ARTIFACT
EVALUATED
susenix

»

AVAILABLE

Dumbo-MPC: Efficient Fully Asynchronous MPC with Optimal Resilience

Yuan Su* Yuan Lu* Jiliang Li'

Xi’an Jiaotong University Institute of Software CAS Xi’an Jiaotong University
suyuan @ stu.xjtu.edu.cn luyuan@iscas.ac.cn Jjiliang.li@xjtu.edu.cn
Yuyi Wang Chengyi Dong Qiang Tang
CRRC Zhuzhou Institute Xi’an Jiaotong University The University of Sydney
yuyiwang920@ gmail.com 2196113533 @xjtu.stu.edu.cn qiang.tang @sydney.edu.au

Abstract 1 Introduction

Fully asynchronous multi-party computation (AMPC) has su-
perior robustness in realizing privacy and guaranteed output
delivery (G.0.D.) against asynchronous adversaries that can
arbitrarily delay communications. However, none of these
protocols are truly practical, as they either have sub-optimal
resilience, incur cumbersome communication cost, or suf-
fer from an online phase with extra cryptographic overhead.
The only attempting implementation—HoneyBadgerMPC
(hbMPC)—merely ensures G.O.D. in some implausible opti-
mistic cases due to a non-robust offline pre-processing phase.

We propose Dumbo-MPC a concretely efficient AMPC-as-
a-service design with all-phase G.0.D. and optimal resilience
against ¢ < n/3 malicious parties (where n is the total number
of parties). Similar to hbMPC, Dumbo-MPC has a robust (al-
most) information-theoretic online phase that can efficiently
perform online computations, given pre-processed multiplica-
tion triples. To achieve all-phase G.O.D., we design a novel
dual-mode offline protocol that can robustly pre-process mul-
tiplication triples in asynchrony. The offline phase features
O(n) per-triple communication in the optimistic case, fol-
lowed by a fully asynchronous fallback to a pessimistic path
to securely restore G.O.D. in the bad case. To (concretely)
efficiently implement the pessimistic path, we devise a con-
cretely efficient zk-proof for the product relationship of secret
shares over compact KZG polynomial commitments, which
enables us to reduce the degree of two secret shares’ product
from 2¢ to t and could be of independent interest.

We also implement and extensively evaluate Dumbo-MPC
(particularly its offline phase) in varying network settings
with up to 31 AWS servers. To our knowledge, we provide
the first AMPC implementation with all-phase G.O.D. A re-
cent asynchronous triple generation protocol from Groth and
Shoup (GS23) is also implemented and experimentally com-
pared. When n = 31, Dumbo-MPC generates 94 triples/sec
(almost twice as many as GS23) in the pessimistic case and
349 triples/sec (about 6X of GS23) in the good case.

* Yuan Su and Yuan Lu contributed equally.
T Jiliang Li is the corresponding author.

The paradigm of multi-party computation (MPC) as a ser-
vice (MPCaaS) has recently gained significant interests as
a promising approach to privacy-preserving distributed sys-
tems. Particularly, it is often seen as an enticing solution to
overcome the challenge of privacy breaches in blockchains,
thereby enabling private smart contracts [16, 85], anonymous
broadcasts for transaction diffusion [5, 66], and numerous
other tailored decentralized applications [69, 70].

Need for robust MPC in full asynchrony. In many aforemen-
tioned scenarios, ensuring G.O.D. is crucial for maintaining
the availability of services, particularly in mission-critical
applications where timely response is essential. Consider
the case of MPCaaS-enabled private smart contracts [16, 85]:
clients rely on MPCaaS to evaluate their transactions privately
and deliver execution results based on contract clauses. If MP-
CaaS fails to ensure G.O.D., an adversary could forever block
transaction execution, posing a severe denial-of-service threat
that could completely censor the private smart contracts.

Despite the urgent demand of G.O.D., most practical MPC
implementations [7, 36, 38, 63, 82] fail to provide such ne-
cessity [66]. For many additive secret sharing based MPC
that tolerate n — 1 malicious parties [38, 40, 82], it is inher-
ently impossible to realize G.O.D. Even for many MPC pro-
tocols [7, 37, 39, 51, 53, 58] that are expected to be robust,
their output delivery is conditioned on stringent network syn-
chrony, and unsurprisingly, when they are deployed in an asyn-
chronous network where messages can be arbitrarily delayed
(e.g., MPCaasS servers experience unexpected communication
interruption due to Internet glitches), their G.O.D. could be
violated. Moreover, many MPC protocols [11, 39, 51, 53, 58]
even suffer from privacy leakage in a fully asynchronous net-
work, because they heavily rely on the strong assumption of
network synchrony to “eject” suspiciously malicious nodes
that are temporally unresponsive. As such, they might incor-
rectly eject honest parties in asynchrony, thereby eventually
allowing malicious nodes learn all private inputs.

Given that, it becomes essential to consider more efficient

designs of asynchronous MPC (AMPC), thus ensuring both
privacy and G.O.D. in the unstable or even adversarial Internet
environment to accommodate mission-critical applications.

Table 1: Comparison of typical AMPC protocols

. comm. / gate # secrets
Protocols };hg uiﬁﬁe Ga 551;) ——————— to be shared

U-U- Good Bad per triple
CHPI13 [30] n/4 v v o(n) O(n) 48
CP17 [32] n/4 v v o) O(n) 48
DXKR23 [41]¥ n/3 v X on?) - 2n

n/4 v v on’) o) 2n

hbMPC [66] n/3 v X o(n) - 12
HNPOS [60] n/3 X v on?) o@n?) -
CP15[31] f n/3 X v o(n) O(n) -
CHL21 [28] n/3 X v on?) o@n?) -
PCROS [60] n/3 v/ v o) o) 9n+6
CP23 [33] n/3 v v on*) o@n*) 6n
$S23 [77] n/3 v v on?) o) 6n
GS23 [54] n/3 v v on?) o) 3n
GLS24[52] n/3 v v o(n) O(n) ~ 230K
Dumbo-MPC n/3 v v o(n) 0(n?) n+6

T CP15 performs threshold decryption of somewhat homomorphic encryption
for each multiplication in online, which might cause serious efficiency issue.

DXKR23 gives a random double-sharing protocol to generate ¢-degree and
2t-degree shares of the same randomness, which requires sharing 2n secrets to
prepare a pair of random double-sharing. However, while using double shares
for evaluating multiplication gates during the online phase in asynchrony
with n/3 corruptions, the 2r-degree secret shares might fail in reconstructing
(as decoding might fail). Only if a lower non-optimal resilience (e.g. n/4) is
allowed, the robustness of online evaluation can be restored.

1.1 Practical Obstacles of AMPC

Nevertheless, it is challenging to design efficient AMPC while
preserving optimal t < 1/3 resilience,' as one cannot distin-
guish a malicious party that sends nothing and an honest party
whose messages are delayed due to network asynchrony. So
the protocol has to proceed once receiving n — ¢ distinct par-
ties’ messages (which might only solicit n — 2¢ honest parties’
messages and therefore omit the rest # honest parties).

Practicality issues of earlier theoretic studies. Despite that
AMPC has been studied for more than 30 years, existing
results are mostly theoretical, and essentially none of them
was ever implemented for various efficiency issues. AMPC
was initially studied in the unconditionally-secure setting
[13, 14,75, 78], but these early results have tremendous com-
munication cost (at least n* overhead per gate). Some recent
results with unconditional security reduce the asymptotic over-
head to O(n?) or O(n) per gate, but most of them [30, 32, 73]
only tolerate t < n/4 malicious parties. The only uncondition-
ally secure design that realizes linear per-gate communication
with optimal # < n/3 resilience is a very recent study [52], but
has a prohibitive O(n'#) circuit-independent communication
overhead as well as inferior concrete efficiency (requiring
thousands of secrets to be verifiably shared per triple).

