, iID) = true }
7: if ⟦∀Attack ∈ Tab. 1 : Attack(iID∗) = false⟧ then
8: ⊲ A did not execute any unavoidable attacks ⊳

9: return true
10: else if ⟦protocol ∈ { X3DH,PQXDH }⟧∧⟦∀Attack ∈ Tab. 3\

{ Attack-6&7 } : Attack(iID∗) = false⟧ then
11: ⊲ X3DH/PQXDH A does not execute classical attacks ⊳

12: return true
13: if ⟦protocol = PQXDH⟧ ∧ ⟦Attack-6(iID∗) = false⟧ ∧

⟦Attack-7(iID∗) = false⟧ then
14: ⊲ A does not execute a specific HNDL attack in Tab. 3 ⊳

15: return true
16: return false

Predicate safeBAKE ⇐ Unavoidable attacks against any
BAKE protocol. We first specify the set of unavoidable
attacks that no BAKE protocol can prevent in Tab. 1.
Attack 1 The adversary reveals the session key of the tested

instance iID∗.
Attack2 Assume the tested instance iID∗ has a partner instance

iID and consider an adversary that reveals the session key
of iID. This is an unavoidable attack since partner instances
derive the same session keys (cf. Def. 5).

Attack 3 Assume the tested instance iID∗ is owned by a sender
(resp. receiver), it has an origin (resp. partner) instance
iID, and it used a one-time prekey bundle. Consider an
adversary that reveals the receiver’s identity secret key
and the receiver’s user state containing the secret of the
used one-time prekey bundle. This is an unavoidable attack
since BAKE.Receive is deterministic; the adversary can
simply run it as the receiver to derive the session key of the

Table 1: Minimal set of unavoidable attacks against any BAKE protocol. Each row denotes the predicate Attack-xx(iID∗) returning
the logical AND of the conditions specified in each column. Variables 𝑠∗ = Sender[iID∗] and 𝑟∗ = Receiver[iID∗] denote the
sender and receiver relative to tested instance iID∗; one of them is the identity of the user in iID∗ and the other of its (supposed)
peer. ep∗ denotes the epoch in which the used prekey was issued. “—” means that the variable can take any value.

Status of the tested iID∗ Adversary’s activities

Attack ro
le[

iID
∗]

|𝔒
(iI

D
∗)|

|𝔓
(iI

D
∗)|

∃iI
D
∈
𝔒

(iI
D
∗)

:

pr
ek

idx
[iI

D]
pr

ek
idx

[iI
D
∗]

Pe
er

Co
rr[

iID
∗]

St
ate

Re
v[

iID
∗]

Re
vS

es
sK

ey
[iI

D
∗]

∃iI
D
∈
𝔓

(iI
D
∗)

:

Re
vS

es
sK

ey
[iI

D]
Re

vIK
[𝑠
∗]

Re
vIK

[𝑟
∗]

Re
vU

se
rS

t[𝑟
∗ , e

p∗
]

Explanation

1 — — — — — — — true — — — — key[iID∗] is revealed.

2 — — 1 — — — — — true — — — The session key key[iID] of the partner instance of iID∗
is revealed.

3-1 sender 1 — ≤ 𝐿 — — — — — — true < prekidx[iID] When the same one-time prekey is used by the sender and
the receiver, both isk𝑟∗ and st𝑟∗ ,ep∗ are revealed before
the one-time prekey is used by 𝑟∗.

3-2 receiver — 1 — ≤ 𝐿 — — — — — true < prekidx[iID∗] Same as 3-1

4-1 sender 1 — ⊥ — — — — — — true ̸= false When the same last-resort prekey is used by the sender
and the receiver, both isk𝑟∗ and st𝑟∗ ,ep∗ are revealed.

4-2 receiver — 1 — ⊥ — — — — — true ̸= false Same as 4-1

5-1 sender 0 — — — true — — — — — — The peer of the tested instance may be impersonated by
the adversary.

5-2 receiver — 0 — — true — — — — — — Same as 5-1

Note: 𝔒(iID) and 𝔓(iID) give the set of origin and partner sessions, respectively, for iID (see Alg. 3).

tested instance. We divide into Attacks 3-1 (role = sender)
and 3-2 (role = receiver) by the tested instance’s role.

Attack 4 Assume the tested instance iID∗ is owned by a sender
(resp. receiver), it has an origin (resp. a partner) instance
iID, and it used a last-resort prekey bundle. Consider an
adversary that reveals the receiver’s identity secret key and
the receiver’s user state containing the last-resort prekey
secret. Similarly to Attack 3, the adversary can compute
the session key of the tested instance. We divide Attack 4
into Attacks 4-1 (role = sender) and 4-2 (role = receiver).

Attack 5 Assume that the tested instance iID∗ has no origin
or partner instance. Consider an adversary that corrupts the
identity secret key of the peer of iID∗ before iID∗ computed
the session key. This results in an unavoidable attack since
if the adversary knew the peer’s identity secret key, it can
trivially impersonate the peer of the tested instance, thus
computing the same session key. We divide Attack 5 into
Attacks 5-1 (role = sender) and 5-2 (role = receiver).

Remark 2 (Asymmetry between sender and receiver). Notice
that Attacks 3 and 4 only consider an adversary revealing
the receiver’s identity secret key and user state. In particular,
an adversary revealing the sender’s identity secret key and
user state is not considered an unavoidable attack. This is
because a BAKE protocol is two-round and the BAKE.Send
algorithm is probabilistic and does not use the user’s state. As
such, there is no immediate way for the adversary to compute
the tested session key given the sender’s secrets.

Definition 8 (Predicate safeBAKE). We define the optimal
predicate safeBAKE for any BAKE protocol in Alg. 3 based on
the set of unavoidable attacks in Tab. 1.

The rows of Tab. 1 work as predicates that return the logical
AND of the conditions specified in each column. Predicate
safeBAKE checks if there is a row in the table that returns true.
If any rows returns true, then the adversary has executed an
unavoidable attack. In this case, the tested instance is deemed
unsafe. In other words, if all rows return false, the session key
derived by the tested instance must be secure (if the protocol
and primitives used are secure).

Notice predicate safeBAKE is parameterized by the predi-
cates Origin and Partner. As mentioned in Sec. 3.3.2, while
predicate Partner is defined unambiguously by Def. 5 between
different protocols, predicate Origin has some ambiguity due
to our usage of the origin function Φorigin (see Def. 4). As
such, it is worth highlighting that “optimal” security is defined
implicitly with respect to a specific choice of Φorigin.

3.4.1 Avoidable Attacks on BAKE Protocols

To prove security of a BAKE protocol, we must show that it is
secure against any adversary that does not execute any of the
unavoidable attacks in Tab. 1. Taking the counter-positive, we
consider every attack strategy for which predicate safeBAKE
evaluates to true, and then prove key indistinguishability for
each. Such attack strategies can be derived by enumerating the
combinations of variables such that the value of each row of

Tab. 1 is false. As this is a useful tool for any security proof,
we formally depict this in Tab. 2. Specifically, if the predicate
safeBAKE evaluates to true, then the adversary must take one
of the attack strategies shown in Tab. 2. Note that all standard
AKE security proofs either implicitly or explicitly follow this
proof strategy [22, 24, 25, 26, 27, 28, 38].

To get some intuition behind the attacks, we will map the
attack strategies to known attacks documented in standard
AKE protocols.
Maximal exposure attack [12, 22, 30, 33]: This is captured

by Types 1, 2, and 3. In this attack, the adversary can obtain
any combinations of the identity secret and user-state of
partnering and origin instances, except for those that lead
to the unavoidable Attacks 3 and 4. Note that since sender’s
user-state is not used to generate the handshake message
(cf. Rem. 2), we always allow the adversary to reveal the
sender’s identity secret and its user-state.

Key-compromise impersonation (KCI) attack [7, 30]: This
is captured by Type 4. In this attack, the adversary can
obtain the identity secret key of the tested instance and uses
it to impersonate another user against the tested instance.

Attack against full forward security [12, 19]: This is also
captured by Type 4. In this attack, an active adversary (i.e.,
the tested instance has no origin/partner instance) can obtain
the identity secret key of the peer of the tested instance after
the session key has been computed.

3.5 Predicates (safeX3DH, safePQXDH):
Achievable Security

In addition to the unavoidable attacks specified in the previous
section for any BAKE protocol, Signal’s X3DH and PQXDH
have some documented and accepted weaknesses in specific
powerful compromise scenarios. Below, we specify these
additional unavoidable attacks to exclude them from our
security analysis.

Predicates (safeX3DH, safePQXDH) ⇐ Unavoidable attacks
specific to (X3DH,PQXDH). The unavoidable attacks spe-
cific to X3DH and/or PQXDH are given in Tab. 3.

