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Abstract

Fake base stations (FBSes) pose a significant security threat
by impersonating legitimate base stations (BSes). Though
efforts have been made to defeat this threat, up to this day,
the presence of FBSes and the multi-step attacks (MSAs)
stemming from them can lead to unauthorized surveillance,
interception of sensitive information, and disruption of net-
work services. Therefore, detecting these malicious entities
is crucial to ensure the security and reliability of cellular net-
works. In this paper, we develop FBSDetector—an effective
and efficient detection solution that can reliably detect FB-
Ses and MSAs from layer-3 network traces using machine
learning (ML) at the user equipment (UE) side. To develop
FBSDetector, we create FBSAD and MSAD, the first-ever
high-quality and large-scale datasets incorporating instances
of FBSes and 21 MSAs. These datasets capture the network
traces in different real-world cellular network scenarios (in-
cluding mobility and different attacker capabilities) incor-
porating legitimate BSes and FBSes. Our novel ML frame-
work, specifically designed to detect FBSes in a multi-level
approach for packet classification using stateful LSTM with
attention and trace level classification and MSAs using graph
learning, can effectively detect FBSes with an accuracy of
96% and a false positive rate of 2.96%, and recognize MSAs
with an accuracy of 86% and a false positive rate of 3.28%.
We deploy FBSDetector as a real-world solution to protect
end-users through a mobile app and extensively validate it in
real-world environments. Compared to the existing heuristic-
based solutions that fail to detect FBSes, FBSDetector can
detect FBSes in the wild in real time.

1 Introduction

The widespread adoption of cellular networks has brought
about unprecedented improvements in data rates, latency, and
device connectivity, resulting in a surge in the number of
connected devices worldwide. In 2024, the number of mo-
bile devices is assessed at 17.72 billion, having an estimated
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4.88 billion global users, marking a 4.9% annual increase [1],
and the number of mobile devices is expected to reach 18.22
billion by 2025 having 5.28 billion users [2]. Given the exten-
sive usage and dependence on cellular networks, they become
desirable targets for malicious entities. These entities try to
disrupt cellular network services by exploiting different types
of vulnerabilities in cellular network protocols. Of all the at-
tacks and threat models targeting cellular networks, Fake Base
Stations (FBSes), a.k.a. false base stations and rouge base sta-
tions, are among the most widespread and represent a signif-
icant threat. Due to the lack of authentication of initial broad-
cast messages as well as the unprotected connection setup in
the bootstrapping phase [3-5], adversaries can install FBSes
that can lure unsuspecting devices to connect to them and
then launch sophisticated Multi-Step Attacks (MSAs) [6—15].

Motivation. The threat posed by FBSes is not new and has
been around for a while, but they are still extensively used
by attackers worldwide [16, 17]. The key motivations of
our work are: (1) A persistent problem. Despite considerable
efforts, FBSes remain a persistent challenge in cellular
network security. They can still be deployed for attacks in
5G cellular networks, even with the use of the encrypted
permanent ID (SUCI), in contrast to the unencrypted IMSI
used in 4G, which the UE transmits to the base station
for authentication [18]. Recent efforts have introduced
certificate-based solutions and digital signatures [6, 19, 20]
to address such problems. Nonetheless, these proposals
are still in their infancy and would impose substantial
overhead and require changes to the specifications to be
applicable in a real-world setting. Moreover, the proposed
certificate-based solutions make the design of roaming
difficult for cellular network providers. When a user travels
from one place to another place or from one country to
another country, the different network providers will have
to share their secret keys for authentication, which is very
challenging considering the security aspects of the sharing
process [21]. (2) Billions of unprotected devices. The 3GPP
is planning to incorporate several defense mechanisms
in the protocol to defend against FBSes [6] in future




generations. However, these defense mechanisms will still
take several years to roll out in the specification and then to
the implementation. Currently, billions of devices worldwide
are vulnerable to FBS-based attacks, and billions of new
devices released in the coming years will be vulnerable to
attacks until the new protocol is implemented. These devices
need to be secured through in-device solutions because
replacing them is impractical and would incur huge costs. (3)
Impracticality and high cost of existing detection mechanisms.

Although efforts [3, 14,22-37] have been undertaken to detect
FBSes, they suffer from at least one of the following limi-
tations: (A) Heuristic [32—-34] and signature/rule [3, 14,24]
based solutions fail to adapt to the detection of ever-evolving
attacks. (B) Some solutions depend on crowd-sourced
data [31], which is impractical to scale up to a system
that has to protect billions of devices. (C) Some detection
solutions [25, 26, 35, 36] require installing expensive
hardware; in most cases, they are proprietary. For example,
CellDAM [37] requires a separate companion node near the
UEs to capture the signaling messages. This is not a practical
solution for protecting billions of devices. (D) Lower layer
based solutions [22,23,27-30] cannot detect sophisticated
FBSes, and are not inherently able to detect MSAs.

Recently, both Google and Apple have adopted new ap-
proaches to defeat FBSes [38]. These approaches are very
promising within their scope; however, a knowledgeable and
well-equipped adversary beyond their scope can still continue
to operate. Therefore, it is essential to design effective and
efficient solutions to detect FBSes and MSAs. In this paper,
we aim to address this by developing a low-overhead, no-cost,
and in-device solution that can effectively detect FBSes and
MSASs that use FBSes in their threat model, from the network
traces in the UEs.

A practical solution. Machine learning (ML) can be a practi-
cal in-device solution to address all the existing problems in
detecting and defending against the FBSes and MSAs. On a
high level, an ML-based solution has the following benefits:
@ It can protect all the existing end-user devices vulnerable
to the attacks. @ No change is required in the protocol. Using
the network traces, especially the higher layer (layer-3) traces,
the ML algorithms can determine whether there are any FB-
Ses in the network and recognize MSAs. ® No additional
hardware is required. @ ML algorithms add little overhead
regarding memory and power consumption. & As the attack
patterns are similar worldwide, ML algorithms can detect FB-
Ses and MSAs anywhere in the world and thus can support
roaming of the device they are deployed in.

Challenges. The design of an ML-based system for the de-
tection of FBSes, however, requires addressing several major
challenges: (1) Acquiring a comprehensive and high-quality
dataset encompassing a wide range of real-world cellular net-
work scenarios. (2) Incorporating the surrounding context
into consideration. (3) Capturing, representing, and learning
the unique characteristics that define the MSAs. (4) Combin-

ing the predictions of layer-3 protocols. Layer-3, also known
as the network layer, has two key protocols: (i) NAS (Non-
Access Stratum) [39] and (ii) RRC (Radio Resource Con-
trol) [40]. These protocols operate within the control plane,
each serving distinct purposes in facilitating communication
between the User Equipment (UE) and the network infras-
tructure. To have a unified detection and improve robustness,
the predictions made separately for the two protocols need to
be combined. (5) Enabling real-time detection of the attacks.
The framework needs to be an in-device solution that captures,
processes and analyzes incoming packets promptly to detect
the presence of the attacks effectively.

Our approach. To detect FBSes effectively, in this paper,
we present the design, implementation, and deployment of
FBSDetector, an ML-based framework for FBS detection
and MSA recognition. As it is illegal to create FBSes in
public areas and there are no publicly available datasets of
FBS and MSA traces, we create FBSAD and MSAD, the first
comprehensive and high-quality FBS and MSA datasets, re-
spectively. To achieve this, we utilize different facilities at
POWDER [41]. POWDER is a city-scale and end-to-end
software-defined platform to support mobile and wireless re-
search. The dataset created using POWDER is analogous to
real-world datasets. This is ensured by including over-the-air
actual packets transmitted within its spectrum between actual
devices instead of simulated wire transmissions [42-46]. To
tackle the second challenge, incorporating the surrounding
context into detection, we design a two-step detection frame-
work: a packet-level classification followed by a trace-level
classification, ensuring both granular and contextual analy-
sis. For MSA detection, we use graph learning—derived from
our intuition that all the MSAs follow a specific pattern ,
and that to recognize MSAs successfully, it is necessary to
capture these patterns. To obtain a unified prediction we com-
bine predictions made on NAS and RRC packets using a
weighted confidence-based fusion method. For the deploy-
ment of FBSDetector, we create a mobile app that analyzes
the packet traces by running the pre-trained models in the
device to detect FBSes and MSAs effectively in real time.

Experimental results. The unprocessed FBSAD and MSAD
datasets have a combined size of 9.2 GB. Trained on this com-
bined dataset, our experiments show that our FBS detection
framework can detect FBS with 96% accuracy and a false
positive rate (FPR) of 2.96%. Similarly, our graph learning
model can detect 21 MSAs with 86% accuracy and an FPR of
3.28%. Our experiments also show that combining NAS and
RRC predictions improves the performance by 1 ~ 2%. Fur-
thermore, FBSDetector detects unseen Overshadow attacks
with 86% accuracy. To validate FBSDetector’s fidelity and
evaluate its performance, memory and power consumption in
real-world scenarios, we instantiate a mobile app for 4G UEs
and set up FBSes and MSAs in a controlled lab environment.
Using our lab setup, we spawn FBSes and run experiments
with different FBS detection and MSA recognition scenarios.



Lastly, we run longer evaluations with the FBSDetector app

in multiple countries and areas with varying population densi-

ties with diverse use cases. The experimental results show that
compared to previous signature/heuristic-based approaches

FBSDetector can detect FBSes and MSAs effectively using

an average 835 KB of memory and less than 2 mW of power.

Furthermore, we discuss how FBSDetector can be deployed

and combined with network side defenses to create a robust

ecosystem to prevent attacks in cellular networks in Section 8.

Contributions. This paper makes the following contributions:

* We develop a new framework—FBSDetector to detect FB-
Ses and MSAs from network traces using ML. For this, we
create FBSAD and MSAD, the first-ever large-scale, high-
quality, real-world datasets containing FBS and MSA traces
in different scenarios.