!Note that the optimal resilience of asynchronous Byzantine agreement
is n/3 [23], implying the same upper bound of resilience of robust AMPCs.

In the cryptographic setting, the study of AMPC was ini-
tialized by Hirt et al. [59, 60], followed by a few theoretical
improvements [31, 34] using somewhat/fully homomorphic
encryption. Choudhury and Patra [31] realized linear per-gate
communication overhead but have costly (n,t) threshold de-
cryption of somewhat homomorphic encryption in its online
phase (for multiplication gates). Coretti et al. [35] proposed
an asynchronous version of ‘BMR’ [9] with constant rounds,
but it has a costly process using another general-purpose
AMPC to pre-compute distributed garbled circuits. Cohen
[34] adopted threshold fully homomorphic encryption (tFHE)
to get another constant-round AMPC, but it has undesired on-
line computational cost due to expensive FHE evaluations.”

hbMPC: trading robustness for efficiency. Recently, Hon-
eyBadgerMPC (hbMPC) [66] gives the first potentially prac-
tical (nearly-)asynchronous MPCaaS protocol. The work of
hbMPC focuses on optimizing a robust online phase based
on Shamir secret sharing [6, 8, 12] with n/3 resilience in the
pre-processing model, with the price of an adapted non-robust
offline phase [11, 39] to pre-process the needed multiplica-
tion triples. However, the overall robustness of hbMPC is
impaired: when its non-robust offline phase is under network
attacks, the pre-processing could be stalled; and subsequently,
its online phase might also grind to a halt, as a result of for-
ever waiting for the replenishment of multiplication triples.
That said, the robustness of hbMPC still relies on a strong
assumption that all n parties are honest to cooperatively make
the offline phase progress. Unfortunately, such strong assump-
tion could be elusive, especially in adversarial deployment
environments like the open Internet.

GS23: a robust offline but with larger per-gate overhead.
Very recently, Groth and Shoup (GS23) [54] * made one step
towards robust asynchronous triple generation by introduc-
ing an optimized asynchronous version of ‘BGW’ [12, 50]
in the cryptographic setting. From a high level, it lets each
party P; invoke #-degree asynchronous complete (verifiable)
secret sharing (ACSS) to share two secrets ¢; and b;, and
adds shares from distinct parties to obtain two random shares
[a] and [b]. Then, every party computes [ab]a; = [a][b] as
2t-degree share of ab, and invokes ¢-degree ACSS again to
re-share [ab],;. When instantiating ACSS from (generalized)
Pedersen’s polynomial commitment, GS23 can let the final
re-sharing of [ab]y; also carry some zk-proof for the product
relationship over Pedersen commitments, thus ensuring every-
one to recover a correct ¢-degree share [ab] to complete triple
generation. However, in GS23, each party verifiably shares
3 secrets per triple (two for a; and b;, and one for [ab]y,),

ZNote that another seemingly viable idea of naively using (n,7) threshold
SHE [24, 25, 47] for Shamir shares to pre-process triples (i.e. reflecting
an asynchronous version of SPDZ [38, 40, 65]) can also be impractical, as
threshold SHE for Shamir shares might have prohibitively large security
parameters [20, 81], unless there are sufficient pre-shared noises (whose
robust distributed generation in asynchrony is another challenging problem).

3Groth and Shoup released the first version of their paper in 2022, fol-
lowed by a major update in 2023 that included batch Pedersen commitments.

which not only incurs concretely inferior performance, but
also causes asymptotically large communication and compu-
tational cost, e.g., the per-triple communication is O(n?) in
the good case and even O(n?) in the bad case.”

Can we harvest both robustness and efficiency in AMPC?
On the one hand, the almost information-theoretic (I.T.) online
phase of hbMPC is promisingly performant, capable of eval-
uating 8,000+ multiplication gates per second according to
our evaluations in the pre-processing model (see Appendix I
of the full version [79] for test results), but it suffers from a
non-robust offline phase, resulting in a major vulnerability
in a fully asynchronous network. On the other hand, robust
asynchronous offline protocols like GS23 offer superior ro-
bustness but are substantially less efficient, especially when
hbMPC might optimistically execute in the good case, GS23
attains a throughput about only 1/6 of hbMPC.

Facing this robustness-efficiency trade-off in state-of-the-

art AMPC protocols, * we are asking the following question:

Can we push fully asynchronous MPC protocols
with guaranteed output delivery closer to practice
(i.e., as robust as GS23 while as efficient as hbMPC)?

1.2 Our Contribution

We answer the question affirmatively by designing a set of
robust and concretely efficient AMPC protocols in the classic
online-offline paradigm, called Dumbo-MPC, with amortized
linear (resp. quadratic) per-gate communication in the good
case (resp. the bad case). To achieve all-phase G.O.D. with
optimal resilience, Dumbo-MPC introduces a throughput-
optimized fully asynchronous offline protocol to robustly and
efficiently pre-process multiplication triples in a batched man-
ner. Dumbo-MPC also inherits hbMPC’s almost I.T. online
phase, which is robust and already promisingly performant in
the pre-processing model, involving only Shamir secret shar-
ing for crucial online efficiency (except for an asynchronous
Byzantine agreement component that we also dedicatedly
optimize). In sum, our contributions are:

¢ New “hidden evaluation” interface of compact KZG
polynomial commitment for conveniently proving
product relation of committed secret shares. To ap-
ply compact KZG polynomial commitment [62] for re-
ducing the worst-case complexity of GS23, we first de-
vise a new zero-knowledge proof scheme for proving
the product relationship of secret shares committed to a
triple of KZG commitments. For the purpose, we intro-
duce a new “hidden evaluation” interface and properties
to KZG scheme, allowing a party to convert the bind-
ing of secret shares from KZG polynomial commitment

“Though the state-of-the-art batched ACSS [80] attains O(n) amortized
communication cost per secret, its instantiation from Pedersen commitment
like GS23 still incurs O(n?) amortized communication in the bad case.

SBesides closely related studies discussed in Introduction, we also review
else relevant studies and discuss their limitations in Appendix A.

into Pedersen commitment. As such, it reduces the prob-
lem of proving product relationship over KZG commit-
ments to the very standard problem of proving that over
Pedersen commitments. When applying our technique
to instantiate Dumbo-MPC using more compact KZG
polynomial commitment, we reduce the worst-case com-
munication complexity from GS23’s O(n?) per-gate to
O(n?). Moreover, our approach of proving the product
relation of Shamir secret shares over KZG commitments
could be of independent interest, e.g., robust publicly
auditable/accountable MPCs [61, 76].