The first attack assumes a harvest-now-decrypt-later
(HNDL) adversary and only concerns PQXDH.
Attack 6 Assume the tested instance iID∗ is owned by a sender

(resp. receiver), it has an origin (resp. a partner) instance
iID, and it used a one-time PQKEM prekey. Consider an
adversary that reveals the receiver’s state before the origin
(resp. tested) instance computes the session key.

Attack 7 Assume the tested instance iID∗ is owned by a sender
(resp. receiver), it has an origin (resp. a partner) instance
iID, and it used a last-resort PQKEM prekey. Consider an
adversary that reveals the receiver’s state.

Although these attacks may not be formally documented, it
is implied since PQXDH is not fully quantum secure, only
aiming to be secure against HNDL adversaries. Namely, the

above attack exploits the fact that if a (harvest-now) classical
adversary A1 obtains the secret associated to the PQKEM
prekey, then all security is lost against a (decrypt-later) quan-
tum adversary A2 since A2 can break all the Diffie–Hellman
secrets to compute the session key.

The next attack is on the full forward secrecy of the sender.
Attack 8-1 Assume the tested instance iID∗ is owned by a

sender without an origin instance, and consider an adversary
that has revealed the receiver’s identity secret key after the
tested instance computed the session key.

In X3DH and PQXDH, an adversary can mount Attack 8-1
by providing a sender with a prekey in which the unsigned
ephemeral Diffie–Hellman public key opk is replaced by an
adversarial opk∗. Since the prekey is modified, the sender will
no longer have an origin instance, and as such, the adversary
is able to reveal the receiver’s user state containing the secret
to the prekey. Combined with the receiver’s identity secret
key, the adversary can now compute the session key.

The final attack is a user-state compromise impersonation
attack of the receiver.
Attack 8-2 Assume the tested instance iID∗ is owned by a

receiver and has no partner instance. Consider an adversary
that has revealed the receiver’s user state before the tested
instance computed the session key.

This attack against X3DH and PQXDH is well-known and is
documented in the Signal documentation [36, Sec. 4.6] and
[31, Sec. 4.6].6 Notably, once the receiver’s state is revealed,
an adversary can impersonate any user to the receiver.

We now define the predicates safeX3DH and safePQXDH.

Definition 9 (Predicates safeX3DH and safePQXDH). We define
the predicates safeX3DH and safePQXDH for a BAKE protocols
X3DH and PQXDH, respectively, in Alg. 3 based on the set
of unavoidable attacks in Tab. 3.

3.5.1 Avoidable attacks.

Similarly to safeBAKE, for completeness, we take the counter
positive and list all the allowed adversary attack strategies.
To show key indistinguishability, we prove that the protocol
remains secure with respect to each attack strategies. This is
given in Tab. 4.

Notice that Types 2 and 3 are identical to the allowed attack
strategies for the optimal BAKE protocol (cf. Tab. 2). Type 1
is relaxed by only allowing classical adversaries when the
user-state is revealed. Type 4 captures weak forward secrecy
for the sender as apposed to full forward secrecy. Lastly, while
Type 5 captures full forward secrecy for the receiver, it restricts
the adversary from compromising the receiver’s user-state.

6While the documentation uses the term “key” compromise imperson-
ation attack, we use “user-state” as that is what the adversary reveals.

Table 2: Every allowed adversary attack strategy (i.e., attacks for which safeBAKE evaluates to true). See Tab. 1 for notation. Each
type is split depending on the role of the tested instance.

Status of the tested iID∗ Adversary’s activities

Attack ro
le[

iID
∗]

|𝔒
(iI

D
∗)|

|𝔓
(iI

D
∗)|

∃iI
D
∈
𝔒

(iI
D
∗)

:

pr
ek

idx
[iI

D]
pr

ek
idx

[iI
D
∗]

Pe
er

Co
rr[

iID
∗]

St
ate

Re
v[

iID
∗]

Re
vS

es
sK

ey
[iI

D
∗]

∃iI
D
∈
𝔓

(iI
D
∗)

:

Re
vS

es
sK

ey
[iI

D]
Re

vIK
[𝑠
∗]

Re
vIK

[𝑟
∗]

Re
vU

se
rS

t[𝑟
∗ , e

p∗
]

Explanation

1-1 sender 1 — — — — — false false — false — Reveal user-state st𝑟∗ ,ep∗ but not identity key isk𝑟∗ .
1-2 receiver — 1 — — — — false false — false — Same as 1-1

2-1 sender 1 — ≤ 𝐿 — — — false false — — ≥ prekidx[iID] Reveal st𝑟∗ ,ep∗ after the one-time prekey is used by 𝑟∗
and reveal isk𝑟∗ .

2-2 receiver — 1 — ≤ 𝐿 — — false false — — ≥ prekidx[iID∗] Same as 2-1

3-1 sender 1 — ⊥ — — — false false — — false Only reveal isk𝑟∗ if the last-resort key is used.
3-2 receiver — 1 — ⊥ — — false false — — false Same as 3-1

4-1 sender 0 — — — false — false n/a — — — Attack against key-compromise impersonation security
and full forward secrecy is allowed.

4-2 receiver — 0 — — false — false n/a — — — Same as 4-1

4 Signal’s X3DH and PQXDH

The X3DH protocol [36] was proposed in 2016 by Marlin-
spike and Perrin based on the Triple Diffie–Hellman AKE
protocol [32]. In 2023, Signal introduced PQXDH to protect
the Signal handshake protocol against harvest now, decrypt
later attacks [31]. In this section, we will first describe X3DH
and PQXDH, then we discuss their security.

4.1 Descriptions of X3DH and PQXDH
The descriptions of X3DH and PQXDH are given in Algs. 4
to 6. As PQXDH mainly consists of the addition of a post-
quantum KEM to X3DH, it is described in the same figures,
marked with a gray dotted box. Below, we first focus on the
shared features before discussing PQXDH’s additions.

The key agreement in these protocols proceeds roughly as
follows. The identity keys of both users are Diffie–Hellman
(DH) values. The prekey bundle contains a signed DH key,
and, if it is a one-time prekey bundle, an ephemeral DH key.
Finally, the sender generates an ephemeral key. These keys are
used pairwise in DH computations before combining them
into a shared secret ss (c.f. Alg. 5, Lns. 6 to 13).

While our description of X3DH and PQXDH closely follows
Signal’s documentation [31, 36], we incorporated several mi-
nor modifications based on discussions with Signal developers
that may be included in future updates [45].

It is worth noting that the Signal implementation also
deviates from the documentation in various ways.7 Though
the documentation is titled “The PQXDH Key Agreement
Protocol” [31], the described protocol additionally transmits
an initial protocol message, encrypted using some unspecified

7This was also noted by [14], who also heavily refer to source code.

authenticated encryption with associated data (AEAD). The
same key used to encrypt this message is also the key output
from the AKE. This lack of key separation and the inclusion
of a user-specified message make it not just harder to consider
X3DH and PQXDH as a modular “handshake” component to
the Signal messaging protocol, but also harder to model.

Arguably, the sending of a message and lack of key separa-
tion are (over)simplifications made in a somewhat informal
description. The Signal implementation actually interleaves
the initial messages of the Double Ratchet (DR) algorithm
with the PQXDH handshake, using DR to derive new keys
to encrypt and authenticate the message (using AES-CBC
and HMAC). For ease of presentation, modeling, and to prove
the security of a modular PQXDH handshake without having
to consider DR, we remove the AEAD and include proto-
col specific contents into the key derivation function (KDF)
to generate a confirmation tag 𝜏conf in our protocol descrip-
tions. At a high level, the confirmation tag acts as an implicit
one-time MAC, replacing the need of an AEAD, where the
message being signed is the sender’s view of the protocol. We
discussed this with Signal, who indicated that, in response to
these findings, they may follow our suggestion to make a better
separation between the handshake protocol and DR. Looking
ahead, such a modification allows us to prevent the KEM re-
encapsulation attack on PQXDH without making non-standard
assumptions on the underlying KEM (cf. Rem. 1).

We further modify the users to keep track of the received
handshake messages with respect to the last-resort prekey bun-
dle using a list 𝐷𝜌⊥ . The receiver will reject any handshake
message 𝜌 such that 𝜌 ∈ 𝐷𝜌⊥ . See Alg. 6, Ln. 8. Note that we
could further compress 𝐷𝜌⊥ by hashing 𝜌, adding an assump-
tion on collision resistance. Since a last-resort prekey can be
reused, this protects against an adversary mounting a replay at-

Table 3: Additional unavoidable attacks specific to X3DH and PQXDH, where Attacks 6-x and 7-x are unique to PQXDH as we
consider a HNDL adversary (i.e., A2 is quantum; A1 is always classical). Refer to Tab. 1 for the notation used in this table.