* We design a two-step detection framework: a packet-level
classification followed by a trace-level classification, ensur-
ing granular and contextual analysis. For the packet level
classification, we design a stateful LSTM with attention uti-
lizing stateful training and attention in parallel layers, which
improves the detection accuracy and reduces the false posi-
tive rates. For MSAs, we innovate by converting the attack
signatures to graphs and using a graph-based learning ap-
proach to detect the attacks. Graph learning models perform
better than any other state-of-the-art model in recognizing
MSASs. Moreover, even when MSAs evolve, unseen and
reshaped MSAs can still be detected by this approach by
using maximum overlapping sub-graphs.

* We deploy the solution in a mobile app and validate its
performance in real-world setups. Compared to the avail-
able end-user FBS detection solutions, including signature-
based solutions, our approach significantly improves the
performance of FBS and MSA detection.

2 Background

In this section, we introduce relevant background about 4G,
FBSes, MSAs and POWDER-the platform we use for dataset
generation.

2.1 4G Cellular Networks

In a 4G network, cellular devices are called User Equipments
(UE). The core network is called the Evolved Packet Core
(EPC). Geographic locations are partitioned into hexago-
nal cell areas, each of which is serviced by a designated BS
(eNodeB), which enables connectivity of UEs in that cell to
the EPC. The Mobility Management Entity (MME) manages
the connectivity and mobility of UEs in a particular tracking
area (a set of cell areas).

Non-Access Stratum (NAS). In 4G, the Non-Access Stratum
(NAS) [39] protocol is a layer-3 (Network Layer) protocol
specified by 3GPP that serves as a functional layer between
the core network and the UEs. Its primary role is to man-
age the communication sessions and seamlessly maintain the
connections with the UE, even when the UE roams.

Radio Resource Control (RRC). The Radio Resource Con-
trol (RRC) [40] protocol is another layer-3 protocol used
between the UEs and the BS. The major functions of the
RRC protocol include connection establishment and release
functions, broadcast of system information, radio bearer estab-
lishment, reconfiguration and release, and paging notification
and release.

2.2 Fake Base Station (FBS)

An FBS is an unauthorized device an attacker uses to im-
personate a legitimate BS within a cellular network. FBSes
typically consist of a radio transceiver capable of broadcast-
ing signals at legitimate BSes’ frequencies. By emitting these
signals, FBS creates a cell or coverage area, attracting nearby
mobile devices to connect to it. With the deployed FBS, at-
tackers carry out Multi Step Attacks (MSAs), resulting in
DoS, location tracking, bidding down attacks, and traffic mon-
itoring. Detecting FBSes can essentially stop these MSAs,
because FBSes are the key stepping stones for these attacks.
However, MSA detection provides fine-grained information
about the attack and attacker, which is essential for forensics
and defense design. In the following, we discuss an MSA
done with an FBS—Tracking Area Update Reject (TAU) Re-
ject attack [11].

TAU Reject attack. To deploy an FBS and to interrupt the ex-
isting connections between nearby user devices and legitimate
BSes, the attacker would adjust the signal strength of the FBS
to guarantee that it offers a much higher signal strength than
the legitimate BS. Furthermore, the FBS broadcasts MCC and
MNC numbers identical to the network operator of targeted
subscribers to impersonate the real network operator. Once the
attacker has properly configured the FBS, the attacker usually
does the following steps for a FBS and TAU Reject attack: @
The FBS broadcasts its Systeminformation using the configured
radio frequency. To overcome different UE functionalities,
the FBS exploits a feature named absolute priority-based cell
reselection. The principle of priority-based reselection is that
UEs in the IDLE state should periodically monitor and try
to connect to BSes operated with high-priority frequencies.
Hence, even if the UE is close to a real eNodeB, operating
the FBS on a frequency with the highest reselection priority
would force UEs to attach to it. These priorities are defined
in SIB Type number 4, 5, 6, and 7 messages broadcast by the
real BSes. Using a passive attack setup, the attacker can sniff
these priorities and configure the FBS accordingly. @ When a
UE receives the system information of the FBS, it detects it as
anew BS with a higher signal strength, and generally, when
UE detects a new TA, it initiates a TrackingAreaUpdateRequest tO
the FBS. In order to trigger such a request, the FBS operates
on a TAC that is different from the real BS. @ For the TAU
Reject attack Upon receiving the TrackingAreaUpdateRequest the
FBS sends a TrackingAreaUpdateReject message. This attacker can
utilize different EMM causes to either deny the LTE network
(downgrade) or deny all network services (shown in Figure 1).
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Figure 1: Communication process of an FBS with an MSA

® When the FBS completes sending messages, it cuts off
the cellular connections with its UEs by lowering its signal
strength or shutting down the signal. After that, the affected
UEs may or may not automatically re-connect to a legitimate
BS (some UE’s require manual restarting to connect back).

2.3 Multi-Step Attacks (MSAs)

Location tracking. IMSI catchers, StingRays, or Cell-site
simulators have been widely used to collect user IMSIs and
track them [25]. An attacker can also use Measurement Re-
ports to track user location [11]. For this attack, an attacker
forces a subscriber who is initially attached to a legitimate
BS to connect to an FBS with a similar approach to the TAU
Reject attack discussed in the previous sub-section. The sub-
scriber UE completes the RRC connection and initiates a TAU
procedure with the FBS. Next, UE enters into CONNECTED
state. At this moment, the attacker turns off the first FBS and
starts a second FBS. Meanwhile the UE detects it has lost
synch and starts Radio Link Failure (RLF) timer. When the
RLF timer expires, UE creates an RLF report and goes into
IDLE mode. In this mode, UE starts cell selection procedure
to attach to second FBS. The attacker sends an unprotected
UEInformationRequest message through the second FBS and gets
the UEInformationResponse message with the RLF report with the
failure events and signal strength of neighboring BSes.
Activity monitoring. To monitor users’ activity patterns, an
attacker can create an FBS, connect to the devices and gather
the UE capabilities. This is possible because the UE trans-
fers its capabilities without performing authentication. An
attacker can acquire the UE’s core network capabilities but
not the radio capabilities because they are exchanges after the
RRC security setup [12]. Therefore, an FBS setup is needed
to monitor all the capabilities. Other attacks such as authenti-
cation relay attack [8] allows an attacker’s malicious UE to
impersonate a legitimate UE and poison location history or
profile network usage.

Bidding down attacks. These attacks allow an FBS to force
a UE to use an older version of cellular protocols [47]. Such
attacks can be carried out in different ways. During the TAU
procedure the FBS can send a TAUReject message to force the

UE to start searching for 2G and 3G networks in the area [11].
Furthermore, a recent study has found that most new devices
are vulnerable to bidding down attacks, which can be divided
into inter-generation and intra-generation bidding down at-
tacks manipulating different messages and message param-
eters [47]. The most common way is to utilize NAS Reject
messages. These messages include a specific cause that in-
forms the UE about how to behave when rejected by the
network. Since the UE is allowed to accept unprotected reject
messages if it receives them before the establishment of the
security context an attacker with an FBS can use the reject
messages to completely disable support for the current net-
work generation and do a downgrade attack. Another option is
to use BS redirections. The BS uses RRCRelease to release the
radio connection with a UE, e.g., if the UE switches into IDLE
mode. As the release procedure can be initiated before the ra-
dio connection is secured, an FBS can cause RRC redirection
from 4G to 3G. Lastly, 3G to 2G redirection is possible since
the specification does not prevent a pre-authenticated RRC
redirection. The recent measures by Google and Apple to
disable 2G connectivity and prevent using a "null-cipher" still
do not resolve the downgrade attacks to 3G and are limited to
newer devices and operating systems (Android-14, i0S-17).
DoS attacks. There are numerous MSAs that an attacker can
utilize to cause both short and long-term DoS. The easiest
option is to use reject messages such as AuthReject. RRCReject,
and NASReject [0, 8, 13]. This forces the UE to disconnect
from the network. Another set of DoS attacks can be caused
by paging channel hijacking [8]. For hijacking the paging
channel, the FBS operates the same frequency band as the
legitimate BS and broadcasts fake empty paging messages in
the shared paging channel. One pre-requisite for the attack is
to know the victims paging cycle. The FBS broadcasts paging
messages with higher signal power, ensuring attack success.
The victim is unable to receive legitimate paging messages
from the core network.

Energy depletion and power drain. These attacks aims to
make the victim UE perform expensive cryptographic oper-
ations [8, 9]. One way to achieve this is to force the UE to
keep carrying out the expensive attach procedure repeatedly
by sending a paging message with IMSI between two succes-
sive attach procedures. Other ways are to force victim device
to release existing connection and spend energy on further
cryptographic operations [9].

24 POWDER

POWDER (Platform for Open Wireless Data-driven
Experimental Research) [41] is a cityscale, remotely accessi-
ble, end-to-end software-defined platform funded by NSF to
support mobile and wireless research and provides advances
in scale, realism, diversity, flexibility, and access.

Fidelity of POWDER to the real-world. POWDER'’s fi-
delity extends beyond conventional simulation due to the
following reasons: (1) POWDER provides a dedicated fre-



quency band and real devices [41]. This access to real devices
while maintaining scalability and mobility makes POWDER
equivalent to real-world testbeds. (2) POWDER’s fidelity
is demonstrated through rigorous testing and evaluation, es-
tablishing that solutions developed using POWDER, which
mirrors the complexity and challenges found in real network
environments, perform effectively well in real-world scenar-
ios [42-46]. Because of incorporating over-the-air actual pack-
ets in a dedicated spectrum instead of simulated wire trans-
missions, datasets created using POWDER are analogous to
real-world datasets. See the detailed version of the paper [48]
for a detailed overview of POWDER.