Robust fully asynchronous offline protocol that can
batchedly pre-process multiplication triples more ef-
ficiently. In addition to our asymptotic improvement of
the worst-case complexity of GS23, we further enhance
concrete efficiency by reducing the number of secrets
to be shared by an additional factor of 3, through a sub-
protocol that extracts random shares using batching for
efficiency. Our approach not only patches the concurrent
composability of the state-of-the-art KZG-based batch
ACSS [80], but also leverages KZG’s homomorphism
to redesign the GS23 protocol to extract f + 1 random
shares from n — ¢ shared secrets via hyper-invertible ma-
trix. More importantly, this still maintains the crucial
convenience of proving product relation of secret shares
for valid triples, as we can compute the linear combi-
nations of KZG polynomial commitments to bind all
extracted random shares. Thereby, our triple generation
only verifiably shares n secrets per triple, as opposed to
that GS23 requires 3n.°

Optimized fast path together with efficient fallback
to harvest performance while still preserving G.0.D.
To harvest efficiency from optimistic conditions when
no party misbehaves, we add a fast path optimized from
hbMPC and earlier studies [11, 39, 66] to generate triples
with amortized O(n) communication overhead in the
good case. To preserve G.O.D., we design a fallback
mechanism enabling honest parties switch to our robust
offline protocol when the fast path fails. The fallback is
non-trivial, as a naive attempt (directly running the robust
protocol after the fast path fails) might cause incorrect
online multiplications due to network asynchrony (e.g.,
for a multiplication gate, someones use a triple from the
fast path, but the others use another triple from the robust
protocol). We efficiently resolve the threat using a con-
ceptually minimal asynchronous Byzantine agreement
for a single bit. Moreover, our fast path saves 3 commu-
nication rounds compared to hbMPC, as a bonus of our
fallback mechanism eliminating the need of broadcasts
to cross-check the consistency of generated triples.

Qur triple generation not only is more efficient than GS23, but also
could be concretely more efficient than many theoretic designs [33, 52] with
similar or even better asymptotic complexities, see Appendix A for such
comparisons.

¢ The first implementation of AMPC with all-phase
G.0.D. and extensive evaluations. Combining with
dedicated optimization of asynchronous consensus com-
ponent for good-case latency, we then implemented a
prototype of Dumbo-MPC. For fair comparison, we also
implemented GS23 as a by-product. To our knowledge,
we provide the first implementation of AMPC with all-
phase G.O.D., which is also open-sourced.” Extensive
evaluations were conducted to demonstrate the perfor-
mance of Dumbo-MPC under varying network condi-
tions, such as LAN and WAN settings, involving up to 31
AWS EC2 nodes.® As a highlight of our experimental re-
sults, Table 2 summarizes the pre-processing latency of
GS23, hbMPC and Dumbo-MPC in a LAN setting for a
task of private Vickrey auction with 100 bidders. Specifi-
cally, when n = 31, GS23 requires more than 13 minutes
to pre-process all 44,571 multiplication triples needed
by the Vickrey auction, and hbMPC might even have an
infinite latency. In contrast, our pessimistic offline path
takes less than 8 minutes, reducing the pre-processing
latency by up to 41% compared to GS23.

Table 2: Pre-processing latency (sec.) for private Vickery
auction with 100 bidders (the bad case, in a LAN setting)

Scale n =
Protocols 0 7 3
hbMPC [66] oo))
GS23 [54] 193 464 810
Dumbo-MPC 168 (| 13%) 368 (1 21%) 474 (| 41%)

2 Problem Definition & Technique Overview

For the convenience of readers, we enumerate some notations
widely used throughout the paper in Table 3.

Table 3: Notations

Notation Description

n the total number of parties

t the maximum number of corrupted parties
N the batch size of secret sharing
B

the batch size of triple generation

(pki,ski) the public-secret key pair of P;

[r]. [l (n,z+1) and (n,2¢t+1) Shamir’s secret shares of r
[l a Shamir secret share of r held by party P;

[n] short for [1,--- ,n]

M;; the j-th element of i-th row of matrix M

IN the bit length of security parameter

e(-) negligible function

7Qur code can be found at https://zenodo.org/records/14678208
or https://github.com/dcy456/Dumbo-MPC.

87To assess the feasibility of Dumbo-MPC, we primarily focus on evalu-
ating its offline (which is same to most similar literature [38, 64, 65]) as the
offline is the heaviest component bringing major performance bottleneck.

2.1 Problem: Asynchronous MPCaaS

Security model. We adopt the standard reliable asynchronous
authenticated network with setup assumptions. We also con-
sider the MPC-as-a-Service (MPCaaS) setting with malicious
clients. Specifically, our model can be formalized as:

Public identities and trusted setup. There are n designated
parties {Py,---,P,} (i.e., servers) that participate in the MPC
protocol. There also exists a public key infrastructure such
that each P; gets and only gets its own secret key sk; and
additionally obtains the public keys {pk;}c|, of all parties.
In addition, we assume that the common reference string
(g,8% - ,8% hh®, -, k%) € G¥*2 of KZG polynomial
commitment [62] is honestly generated and published, which
can be done through asynchronous distributed protocols [43].

Fully-connected asynchronous p2p network. We consider
a standard asynchronous communication network that con-
sists of secure point-to-point (p2p) channels between each
pair of parties. Messages sent between honest parties can be
arbitrarily delayed by the adversary, but they remain confiden-
tial and must eventually deliver without being tampered.

Adversary corrupting t < n/3 servers. We consider mali-
cious, static, probabilistic polynomial-time (P.P.T.) bounded
adversaries that can fully control up to # < n/3 corrupted par-
ties. Here “static” means that the adversary chooses parties to
corrupt before the protocol begins. Noticeably, ¢ < /3 is the
optimal resilience of AMPC protocols with G.O.D. [23].

Probably malicious clients. We focus on the enticing MP-
CaaS model, where k clients submit their private inputs for
secure computation. An inherent limitation of asynchrony
is that up to ¢ honest clients’ inputs may be excluded from
computation (where c¢ is the number of malicious clients),
because waiting for all k£ inputs might incur infinite time as
corrupted clients might not provide any input. W.l.o.g., we
assume n = k and t = ¢ (i.e., each server plays another role of
client) for presentation simplicity, unless otherwise specified.

Design goals. We aim to achieve concretely efficient AMPC,
featuring robust offline and online phases (as illustrated in
Figure 1), tailored for the MPCaaS setting with optimal re-
silience and all-phase G.O.D. At a high level, the offline phase
handles complicated but input-independent tasks like triple
generation, and is not latency-critical, so we can focus on its
throughput optimization through batching techniques; the on-
line phase leverages the offline pre-processing to enable more
responsive function evaluation upon receiving users’ private
inputs, ensuring suitability for latency-critical applications.
The two phases can be formulated as follows.

Offline phase. Syntactically, n parties (servers) take system
parameters as input, and each party P; continuously outputs a
linearized sequence of random shares [r{]’, [r>]’---, and an-
other sequence of multiplication triples ([a1]’, [b1]’, [a1b1]),
([a2], [b2], [a2b2]’) - - - . The phase shall satisfy the follow-
ing properties with overwhelming probability:

e Validity: for any j-th position in the output sequence of
random shares, all honest parties must (eventually) hold
consistent #-degree secret shares of some r;; similarly,
for any j-th position in the triples’ sequence, all honest
parties must (eventually) hold consistent z-degree secret
shares of some a;, bj, cj = a;b;.

e Secrecy: itis infeasible for any P.P.T. adversary to predict
rj (resp. aj, bj, a;b;) better than guessing, until the first
honest node P; spreads out its corresponding secret share.

e Pre-processing liveness (Offline robustness) : all honest
parties’ output sequences are ever-growing.

Online phase. Given the above robust offline phase that
can continuously generate random shares and multiplication
triples, we then aim at realizing an online phase with MP-
CaaS interfaces to (probably malicious) clients. As such, for
any agreed to evaluate function f(-), the phase can confiden-
tially evaluate f and shall satisfy the next properties with
overwhelming probability:
e Privacy. For any PP.T. adversary, it learns nothing in
addition to the evaluation result of f.

o Guaranteed output delivery (online robustness). All hon-
est parties (servers) eventually output the evaluation of
f(-) on at least n — ¢ distinct clients’ inputs.