Status of the tested iID∗ Adversary’s activities

Attack ro
le[

iID
∗]

|𝔒
(iI

D
∗)|

|𝔓
(iI

D
∗)|

∃iI
D
∈
𝔒

(iI
D
∗)

:

pr
ek

idx
[iI

D]
pr

ek
idx

[iI
D
∗]

A 2
is

qu
an

tu
m

Pe
er

Co
rr[

iID
∗]

St
ate

Re
v[

iID
∗]

Re
vS

es
sK

ey
[iI

D
∗]

∃iI
D
∈
𝔓

(iI
D
∗)

:

Re
vS

es
sK

ey
[iI

D]
Re

vIK
[𝑠
∗]

Re
vIK

[𝑟
∗]

Re
vU

se
rS

t[𝑟
∗ , e

p∗
]

Explanation

6-1 sender 1 — ≤ 𝐿 — true — — — — — — < prekidx[iID] PQXDH: The KEM prekey is known to quantum
adversaries.

6-2 receiver — 1 — ≤ 𝐿 true — — — — — — < prekidx[iID] Same as 6-1

7-1 sender 1 — ⊥ — true — — — — — — ̸= false PQXDH: The KEM prekey is known to quantum
adversaries.

7-2 receiver — 1 — ⊥ true — — — — — — ̸= false Same as 7-1

8-1 sender 0 — — — — false — — — — true — Unavoidable attack against full forward secrecy
for sender.

8-2 receiver — 0 — — — — true — — — — — Unavoidable attack against user-state compro-
mised impersonation security for receiver.

tack that makes a receiver derive the same session key multiple
times. Observe a protocol vulnerable against this replay attack
explicitly violates our match soundness as it allows creating
multiple partner instances (cf. Def. 6, Item 2). Replay attacks
appear to have been overlooked in prior analyses (although
mentioned in the documentation [31, Sec. 4.2], and covered
by a symbolic analysis [29]), which illustrates the usefulness
of our security model. We highlight that Signal implements
the countermeasure suggested by the documentation.

We further clarify the differences between Algs. 5 and 6,
the Signal X3DH protocol description, and the libsignal
implementation [46] in App. B in the full version. Lastly,
common to prior work, we separate the identity key into
separate keys for ECDH key agreement and EdDSA signatures.
In practice, Signal uses this key in both roles, using the X25519
secret as an XEd25519 signing key [41].

4.2 HNDL-Security for PQXDH
PQXDH only attempts to give post-quantum security against
HNDL attacks, and thus still relies on elliptic curve cryp-
tography for authentication. While the identity keys are the
same as X3DH, signed post-quantum KEM keys are added
to the prekey bundles. In the functions PQXDH.Send and
PQXDH.Receive one can see how these additional KEM keys
are used to inject a KEM-encapsulated quantum-safe shared
secret into the key returned by the handshake.

Note that although the Signal specification and implemen-
tation of PQXDH supports prekey bundles without KEM
prekeys (as this gives backwards compatibility with X3DH),
we do not to model this.8 Classic security of PQXDH without
KEM prekeys follows directly from X3DH.

8This DH-only mode will eventually be disabled [45].

Downgrade resilience of PQXDH. As long as PQXDH
clients do not enforce the usage of KEM prekeys, i.e., run in
“compatibility mode”, a network attacker or malicious server
may omit them from prekey bundles and force a classically-
secure session. This is because the prekey bundle’s composi-
tion is not authenticated. Though it appears receivers might
notice that prekey bundle prek𝑡 contained a KEM prekey when
it was generated, in the Signal implementation, prekey bundles
are actually assembled piece-wise on the server and the DH
and KEM (one-time) prekeys are individually identified (i.e.,
in practice identifier 𝑡 can be considered a tuple (𝑡DH, 𝑡KEM)).
The protocols do not try to authenticate protocol version or
algorithms supported by the sender or receiver, as, e.g., the
TLS 1.3 handshake does [44]. That means that the sender and
receiver will each assume the other only supported X3DH if
the KEM prekeys are just omitted. As X3DH was not designed
with negotiation in mind, this issue can seemingly not be
prevented without sacrificing backwards compatibility.

4.3 Security Overview

The correctness of X3DH and PQXDH follows from construc-
tion. Below, we state the match soundness and key indistin-
guishability of PQXDH. Due to its similarity with PQXDH,
we focus on the security of the more complex PQXDH and
explain how X3DH differs in App. C.2 in the full version.

Match soundness. We prove match soundness of PQXDH
(and X3DH) with respect to the following origin function.

Definition 10 (Origin Function for Signal Protocols). For
any iID ∈ SiID (i.e., the set of all instances created during the
game) with prek[iID] ̸= ⊥, we define the origin function as
Φ

Signal
origin (iID) := prek[iID].

https://eprint.iacr.org/2025/040.pdf#appendix.373
https://eprint.iacr.org/2025/040.pdf#subsection.509

Table 4: Every allowed adversary attack strategy for X3DH and PQXDH. The differences with Tab. 2 are indicated in red. As in
Tab. 3, adversary A1 is always classical; A2 possibly being quantum is only considered for PQXDH: in X3DH it is classical.

Status of the tested iID∗ Adversary’s activities

Attack ro
le[

iID
∗]

|𝔒
(iI

D
∗)|

|𝔓
(iI

D
∗)|

∃iI
D
∈
𝔒

(iI
D
∗)

:

pr
ek

idx
[iI

D]
pr

ek
idx

[iI
D
∗]

A 2
is

qu
an

tu
m

Pe
er

Co
rr[

iID
∗]

St
ate

Re
v[

iID
∗]

Re
vS

es
sK

ey
[iI

D
∗]

∃iI
D
∈
𝔓

(iI
D
∗)

:

Re
vS

es
sK

ey
[iI

D]
Re

vIK
[𝑠
∗]

Re
vIK

[𝑟
∗]

Re
vU

se
rS

t[𝑟
∗ , e

p∗
]

Explanation

1-1 sender 1 — — — false — — false false — false — Only for classical adversary, reveal user-state
st𝑟∗ ,ep∗ but not secret key isk𝑟∗ .

1-2 receiver — 1 — — false — — false false — false — Same as 1-1

2-1 sender 1 — ≤ 𝐿 — — — — false false — — ≥ prekidx[iID] Reveal st𝑟∗ ,ep∗ after the one-time prekey is used
by 𝑟∗ and reveal isk𝑟∗ .

2-2 receiver — 1 — ≤ 𝐿 — — — false false — — ≥ prekidx[iID∗] Same as 2-1

3-1 sender 1 — ⊥ — — — — false false — — false Only reveal isk𝑟∗ if the last-resort key is used.
3-2 receiver — 1 — ⊥ — — — false false — — false Same as 4-1

4 sender 0 — — — false false — false n/a — false — Only attack against weak forward secrecy is al-
lowed for the sender but can reveal user-state.

5 receiver — 0 — — — false false false n/a — — — Attack against full forward secrecy is allowed for
the receiver but cannot reveal user-state.

As mentioned in Sec. 3.3.2, this is one of the most common
ways to define an origin instance in the AKE literature [17,
18, 28, 39, 40]. We then show the following which establishes
the match soundness of PQXDH. As discussed, this entails
security against replay and KEM re-encapsulation attacks.

Theorem 1. PQXDH is match sound against a harvest-now-
decrypt-later adversary with respect to the predicate Match
(cf. Def. 6) and origin function Φ

Signal
origin (cf. Def. 10).

Proof. We defer the proof to App. C.1.2 in the full version. At
a high level, we first provide a helper lemma allowing to check
whether two instances are partners only looking at the public
transcripts. Note that the current definition of partnering is
not publicly checkable as it compares the established keys.
With this helper lemma, checking match soundness consists
of a straightforward check. □

Key indistinguishability. We show key indistinguishability
with respect to the predicate safePQXDH. PQXDH offers secu-
rity against a class of HNDL adversaries. But, as explained
in Sec. 3.5, if the classical adversary compromises the post-
quantum KEM prekeys, then it cannot offer HNDL security
as all the remaining security comes from classical primitives.

Theorem 2. PQXDH is key indistinguishable against a
harvest-now-decrypt-later adversary with respect to the pred-
icate safePQXDH (cf. Def. 9).

Proof. We defer the proof to App. C.1.3 in the full version. As
explained in Sec. 3.4, we use predicate safePQXDH to define
the set of “avoidable” attacks. This translates to all the allowed
adversary attack strategies (cf. Tab. 4). We prove the advantage
is negligible for each of these strategies. □

5 Our Post-Quantum RingXKEM

In this section, we propose a post-quantum BAKE protocol
RingXKEM that is key indistinguishable with respect to the
predicate safeBAKE (cf. Def. 8). The core design of RingXKEM
is inspired from the deniable AKE protocol by Hashimoto et
al. [25, 26] based on ring signatures. We extend it to meet the
syntax of a BAKE protocol and optimize it using Merkle trees
to save on receiver bandwidth and server storage.