3 Overview of FBSDetector

In this section, we discuss the threat model, deployment scope,
challenges, and requirements of FBSDetector.

3.1 Threat Model

For our FBS attacker threat model, we consider the adversary
can impersonate the legitimate BS and thus force a victim UE
to initiate a reselection with a higher signal strength than the
legitimate BS. We assume the adversary can learn and mimic
the legitimate values of the original BS by eavesdropping the
public channels. We also assume that the adversary cannot
break the cryptographic assumptions and cannot tamper with
SIM cards, BSes or core network components. For instance,
an attacker can only create plain-text packets but is unable
to create integrity-protected or encrypted packets other than
just replaying them. Furthermore, the attacker may employ
various techniques to evade detection. This includes rapidly
changing the parameters of the FBSes, adjusting transmission
power, or adopting sophisticated obfuscation methods to mask
its activities.

3.2 Deployment Scope

The current deployment scope of FBSDetector is detecting
FBSes and MSAs in the context of 4G cellular networks.
There are two significant reasons for this. First, because of
the extensive infrastructure already in place, 4G networks
are widely accessible to a larger portion of the population.
As of 2024, 4G adoption stands at 59% among 8.6 billion
SIM connections [49-52]. 4G adoption is predicted to stay
above 50% until 2027, and in 2029 5G is expected to overtake
4G [49, 53]. Therefore, until 2027, many end-user devices
using 4G are at risk of FBS attacks. Second, the platform
we use for real-world dataset generation for FBS and MSAs
(i.e., POWDER) supports 4G functionalities and real-world
experiments can be run in POWDER for different scenarios
only in 4G. POWDER currently does not support all the 5G
functionalities (for instance, handover). In a related discus-
sion, recently, the research community has uncovered a new
kind of attack called signal overshadowing attacks [54-56]
that can be an alternative for attacks without requiring an FBS.
However, conducting physical signal overshadowing attacks
at a large scale in the POWDER testbed presents significant

challenges due to the need for sophisticated and fine-grained
control over network devices and precise physical placement.
Researchers aiming to explore such attacks still need special-
ized, controlled lab environments with complete control over
the physical and radio environment to achieve the necessary
precision to experiment with these attacks. Thus, it is out of
scope to include overshadowing attacks in POWDER.

Despite not being trained on an overshadowing attack
dataset, since being trained on layer-3 data, the FBSDetector
model performs relatively well against our controlled lab
environment Overshadowing [54] attack dataset. We conduct
a zero-shot evaluation with this dataset and discuss the results
in Section 6.3.

3.3 Challenges

The challenges in designing our ML-based framework for
detecting FBSes and MSAs are:

C1. Dataset availability and quality. Acquiring a compre-
hensive and high-quality dataset that encompasses a wide
range of real-world cellular network scenarios is a significant
challenge. The dataset must include instances of legitimate
BSes, FBSes, and execution traces of different MSAs. Cur-
rently, there is no such dataset publicly available. There are
several reasons behind this: (1) The law prohibits the deploy-
ment of FBSes in public areas. If someone wants to deploy
a FBS for research and experimentation, they must do so
in a controlled RF environment. (2) Incorporating different
real-world cellular network scenarios, such as handovers and
mobility, is a difficult task and would require a lot of special-
ized hardware and other equipment and facilities.

C2. Detecting FBSes from packet traces. Unlike traditional
methods where packets themselves are inherently malicious,
in the case of detecting FBSes, the true nature of a packet
hinges on when and in which context the packet was sent. For
instance, a legitimate BS or an FBS can send the same packet
with the same contents. One solution is to perform only a sin-
gle trace-level classification, where the ML model takes the
entire trace as input and outputs whether an FBS is present.
This approach for detecting FBSes would be at a very high
granularity level and thus miss a lot of context at the packet
level. A well-equipped adversary can bypass the detection by
keeping the trace the same as benign but changing the packet
configurations and thus executing different attacks. Also, de-
tecting unseen and reshaped attacks would not be possible at
trace-level classification. In order to accurately detect FBSes
and MSAs, we need to design an approach with two different
granularity levels: at the single packet level and at the packet
sequence or trace level. We need to classify each packet indi-
vidually as suspicious or benign, serving as a preliminary filter
to identify potential FBS activity. Subsequently, sequences of
packets, or traces, containing packets flagged as suspicious
need to undergo another contextual analysis at the trace level,
which examines the order of packets and sequence patterns
to discern characteristics indicative of FBS transmissions.



Attack
Category
Activity Complete or selective DoS;
monitoring; Location history poisoning;
DoS Network profiling

Sl Attack Impact

Authentication relay attack [8]

Bidding down with
AttachReject [11]
Paging channel hijacking attack [8] DoS
Location tracking via measurement Location
reports [11] tracking

DoS Selective DoS

Complete DoS

N W N}

Leak fine-grained location

TIPS DoS, Down- Selective DoS and
5 Capability Hijacking [12] grading downgrading
Incarceration with
6 . . DoS Ci lete DoS
rrcReestablishReject [9] © omplete Do
7 Lullaby attack using Battery Force state change, battery
rrcReestablishRequest [9] drain draining

Bidding down with

; ; D lective D.
ServiceReject [11] 0S Selective DoS

Device
Identifica-
tion

Identify devices on a mobile

9 Mobile Network Mapping
network

(MNmap) [12]

10 Energy Depletion attack [8] (I?;A;itgry Battery draining

1 Lullaby attack with Battery Force state change, battery
rrcResume [9] drain draining

12 Stealthy Kickoff Attack [8] DoS Complete DoS

3 Incarceration with rrcReject and DoS Complete DoS
rrcRelease [9]

14 IMSI catching [25] {&rt?ﬁii( Leaking sensitive information

15 NAS counter Desynch attack [9] DoS Complete, prolonged DoS

16 | X2 signalling flood [13] Resource Waste resources for the
DoS, -
17 Handover hijacking [13] Energy dCOI_‘nplele DoS and battery
Depletion raining
18 RRC replay attack [6] DoS Complete DoS
19 Lullaby attack with Battery Force state change, battery
rrcReconfiguration [9] drain draining
Bidding di ith
20 | iCINE oW W DoS Selective DoS

TAUReject [11]
21 Panic Attack [8]

Misinfor-

mation Artificial emergency

Table 1: MSAs detected by FBSDetector

C3. Detecting MSAs. Recognizing MSAs from packet traces
is even more challenging than FBS detection. These attacks
have unique characteristics that define them. Moreover, MSAs
often exhibit complex, evolving patterns that require careful
observation to distinguish them from legitimate traffic. An
adversary can improve the attacks adaptability by constantly
changing to evade detection. Consequently, our approach must
evolve alongside these threats. We must capture these attack
characteristics and represent them effectively in a structured
data format.

C4. Combining NAS and RRC predictions. Training our
models separately on NAS and RRC layer packets is a nec-
essary step due to their distinct features and characteristics.
However, a challenge arises when we must consolidate these
separate model predictions into a unified model.

C5. Real-time detection. Enabling real-time detection of
FBSes and MSAs is a challenge due to the large volume
and velocity of network traffic. The framework needs to be
an in-device solution that captures, processes, and analyzes
incoming packet traces promptly to detect the presence of
FBSes and MSAs effectively.

3.4 Proposed Solution

In this section, we present and analyze our proposed solutions
to the discussed challenges.

S1. We use different facilities available at POWDER [41]
to create FBSAD and MSAD, real-world datasets to detect
FBSes and MSAs. We design different networking scenarios,
incorporating legitimate BSes and FBSes, and collect data

from these scenarios. We also collect network traces of dif-
ferent MSAs that use FBSes in their threat model. Different
adversaries are incorporated for both FBSes and MSAs, from
less sophisticated to more sophisticated, with the ability to
clone legitimate BSes and change signatures. The dataset is
then processed to make it appropriate for training different
ML models. This includes protocol filtering, feature extrac-
tion and feature alignment.

S2. To address the challenge of granular classification of
packets and incorporating the context for detection, we pro-
pose a two-level ML-based detection framework. The ap-
proach integrates packet-level classification with trace-level
classification, leveraging the strengths of machine learning at
both granular and sequential analysis levels. The high-level
overview of both the detection models is discussed below: (i)
Packet-Level Classification. We perform a packet-level classi-
fication by classifying each packet individually as suspicious
or benign. We leverage a stateful LSTM model with atten-
tion for this packet-level classification to model long-term
dependencies that span the fixed-size sequences of the pack-
ets. We utilize the attention mechanism to learn each training
sequence optimally by focusing on the parts of each sequence
that affect the classification outcome the most. An essential
objective this design helps us achieve is incorporating the
surrounding context into consideration while giving attention
to only relevant information while classifying packets. (ii)
Trace-Level Classification. Subsequently, traces containing
packets flagged as malicious or benign undergo another con-
textual analysis. One possible solution is to flag the trace as
malicious in case one of the packets in the packet-level clas-
sification is inferred to be malicious. However, such simple
heuristics lack contextual sensitivity, fail to adapt to evolving
attack strategies and are not flexible. Therefore, in this stage,
we employ a simple classification model to examine and clas-
sify the trace. The model examines the order of packets and
sequence patterns to discern characteristics indicative of FBS
transmissions.

S3. Each MSA shows a unique pattern if MSAs are rep-
resented as a directed graph. Based on this observation, we
devise an innovative solution centered around graph data struc-
tures and learning techniques. We transform the packet traces
into directed graphs. This graph representation captures the
relationships inherent in the trace, which is ideal for detect-
ing MSAs with complex and evolving patterns. We train a
graph learning model specialized in learning complex patterns
within the graph and learn the patterns of the MSAs. With the
trained model, by using a maximum overlapping sub-graphs
approach, we can recognize MSAs even when they are unseen
or reshaped from known attacks.