Performance metrics. We are particularly interested in more
efficient AMPC protocols. For the purpose, we primarily con-
sider the key efficiency metric of (amortized) communication
complexity, reflecting the expected number of bits sent by hon-
est parties to generate each random share or multiplication
triple. Moreover, we might estimate the concrete performance
of AMPC protocols according to the number of secrets to be
(verifiably) shared for each generated multiplication triple.
Sometimes, the round of communication is also considered
as another indicator to estimate protocols’ performance.

(1) Inputs | (2) Inputs Soliciting (Async. Common Subset)
masking

- _ I
m, = my+ry

(Iml= 3, - 0D T le= 2, - Dl sl = - 00
LU ST O 1 O e A SR SN w
7, = ma 4131 (eas T A B U RS A N R S
oI, =11 o= 7, - D gl = 7, Dl

~ 1
i, =my +ra

[o]?

]!
‘(3) Online Function Evaluation} Out:{[[oﬂz
[o]*

0= f(my, iy, 1i3)

Figure 1: Offline-online paradigm of AMPCaaS

2.2 Challenges and Our Techniques

Challenge I: realize both robustness and efficiency while
reducing the degree of shares’ product. Asynchronous
triple generation is at the heart of AMPC. One might im-
mediately realize a “possible” design by adapting the seminal

BGW protocol [12]: (i) All parties first collectively generate
some ¢-degree shares [a], and [b], of unbiased randomness
a and b, which can be done through a few existing asyn-
chronous protocols [41, 42, 44]; (ii) Everyone locally com-
putes [ab]a = [a][b]:, which represents 2¢-degree secret
share of ab; (iii) Then, each party invokes a “degree reduction”
phase by re-sharing [ab], through another 7-degree verifiable
secret sharing protocol, such that everyone can interpolate the
received shares to obtain [ab];, i.e., reducing the 2¢-degree
[ab]a, to t-degree [ab],. The attempt appears to be enticing,
as one seemingly can plug in the state-of-the-art asynchronous
complete secret sharing (ACSS) [3, 80] to instantiate the idea.
However, during degree reduction, # malicious parties can re-
share arbitrary secret instead of the genuine product, making
honest parties fail to decode the correct [ab], in asynchrony
and thus causing the breach of robustness.

Therefore, to guarantee robustness during degree reduction,
GS23 introduces batch ACSS (built from Pedersen’s polyno-
mial commitments) into the BGW framework [54] and uses
zk-proof of product relation over Pedersen commitments to
attest the re-sharing of correct [ab]; = [a];[b]; as inspired by
Gennaro et al. [50]. However, Pedersen polynomial commit-
ment is large as broadcasting it already causes O(n?) bits, and
GS23 optimizes this by letting ACSS dealer aggregate a batch
of such polynomial commitments (after which, the k-th term
in the aggregated commitment is a generalized Pedersen com-
mitment that binds all polynomials’ k-th coefficients). The
approach has clear drawbacks: (i) it requires a concretely large
number of 3n secrets to be (verifiably) shared per triple, as
every party shares two secrets for generating two random shar-
ings [a] and [[b] and then re-shares [a][b]; (ii) the worst-case
communication cost of the resulting batch ACSS is quadratic
per secret, incurring cubic overhead per triple.

Our approach. We take advantage of succinct and homo-
morphic KZG polynomial commitment to realize an alterna-
tive batch triple generation protocol improving the enticing
approach of GS23, both concretely and asymptotically. This
nevertheless requires us to devise a new zk-proof scheme
attesting the product relation of a triple of secret shares over
KZG commitments. To this end, we introduce the new “hid-
den evaluation” interface to augment the legacy KZG scheme,
enabling each party to compute a Pedersen commitment of a
certain evaluation of the polynomial committed to the given
KZG commitment. Our new interface can convert the proof-
of-product over KZG commitments into the problem of prov-
ing that over Pedersen’s, and hence, we can realize a more
efficient triple generation protocol, as our augmented KZG
scheme enables: (i) instantiate an efficient batch ACSS to-
gether with our careful patch for concurrent compatibility,
thus asymptotically reducing the worst-case communication
by another O(n) factor; (ii) employ a more efficient random-
ness extraction technique via hyper-invertible matrix, reduc-
ing the number of shared secrets per triple from 3n to n.

Challenge II: fallback from fast path to pessimistic path

might cause incorrect online computation. The non-robust
offline protocol adapted from [7, 66] can optimistically gener-
ate triples with an amortized O(n) communication overhead.
However, when some malicious party starts to misbehave, this
fast path protocol might fail to progress. In such bad cases,
fallback is needed to restore robustness. But the tricky effect
of network asynchrony is that some honest parties might al-
ready generate the r-th batch of triples from the fast path,
while some other honest parties only obtain the (r — 1)-th
batch of triples from the fast path, which clearly results in a
serious vulnerability of disagreed outputs after fallback.

Given this, if the honest nodes trivially quit from unrespon-
sive fast path and then immediately start the pessimistic path,
the online computation might no longer be correct, because
for a multiplication gate, some honest parties might use triple
([a],], [ab]) generated via fast path but some other parties
might use another triple ([a'], [6'], [¢'b']) generated by the
pessimistic path. On the other side, completely withdrawing
all fast path outcome after fallback might resolve the incon-
sistency issue but makes the fast path pointless.

To resolve the above inconsistency issue caused by a failed
fast path, one straightforward idea is using an asynchronous
common subset (ACS) protocol to handle mode-switching
when fallback occurs, because ACS can select the fast path
progresses from at least 2 f 4 1 parties, so the median among
the values of ACS output must represent the actual fast fast
progress. However, as a heavy variant of asynchronous Byzan-
tine agreement for multiples values, ACS itself is not a cheap
primitive and might cause significant performance degrada-
tion and subsequently eliminate the efficiency gain from fast
path when the fallback is triggered.

Our approach. Since a fast mode-switching module is nec-
essary for a useful dual-mode design, we strive to design a
more efficient solution other than naively using ACS, fol-
lowed by a careful observation on the variance in the fast path
progress of honest parties. A key finding is that: for the honest
parties, their progresses in the fast path are either the same or
have a variance of at most one, when they detect the fast path
failed or unresponsive. This is because our fast path requires
all parties to be responsive as it requires each party to wait for
messages from all parties. If any honest party P; starts fallback
with only obtaining the r-th batch of fast-path triples, then
no honest party can obtain the (r+ 2)-th batch of fast-path
triples, because P; would not collaborate in the (r+ 2)-th fast-
path triple generation. This hints us at introducing a variant
of asynchronous binary agreement for reaching consensus
among two consecutive values (tcv-BA) [67]. Namely, every
party takes its fast path progress r as input to tcv-ABA during
fallback, then tcv-BA returns a common value R, using which,
the honest parties can reach a unitary decision on preserving
how many fast-path triples before entering the pessimistic
path, thereby resolving any inconsistency that might cause
incorrect online evaluation.

3 Preliminaries

Asynchronous multi-valued validated Byzantine agree-
ment (MVBA) [2, 4, 26, 41, 46, 68, 83] is a variant of asyn-
chronous Byzantine agreement with output satisfying a public
boolean predicate. In particular, MVBA running among n
parties is parameterized by a global predicate 0 : X x S —
{True,False}. Here X represents the domain of inputs and S
denotes the domain of each party’s internal states, and Q shall
be (i) monotonic, i.e., it cannot switch from true to false as the
honest party’s state S; evolves, and (ii) eventually unanimous,
i.e., if Q(x,S;) is true due to some honest party P;’s state S;,
then eventually Q(x,S;) becomes true for every honest party
P;’s internal state S;. Such MVBA protocol satisfies the next
properties with overwhelming probability: (i) Termination,
if every honest node P; starts the protocol with input x; and
internal states S; s.t. Q(x;,S;) = True, all honest nodes would
eventually output; (ii) Agreement, any two honest nodes P; and
P; output y; and y;, respectively, then y; = y;; (iii) External
Validity, every honest node P;’s output y; will be (eventually)
valid due to the predicate Q and P;’s internal states S;.