5.1 Description of RingXKEM
The description of RingXKEM is given in Algs. 7 to 9. The
construction is based on a KDF, Merkle tree, KEM, and a ring
signature. If we ignore the Merkle tree for a moment, used only
for optimization purposes, the construction is quite simple.
The 𝑡th (𝑡 ∈ [𝐿]∪{⊥}) prekey bundle consists of a KEM public
key êk𝑡 , a (ring) signature on the êk𝑡 , and a ring signature
verification key rvk. Here, rvk is shared by all 𝐿 + 1 prekey
bundles and the associated signing key rsk is discarded. A
sender, after checking validity of êk𝑡 , will generate two KEM
ciphertexts ct and ĉt: one associated to ek included in the
receiver’s identity key and the other to êk𝑡 . It then generates a
ring signature 𝜎 with the ring { rvk𝑠 , rvk }, where the message
is ct and ĉt along with additional public information. Lastly,
the sender derives a session key 𝐾 and an SKE key 𝐾ske from
the KEM session keys ss and ŝs, encrypts 𝜎 using 𝐾ske as
ctske, and sends the handshake message 𝜌 = (ct, ĉt, ctske). The
receiver can process 𝜌 using the KEM secret keys.

Notice that this vanilla construction requires the users to
upload 𝐿 + 1 (ring) signatures to the server. While this is also
the case for PQXDH, this becomes problematic in RingXKEM

https://eprint.iacr.org/2025/040.pdf#subsubsection.450
https://eprint.iacr.org/2025/040.pdf#subsubsection.460

Algorithm 4 PQX3DH identity key and prekey bundle gener-
ation algorithms.

1: function PQX3DH.IdKeyGen(1𝜆)
2: isk $← Z𝑝 ; ik := [isk]𝐺
3: (vk, sk)

$← Sig.KeyGen (1𝜆)
4: return (ik := (ik, vk), isk := (isk, sk))
1: function PQX3DH.PreKeyBundleGen(isk𝑢)
2: (isk𝑢, sk𝑢)← isk𝑢
3: 𝐷prek , 𝐷𝜌⊥ := ∅ ⊲ Initialize empty lists
4: ⊲ Generate what Signal calls the signed prekey ⊳

5: spksec𝑢
$← Z𝑝 ; spk𝑢 := [spksec]𝐺

6: 𝜎spku

$← Sig.Sign(sk𝑢, spk𝑢)
7: ⊲ Create the 𝐿 one-time prekey bundles ⊳

8: for 𝑡 ∈ [𝐿] do
9: osk𝑢,𝑡

$← Z𝑝 ; opk𝑢,𝑡 := [osk𝑢,𝑡]𝐺

10: (ek𝑢,𝑡 , dk𝑢,𝑡)
$← KEM.KeyGen (1𝜆)

11: 𝜎eku,t
$← Sig.Sign (sk𝑢, ek𝑢,𝑡)

12: prek𝑢,𝑡 := (spk𝑢, 𝜎spku
, opk𝑢,𝑡 , ek𝑢,𝑡 , 𝜎eku,t)

13: 𝐷prek[𝑡]← (prek𝑢,𝑡 , (spksec𝑢, osk𝑢,𝑡 , dk𝑢,𝑡))
14: ⊲ Set up the last-resort prekey bundle ⊳

15: (ek𝑢,⊥, dk𝑢,⊥)
$← KEM.KeyGen (1𝜆)

16: 𝜎eku,⊥
$← Sig.Sign (sk𝑢, ek𝑢,⊥)

17: prek𝑢,⊥ := (spk𝑢, 𝜎spku
,⊥, ek𝑢,⊥, 𝜎eku,⊥)

18: 𝐷prek[⊥]← (prek𝑢,⊥, (spksec𝑢,⊥, dk𝑢,⊥))

19: return (®prek𝑢, st𝑢 := (𝐷prek , 𝐷𝜌⊥))

when targeting post-quantum security. The signatures can
become an order of magnitude larger than in the classical
setting, making the prekey bundles very large. The Merkle
tree optimization allows to only upload a single signature:
the users accumulate all the KEM public keys (êk𝑡)𝑡∈[𝐿]∪{⊥}
and only sign the digest root. We provide concrete numbers
for this optimization in Sec. 6.2. It is worth noting that this
Merkle tree optimization is made possible owing to our new
definition of BAKE protocols. Previous works on Signal’s
handshake protocols, e.g., [9, 14, 15, 16, 21, 25, 26], are not
able to handle such optimization as each prekey bundle prek𝑡
was assumed to be generated independently.

One downside of our optimization is that prekey bundles
become slightly larger. In particular, a sender is now required
to download an extra Merkle tree path𝑡 proving that êk𝑡 was
accumulated in root. Notice that in our construction, the users
explicitly include path𝑡 in each prekey bundle prek𝑡 . However,
in practice, we can simply let the server reconstruct them using
the uploaded (êk𝑡)𝑡∈[𝐿]∪{⊥} without harming security. Namely,
when a sender retrieves 𝑢’s prekey bundle from the server,
the server can compute path𝑡 on the fly. Importantly, due to
binding of the Merkle tree, the server cannot inject a prekey
that 𝑢 did not accumulate in the hash digest.

Lastly, we note that the usage of ring signatures and an

Algorithm 5 PQX3DH sender algorithms. prek is not indexed
by 𝑡 ∈ [𝐿] ∪ {⊥} as they are oblivious to the sender.

1: function PQX3DH.Send(isk𝑠 , ik𝑟 , prek𝑟)
2: (isk𝑠 , sk𝑠)← isk𝑠 ; (ik𝑟 , vk𝑟)← ik𝑟
3:

(
spk𝑟 , 𝜎spkr

, opk𝑟 , ek𝑟 , 𝜎ekr

)
← prek𝑟 ⊲ opk𝑟 = ⊥ if prek𝑟

is a last-resort key bundle
4: require ⟦Sig.Verify(vk𝑟 , spk𝑟 , 𝜎spkr

) = 1⟧
5: require ⟦Sig.Verify(vk𝑟 , ek𝑟 , 𝜎ekr) = 1⟧
6: esk $← Z𝑝 , epk := [esk]𝐺
7: ss1 := [isk𝑠]spk𝑟
8: ss2 := [esk]ik𝑟
9: ss3 := [esk]spk𝑟

10: ss := ss1∥ss2∥ss3
11: if ⟦opk𝑟 ̸= ⊥⟧ then ⊲ One-time prekey bundle
12: ss4 := [esk]opk𝑟
13: ss := ss1∥ss2∥ss3∥ss4
14: (ssKEM, ct) $← KEM.Encaps(ek𝑟)

15: content := ik𝑠 ∥ik𝑟 ∥prek𝑟 ∥epk ∥ct
16: 𝐾 ∥𝜏conf := KDF(ss ∥ssKEM , content)
17: 𝜌 := (epk, ct, 𝜏conf)
18: return (𝐾, 𝜌)

SKE to encrypt the ring signature is purely for deniability
reasons, similarly to what is done in the standard AKE protocol
by Hashimoto et al. While our protocol plausibly satisfies
deniability, we leave a formal proof for future work as we
would first need to formalize deniability for BAKE protocols.

The formal security statements and proofs are given in
App. D in the full version.

6 Comparison

In this section, we will first compare the security properties
of the protocols that we discussed, followed by a comparison
of the efficiency of the different schemes.

6.1 Security
By proving the security of Signal handshake protocols using
the BAKE abstraction and security model,we can make a direct
comparison of their security properties; we show an overview
in Tab. 5. By setting the powers of the adversary and modeling
unavoidable attacks, we were able to show that PQXDH is
indeed secure against harvest now, decrypt later attacks, but
that this requires that the adversary is not able to obtain
the secrets for the post-quantum KEM prekeys. Additionally,
receivers in both X3DH and PQXDH cannot avoid user state
compromise impersonation attacks, while senders are only
weakly forward secure. Our proposal, RingXKEM, is post-
quantum, and proving its security does not require ruling out
additional unavoidable attacks: it is secure against user-state
compromise impersonation attacks and fully forwards secure.

https://eprint.iacr.org/2025/040.pdf#appendix.516

Algorithm 6 PQX3DH receiver algorithms.