S4. To combine the predictions for RRC and NAS traces,
we design a weighted confidence-based fusion method, a
widely used technique in the multi-sensor information fusion
field [57,58]. The weights are assigned to the best trace-level
classification model of each layer. This method offers a robust



means to blend the predictions for NAS and RRC layer.

SS. The development of a mobile app emerges as a pragmatic
solution for deploying FBSDetector for real-time detection.
Such a dedicated app would serve as an in-device solution,
capable of swiftly capturing, processing, and analyzing in-
coming packet traces with on-device ML models, specifically
tailored for detecting FBSes and MSAs. Regular model up-
dates would ensure adaptability to new and unseen attacks.

4 Detailed Design

In this section, we discuss the detailed design of FBSDetector
(see Figure 2 for an overview). On a high-level, the design of
FBSDetector is divided into three components: (1) Dataset
Construction, (2) ML Framework, and (3) Deployment.

4.1 Dataset Construction

Our dataset construction process is described below.

4.1.1 Dataset Generation

We create cellular networks in POWDER incorporating legiti-

mate BSes, FBSes, and MSAs and capture the packets from

all the cellular network components to generate the dataset.

Mobility. One real-world phenomenon in cellular networks

is the mobility of the UEs. Signal strengths of BSes received

at UEs moving from one place to another vary, causing the

UEs to be handed over from one BS to another. Incorporating

this scenario in the dataset is important; otherwise, a benign

handover due to mobility might be interpreted as malicious.

With the help of mobile endpoints available at POWDER, we

incorporate mobility scenarios into our dataset.

Attacker ability. The attackers we consider have a diverse

set of abilities. Based on their abilities, we rank them in five

levels, level O being the least sophisticated and level 4 being
the most sophisticated.

* (Level 0) Attackers only set up FBSes naively with a high
signal strength.

* (Level 1) Attackers set up FBSes with an optimal signal
strength sufficient to trigger a handover in the UEs.

* (Level 2) Attackers can clone all the parameters of a legit-
imate BS and impersonate the legitimate BS. Parameters
such as the Cell ID, Mobile Network Code (MNC), Mo-
bile Country Code (MCC), Tracking Area Code (TAC), and
Physical Cell ID (PCI) can be cloned to impersonate a legit-
imate base station. They can also replicate radio frequency
parameters like carrier frequency, bandwidth, and transmis-
sion power. Protocol-specific information such as the Sys-
tem Frame Number (SFN), Timing Advance (TA), Synchro-
nization Signal Block (SSB), and Random Access Configu-
ration may also be copied. Additionally, network-specific
details like the Public Land Mobile Network (PLMN) ID
and neighbor cell information can be cloned.

* (Level 3) Attackers use level 2 FBS and can carry out MSAs
with the usual signatures.

* (Level 4) At the most sophisticated level, the attacker
is aware of typical defenses and actively reshapes at-

tacks to evade them. Adaptive adversaries employ two
primary strategies: @ changing fields of malicious mes-
sages. In the first strategy, attackers manipulate non-critical
fields—those that do not impact the success of the at-
tack—within malicious messages to evade signature-based
detection [7-9, 11, 59, 60]. For instance, an attacker can
modify the cause field in reject messages or adjust optional
fields in attach responses without affecting the attack’s func-
tionality [11]. Similarly, they can use different reserved
values for security headers in messages to cause the same
impact [39,40].@ The second strategy involves altering
the temporal sequence of malicious messages to evade de-
tection systems that rely on identifying standard message
patterns. For instance, an attacker might inject multiple
IdentityRequest, AuthenticationRequest messages or other extra-
neous protocol messages before executing an attack, cre-
ating many variant sequences that avoid detection. To find
the fields and the messages that alter the temporal attack
sequence but do not affect the attack success, we manu-
ally go through the specifications [59] and follow the prior
works [7-9, 11, 60]. Furthermore, before deploying these
adaptive reshaped attacks to POWDER, we run some of the
attacks in our lab setup and manually validate the attack’s
effectiveness.
MSA data generation. To create MSAD, we chose several
attacks that are executed in multiple steps and use FBS in
their threat model. As shown in Table 1, we have selected 21
attacks, covering a wide range of practical threats, including
DoS, privacy leakage, and downgrade. We implement and
execute these attacks in the cellular networks in POWDER
and incorporate instances of each attack in MSAD.
4.1.2 Dataset Preprocessing
In order to make FBSAD and MSAD suitable for training ML
models, we pre-process them in several steps.
Protocol filtering and field extraction. Each packet in the
network trace contains multiple protocol information. We
focus only on NAS and RRC data and use protocol filtering
to isolate the relevant packets precisely. We further extract
the values of fields associated with these packets.
Dataset features for training the ML Models. After the
protocol filtering, we find 119 fields in NAS layer packets
and 183 fields in RRC layer packets. We use these fields as
features to train our ML models (see the detailed version of
the paper [48] for a detailed list of these fields).
4.1.3 Dataset Labelling
The datasets are labeled according to their reason for gener-
ation. Formally, we define FBSAD : =< Xggsap, Yresap >,
where Xpgsap are the packet features, Yrgsap are the packet

labels. Then for each packet P we label 7(;‘)35 AD 8S:

3 @_ )0 if Frsap'” is a benign packet
FBSAD 1 if 7FBSAD(1) is generated from the FBS

For MSAD, we define the set of MSAs detected by
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FBSDetector as 4 := {attack;,attacky,- - - ,attack;} where
k is the number of MSAs that can be detected and L4 =
{0,1,2,--- ,k} as the set of labels for the MSAs. MSAD =<
XmsaDp;Ymsap >, where Xysap are the packet features,
Yusap are the packet labels. Then for each packet P we label

7&)SAD as:

0 if % msap"”
L,q[attackj] if 7MSAD
by attack; € A4

is a benign packet

7MSAD(i) =

is generated

4.2 Machine Learning Framework

In what follows, we detail the ML framework used in
FBSDetector.

4.2.1 FBS Detection

We design a two-step framework for FBS detection.
Packet-level classification. In the first step, we perform a
packet-level classification using a stateful LSTM model with
attention. This model utilizes stateful training and attention
in parallel layers, merged and fed forward for the final com-
bined output for the packet class prediction. The statefulness
models long-term dependencies that span across sequences
and the attention mechanism focuses on the parts of each
sequence that affect the classification outcome the most. The
algorithm is shown in Algorithm 1. The algorithm begins by
taking the dataset and leny,., hyperparameter as input. It then
defines procedures for the Stateful LSTM and LSTM with
Attention. The Stateful LSTM procedure initializes LSTM
parameters, sets the stateful property to true to maintain state
across batches, and then iterates over each timestep, feeding
input x; and previous hidden state s, and cell state ¢,_; into
the LSTM. It then returns the final hidden state /,, which en-
ables state continuity across batches, ensuring that temporal
dependencies are maintained even when sequences span mul-
tiple batches. The LSTM with Attention procedure initializes

LSTM parameters, sets the return sequences property to true
to output sequences instead of just the last timestep, processes
the input sequence x; through the LSTM, computes a context
vector from an attention mechanism over the LSTM outputs,
and calculates the attended output 4. After defining the pro-
cedures, in lines 19 — 22, the main algorithm sets the input
sequence x; using leny,, as the sequence length, computes the
output of the Stateful LSTM and LSTM with Attention mod-
ules, concatenates their outputs, and applies a dense layer to
produce the final output y,. The modules’ outputs are concate-
nated to provide a richer input to the dense layer, facilitating
more informed and potentially more accurate predictions. The
Stateful LSTM preserves temporal continuity, while the At-
tention module highlights relevant sequence parts. The model
is then trained using the calculated loss between the predicted
output y and the ground truth §, and the gradients are propa-
gated back through the network for parameter updates.
Trace-level classification. In the trace-level classification
phase, traces comprising packets identified as benign or ma-
licious are subjected to additional contextual analysis. This
step applies a simple binary classification model, which ana-
lyzes the temporal sequence of packets to discern distinctive
characteristics of FBS transmissions. By analyzing the packet
traces, this model differentiates between FBS-related activity
and benign network behavior, and gives the final prediction
about the presence of an FBS in the traces.

4.2.2 MSA Recognition

MSAs can be uniquely represented as directed graphs and
detected using graph learning. We describe the steps to create
a directed graph from the traffic dataset and graph learning
in Algorithm 2. The algorithm constructs a directed graph
from the packets - each node denoting a packet, each packet
having a directed edge towards the next packet. Edges are
labeled with their reason for generation, the same as the packet
label, generated as part of a benign flow or in the path of an
MSA. Then, a graph learning model learns and generalizes
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Figure 3: Graph of TAU Reject Attack

this knowledge from the graphs, and the model is finally
returned. Recognizing MSAs using graph learning approaches
can be formally represented as follows: let G = (V,E) be
the graph constructed from the packets, where each node V
denotes a packet. E represents the directed edges between
nodes in the flow graph. An MSA is recognized by identifying
a specific path P(G) corresponding to 4 within the graph G.
These paths represent the packets’ sequences that follow an
MSA pattern. If there is an evolving and unseen attack, the
attack would deviate from path P(G) and follow a different
path P'(G). Due to the nature of the vulnerabilities exploited
by the attackers, P'(G) and P(G) will not be completely edge-
disjoint and will have overlaps. From these overlaps, we can
detect evolving, unseen and reshaped attacks.

MSA detection graph example. To illustrate the process
of MSA detection, we circle back to the TAUReject attack dis-
cussed in Section 2.2. For this attack the FBS connects the
legitimate BS and injects a Reject message. The graph gen-
erated from the NAS attack traces is shown in Figure 3. The
communication starts when a UE sends ArrachRequest to the
legitimate BS, which is the starting node of the graph. An
incoming edge is added to the node that represents the sub-
sequent messages. The graph enters into an attack sequence
when a TAUReject is sent after a TAURequest.