Asynchronous two-consecutive-value Byzantine agree-
ment (tcv-BA) [67] is an extended asynchronous binary
Byzantine agreement where honest parties input two con-
secutive integers or the same integer. If all honest parties
activate a tcv-BA protocol by inputting a value in {v,v+ 1}
where v € N, then the following properties would hold with
overwhelming probability: (i) Termination, all honest parties
would output some value; (ii) Agreement, any two honest par-
ties’ outputs are the same; (iii) Validity, if some honest parties
output x, then at least one honest party inputs x.

4 Proof of Product Relation over
KZG Polynomial Commitments

As aforementioned, we focus on improving the efficiency
of the enticing GS23 protocol through succinct and homo-
morphic KZG polynomial commitment. This requires us to
devise a zero-knowledge proof (zk-proof) scheme for the
product relationship of certain polynomial evaluations over
KZG commitments, ensuring that any malicious party either
re-shares the correct product of [ab]}, = [a]' - [b]’ or does
nothing harmful. This section will elaborate on our approach
to realizing such efficient zk-proof over KZG commitments.

Adding hidden evaluation interfaces. To prove the product
relation of secret shares committed to KZG polynomial com-
mitments, we first introduce new algorithmic interfaces to the
KZG scheme. Informally, these new interfaces enable the fol-
lowing: given a KZG polynomial commitment, a polynomial
evaluation, and the valid evaluation proof, one can compute
the Pedersen commitment of this evaluation and bind this
Pedersen commitment to the given KZG commitment.

As illustrated in Figure 2, our construction of hidden evalu-

ation stems from the observation that the VerifyEval function
of the KZG scheme only requires a couple of Pedersen-style
commitments, g¢(i) K@ and g“’(o‘) h¥(®@) (o check the equality
of two pairings, which hints at that they could be the expected
hidden evaluation and corresponding proof. We then prove
that our proposed augmented KZG scheme with hidden eval-
uation interfaces satisfies the properties of (i) correctness, (ii)
polynomial binding, (iii) evaluation binding, (iv) hiding and
(v) hidden evaluation’s binding, assuming the hardness of
discrete logarithm and #-strong Diffie-Hellman problems. We
formalize these properties below.

Correctness: Given any SP <+ Setup(1¥,¢) and any 0(-) €
Zyx], if C < PolyCom(SP,¢(-)), then:
e For any output of ProveEval(SP,i,¢(-), ¢(-)), it can al-
ways pass the verification of VerifyEval.
e For any output of HiddenEval(SP,i,w;,d(i),$(i)), it can
always be accepted by VerifyHiddenEval.
e For any output of HiddenEval(SP,i,w;, (i), d(i)), there
is OpenHiddenEval(SP,¢(i), (i), T;) = 1.
Evaluanon binding: For any P.P.T. adversary 4,
SP + Setup(1¥,1);
C,(1,0(1),0(),wi), (i,0(), (i)', w})) + A(SP) :
| ORI
| VerifyEval(SP,C,i,0(1)', (i)', w)) = 1 Ao(i) # 0(i)’
Polynomlal binding: For any P.P.T. adversary 4,
SP + Setup(1¥,1);

(C7117I27{(¢()7 ()7Wl)}l€11U12) — ﬂ(SP)
where I} C [n],1, C [n],and ||| = |h| =1+1:
Pr| Vie I, Ub,VerifyEval(SP,C,i,0(i),0(i),w;) = 1 A
(01(-.81(-)) Interpolate(ly, {9(1),8(1) yier) A
(92(-),02(-)) < Interpolate(L, {§(i),0(i) bicr,) A

01(-) # 02(1)
(Augmented) hiding: The polynomial commitment and all hid-
den evaluations should not reveal any additional information
about the polynomial beyond ¢ shares that are already known
to the adversary. This is an enhanced hiding property of the
original KZG scheme, which now also accounts for outputs
from the hidden evaluation interface. Formally, for any P.P.T.
adversary, a PP.T. simulator (Simg, Sim;,Sim;,,Sim3) exists,
such that the next two distributions are identical:
Real world:
SP «+ Setup(1%,1); (0(-), L1, L) + A(SP);

(C,9()) < PolyCom(SP,¢(-));
Vi e I, (0(i), (i), w;) < ProveEval(SP,i,d(-),0(-));
Vi € b, (T, ;) < HiddenEval(SP,i,d(-),0(-))
2 (C{i,00), 8(0), witien, , {i, Ti, @i }ier,) where 1| <1
Ideal world:
(SP,st) « Simo(1%,1); (0(-), 1, L) < A(SP);
(C,c) < Simy(st);
({witien o' ().0'()) + Sima(st, (C,c), {i,9(i) Yier,)
{T, 0 }icr, < Sim(st, (C,c),0'(-), ¥ (), 1)

2 (C{i,0(1),00), witien, , {i. Ti, 0 }ier,) where || <t

Hidden evaluation’s binding: For all adversaries 4,
SP + Se'[up(lK t);

(Ci (T, 03,0/ (0), 8/ (), (0(0),8(0), wi)) % ﬁl(SP)

Pr VerifyHiddenEval(SP,C, i 7},(0,) =
OpenHlddenEvaI(SP ¢'(i),0' (i),) = 1 A

VerifyEval(SP,C,i,0(i),0(i),w;) = 1 Ad (i) # &(i)
REMARKS. Clearly, our augmented KZG polynomial com-
mitment with hidden evaluation (KZG PCwHE) satisfies all
properties of the original KZG scheme [62]. Additionally, it
provides a convenient interface to convert the binding of a
secret share from a given KZG commitment to another Peder-
sen commitment that not only binds the secret share originally
committed to KZG but also leaks nothing about the secret.
For detailed proofs of KZG PCwHE, see Appendix B of the
full version [79].

<e(x)

KZG Polynomial Commitment w/ Hidden Evaluation
Setup(1%,7): generate bilinear pairing group G = (e,G,Gr) and
randomly sample o, T € Zg. Let g be a random generator of G, set
h=g" and return SP = { G, {g% ,h* }_,}.

PolyCom(SP,¢(-)): sample random 7-degree polynomial &(-), and
compute C = g(@ po(a)

ProveEval(SP,i,0(-),8(-)): compute w; = g¥(®p¥(®) where
Vi) = 2900 and () = 200 ourput (1,0(0).$(0),wy).
VerifyEval(SP,C,i,0(i), 8(i), wi): output 1 if e(C/(g°Vh®®), g) =

e(w;,g%/g'), output 0 otherwise.

Below are hidden evaluation interfaces
HiddenEval(SP, i, wi,0(i),$(i)): compute T; = g®D1®() and out-
put (i, T;,®;) where ®; = w;.
OpenHiddenEval(SP, o(i),d(i),
erwise output 0.
VerifyHiddenEval(SP,C,i,T;,w;): if e(C/T;, 8) = e(w;, g*/g"), out-
put 1, otherwise output 0.

T;):if T, = g¢(i)h‘f’<">, output 1, oth-

NOTE: we also use BatchVerifyEval and BatchVerifyHiddenEval
to denote the batch versions of VerifyEval and VerifyHiddenEval,
which simultaneously perform many verifications for efficiency.

Figure 2: Our augmented KZG polynomial commitment
with new hidden evaluation interfaces (KZG PCwHE).