1: function PQX3DH.Receive(isk𝑟 , st𝑟 , ik𝑠 , 𝑡, 𝜌)
2: (isk𝑟 , sk𝑟)← isk𝑟 ; (ik𝑠 , vk𝑠)← ik𝑠
3: (𝐷prek , 𝐷𝜌⊥)← st𝑟
4: if ⟦𝑡 ̸= ⊥⟧ then ⊲ One-time prekey bundle
5: require ⟦𝐷prek[𝑡] ̸= ⊥⟧ ⊲ Check if unused.
6: (prek𝑟 ,𝑡 , (spksec𝑟 , osk𝑟 ,𝑡 , dk𝑟 ,𝑡))← 𝐷prek[𝑡]
7: else ⊲ Last-resort prekey bundle (i.e., 𝑡 = ⊥)
8: require ⟦𝜌 ̸∈ 𝐷𝜌⊥⟧ ⊲ Check 𝜌 is not replayed.
9: 𝐷𝜌⊥ ← 𝐷𝜌⊥ ∪ { 𝜌 }

10: (prek𝑟 ,𝑡 , (spksec𝑟 ,⊥, dk𝑟 ,𝑡))← 𝐷prek[𝑡]

11: (epk, ct, 𝜏conf)← 𝜌

12: ss1 := [spksec𝑟]ik𝑠 ; ss2 := [isk𝑟]epk
13: ss3 := [spksec𝑟]epk; ss := ss1∥ss2∥ss3
14: if ⟦𝑡 ̸= ⊥⟧ then ⊲ One-time prekey bundle
15: ss4 := [osk𝑟 ,𝑡]epk; ss := ss1∥ss2∥ss3∥ss4
16: ssKEM ← KEM.Decaps(dk𝑟 ,𝑡 , ct)

17: content := ik𝑠 ∥ik𝑟 ∥prek𝑟 ,𝑡 ∥epk ∥ct
18: 𝐾 ∥𝜏′conf := KDF(ss ∥ssKEM , content)
19: require ⟦𝜏conf = 𝜏′conf⟧
20: ⊲ Delete prekey bundle if not last-resort ⊳

21: if ⟦𝑡 ̸= ⊥⟧ then 𝐷prek[𝑡]← ⊥
22: st𝑟 ← (𝐷prek , 𝐷𝜌⊥)
23: return (𝐾, st𝑟)

Algorithm 7 RingXKEM’s identity key and prekey bundle
generation algorithms.

1: function RingXKEM.IdKeyGen(1𝜆)
2: (ek, dk)

$← KEM.KeyGen (1𝜆)
3: (rvk, rsk)

$← RS.KeyGen (1𝜆)
4: return (ik := (ek, rvk), isk := (dk, rsk))

5: function RingXKEM.PreKeyBundleGen(isk𝑢)
6: (dk𝑢, rsk𝑢)← isk𝑢
7: 𝐷kem, 𝐷𝜌⊥ := ∅ ⊲ Initialize empty lists
8: for 𝑡 ∈ [𝐿] ∪ {⊥} do
9: (êk𝑢,𝑡 , d̂k𝑢,𝑡)

$← KEM.KeyGen (1𝜆)
10: ⊲ Create and sign Merkle tree ⊳

11: (root𝑢, tree𝑢)← MerkleTree((êk𝑢,𝑡)𝑡∈[𝐿]∪{⊥})
12: 𝜎𝑢,root

$← RS.Sign (rsk𝑢, root𝑢, { rvk𝑢 })
13: (rvk, _)

$← RS.KeyGen (1𝜆) ⊲ Discard rsk
14: for 𝑡 ∈ [𝐿] do ⊲ One-time prekey bundles
15: path𝑢,𝑡 ← getMerklePath(tree𝑢, 𝑡)
16: prek𝑢,𝑡 := (êk𝑢,𝑡 , path𝑢,𝑡 , root𝑢, 𝜎𝑢,root, rvk)
17: 𝐷kem[𝑡]← (prek𝑢,𝑡 , d̂k𝑢,𝑡)
18: ⊲ Last-resort prekey bundle 𝑡 = ⊥ ⊳

19: path𝑢,⊥ ← getMerklePath(tree𝑢, 𝐿 + 1)
20: prek𝑢,⊥ := (êk𝑢,⊥, path𝑢,⊥, root𝑢, 𝜎𝑢,root, rvk)
21: 𝐷kem[𝑡]← (prek𝑢,⊥, d̂k𝑢,⊥)

22: return
(®prek𝑢 := (prek𝑢,𝑡)𝑡∈[𝐿]∪{⊥} ,
st𝑢 := (𝐷kem, rvk, 𝐷𝜌⊥)

)

Algorithm 8 RingXKEM’s sender algorithm. The prekey
bundle index 𝑡 is oblivious to the sender.

1: function RingXKEM.Send(isk𝑠 , ik𝑟 , prek𝑟)
2: (dk𝑠 , rsk𝑠)← isk𝑠 ; (ek𝑟 , rvk𝑟)← ik𝑟
3: (êk𝑟 , path𝑟 , root𝑟 , 𝜎𝑟 ,root, rvk)← prek𝑟
4: require ⟦ReconstructRoot(êk𝑟 , path𝑟) = root𝑟⟧
5: require ⟦RS.Verify({ rvk𝑟 } , êk𝑟 , 𝜎𝑟 ,root) = 1⟧
6: (ss𝑟 , ct𝑟)

$← KEM.Encaps(ek𝑟)
7: (ŝs𝑟 , ĉt𝑟)

$← KEM.Encaps(êk𝑟)
8: content := ik𝑠 ∥ik𝑟 ∥prek𝑟 ∥ct𝑟 ∥ĉt𝑟
9: 𝐾 ∥𝐾ske := KDF(ss𝑟 ∥ŝs𝑟 , content)

10: 𝜎
$← RS.Sign(rsk𝑠 , content, { rvk𝑠 , rvk })

11: ctske
$← SKE.Enc(𝐾ske, 𝜎) ⊲ Mask ring signature

12: 𝜌 := (ct𝑟 , ĉt𝑟 , ctske)
13: return (𝐾, 𝜌)

Algorithm 9 RingXKEM’s receiver algorithm.
1: function RingXKEM.Receive(isk𝑟 , st𝑟 , ik𝑠 , 𝑡, 𝜌)
2: (dk𝑟 , rsk𝑟) ← isk𝑟 ; (ek𝑠 , rvk𝑠) ← ik𝑠
3: (𝐷kem, rvk, 𝐷𝜌⊥)← st𝑟
4: (ct𝑟 , ĉt𝑟 , ctske)← 𝜌

5: ⊲ Check 𝑡th prekey bundle was not deleted. ⊳

6: require ⟦𝐷kem[𝑡] ̸= ⊥⟧
7: if ⟦𝑡 = ⊥⟧ then
8: require ⟦(ct𝑟 , ĉt𝑟) ̸∈ 𝐷𝜌⊥⟧ ⊲ Check not replayed.
9: 𝐷𝜌⊥ ← 𝐷𝜌⊥ ∪ { (ct𝑟 , ĉt𝑟) }

10: (prek𝑟 ,𝑡 , d̂k𝑟 ,𝑡)← 𝐷kem[𝑡]
11: ss𝑟 := KEM.Decaps(dk𝑟 , ct𝑟)
12: ŝs𝑟 := KEM.Decaps(d̂k𝑟 ,𝑡 , ĉt𝑟)
13: content := ik𝑠 ∥ik𝑟 | |prek𝑟 ,𝑡 | |ct𝑟 | |ĉt𝑟
14: 𝐾 ∥𝐾ske := KDF(ss𝑟 ∥ŝs𝑟 , content)
15: 𝜎 := SKE.Dec(𝐾ske, ctske) ⊲ Unmask signature
16: require ⟦RS.Verify({rvk𝑠 , rvk}, content, 𝜎) = 1⟧
17: if ⟦𝑡 ̸= ⊥⟧ then
18: 𝐷kem[𝑡]← ⊥ ⊲ Delete prekey bundle
19: st𝑟 ← (𝐷kem, rvk, 𝐷𝜌⊥)
20: return (𝐾, st𝑟)

6.2 Efficiency

In this section, we will instantiate the protocols described
above and show how they perform. We will focus on the
bandwidth and storage requirements; an overview is given in
Tab. 7. The bandwidth costs of setting up a Signal conversation
affect the network transmission times; storage requirements
directly impact the cost of operating the Signal central servers.
We will also approximate the computation time required.

For an overview of the primitives mentioned below, see
Tab. 6. The algorithms used for post-quantum KEM, Diffie–
Hellman and elliptic curve signatures follow Signal; for the
ring signature scheme we choose the recently proposed Gan-
dalf signature scheme [23].

X3DH and PQXDH. The X3DH and PQXDH protocols,
as deployed by Signal, use a single X25519 public key for
both ECDH and signing. All prekey bundles contain a signed

Table 5: Security comparison of BAKE protocols.

Protocol Adversary Forward
Secrecy

User-State
Compromise
Impersonation

Protocol-specific
adversary
restrictions

X3DH Classical Sender: weak
Receiver: full

Receiver
vulnerable

No quantum/HNDL
adversaries.