4.2.3 Combining NAS and RRC Predictions

To combine the predictions from the NAS and RRC
layer trace-level classification models, we leverage the
Dempster—Shafer theory (DST) [61] to facilitate the fusion of
predictions. We employ a weighted confidence-based fusion
method, where weights are assigned to the best model of each
layer based on the model performance. Let Wyas and Wrre
represent the weights assigned to the best trace-level classi-
fication models of NAS and RRC layer, P = {Pyas, Prrc}
represent the predictions made by those models, and Py
is the final prediction. We assign weights Wyas and Wrpe
proportional to their support scores on the inference. The
more confident model among the two models receives a
higher weight, indicating a more significant influence on the
combined prediction. Mathematically, this is expressed as:

Whnas o< Support_Score(Pyas)
Wgrc o< Support_Score(Prrc)

When there’s a disagreement between the models, the
Dempster—Shafer theory is applied, and the prediction with
higher confidence gets priority. This process is formalized as:

Pyas  if Pyas = Prre
Py = < Pnas  if Pyas # Prrc and Wyas > Wrrc
Prrc  if Pnas # Prrc and Wyas < Wrre

Combining the predictions in this way yields a better de-
tection accuracy than the individual predictions.

5 Implementation

Now, we discuss the implementation details of each compo-
nent of FBSDetector. We implement two distinct models: one
to detect FBSes and another specifically tailored to recognize
MSAs.

5.1 Dataset Construction

Incorporation of FBSes. To incorporate FBSes, we cre-
ate (i) a legitimate core network and BS pair, and (ii) a fake
core network and BS pair in POWDER. The legitimate BS
serves UEs that the FBS can attack by spawning near it with
higher signal strength. The core networks use Open5GS [62]
to support handover, and the UE uses srsRAN [63] and Ope-
nAirInterface(OAI) [64]-the two available open-source imple-
mentations. We equally use srsRAN and OALI for the dataset
generation to reduce bias on a specific implementation. We
introduce mobility in the dataset by using UEs with the mo-
bile endpoints in POWDER that are mounted on the campus
shuttles. Benign handovers are initiated when a shuttle with a
mobile endpoint moves from the vicinity of one BS to another,
and the signal quality received at the UE changes.
Implementation of handover capability in the srsUE. The
UEs usually initiate handovers by sending a TrackingAreaUp-
dateRequest message. This message is not implemented in
the current release of srsRAN and OAI. We implement the
TrackingAreaUpdateRequest TNESsage in UEs and make it able
to initiate a handover request by sending a TrackingAreaUp-
dateRequest message.

Implementation and execution of MSAs. We implement all
the attacks listed in Table 1, including all the attacker levels
in srsRAN and OAI and execute them in the experimental
setup we created in POWDER. All the traces from different
components are captured for both NAS and RRC layer.
Data processing. We decode the packets using tshark [65]
and use a Python script for protocol filtering, packet field
extraction and packet field alignment Lastly, we use scikiz-
learn’s LabelEncoder to encode the categorical fields into
numerical representations.

Data labeling. We assign each packet a label according to the
reason for its generation. The NAS layer packets (fewer in
number) are labeled manually by checking each packet and
assigning a label according to the reason for its generation.
Labeling all the NAS layer packets takes approximately 2
hours of one-time manual effort. An automated script is used
to label the RRC layer packets (which are much more numer-



ous) in batches of intervals by detecting attack intervals in the
NAS layer traces.

5.2 FBS Detection

Train-test split. We use a custom script to split our dataset
for training and testing, which does roughly 80 — 20 split,
preserving the sequence of packets while ensuring the
standard split; also, no experimental trace is cut in between.

Stateful LSTM with attention model. We utilize the Ten-
sorFlow functional API and use stateful LSTM and LSTM
with attention in parallel layers. Their outputs are merged and
fed forward to a common dense layer. Each network side is
trained according to its architecture in this model. The Stateful
LSTM model is architecturally identical to the vanilla LSTM;
however, the learning algorithm has been altered to maintain
the states. Both return sequences and maintain state parame-
ters are set to true. For the LSTM with Attention model, the
time-distributed dense layer is replaced by an attention layer.
Return sequences are set to true, enabling the complete hid-
den layer sequences to be sent forward to the attention layer,
where they are processed similarly to the encoder/decoder
and vanilla LSTM models.

5.3 MSA Recognition

For NAS layer packets, we create a node for every unique
value of the nas_eps_nas_msg_emm_type_value field, the packet
name for NAS layer packets. Similarly, for the RRC layer
packets, we create a node for every unique value of the lte-
rrc_c1_showname field, which is the packet name for the RRC
layer packets. Every packet maps to a node in the graph
corresponding to its packet name. We add an edge from the
node representing one packet to the node representing the
next packet in the sequence and label that edge with the same
label we labeled the next packet. This denotes if the transition
was benign or due to an attack.

5.4 Deployment and Integration

To deploy FBSDetector, we use Mobileinsight [66] to parse
the baseband traces in the mobile phones, TensorflowLite [67]
to run the ML models, and Flutter [68] to build the app.

6 Evaluation

We evaluate the effectiveness of FBSDetector based on the
following research questions: RQ1. What is the performance
of each step in the FBS detection framework, namely the
packet classification and trace classification? What is the per-
formance improvement of using stateful LSTM with attention
in packet-level classification? How does combining predic-
tions of NAS and RRC trace classification further improve
performance? How does graph learning improve MSA recog-
nition performance? Why does the simple heuristic-based
detection not work? RQ2. What is the memory and power
consumption of the detection framework? How much time
does the inference take? RQ3. Was FBSDetector deployed
and tested in a real-world setup? How does it contrast with

Model NAS Layer Packets RRC Layer Packets
Precision Recall FT-Score Accuracy[Precision Recall FT-Score Accuracy
Random Forest 085 087 082 0.84 0.68 08T 0.I6 0.69
SVM 081 021 0.70 0.59 0.66 0.79 0.00 0.66
Decision Tree 086 0.89 0.81 0.82 075 084 0.3 0.76
XGBoost 089 089 0.84 0.84 083 087 079 0.84
k-NN 086 081 0.80 0.79 086 089 0.82 0.83
Naive Bayes 053 087 035 0.58 080 0.08 0.52 0.37
Logistic Regression 0.50 0.68 0.69 0.53 0.74 0.85 0.50 0.71
CNN 086 039 057 0.52 084 0.67 0.78 0.66
FNN 079 085 0.68 0.73 080 088 0.84 0.78
LSTM 086 085 0.82 0.89 089 086 0.81 0.89
ful-LSTM w/ attention| 0.91  0.97  0.86 0.95 094 097 095 0.92

Table 2: Performance of packet level classification for FBS
detection

existing FBS detection solutions? RQ4. Is FBSDetector ro-
bust and generalizable against reshaping and unseen attacks?
Also can it detect Overshadowing attacks?
Experimental Setup. For training the models, we utilized
a Lenovo ThinkPad T480 equipped with 32GB of memory
and an Intel Core 17-8650U CPU @ 1.90GHz x 8. The op-
erating system was Ubuntu 22.04.1 LTS (64-bit), running
GNOME Version 42.2. We provide detailed information about
the model hyperparameters, in Appendix Section B.

In what follows, we delve into the details and answers to
those research questions.

6.1 RQI. Packet and trace level classification

Packet and trace level classification. Our stateful-LSTM
model with attention performs substantially better compared
to the other packet-level models (shown in Table 2). Mean-
while, for trace-level classification, all the classical ML mod-
els perform similarly (shown in Table 3). This is expected be-
cause the heavy lifting of FBSDetector is done in the packet-
level classification phase.

Performance improvement using Stateful-LSTM with at-
tention. Stateful-LSTM with attention improves the per-
formance of the vanilla LSTM model by 6% in NAS layer
packet classification and 3% in RRC layer packet classifica-
tion (shown in Table 2). Substantial enhancements are also ob-
served in precision, recall and f1-score. Improving recall and
accuracy in malicious traffic classification means the model
is better at capturing a larger proportion of actual threats,
reducing the chances of missing malicious activity. This is
crucial for minimizing false negatives and enhancing overall
detection effectiveness. Figures 6a and 6b show the distri-
bution of the length of the FBS generated packet sequences
and Figures 6¢ and 6d show the impact of sequence length
on the detection performance. The LSTM model performs
better when the input sequence length is between 9 — 15 for
NAS layer packets and 80 — 120 for RRC layer packets. The
reason is that in an FBS session, based on the communication
process of the FBSes, packets exchanged between the FBSes
and the UEs in the NAS and RRC layer follow a specific
distribution. These distributions are captured better when the
sequence lengths are set in the range that can accommodate
the distribution completely, and models trained on these seg-
ments of packets that contain these patterns can sufficiently
learn better about the attack.



Model , f‘éAs hé;g’lerSTfﬂceA . l}{RC h‘;:ylers TfﬂceA Model Precision Recall FI-Score Accuracy
TEC1s10Nn Kkecal -DCOre Accuracy [Frecision keca. -SCore Accuracy >

Togistic Regression 095 004 094 094 | 092 091 09I 09I GraphSAGE (NAS) 0.867 0.879  0.856 0.850

K-Nearest Neighbors 095 094 094 094 | 092 091 091 091 GraphSAGE (RRC) 0.611  0.480 0.52 0.590

Decision Tree 095 094 094 094 | 092 091 091 091 Combined Prediction| 0.875 0.901 0.874 0.865

Random Forest 095 094 094 0.94 092 091 091 0.91

Gradient Boosting . 095 094 094 0.94 092 091 091 0.91

Support Vector Machine| 0.96 0.95  0.95 0.95 093 092 092 0.92 Table 6: Performance Of MSA recognition after Combining
Table 3: Performance of trace level classification predictions

Model Precision Recall FI-Score|Accuracy Task Prec Rec FI Acc

Trace Level FBS Classifier (NAS) 0.96 0.95 0.95 0.95
Trace Level FBS Classifier (RRC) 0.93 0.92 0.92 0.92
Combined Trace Level Prediction| 0.96 0.95 0.96 0.96

Table 4: Performance of combined trace level classification
for FBS detection

Graph learning. We use GraphSAGE as our MSA recog-
nition model since, among the graph learning models, it
performs better than any other models (shown in Table 5).
Though the improvement seen in accuracy might seem small
(1%), a significant improvement is seen in precision (4-8%),
recall (10-12%) and f1-score (8-10%).