Proving the product relation over KZG commitments.
Given our augmented KZG scheme with hidden evaluation
interfaces, we realize a convenient way to prove the product
relationship of secret shares over a triple of (publicly known)
KZG commitments, as illustrated in Figure 3. Particularly,
the proposed proof-of-knowledge (PoK) zk-proof attests the
following statement:

PoKprod k76 [{(9x(ix), (T)X(iX) sWx) bxefabie} :
¢a(ia) : ¢b(ib) = ¢c‘(i6) A
VerifyEval(SP, Cy, ix, Ox (ix), Gx (ix), i) = 1,Vx € {a,b,c}]
which proves that the secret share 0.(i.) committed to KZG
commitment C, is indeed a correct product of two legitimate

PoK of Product over KZG Commitments PoKprog kzg

The prover P and the verifier 7 both know the public state-
ment (SP,Ca,Cp,Ce,ig, ip,ic) Where {Cx}ciap.c) are KZG poly-
nomial commitments and {ix} e 4.} are points to evaluate poly-
nomials. has private witness {(¢x(ix)7@x(ix%wx)}xe{a,b,c}, s.t.
Vx € {a,b,c}, VerifyEval(SP,Cy, ix, Ox (ix), §x (i), wx) = 1.

/I Prover P

M POKProd_KZG-T({(Cmixvq)X(iX)v(T)X(iX)vWX)}xe{u,bﬁc}):

(a) compute HiddenEval(SP, iy, wy,0(ix),0(ix)) to obtain
(T, ®y) for each x € {a,b,c};

(b) invoke the prover of the proof-of-product scheme for values
commiitted to Pedersen commitments (see Figure 13 in the
full version [79]) with taking {((])x(ix),&)x(ix))}xe{a’bﬁ} as
witness, and obtain the proof 7 regarding the product relation
of (Ty, Tp, Tz);

(c) output proof = ({(Tx, 0x) }re{ab.c}» T

// Verifier v
e PoKprog kza- V({(Cx,ix) }xe{a,b,c} ,proof):

(a) parse proof as ({(7x,®x) }xefap.c}> T3

(b) verify VerifyHiddenEval(SP, Cy, ix, Ty, ®x)=1 for x € {a,b,c};

(c) verify the proof-of-product = regarding (7,7}, T;) (see Fig-
ure 13 in the full version [79]), return 1 if all checks pass and
0 otherwise.

Figure 3: Zk-proof of product relation for a triple of evalu-
ations of polynomials committed to KZG commitments.

secrets’ shares ¢,(i,) and ¢p (i) that are respectively com-
mitted to two KZG commitments C, and C. Intuitively, the
proof scheme first computes hidden evaluation as a Pedersen
commitment for each secret share, and then proves the prod-
uct relationship over these derived Pedersen commitments.
In the next section when we instantiate our asynchronous
triple generation protocol, this zk-proof plays a crucial role in
preventing malicious parties from re-sharing arbitrary secrets
instead of the genuine product of two expected shares.

Algorithm 1 Asynchronous random share generation > Code of P;

Input: N the batch size of BACSS, and other system parameters

Output: rnd_shares = {(Cy, [r«], [[fk]],wk)g:(r;rn}

1: 7; < 0, shares; < 0, rnd_shares < 0

2: activate BACSS_share; instance for every j € [n]

3: uniformly sample N secrets s;1,- - ,s;v from Z

4: invoke BACSS_share; as dealer to share s;1,- -, sin
/I Each P; generate n private-public key pairs for IND-CCA PKE,
so the j-th key pair is exclusively used in dealer P;’s BACSS.

: upon getting (Cj, [s], [[fjk]]iaw_i,'k)ke[N] from BACSS_share
T — TUL) -
shares; < shares; U{(Cjx [sx]", [$k]"- W' ke }
if | 7| =2r+1
call MVBA using a snapshot of Z; as input and 7; as state
/I MVBA’s predicate waits for local 7; is a superset of input
10: wait for MVBA output 7, w.l.o.g.,let T = {Py, -+ ,Py+1}

R AN

11: forkzltoN A A .
120 (el D]) = M(Ts e’ 7[[3(2z+1)k]]f)T
132 (Pl s Pl < M[8D - ST

14: forl=1tor+1
2t+1 2t+1

15: Cp= I (C)Mi, wy = I—[1 (why M
- =

16: rnd_shares < rnd_shares U{ (Ci, [ri]’, [[flk]]i,wék)}
17: return rnd_shares

5 Robust AMPC Offline Protocols

The core of Dumbo-MPC is a robust yet still efficient asyn-
chronous offline phase. Building on our previously devised
proof-of-product scheme over KZG commitments, this sec-
tion will elaborate on our robust AMPC offline protocols.

5.1 Asynchronous Random Share Generation

We start by presenting an asynchronous random share gen-
eration (AsyRanShGen) protocol, optimized through various
batching techniques for enhanced efficiency, capable of gen-
erating r-degree random shares with an amortized commu-
nication cost of O(kn). We employ a randomness extrac-
tion method utilizing hyper-invertible matrices (where ev-
ery square sub-matrix is invertible) [11], which was recently
adapted by Das et al. for the asynchronous setting [41] though
without further batching from batch ACSS.

Patch the concurrent composability for batch ACSS. One
might suggest directly integrating the state-of-the-art batch
asynchronous complete secret sharing (BACSS) hbACSS [80]
into Das et al.’s design to implement a batched AsyRanShGen
protocol.” Here BACSS allows a dealer to share a batch of se-
crets (s, -+ ,sn) across the whole network, such that (i) each
honest party P; would output a batch of N secret shares (where
the k-th output [s;]’ corresponds to a share of the k-th input
secret sx), or (ii) probably all honest parties eventually output
nothing, if the dealer is malicious. However, we identify a
flaw of the above seemingly viable idea due to lacking concur-
rent composability in the original hbACSS, which might even
cause realistic secrecy attacks allowing a malicious dealer
copy transcripts from another honest dealer and thus learn
the secrets (see Appendix C.3 of the full version [79] for the
detailed attack).

We therefore make necessary yet still minimal adaptions of
hbACSS to patch its concurrent composability: (i) use IND-
CCA secure public key encryption (PKE) instead of IND-CPA
PKE in the original hbACSS design; (ii) specify that each
party wouldn’t re-use PKE keys in different dealers’ hbACSS
instances. Such enhancement enables us to prove the crucial
secrecy of concurrent hbACSS instances. Syntactically, we

9Note that hbACSS [80] is more preferred than another state-of-the-art
BACSS protocol Bingo [3] due to significantly better concrete efficiency, as
the computation and communication of Bingo are at least 3 times of hbACSS.

also explicitly require that the honest parties in BACSS addi-
tionally output N KZG polynomial commitments besides N
secret shares, such that each output KZG commitment fixes a
polynomial whose evaluations correspond to the k-th output
shares of all parties. The communication complexity of this
adapted hbACSS still is O(knN + kn*logn). When letting
the batch size sufficiently large such as N = Q(nlogn),'" the
amortized communication cost is O(kn) per shared secret. We
refrain from representing the whole protocol of the adapted
hbACSS, and defer its details to Appendix C.2 of the full
version [79].

AsyRanShGen protocol. Algorithm | describes the protocol
for batchedly generating random shares atop concurrently
composable BACSS protocols, which has the following steps:

1. Share randomness. Each P; samples a batch of random
secrets, and subsequently starts as a dealer of one BACSS
protocol to verifiably share them in a batched manner.