PQXDH HNDL Sender: weak
Receiver: full

Receiver
vulnerable

KEM secret can not
be revealed to
HNDL adversary.

RingXKEM Quantum Full Secure No RingXKEM
specific restrictions.

Table 6: Primitives used to instantiate the BAKE protocols.

Size (bytes)
Algorithm Sec. level pk ct / sig

ECDH X25519 Pre-Quantum 32 32
KEM Kyber-512 NIST I 800 768
KEM Kyber-1024 NIST V 1568 1568
Signature XEd25519 [41] Pre-Quantum 32 64
1-Ring Sig Gandalf [23] NIST I 896 630
2-Ring Sig Gandalf [23] NIST I 896 1236

Tree size Hash algorithm |root| |path|

Merkle Tree 𝐿 SHA-256 32 32
⌈
1 + log2 𝐿

⌉
Merkle Tree 100 SHA-256 32 256

prekey: a 32-byte X25519 public key with 64-byte XEd25519
signature [41]. The one-time prekey bundles contain an addi-
tional 32-byte X25519 public key. This amounts to a 128 bytes
download for the sender. PQXDH has an additional signed
Kyber-1024 prekey in every prekey bundle for HNDL security.
This adds 1536 bytes and a 64-byte XEd25519 signature.

The X3DH handshake message contains an ephemeral
32-byte X25519 public key, and a 32-byte confirmation tag.
PQXDH senders include a 1536 byte ciphertext.

The computational overhead of adding KEM operations to
X3DH is negligible; benchmarks of the Kyber-1024 reference
implementation on ARM Cortex-A72 show that the median
time for decapsulation (the most expensive operation) is only
83 µs slower than X25519 computations.9

RingXKEM. The RingXKEM protocol uses a KEM encap-
sulation key and a ring signature verification key in its identity
public key. Kyber-512 encapsulation keys are 800 bytes, while
Gandalf verification keys are 896 bytes and the signatures

Table 7: Bandwidth and storage requirements (in bytes) of
BAKE protocols. As in Signal, we use 𝐿 = 100.

Prekey bundle size
Protocol KEX

Identity
public key Individual 𝑳 keys

Handshake
message

X3DH ECDH 32 128 3296 64
PQXDH DH+K-1024 32 1696 166 496 1632
RingXKEM Kyber-512 1696 2582 81 526 2772
RingXKEM-noMT Kyber-512 1696 2326 143 896 2772
RingXKEM Kyber-1024 2464 3350 158 326 4372
RingXKEM-noMT Kyber-1024 2464 3094 220 696 4372

are 606𝑛 + 24 bytes, where 𝑛 is the size of the ring. Prekey
bundles always have the same size in RingXKEM, and consist
of another KEM and ring signature key. During the generation
of prekey bundles, a Merkle tree is constructed from the KEM
encapsulation keys. Its root is signed using the identity key’s
ring signature key, which results in a 630 byte signature. To
authenticate the KEM encapsulation key, a sender needs to
also download a 256-byte Merkle tree path; the root of the tree
can be reconstructed from the path and the KEM encapsulation
key. Together, the download size is 2582 bytes per prekey
bundle. Server-side storage requirements scale with KEM
encapsulation key size, as the ring signature verification key
is shared between all prekey bundles, there is only one signed
Merkle tree root, and the server can re-compute the paths in
the Merkle tree on-demand. The handshake message consists
of two KEM ciphertexts, a symmetrically encrypted 2-ring
signature of 1236 bytes, and a confirmation tag. Assuming no
overhead from encryption, the message is 2772 bytes. We also
give the sizes for RingXKEM with Kyber-1024 like PQXDH.

The Merkle tree approach saves a significant amount of data
on the server, at the cost of a small increase in download size
per prekey bundle. For comparison, Tab. 7 row RingXKEM-
noMT shows a variant of RingXKEM that signs each KEM
prekey instead of using a Merkle tree. Note that for PQXDH,
the savings are much less pronounced, as the signature on the
KEM that is replaced by the Merkle tree approach is only 64
bytes (and storage savings is thus only 64(𝐿 − 1) bytes).

We expect computational performance of RingXKEM to
be competitive with PQXDH. As above, the KEM operations
are not noticeably slower than comparable ECDH operations.
Though Gandalf does not report concrete performance num-
bers, they write that signing (the most expensive operation, by
far) is linear in the size of the ring and expect that it should be
faster than the comparable Falcon signature scheme [43]. On
ARM Cortex-A72, Falcon needs 1 ms to sign.9 Assuming that
the two-ring Gandalf signature takes twice as long to compute,
this is still much less than typical network latency. Finally,
computing the Merkle Tree uses only hash operations. On
the same chip, which runs at 1.5 GHz, hashing a Kyber-1024
public key using SHA-256 takes 18325 cycles.9 Computing
the full Merkle Tree requires

⌈
𝐿 log2 𝐿

⌉
hash operations, so

for 𝐿 = 100 this should take approximately 9 ms.

Acknowledgments
We would like to thank all anonymous reviewers who helped
improve our paper. We also thank Daniel Collins for his helpful
input during the initial phase of this project and Rolfe Schmidt
forhelping us understand the implementation and requirements
ofSignal. This paper is basedon results obtained from a project,
JPNP24003, commissioned by the Japanese New Energy and
Industrial Technology Development Organization (NEDO).

9Based on supercop-20240425 [4] results for hostname pi4b (latest
measurements: DH, KEM, sign, hash).

http://bench.cr.yp.to/results-dh/aarch64-pi4b.html
http://bench.cr.yp.to/results-kem/aarch64-pi4b.html
http://bench.cr.yp.to/results-sign/aarch64-pi4b.html
http://bench.cr.yp.to/results-hash/aarch64-pi4b.html

Ethic Considerations
In this work, we set out to analyze the security of implemented
and deployed cryptographic protocols. The security of Signal’s
handshake protocol is relied on by very large numbers of users,
which makes better understanding the security of Signal’s
handshake protocol and proposals for new security protocols
with better security guarantees highly relevant. We based our
analysis on publicly available documentation and open-source
implementations of Signal’s protocols.

Risks and Risk Mitigation. As part of analyzing the se-
curity of Signal’s X3DH and PQXDH protocols, it was a
possibility that we might find new security flaws that could be
used in real-world attacks on users of Signal. As prior work
has thoroughly investigated the security of both of these pro-
tocols, we deemed this risk exceedingly unlikely. During the
development of this work, we were in constant discussion with
Signal’s developers; if any significant issues had been found,
we would have coordinated with them on how to best protect
Signal’s users, both of the Signal app itself, and other users of
Signal including Facebook Messenger, WhatsApp, and others.
Although we found that certain features of the deployed Signal
handshake protocol made analysis more difficult, and Signal
have indicated that they will be making changes in response to
our findings, these changes only increase the robustness of the
protocol and do not affect security or privacy of Signal’s users
or other applications that use the X3DH or PQXDH protocols.
If we would have had findings that affected the security of
users, we would have followed standard responsible disclosure
practices with suitable embargo periods before disclosure.

Benefits. Signal is in the process of a transition towards full
post-quantum security. We aim to contribute to this discussion
by providing new models and results that can help developers
using Signal’s handshake protocol evaluate how to proceed
with this transition. We view that these benefits are well worth
the (in our view, negligible) risks. The work was done while
in open communication with Signal developers. They have
received and reviewed our findings before submission.

Open Science
The formalization and security model for Bundled AKE pro-
tocols and the RingXKEM protocol that we developed are
documented in this paper. We do not have any other artifacts
(e.g., datasets, scripts, or binaries) related to this paper. We
have shared our results with Signal developers, and they are
considering changes to their implementations in response to
our results.

References

[1] Apple Security Engineering and Architecture. iMes-
sage with PQ3: The new state of the art in quantum-
secure messaging at scale. Feb. 21, 2024. url: https:

//security.apple.com/blog/imessage-pq3/
(visited on 08/27/2024).

[2] David Basin, Felix Linker, and Ralf Sasse. A For-
mal Analysis of the iMessage PQ3 Messaging Pro-
tocol. Technical Report. Feb. 2024. url: https :
/ / security . apple . com / assets / files / A _
Formal _ Analysis _ of _ the _ iMessage _ PQ3 _
Messaging_Protocol_Basin_et_al.pdf.

[3] Hugo Beguinet,Céline Chevalier,Thomas Ricosset,and
Hugo Senet. “Formal Verification of a Post-quantum
Signal Protocol with Tamarin.” In: Verification and
Evaluation of Computer and Communication Systems.
Ed. by Belgacem Ben Hedia, Yassine Maleh, and Moez
Krichen. Springer, 2024, pp. 105–121. doi: 10.1007/
978- 3- 031- 49737- 7_8. url: https://hal.
science/hal-04361766/document.