Predictions combining. The performance after combining
the predictions of NAS and RRC trace classification using
the weighted confidence-based fusion method for FBS de-
tection and MSA recognition is shown in Table 4 and Table
6, respectively. By leveraging knowledge from both layers,
this method improves on all the performance metrics from
the best trace-level classification model among the two and
makes the system robust, especially by improving recall.
Necessity of Trace Level Classification. To evaluate the
efficacy of the trace-level classification model we conduct a
performance comparison between packet-level classification
only and the combined approach with trace-level classifica-
tion. For the packet-level classification-only approach, we
assume that if at least one packet is flagged as malicious, we
consider the whole trace as malicious. In Table 7, we see
by enriching the analysis with aggregated data, trace-level
classification enhances detection accuracy and ensures a
more comprehensive approach to identifying threats.

6.2 RQ2. Overhead Analysis

Overhead Analysis of ML Models. We evaluate the over-
head of the ML models used in FBSDetector based on several
criteria. Figure 4a shows the time required to predict pack-
ets, which increases linearly with the number of packets. The

Model NAS RRC
Precision Recall FT-Score Accuracy[Precision Recall FT-Score Accuracy

Random Forest 0.6I7 0.628 0.454 0.76 0343 0278 0.254 0.42
SVM 0.088 0.200 0.122 0.44 0.076  0.200 0.110 0.38
Decision Tree 0342 0402 0.356 0.66 0.076  0.200 0.110 0.38
XGBoost 0.794 0.573 0.786 0.84 0.586 0.530 0.548 0.47
k-NN 0.734  0.702 0.706 0.81 0.484 0454 0.392 0.47
Naive Bayes 0.440 0.384 0.274 0.29 0.440 0.258 0.178 0.11
Logistic Regression 0.284 0.420 0.142 0.46 0.412 0318 0.300 0.49
CNN 0.132 0274 0.114 0.22 0.072  0.259 0.106 0.36
FNN 0.128 0.282 0.222 0.24 0274 0220 0.144 0.40
LSTM 0.150 0.320 0.200 0.49 0.128 0.164 0.130 0.30
Graph Attention Network 0.868 0.672 0.865 0.84 0316 0.338 0.298 0.36
Graph Attention Network v2 | 0.842 0.864 0.857 0.83 0.504 0411 0421 0.42
Graph Convolutional Network| 0.832 0.754 0.818 0.80 0.306 0.464 0.352 0.40
Graph Transformer 0.836  0.882 0.841 0.81 0436 0.495 0.430 0.41
GraphSAGE 0.872  0.924 0.883 0.85 0.633  0.561 0.557 0.59

Table 5: Performance of MSA recognition from NAS and
RRC layer packets

Packet Level Classification Only 0.91 0.90 0.91 0.90
Combined w/ Trace Level Classification 0.96 0.95 0.96 0.96

Overshadow attack [54] detection (Zero Shot) [0.84 0.82 0.83 0.86

Table 7: Performance of combined packet and trace level
classification for FBS detection and a zero shot detection
evaluation of overshadowing attack

slope of the increase is minimal, which means that the solution
can scale to high throughput applications. Figure 4c shows
the memory consumption and Figure 4b shows the power
consumption of FBSDetector, consumed in packet process-
ing and running the ML model on the processed packets to
generate inferences. The trend of power consumption also
linearly increases, with a small slope and the trend of mem-
ory consumption decreases, which can result from multiple
hardware-level optimizations by the operating system. Com-
pared to a recent approach [3], which uses an average of 4 mW
power, FBSDetector uses less than 2 mW of power to detect
a FBS. These results show that FBSDetector is a promising
solution for deployment in real-world systems, having negligi-
ble overhead. The load testing (CPU and memory usage under
different loads) for the mobile app is shown in Figure 4d.

6.3 RQa3. Validation and Comparison

Real-world App validation. To validate FBSDetector app’s
performance against threats in the wild in real environments,
we perform tests in our controlled lab environment. This is
because it is illegal to deploy FBS in public places.

Lab environment: For the controlled lab environment, we cre-
ate a testbed using (1) two USRP B210 [69], (2) two engineer-
ing laptops and (3) a smartphone with a Google Fi sim card
with the FBSDetector app installed. We used Open5GS [62]
for the core network and srsRAN [63] and OAI [64] for the
BS. Following the standard approaches, we create and spawn
an FBS using the laptop as the core network and the USRP
B210 SDR as the BS. To test the FBS and MSA detection in
different setups, we create the following scenarios: (1) lab 4G
network with our own SIM card as legitimate; (2) commercial
network with a Google Fi SIM card; (3) varying distance
between FBS and device; (4) limited mobility in the lab. For

No
Solution Supports | No Change | Additional Source Detects
in Protocol | Hardware | Available FBS
Required

Crocodile Hunter [26] v "4 X X

Darshak [32] X - - -

Baron [19] v X - -

Phoenix [3] v v v X

Android IMSI Catcher [33] v v v 4 X
SnoopSnitch [34] v v v v X
FBSDetector v v v v v

Table 8: Comparison of FBSDetector with existing solutions.
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a thorough evaluation, we run the app for 24 hours with the
Google Fi SIM card, create an FBS and run all 21 MSAs
each for 5 times. For general FBS, all five times are detected.
For the MSA, in a total of 105 attacks, 88 are detected as
True Positive, 5 are misclassified as benign and 17 MSAs are
classified into other attacks. For the whole 24-hour period, we
got 6 false positives, where no attack was conducted, but the
app still showed a notification. For a detailed breakdown of
the results, see the detailed version of the paper [48].

Long Term Evaluation. For long-term evaluation with the
FBSDetector app we ran the app for total of 7 days with
different use cases such as web browsing, video streaming,
calling, idle time, maps and navigation. Within this time, we
ran the app in different areas with varying population densi-
ties, such as metropolitan cities and high-population events.
Lastly, we ran the app in 2 different countries with local 4G
connectivity providers. For stress testing, we conducted all
21 attacks 5 times within 24 hours. For the extensive longer
tests, we just ran the app for 7 days with commercial SIM
cards. From the packets that we saved in that period, for the
stress test, it was 105,561 (NAS and RRC combined) packets
within 24 hours, whereas for the longer tests, it was 326,385
(NAS and RRC combined) packets in 7 days. On the whole
we found 2 alerts during the longer tests. Since we do not
have any ground truth data we can not certainly discuss false
positives and false negatives. However, even if we consider
the 2 alerts as false-positives, compared to previous stress
testing, the performance is significantly better. Therefore, we
can argue in real-world usage FBSDetector would perform
better in terms of False Positives.

Existing solutions comparison. We compare FBSDetector
with different real-world solutions. The criteria for the
comparison are: (1) The solution must not require any
changes in the protocol. (2) The source of the solution must
be available and maintained. (3) No additional hardware is
required for operation. The comparison summary in Table 8
shows that only Android IMSI Catcher (AIMSICD) [33] and
SnoopSnitch [34] satisfy all comparison criteria. Therefore,
we test them in our testbed by creating an FBS in our
controlled lab environment and spawning it near a mobile
device with AIMSICD and SnoopSnitch installed and
running. We ran the experiment several times, but neither

of the solutions could detect the FBS, whereas FBSDetector
detected the FBS every time. Note that, the comparison with
AIMSICD and SnoopSnitch was conducted by downloading
and testing them in same controlled setup used for testing
our app. These apps are closest compared to our app,
are developed by open-source communities, are not well
maintained, and we do not have many details about their
inner workings. We have contacted the developers but, at the
time of the write-up, have not heard back.

Comparison with Phoenix. For a more comprehensive com-
parison of MSA detection with existing solutions, we find
Phoenix [3] the most appropriate according to Table 8. To
compare FBSDetector with Phoenix, we first implement a
simple implementation of Phoenix in Python as the implemen-
tation is not publicly available. Phoenix uses three different
signature representations, (1) Deterministic Finite Automata
(DFA); (2) Mealy machine (MM) [70]; (3) propositional,
past linear temporal (PLTL) [71]. We create and run Python
scripts for all three signature representations on our attack
traces (level 0-4) that Phoenix can detect. From the results
shown in Table 10, we can see that FBSDetector performs
significantly better than Phoenix for all the attacks.

Why heuristic/signature-based approaches fail. For further
evaluating signature-based detection approaches with
FBSDetector we evaluate with traces from an adaptive ad-
versary. The adaptive adversary reshapes attack to evade de-
tection and active employs the two techniques discussed in
Section 4.1.1) level 4 attacker ability. We conduct this evalua-
tion with Phoenix [3] as well. We chose Phoenix for several
reasons: (i) similar to FBSDetector it also deploys a device-
centric attack detection mechanism; (ii) it deploys sophisti-
cated signature based schemes for MSA detection. From Ta-
ble 9, we see that signature-based detection techniques used
in Phoenix [3] with PLTL (the best performing signature)
struggle to detect reshaped attacks like Attach Reject, IMSI
Catching, and Service Reject due to their reliance on rigid,
predefined rules and patterns. Attackers can reshape attacks
by subtly modifying the attack behavior to avoid violating
these rules, leading to misclassification or missed detections.
For instance, for Attach Reject, Phoenix’s signature is to de-
tect an attack as soon as it receives an ArtachReject message.
Therefore, sending an out-of-sequence ArtachReject with a dif-
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Figure 5: MSA detection FP breakdown

ferent cause field misclassifies all the attacks to this category.
Similar results are for IMSI catching, Service Reject, and TAU
Reject, where the signature detects attacks based on only the
specific message type. Similarly, signatures where temporal
orderings are included are broken by changing the sequence.
For instance, Phoenix detects a Numb Attack when Aurhen-
ticationReject message is received without the previous NAS
message being AuthenticationResponse. This is broken by send-
ing an AuthenticationRequest message before sending the reject
message. In contrast, our machine learning-based approach
excels by learning complex patterns and relationships in data,
enabling it to generalize across diverse attack variations.