2. Solicit sufficient (probably biased) randomness shares.
In the asynchronous setting, one cannot wait for the ter-
minations of all parties” BACSS protocols, so once a
party P; outputs in n — ¢ distinct dealers’ BACSS proto-
cols, it activates an MVBA by taking the indices of these
finished BACSS as input. MVBA ensures that all honest
parties can select a common set of n —¢ BACSS protocols
with distinct dealers, and all honest parties can eventually
obtain shares from these n —¢ solicited BACSS protocols.

3. Extract uniform randomness via hyper-invertible matrix.
Among the n —t selected BACSS protocols, at least ¢ +
1 of them shall have honest dealers that indeed share
uniform randomness sampled from Z,, and at most t of
them could be chosen by the adversary.
Thus, to extract as many as possible random shares
from these n —t BACSS protocols, we leverage the
idea of randomness extraction via Vandermonde ma-
trix M € Zét+1)x(2t+1), where the j-th row is M; =
(n?,n}-, e m?t) and n; € Z,, is distinct for each j. So
given 2t + 1 BACSS protocols (each of which batchedly
shares N secrets), the honest parties can extract a number
of (t+ 1) x N random shares.
The polynomial commitments and evaluation proofs re-
lated to the extracted random shares can also be locally
computed by each honest party (without interacting), due
to the additive homomorphism of KZG scheme. Later, we
will leverage these resulting polynomial commitments
for robust triple generation.

Security of AsyRanShGen. The properties of AsyRanShGen
can be summarized as the following security theorem.

Theorem 1 (Termination, Consistency, Secrecy and Random-
ness of AsyRanShGen). If all honest parties activate the

10Note that the authors of hbACSS also mentioned a bandwidth wasting at-
tack. To mitigate the issue while preserving amortized linear communication
per shared secret, they suggested to use a larger batch size of N > n?.

AsyRanShGen protocol (running among n parties against up
to t malicious corruptions), then the following properties hold
with all but negligible probability:
e Termination. All honest parties would eventually output
a set md_shares = {(Cy, [r]', [#]", w}) ;{v:<r1+1).

e Consistency. The output rnd_shares of all honest
parties are “consistent”, namely: (i) they carry the
same {Ck}iv:(t:rl); (ii) for each (Cy,[re]", [#]',wi) €
rnd_shares, VerifyEval(SP,Cy, i, [r]', [#]', wi)=1.

o Secrecy and randomness. The adversary cannot predi-
cate each ry better than guessing over Z.

We defer the full proof of the above security theorem to
Appendix G.1 of the full version [79], as most analysis is
rather standard and mirrors the literature [17, 41, 55]. Par-
ticularly considering that we already patch the concurrent
composability of BACSS, it enables us construct a simulator
that always simulates decryption queries even if in face of ma-
licious BACSS dealers, and such simulated decryption would
not leak the secrets of other concurrent BACSS instances.

Complexities of AsyRanShGen. In the AsyRanShGen pro-
tocol, ®(n) instances of BACSS are involved. If each BACSS
has a sufficient batch size N = Q(nlogn), the communication
cost of n BACSS protocols becomes O(kn?logn) in total. Ad-
ditionally, one MVBA protocol with n-bit input is invoked,
and its state-of-the-art instantiation costs O(kn>) bits [4, 45].
In sum, AsyRanShGen can batchedly generate N(z + 1) ran-
dom shares with a total communication cost of O(kn*logn)
bits, which corresponds to an amortized communication com-
plexity of O(xn) per generated random share.

5.2 Asynchronous Random Triple Generation

Here we are ready to present the protocol of asynchronous ran-
dom multiplication triple generation (AsyRanTriGen), which
can be thought of an asynchronous, optimal-resilient, and
batched version of the seminal BGW paradigm and is also
concretely and asymptotically more efficient than GS23.

> Code of P;
Input: B batch size of triple generation and other system parameters
Output: Beaver triples = {([ax]’, [bi]’, [c])}2_,

1: 7 «+ 0, prod_shares; + 0, Beaver_triples < 0

Algorithm 2 Asynchronous mul. triples generation

2: activate AsyRanShGen with taking as input N = (2B/(t + 1))
randomness, and wait for AsyRanShGen returns rnd_shares =
{(C, [l TR W) ke g o

3: let first half of rnd_shares be {(Cax, [ax]', [a]’, we,) e (p) and
last half of rnd_shares be {(Cpi, [bi]’, [Bc]', why) Yee sy

: fork; 1toB ‘ ‘
lexlb, < lax]’ - [ok]'

A

(Clgs 04 (+)) = PolyCom(SP. ¢l (1)), s.t. 01 (0) = [exl,

A~

Wiy o < ProveEval(SP,0,0%, (), 0} (-))

Nk

2. compute 2t-degree share
of a*b with zk-proof attesting
the correct product relationship :

|Com Iﬂ]]) Com [b]1 |—|-Com([ﬂb];,]|

over polynominal commitments : (P”lyco'"([”] PolyCom([b])) PnlyCom[[[ub]z,]]

\
O ')M = ([l 101) =l (8] = [abh[[lablz]o\
O (112 1%,)M = (ol [017) = [alP[b]? = abl3 ~ACSSE[(015] O] v m
RO (T, [y [=F)M = (ol [61) =~ [al] = ab]3 ~ACSSHK] [abT3,] O

[x]

o<t
y [v]
MTHL s

interpolatel [[at1}, |', [1av13 |, [1ab13]') = labl’ Sutputlal', 11" '

%zponaw([[am;, [[t] [1ab13]) = b Sutput ol [’ ab]?

ggmolaw([lablif]Sr (16], [a3]') = tatl? (gutput al’, o1, 0]’

T={1,2,3} T =(1,2,3}
o ------ O ------ O e O ------ O e o
N I\ J\ J

~
1. get t-degree random shares of aand b

~
3. verifiably share the product of two t-degree shares

~—
4. locally interpolate to get t-degree share of a*b

Figure 4: The overview of asynchronous multiplication triple generation protocol (exemplified without batching).

(Caks by ﬂakﬂir [[&k]]i7witk)7
(Cbka i7 kuﬂi7 [[Bk]]ivwézk)a
(Cék 5 01 q)('k (O)) &ck (O)) Wik,())

cf. Fig 3 for details of the above proof of product relationship
9: activate BACSS_share’; instance for every j € [n]

8: pI’OOf;'{ < PoKprog kzG-P

10: invoke BACSS_share] as dealer to re-share {[c]5, } ke[B) using

KZG commitments {C’, };c () With broadcasting {proofi }1e (B]

11: upon receiving output from BACSS_share’; instance:

(Cak:j)v

12: if PoKprog kza-V (Cor, 1) 3, proof',i =1forVk € [B]:
(Cleo:0)

13: prod_shares; + prod_sharesiU{([[[ck]]ét]]i)ke[g]}

4 T TU{j}

15: if || =2r+1

16: call MVBA' using a snapshot of 7; as input and ‘T; as state

17: wait for MVBA output 7, w.l.o.g.,let T = {P},---
18: fork=1to B

241
19: [er]f): Aj [[[[ckﬂj[]]' where A ; represents the evaluation

7P21+1}

of the j-th Lagrange interpolating polynomial at zero pomt
20: Beaver_triples « Beaver_triples U{([ax]’, [0x]’, [cx]?)}
21: return Beaver_triples

AsyRanShGen protocol. As illustrated in Algorithm 2, the
protocol proceeds through running the following four steps:

1. Batchedly generate random shares. All parties execute
the AsyRanShGen protocol presented in the earlier sub-
section, where each party P; randomly chooses N = %
secrets to share via its BACSS instance and would ob-
tain {(Cy, [sx]’, [$k]’, W})ke2p) i.¢.. 2B random shares
along with all related KZG commitments and evaluations
proofs. Presentation-wise, we partition the output set into

two halves, denoted as {(Cu, [ax]’, [ax]", Wl) hres) and
{(Cp, [b4] [[bk]] ,ka)}ke[B]’ respectively.
2. Locally compute 2t-degree shares of products. Given the

output obtained from the AsyRanShGen protocol, every
party P; computes [cx]), = [ax]’ - [bk] for each k € [B].