[4] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT
Benchmarking of Cryptographic Systems. url: https:
//bench.cr.yp.to (visited on 08/19/2024).

[5] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus
Kiefer, and Rolfe Schmidt. An Analysis of Sig-
nal’s PQXDH. Cryspen Blog. Oct. 20, 2023. url:
https://cryspen.com/post/pqxdh/ (visited on
08/27/2024).

[6] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus
Kiefer, and Rolfe Schmidt. “Formal verification of the
PQXDH Post-Quantum key agreement protocol for end-
to-end secure messaging.” In: USENIX Security 2024.
Ed. by Davide Balzarotti and Wenyuan Xu. USENIX
Association, Aug. 2024.

[7] Simon Blake-Wilson, Don Johnson, and Alfred
Menezes. “Key Agreement Protocols and Their Se-
curity Analysis.” In: 6th IMA International Conference
on Cryptography and Coding. Ed. by Michael Darnell.
Vol. 1355. LNCS. Springer, Berlin, Heidelberg, Dec.
1997, pp. 30–45. doi: 10.1007/bfb0024447.

[8] Simon Blake-Wilson and Alfred Menezes. “Unknown
Key-Share Attacks on the Station-to-Station (STS)
Protocol.” In: PKC’99. Ed. by Hideki Imai and Yuliang
Zheng. Vol. 1560. LNCS. Springer, Berlin, Heidelberg,
Mar. 1999, pp. 154–170. doi: 10.1007/3- 540-
49162-7_12.

[9] Jacqueline Brendel, Rune Fiedler, Felix Günther, Chris-
tian Janson, and Douglas Stebila. “Post-quantum Asyn-
chronous Deniable Key Exchange and the Signal Hand-
shake.” In: PKC 2022,Part II. Ed. by Goichiro Hanaoka,
Junji Shikata, and Yohei Watanabe. Vol. 13178. LNCS.
Springer, Cham, Mar. 2022, pp. 3–34. doi: 10.1007/
978-3-030-97131-1_1.

https://security.apple.com/blog/imessage-pq3/
https://security.apple.com/blog/imessage-pq3/
https://security.apple.com/assets/files/A_Formal_Analysis_of_the_iMessage_PQ3_Messaging_Protocol_Basin_et_al.pdf
https://security.apple.com/assets/files/A_Formal_Analysis_of_the_iMessage_PQ3_Messaging_Protocol_Basin_et_al.pdf
https://security.apple.com/assets/files/A_Formal_Analysis_of_the_iMessage_PQ3_Messaging_Protocol_Basin_et_al.pdf
https://security.apple.com/assets/files/A_Formal_Analysis_of_the_iMessage_PQ3_Messaging_Protocol_Basin_et_al.pdf
https://doi.org/10.1007/978-3-031-49737-7_8
https://doi.org/10.1007/978-3-031-49737-7_8
https://hal.science/hal-04361766/document
https://hal.science/hal-04361766/document
https://bench.cr.yp.to
https://bench.cr.yp.to
https://cryspen.com/post/pqxdh/
https://doi.org/10.1007/bfb0024447
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/978-3-030-97131-1_1
https://doi.org/10.1007/978-3-030-97131-1_1

[10] Jacqueline Brendel, Marc Fischlin, Felix Günther,
Christian Janson, and Douglas Stebila. “Towards Post-
Quantum Security for Signal’s X3DH Handshake.” In:
SAC 2020. Ed. by Orr Dunkelman, Michael J. Jacobson
Jr., and Colin O’Flynn. Vol. 12804. LNCS. Springer,
Cham, Oct. 2020, pp. 404–430. doi: 10.1007/978-
3-030-81652-0_16.

[11] Chris Brzuska, Cas Cremers, Håkon Jacobsen, Douglas
Stebila, and Bogdan Warinschi. Falsifiability, Com-
posability, and Comparability of Game-based Secu-
rity Models for Key Exchange Protocols. Cryptology
ePrint Archive, Report 2024/1215. 2024. url: https:
//eprint.iacr.org/2024/1215.

[12] Ran Canetti and Hugo Krawczyk. “Analysis of Key-
Exchange Protocols and Their Use for Building Secure
Channels.” In: EUROCRYPT 2001. Ed. by Birgit Pfitz-
mann. Vol. 2045. LNCS. Springer, Berlin, Heidelberg,
May 2001, pp. 453–474. doi: 10 . 1007 / 3 - 540 -
44987-6_28.

[13] Wouter Castryck and Thomas Decru. “An Efficient Key
Recovery Attack on SIDH.” In: EUROCRYPT 2023,
Part V. Ed. by Carmit Hazay and Martijn Stam.
Vol. 14008. LNCS. Springer,Cham,Apr. 2023, pp. 423–
447. doi: 10.1007/978-3-031-30589-4_15.

[14] Katriel Cohn-Gordon,Cas Cremers,Benjamin Dowling,
Luke Garratt, and Douglas Stebila. “A Formal Security
Analysis of the Signal Messaging Protocol.” In: 2017
IEEE European Symposium on Security and Privacy.
IEEE Computer Society Press, Apr. 2017, pp. 451–466.
doi: 10.1109/EuroSP.2017.27.

[15] Katriel Cohn-Gordon,Cas Cremers,Benjamin Dowling,
Luke Garratt, and Douglas Stebila. “A Formal Security
Analysis of the Signal Messaging Protocol.” In: Journal
of Cryptology 33.4 (Oct. 2020), pp. 1914–1983. doi:
10.1007/s00145-020-09360-1.

[16] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh
Nguyen, Nicolas Rolin, and Serge Vaudenay. “K-Waay:
Fast and Deniable Post-Quantum X3DH without Ring
Signatures.” In: USENIX Security 2024. Ed. by Davide
Balzarotti and Wenyuan Xu. USENIX Association,
Aug. 2024.

[17] Cas Cremers and Michèle Feltz. “Beyond eCK: per-
fect forward secrecy under actor compromise and
ephemeral-key reveal.” In: DCC 74.1 (2015), pp. 183–
218. doi: 10.1007/s10623-013-9852-1.

[18] Cas J. F. Cremers and Michele Feltz. “Beyond eCK:
Perfect Forward Secrecy under Actor Compromise
and Ephemeral-Key Reveal.” In: ESORICS 2012. Ed.
by Sara Foresti, Moti Yung, and Fabio Martinelli.
Vol. 7459. LNCS. Springer, Berlin, Heidelberg, Sept.
2012, pp. 734–751. doi: 10.1007/978- 3- 642-
33167-1_42.

[19] Whitfield Diffie, Paul C. van Oorschot, and Michael
J. Wiener. “Authentication and Authenticated Key
Exchanges.” In: DCC 2.2 (1992), pp. 107–125. doi:
10.1007/BF00124891.

[20] Samuel Dobson and Steven D. Galbraith. “Post-
Quantum Signal Key Agreement from SIDH.” In: Post-
Quantum Cryptography - 13th International Workshop,
PQCrypto 2022. Ed. by Jung Hee Cheon and Thomas
Johansson. Springer, Cham, Sept. 2022, pp. 422–450.
doi: 10.1007/978-3-031-17234-2_20.

[21] Rune Fiedler and Felix Günther. Security Analysis
of Signal’s PQXDH Handshake. Cryptology ePrint
Archive, Report 2024/702. 2024. url: https : / /
eprint.iacr.org/2024/702.

[22] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and
Kazuki Yoneyama. “Strongly Secure Authenticated
Key Exchange from Factoring, Codes, and Lattices.” In:
PKC 2012. Ed. by Marc Fischlin, Johannes Buchmann,
and Mark Manulis. Vol. 7293. LNCS. Springer, Berlin,
Heidelberg, May 2012, pp. 467–484. doi: 10.1007/
978-3-642-30057-8_28.

[23] Phillip Gajland, Jonas Janneck, and Eike Kiltz. “Ring
Signatures for Deniable AKEM: Gandalf’s Fellow-
ship.” In: CRYPTO 2024, Part I. Ed. by Leonid Reyzin
and Douglas Stebila. Vol. 14920. LNCS. Springer,
Cham, Aug. 2024, pp. 305–338. doi: 10.1007/978-
3-031-68376-3_10.

[24] Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin
Pan, Doreen Riepel, and Sven Schäge. “Authenticated
Key Exchange and Signatures with Tight Security in
the Standard Model.” In: CRYPTO 2021, Part IV. Ed.
by Tal Malkin and Chris Peikert. Vol. 12828. LNCS.
Virtual Event: Springer, Cham, Aug. 2021, pp. 670–700.
doi: 10.1007/978-3-030-84259-8_23.