Error Analysis. For FBS detection, level 0 and level 1 at-
tacks both have low False Positive (FP) and False Negative
(FN) rates (see the detailed version of the paper [48]). How-
ever, the FP and FN increase in levels 2-4, where an attacker
clones all the parameters of the legitimate BS, and it becomes
harder to detect the FBS. This is mostly due to the lack of
features when an attacker clones all the parameters, and the
behavior completely resembles a legitimate BS. For MSA,
the analysis in Table 11 highlights that the RRC replay attack,
Incarceration with rrcReject and rrcRelease, X2 signaling flood,
and Stealthy Kickoff Attack are the top contributors to FP,
accounting for 4.93%, 4.77%, 4.72%, and 4.71% of the total
FP, respectively. Approximately 20% of the attacks are re-
sponsible for majority of the FP, which means that the overall
false positives of the system will be lower on average (see
Figure 5). For all these attacks, from the UE perspective, the
attack behavior is precisely the same as the benign behavior
of the network. For instance, for the Stealth Kick-off Attack,
the attacker clones the paging message and includes the UEs
IMSI. From the Layer-3 packets and features, it is difficult
for the ML model to detect it and cause FP. The same goes
for FN behavior, where the attack behavior closely resembles
legitimate network activities, making detecting challenging
due to overlapping features or insufficient distinction between
benign and malicious patterns. The attacks contributing most
to FN in the system include Paging Channel Hijacking and
Lullaby Attack using rrcReestablishRequest, among others.

Zero shot detection of Overshadow attack. To generate

overshadowing attack data in our controlled lab environment,
we start by configuring the legitimate eNodeB with specific
LTE parameters and connecting a UE to establish a baseline
connection. A second SDR is then set up as a malicious trans-
mitter. This transmitter synchronizes with the legitimate LTE
network to ensure proper timing and frequency alignment.
The malicious transmitter generates high-power LTE signals
with the same Cell ID to overshadow legitimate signals. The
success of the attack is validated by confirming that the UE
receives the malicious signal instead of the legitimate one. Ta-
ble 7 shows the zero shot detection capability of FBSDetector
for Overshadowing attack. The attack is detected with 86%
accuracy.

6.4 RQ4. Unseen and Reshaped Evaluation

To establish a benchmark and prove the robustness and gen-
eralizability of FBSDetector, we evaluate its capability to
detect unseen and reshaped attacks.

Unseen attacks. FBSDetector can detect unseen attacks by
leveraging anomalies in behavior that deviate from benign
patterns. In cases where it encounters an attack it has not seen
before, there will be a misclassification into an existing class.
However, the attack would not go undetected, as the deviation
from established benign behavior will still trigger an alert,
ensuring that all anomalies are identified and addressed. We
validate this using k-fold cross-validation. We keep one attack
aside while training and then test on it. Experiments show that
all the unseen attacks are classified as another type of attack
(see the detailed version of the paper [48] for detailed results),
proving that attacks will not go undetected. This shows the
capability and robustness of FBSDetector to detect unseen
attacks and to generalize.

Reshaped attacks. In case of attack reshaping, especially
for attackers with more sophisticated capabilities, even if
the attacker is aware of the presence of FBSDetector and
reshapes the attack pattern completely to evade detection,
FBSDetector can still detect it. This reshaped behavior de-
viates from benign behavior and overlaps with the original
attack that was reshaped, and FBSDetector can detect it from
this deviation and overlap. To test FBSDetector’s capabil-
ity to detect reshaped attacks properly, we create additional
reshaped data following level 4 of attacker capability (sec-
tion 4.1.1) and evaluate FBSDetector’s performance. Experi-
ments show that all the reshaped attack packets are classified
as original attacks (see the detailed version of the paper [48]
for details).

7 Related Work

Several approaches have been proposed to address the chal-
lenge of detecting FBSes. Recent efforts have introduced
certificate-based solutions and digital signatures [4, 6, 19,
20,22,72] for BS authentication. However, these techniques
require modifications to specifications, require huge infras-
tructure changes, add overhead, and are not able to defend



the billions of devices currently in the market. This makes
FBSDetector highly suitable for defending a wide variety
of attacks. The other approaches are based on several sim-
ple heuristics and signatures [3, 14, 32-34]. As shown by
the extensive experiments in this paper, heuristic based ap-
proaches are not well suited to defend against an adaptive
adversary. The approaches proposed in [35, 36] require in-
stalling expensive hardware and in most cases they are propri-
etary. The techniques in [31] depends on crowd-sourced data,
which is not a practical solution for scaling up. ML based
efforts are effective in detecting attacks and anomalies from
traces [30]. However, they work on small datasets generated
in simulated environments that lack diversity; also because
they work only in the data plane, they cannot detect MSAs.
Recently, researchers have used simulation models to analyze
fake base station attacks on a large scale [73], but they fail to
capture different real-world scenarios. Previous works have
shown that information related to the connection between a
UE and a BS can be used to reason about the authenticity of
the BS [23-25,27-29,74].

8 Discussion

Applicability to 5G. To the best of our knowledge, no open-
source protocol stack for the standalone 5G core network
supports handover, which is a prerequisite for creating a real-
world FBS and MSA dataset. Therefore, we leave the de-
tection of FBSes and MSAs in 5G cellular networks with
FBSDetector as a future work. However, we believe that,
based on 4G, our approach is equally applicable to 5G be-
cause most of the layer 3 procedures are unchanged from
4G. Thus, the ML model designs will remain the same when
porting FBSDetector to 5G.

Deployment. If FBSDetector were deployed in a real-world
setting, we envision the model will be periodically retrained
to incorporate new attacks, with updates pushed promptly to
user devices via app updates. Since we collect NAS and RRC
traces, which can contain sensitive information, data collec-
tion is enabled via user consent, ensuring transparency and
privacy compliance. The FBSDetector app is built on top of
Mobilelnsight [66]. Therefore, the requirements for running
Mobilelnsight apply to our solution as well, which includes
rooting the phone for most smartphone models (for more
details, we refer to the Mobilelnsight website). Apart from
this deployment scenario recently, we have been in discus-
sion with a commercial connectivity vendor about applying
FBSDetector on top of the baseband directly, without requir-
ing the phone to be rooted.

Defense against the detected FBSes. For defense in our
mobile app, the user is notified immediately for an FBS upon
detection. Additionally the user has the capability to switch
to another cell, and add the current cell to a temporary block
list. For instance, if the FBSDetector app detects an IMSI-
catcher after receiving an IdentityRequest in the sequence, it
turns the radio off to stop leaking sensitive information (with

permission from the user). Another advanced solution can be
to design and integrate a learning-based (e.g., reinforcement
learning) decision-making agent directly into the baseband
that can not only detect but also recover from the attack in an
automated way.

UE vs network side defense. Defense against FBS can be
deployed at the UE or network sides. These network side solu-
tions are designed for traditional cellular architecture [24,30]
and for the emerging O-RAN architecture [14,22]. There are
two critical limitations with network-based deployments: (i)
a network-level solution might be able to detect that a cell is
affected by an FBS but would be unable to take any neces-
sary action to protect user privacy and prevent attacks. For
instance, FBSDetector prevents sensitive information leak-
age upon detecting attacks by turning off the radio; (ii) certain
MSAs necessarily cannot be observed by the network opera-
tors, which is observable only from the device vantage point.
For instance, after an FBS has been connected to the device,
it is not possible for the network operator to uncover the type
of attack. Because of these reasons FBSDetector opts for an
UE-centric solution. However, device-centric solutions also
have limitations, such as requiring root access or sensitive
permissions, especially on Apple devices. In the future, this
can be resolved by deploying the UE-centric solutions on
top of the baseband directly without requiring the phone to
be rooted. Overall, we conclude that both network and UE
side defense and detection mechanisms would ultimately be
needed to defend against FBS attacks and create a robust
ecosystem to prevent attacks altogether.

Implication of FP and FN. FBSDetector detects FBSes
with 96% accuracy. However, FBS detection is a hard
problem not because of the difficulty of detecting attacks
but because it is hard to prevent false positives, given that
attacks are rare. Therefore, a system with high FP might not
be suitable for general use. FBSDetector has a 2.96% FP
rate, and in the FBSDetector app stress testing, we found
6 FP instances out of 110 instances; in longer tests, we
found 2 alerts. The ambition of FBSDetector is to bring FBS
detection to the masses; however, currently, it is more suitable
for safety-critical UEs and communication for people with
sensitive information, where security is prioritized. In the fu-
ture, we plan to improve the FP rate further by incorporating
lower-layer features and pushing direct app updates.

9 Conclusion And Future Work

In this paper, we present FBSDetector, an ML-based FBS and
MSA detection system for cellular networks, which leverages
network traces at Layer 3. To train the ML models, we have
created FBSAD and MSAD, the first-ever large-scale real-
world datasets. We deploy FBSDetector on a mobile app
that effectively detects FBSes and MSAs in all the tested
real-world scenarios.