[25] Keitaro Hashimoto, Shuichi Katsumata, Kris
Kwiatkowski, and Thomas Prest. “An Efficient and
Generic Construction for Signal’s Handshake (X3DH):
Post-Quantum, State Leakage Secure, and Deniable.”
In: PKC 2021, Part II. Ed. by Juan Garay. Vol. 12711.
LNCS. Springer, Cham, May 2021, pp. 410–440. doi:
10.1007/978-3-030-75248-4_15.

[26] Keitaro Hashimoto, Shuichi Katsumata, Kris
Kwiatkowski, and Thomas Prest. “An Efficient and
Generic Construction for Signal’s Handshake (X3DH):
Post-quantum, State Leakage Secure, and Deniable.”
In: Journal of Cryptology 35.3 (July 2022), p. 17. doi:
10.1007/s00145-022-09427-1.

[27] Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Do-
minique Unruh. “Generic Authenticated Key Exchange
in the Quantum Random Oracle Model.” In: PKC 2020,
Part II. Ed. by Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas. Vol. 12111. LNCS.

https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-81652-0_16
https://eprint.iacr.org/2024/1215
https://eprint.iacr.org/2024/1215
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/s10623-013-9852-1
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/BF00124891
https://doi.org/10.1007/978-3-031-17234-2_20
https://eprint.iacr.org/2024/702
https://eprint.iacr.org/2024/702
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-031-68376-3_10
https://doi.org/10.1007/978-3-031-68376-3_10
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/s00145-022-09427-1

Springer, Cham, May 2020, pp. 389–422. doi: 10.
1007/978-3-030-45388-6_14.

[28] Tibor Jager,Eike Kiltz,Doreen Riepel, and Sven Schäge.
“Tightly-Secure Authenticated Key Exchange, Revis-
ited.” In: EUROCRYPT 2021, Part I. Ed. by Anne
Canteaut and François-Xavier Standaert. Vol. 12696.
LNCS. Springer, Cham, Oct. 2021, pp. 117–146. doi:
10.1007/978-3-030-77870-5_5.

[29] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. “Automated Verification for Secure Messag-
ing Protocols and Their Implementations: A Symbolic
and Computational Approach.” In: 2017 IEEE Eu-
ropean Symposium on Security and Privacy. IEEE
Computer Society Press, Apr. 2017, pp. 435–450. doi:
10.1109/EuroSP.2017.38.

[30] Hugo Krawczyk. “HMQV: A High-Performance Se-
cure Diffie-Hellman Protocol.” In: CRYPTO 2005. Ed.
by Victor Shoup. Vol. 3621. LNCS. Springer, Berlin,
Heidelberg, Aug. 2005, pp. 546–566. doi: 10.1007/
11535218_33.

[31] Ehren Kret and Rolfe Schmidt. The PQXDH Key
Agreement Protocol. Protocol documentation. Oct. 18,
2023. url: https : / / signal . org / docs /
specifications/pqxdh/.

[32] Caroline Kudla and Kenneth G. Paterson. “Modular
Security Proofs for Key Agreement Protocols.” In: ASI-
ACRYPT 2005. Ed. by Bimal K. Roy. Vol. 3788. LNCS.
Springer, Berlin, Heidelberg, Dec. 2005, pp. 549–565.
doi: 10.1007/11593447_30.

[33] Brian A. LaMacchia, Kristin Lauter, and Anton Mitya-
gin. “Stronger Security of Authenticated Key Ex-
change.” In: ProvSec 2007. Ed. by Willy Susilo, Joseph
K. Liu, and Yi Mu. Vol. 4784. LNCS. Springer, Berlin,
Heidelberg, Nov. 2007, pp. 1–16. doi: 10.1007/978-
3-540-75670-5_1.

[34] Yong Li and Sven Schäge. “No-Match Attacks and
Robust Partnering Definitions: Defining Trivial Attacks
for Security Protocols is Not Trivial.” In: ACM CCS
2017. Ed. by Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu. ACM Press, Oct. 2017,
pp. 1343–1360. doi: 10.1145/3133956.3134006.

[35] Luciano Maino, Chloe Martindale, Lorenz Panny, Gia-
como Pope, and Benjamin Wesolowski. “A Direct Key
Recovery Attack on SIDH.” In: EUROCRYPT 2023,
Part V. Ed. by Carmit Hazay and Martijn Stam.
Vol. 14008. LNCS. Springer,Cham,Apr. 2023, pp. 448–
471. doi: 10.1007/978-3-031-30589-4_16.

[36] Moxie Marlinspike and Trevor Perrin. The X3DH
Key Agreement Protocol. Protocol documentation.
Nov. 4, 2016. url: https://signal.org/docs/
specifications/x3dh/.

[37] Meta, Inc. MessengerEnd-to-End Encryption Overview.
Technical white paper. Dec. 6, 2023. url: https:
/ / engineering . fb . com / wp - content /
uploads / 2023 / 12 / MessengerEnd - to -
EndEncryptionOverview_12-6-2023.pdf.

[38] Jiaxin Pan, Chen Qian, and Magnus Ringerud. “Signed
Diffie-Hellman Key Exchange with Tight Security.” In:
CT-RSA 2021. Ed. by Kenneth G. Paterson. Vol. 12704.
LNCS. Springer, Cham, May 2021, pp. 201–226. doi:
10.1007/978-3-030-75539-3_9.

[39] Jiaxin Pan, Doreen Riepel, and Runzhi Zeng. “Key
Exchange with Tight (Full) Forward Secrecy via Key
Confirmation.” In: EUROCRYPT 2024, Part VII. Ed. by
Marc Joye and Gregor Leander. Vol. 14657. LNCS.
Springer, Cham, May 2024, pp. 59–89. doi: 10.1007/
978-3-031-58754-2_3.

[40] Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng.
“Lattice-Based Authenticated Key Exchange with Tight
Security.” In: CRYPTO 2023, Part V. Ed. by Helena
Handschuh and Anna Lysyanskaya. Vol. 14085. LNCS.
Springer, Cham, Aug. 2023, pp. 616–647. doi: 10.
1007/978-3-031-38554-4_20.

[41] Trevor Perrin. The XEdDSA and VXEdDSA Signature
Schemes. documentation. Oct. 20, 2016. url: https:
//signal.org/docs/specifications/xeddsa/.

[42] Trevor Perrin and Moxie Marlinspike. The Double
Ratchet Algorithm. Protocol documentation. Nov. 20,
2016. url: https : / / signal . org / docs /
specifications/doubleratchet/.

[43] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein,
Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,
Thomas Ricosset, Gregor Seiler, William Whyte, and
Zhenfei Zhang. FALCON. Tech. rep. available at
https : / / csrc . nist . gov / Projects / post -
quantum-cryptography/selected-algorithms-
2022. National Institute of Standards and Technology,
2022.

[44] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446. Aug. 2018. doi:
10.17487/RFC8446.

[45] Rolfe Schmidt. “Private communications.” 2024.
[46] Signal foundation. libsignal. url: https : / /

github.com/signalapp/libsignal.
[47] Douglas Stebila. Security analysis of the iMessage PQ3

protocol. Cryptology ePrint Archive, Report 2024/357.
2024. url: https://eprint.iacr.org/2024/357.

[48] WhatsApp. WhatsApp Encryption Overview. Technical
white paper. Sept. 27, 2023. url: https://www.
whatsapp.com/security/WhatsApp-Security-
Whitepaper.pdf.

https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://signal.org/docs/specifications/pqxdh/
https://signal.org/docs/specifications/pqxdh/
https://doi.org/10.1007/11593447_30
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-031-30589-4_16
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-031-58754-2_3
https://doi.org/10.1007/978-3-031-58754-2_3
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-3-031-38554-4_20
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.17487/RFC8446
https://github.com/signalapp/libsignal
https://github.com/signalapp/libsignal
https://eprint.iacr.org/2024/357
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	Introduction
	Contributions
	A New Model for Signal Handshake Protocols
	Analyzing X3DH and PQXDH as BAKE Protocols
	A Post-Quantum Signal Handshake Protocol

	Bundled Authenticated Key Exchange
	Syntax of Bundled AKE
	A Single State for Prekey Bundles
	Availability Versus Ephemeral Keys

	Correctness and Security of Bundled AKE
	Execution Environment
	Correctness of BAKE
	Security of BAKE: Key Indistinguishability
	Key Indistinguishability
	Origin Instances and Partners
	Match Soundness

	Predicate safe-BAKE: Optimal Security
	Avoidable Attacks on BAKE Protocols

	 Predicates safe-(PQ)XDH: Achievable Security
	Avoidable attacks.

	Signal's X3DH and PQXDH
	Descriptions of X3DH and PQXDH
	HNDL-Security for PQXDH
	Security Overview

	Our Post-Quantum RingXKEM
	Description of RingXKEM

	Comparison
	Security
	Efficiency