Future work. In the future, we will port FBSDetector to 5G,
support overshadow attacks and focus on detecting FBSes



within the emerging Open Radio Access Network (ORAN) en-
vironment, employing advanced machine learning algorithms
through xApps. We will also investigate different defense
mechanisms to effectively stop an attack once detected by
FBSDetector.
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B Experimental Setup

B.1 Model Hyperparameters.
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Figure 6: Distribution and impact of NAS and RRC sequence length in FBS detection

Attack Type System [Benign[Attach Reject [IMSI Catching[Service Reject| TAU Reject [ Measurement Report[Paging with IMSI| Auth Failure [Numb Attack

Attach Reject FBSDetector| 9.35 67.27 1.24 6.23 6.20 0.8T1 27T 4.64 1.56
Phoenix 9.12 2.14 7.39 3.66 3.48 8.24 3.03 18.21 44.72

. FBSDetector| 3.83 2.45 47.49 15.97 753 4.14 5776 0.42 0.66

IMSI Catching Phoenix | 4.16 26.26 571 16.16 2174 6.62 3.88 1432 115
Service Reject FBSDetector| .44 1418 4726 51.77 10.30 214 1T.49 732 879
Phoenix 8.67 8.82 5.38 7.14 4.74 0.26 51.95 6.93 6.12

TAU Reject FBSDetector| 1.35 2.88 837 .13 78.34 3.90 3.19 0.09 0.71
Phoenix 9.28 5.98 1.84 60.22 5.52 0.15 1.61 3.89 11.49

Measurement Report FBSDetector| 3.02 051 TT.8T 052 174 69.78 8.03 331 .24
Phoenix 2.67 17.92 3.54 2.48 17.39 10.72 7.59 7.39 30.29

Paging with IMSI FBSDetector| 6.55 4.69 10.32 1.06 9.54 376 50.92 3.94 9.18
Phoenix 443 1.68 0.71 0.52 4.76 4.23 23.14 11.5 49.03
- . FBSDetector| 6.97 0.54 6.9 0.19 0.99 0.18 I.12 72.32 10.79
Authentication Failure | "5 0000 | 5101 63.20 034 175 147 8.07 5.81 1117 3.18
Numb Attack FBSDetector| 9.5 9.13 10.17 2.07 13.07 6.26 03 513 4416
Phoenix 7.21 0.63 9.45 6.46 12.63 28.34 4.1 14.23 16.95

Table 9: Cross-validation comparison with Phoenix [3] for an adaptive adversary. The numbers represent percentage of the attack
packets being classified as benign and different other attack packets. FBSDetector accurately classifies majority of the packets to
it original attack (numbers shown in bold) whereas Phoenix misclassifies to other attacks (numbers shown in red).

Algorithm 1 Stateful LSTM w/ Attention

1: Input: Labeled dataset: FBSAD, hyperparameter: lenge,

2: Output: Classified traces indicating FBS activity

3: procedure STATEFULLSTM(x;)

4 Initialize LSTM parameters 6; Algorithm 2 MSA Recognition Model

5: Set stateful = true, return_sequences = true 1: Input: Labeled dataset: MSAD

6: for each timestep # do 2: Qutput: Graph Model (GM)

7: he,c <= LSTM (x;, hy—1,¢,-1505) 3: procedure GRAPH LEARNING

8: end for 4; Variables: Graph G(V,E)

9: return /; 5: Create start node V; with the first packet p;
10: end procedure 6: for each subsequent packet p; in MSAD do
11: procedure LSTMWITHATTENTION(x;) 7: if V,, not in G then
12: Initialize LSTM parameters 0, 8: Create a node V,

13: Set return_sequences = true 9: end if

14 H <+ LSTM(x:8,) 10: Add an incoming edge E,, from V,,_; to 'V,
15: ¢; < context vector from attention mechanism over H 11: Label E,, with L,, the Label for Packet p
16: h; < tanh(W,[c;; Hy] + b,) 12: end for

17: return /1, 13: GM = train(G)

18: end procedure 14: end procedure

19: x; < input(sequence_length = leng,,) 15: return GM

20: Sl ¢ STATEFULLSTM (x,)

21: patention .1 STMWITHATTENTION(x;)

22: y; = Dense(concat(f5taeful pattentiony)

23: Train model on loss L(y,¥), propagate back




One additional attention layer is added to the LSTM w/ at-
tention and the stateful hyperparameter is set to true for the
stateful LSTM. The subsequent layer after these parallel lay-
ers are concatenated is a dense layer with a single unit and
sigmoid activation. For optimization, the stochastic gradient
descent (sgd) was chosen, with a mean squared error (mse)
loss function. The model’s performance is assessed using ac-
curacy as the main metric, complemented by the inclusion of
a custom metric, false positives, to evaluate its classification
capabilities further.

GraphSAGE. The graph model features a single SAGEConv
layer. The SAGEConv layer utilizes 2 attention heads to cap-
ture graph-based relationships. The model’s architecture is
encapsulated within a PyTorch Module, with the forward func-
tion defining the flow of information through the single layer.
Logarithmic softmax is employed for the final layer’s output
activation.

Other graph models. We used the same configurations as
the GraphSAGE model for the other graph models with their
own convolutional layer. For example, for the Graph Attention
Network, we used GATConv, and for the Graph Convolutional
Network, we used GCNConv.

Other classification models. The Random Forest Classifier
and the Decision Tree Classifier were configured with a Gini
criterion, a maximum depth of 3. For the XGBoost Classi-
fier, Support Vector Classifier (SVC), K-Nearest-Neighbors
(KNN) Classifier, Gaussian Naive Bayes and Logistic Regres-
sion we adopted default configurations.

Convolutional Neural Network (CNN). The CNN archi-
tecture comprises two ConvID layers with 32 and 64 filters,
respectively, followed by a ReLU activation function. Max-
Pooling 1D layers with a pool size of 2 were inserted after
each convolutional layer to downsample the spatial dimen-
sions. A GlobalAveragePoolingID layer was then employed
to aggregate the spatial information across the entire sequence.
Subsequently, two Dense layers were added with 64 units and
ReLU activation in the first, and a single unit with a sigmoid
activation in the final layer for classification. The model was
compiled using the Adam optimizer, binary cross-entropy
loss function, and accuracy as the metric for performance
evaluation.

Feedforward Neural Network (FNN). The FNN architec-
ture consists of three Dense layers, with the first two layers
containing 64 units each and utilizing the ReLU activation
function. The final dense layer, with a single unit and a sig-
moid activation function, is employed for classification. The
model was compiled using the Adam optimizer, binary cross-
entropy as the loss function, and accuracy as the metric for
assessing its performance.

B.2 Impact of sequence length

The distribution of the length of the FBS generated packet
sequences and the impact of sequence length on the detection
performance is shown in Figure 6

Phoenix FBSDetector

Attack DFA MM PLTC Acc Prec Rec
Acc Prec rec [ Acc Prec Rec [ Acc Prec Rec

Attach Reject 0.487 035 0.799[0.89 0.86 0.79 [0.868 0.70 0.767[0.95 0.97 0.95]

IMSI Catching 0.667 0.538 0.876|0.785 0.79 0.858(0.798 0.81 0.797(0.98 0.94 0.97

Service Reject 0.712 0.704 0.7210.797 0.725 0.753[0.871 0.81 0.844(0.95 0.96 0.93

TAU Reject 0.627 0.95 0.756(0.763 0.865 0.715[0.789 0.803 0.751{0.94 0.95 0.92

Measurement Report | 0.445 0.434 0.456|0.766 0.766 0.845|0.878 0.864 0.871/0.97 0.95 0.97
Paging with IMSI 0.574 0.634 0.91810.783 0.765 0.81 | 0.84 0.822 0.786(0.94 0.96 0.95
Authentication Failure | 0.802 0.671 0.897)0.805 0.79 0.749|0.849 0.788 0.863|0.98 0.96 0.95

Numb Attack 0.817 0.811 0.799]0.846 0.711 0.818]0.732 0.833 0.722{0.97 0.99 0.95

Table 10: Comparison between FBSDetector and Phoenix

ST Attack TP TN FP FN
T ‘Authentication relay attack 46.08 48.49 2.29 314
2 Bidding down with AtfachReject 52.2 42.56 2.05 3.19
3 Paging channel hijacking attack 5T.18 38.6 3.41 6.81
4 Location tracking via measurement reports 51.93 41.52 229 426
5 Capability Hijacking 50.62 40.58 3.46 534
6 Incarceration with rrcReestablishReject 49.65 42.81 3.73 3.81
7 Lullaby attack using rrcReestablishRequest 44.16 46.36 3.36 6.12
3 Bidding down with ServiceReject 48.1 44.57 3.49 3.84
9 Mobile Network Mapping (MNmap) 53.05 40.99 2.09 3.87
10 Energy Depletion attack 52.44 40.95 2.12 4.49
11 Lullaby attack with rrcResume 44.79 46.85 3.89 4.47
2 Stealthy Kickolf Attack 5271 3784 471 474
13 Incarceration with r7cReject and rrcRelease | 48.01 4284 | 477 438
14 IMST catching 39.17 53.36 2.69 478
5 NAS counter Desynch attack 49.81 42.49 3.04 4.66
16 X2 signalling flood 42.75 49.46 472 3.07
17 Handover hijacking 40.2 51.8 3.1 49
18 RRC replay attack 44.16 46.89 4.93 4.02
19 Lullaby attack with rrcReconfiguration 4724 459 2.76 4.1
20 Bidding down with TAUReject 50.52 42.27 3.43 3.78
21 Panic Attack 50.52 42.27 3.43 378

Table 11: MSAs detection performance breakdown (in per-
centage)

C Comparison with existing solutions

The comparison between FBSDetector and Phoenix [3] is
shown in Table 10.
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