3. Re-share the correct 2t-degree product. Then P; invokes
another BACSS protocol as dealer to re-share [c], us-
ing KZG polynomial commitment C},.

We also require P; to compute and broadcast some addi-
tional {proof: } attesting the correctness of the re-shared
2t-degree product [[Ck]]zz Particularly, each proofi, =
{T 3 O, T O, Ty 0 Ol 5T i @ zero-knowledge
proof of the product relatlonshlp over KZG commitments
Cyi, Cpr and C: ! (as earlier described in Figure 3). Here
(Ta’k7 m’ak) are a hidden evaluation (i.e. a Pedersen com-
mitment) and a hidden evaluation proof regarding KZG
commitment Cg, attesting that T(jk commits the i-th eval-
uation of the polynomial fixed by Cy; Similarly, wj,
attests 7, commits an evaluation of the polynomial fixed
by Cpy at point i; While @y, , proves that T, , commits
the 0-point secret of the polynomial committed to Cék.

4. Reconstruct t-degree shares of products to obtain triples.
After everyone re-shares its local 2¢-degree shares, each
P; activates another MVBA protocol to decide a common
set of 2r 4+ 1 completed re-sharings. Finally, each P; lo-
cally interpolates the z-degree share [c;]’ of the product.
As P; also has shares [a;] and [b]’, so it can return a
random triple ([ax]’, [bi]’, [ck]’) for each k € [B].

Security of AsyRanTriGen. The security of AsyRanTriGen
can be summarized by the following theorem.

Theorem 2 (Termination, Validity, and Secrecy of AsyRanTri-
Gen). In an AsyRanTriGen protocol running among n parties
with up to t < n/3 corruptions, each party P; outputs a batch
of triples {([ax]’, [bi]", [ex]') }2_,, and the following proper-
ties shall hold with all but negligible probability:

o Termination. If all honest parties activate the protocol,
all of them would output {([ar]', [bx]", [c]") Y2_,

e Validity. For each k € B and x € {a,b,c}, honest parties
can interpolate their output shares {[x])'} to obtain a
unique t-degree polynomial whose zero-point is xy, and
the interpolated {X; } ve{ap.c} Satisfying ay - by = cy.

e Secrecy. For any output triple ([ax], [bk], [ck]), adver-
sary learns nothing about ay, by and cy except ay - by = ck.

We provide the intuitions of proofs hereunder, and defer
the detailed analysis to Appendix G.2 of the full version [79]:

e For termination, this is trivial, as its violation is reducible
to breach either of (i) the correctness of BACSS; (ii) the
completeness of BACSS; (iii) the termination of MVBA.

e For validity, the arguments are: (i) the random shares [«]
and [[b] obtained by honest parties must be consistent to
fixed 7-degree polynomials, because they are evaluations
bounded to the same polynomial commitments; (ii) the
honest parties’ secret shares [c] must correspond to the
same 7-degree polynomial with ¢ = a - b, because other-
wise, either the hidden evaluation’s binding of our aug-
mented KZG scheme is violated or the knowledge sound-
ness of the proof of product relationship is breached.

e For secrecy, we construct a P.P.T. simulator using the
setup trapdoor of KZG commitment and black-box simu-
lators of product proof and IND-CCA encryption, so we
can get into a hybrid world where the adversary interacts
with the above simulator, and the adversary’s view in this
hybrid world is computationally indistinguishable from
its view in the real-world execution. Observing that the
adversary in the final hybrid world can only information-
theoretically get # shares of [a], [b] and [c], secrecy is
therefore proven in the real-world execution.

Complexities of AsyRanTriGen. An AsyRanTriGen pro-
tocol that generates B triples involves an AsyRanShGen in-
stance generating 2B random shares, n BACSS protocol in-
stances (each of which shares B secrets), and another MVBA
instance. For sufficiently large batch B, the communication of
n BACSS instances with batch size B becomes the dominating
factor, resulting in amortized O(kn?) bits per triple.

6 Adding Fast Path for Triple Generation

Now we elaborate on how to further harvest efficiency from
optimistic conditions using a concretely and asymptotically
more efficient non-robust fast path, with preserving G.O.D.
for all possible bad cases, through a simplistic yet still fully
asynchronous fallback mechanism.

Fast path protocol. Algorithm 3 describes a non-robust op-
timistic random triple generation protocol (OptRanTriGen)
adapted from [11, 39, 66]. For completeness, we repeat the
protocol here with our tailored optimization (which removes
O(n) broadcasts and thus saves 3 additional rounds), while
deferring its security analysis and the used algorithms of plain
Shamir’s secret sharing to Appendices G.3 and F of the full
version [79], respectively.

In OptRanTriGen, each party shares the same random se-
cret to all parties twice, using ¢-degree and 2¢-degree plain
Shamir secret sharing without verifiability. Then, everyone
waits for these shares from all parties in order to extract z 4 1
random double sharings ([r1],[r1]2), -, ([re+1], [re+1]2¢)
optimistically. Finally, all parties try to reduce the degree of

[ab] 2 to get [ab], by (i) optimistically reconstructing ab —r
by interpolating the 2¢-degree shares [ab — r] and (ii) adding
[r] and ab — r to get [ab]. As such, the fast path can simply
execute a sequence of such OptRanTriGen protocols, as long
as the latest OptRanTriGen instance can output triples in time.

Algorithm 3 OptRanTriGen adapted from [11, 39, 66] > Code of P;

Input: System parameters
Output: Beaver_triples = {([ac], [bc], [cx])}T}

1: uniformly sample a randomness s;
2: call Share(s;,t) and Share(s;,2t), i.e., use t-degree and 2¢-
degree plain Shamir secret sharing to share the same s;

3: wait for all shares ([s;]’, [[s_,-]]ét) sent from all n parties {P;}:

4: ([[rl]]l:v) [[rﬂ]]i)' A M([[Sl]]iv T [[Sn]]i)T'

5: ([[rl]]l217 Tty [[rﬂ]]th) — M([[Slﬂézv Tty [[sn]]ét)T

6: for each Pj € {P,17, - ,Py}:

7: P; exclusively sends ([r;]", [r;]5,) to P;

8 ifPie{Pya,- P}

9: wait for ([r;]/, [ri]3,) sent from all n parties P} jepm:
10: verify that both secret shares have the correct degree
11: verify that they can be decoded to get the same r;
12: abort if any verification fails, continue otherwise

/[The counterpart of line 12 in [11, 39, 66] reliably broadcasts a

bit (“OK”/“ABORT”) to cross-check the consistency of double

sharing. Our fallback (Alg. 4) allows to remove the broadcasts.
13: rnd_dou_sha < {([r1]%,[r115,), -+ » ([res1]’ [res115,) }

14: repeat lines 1-12 twice without doing 2¢-degree sharing
15: if P; does not abort in line 14, it obtains 2(¢ + 1) random shares

md_sha < {([a1]",[1]), -+, (lar1 1", [br-1 1)}

16: for each 1 <k <1+ 1: compute [cx]}, = [[akJ]i o]

17: invoke BatchRec([c1]5, — [r1]5,. - » [er+1]h, — [re41]Y,) and
wait for it returns (c1 —r1,-++,Cr41 — Fr+1)
18: for each 1 <k <t 4 1: compute [[ck]]i =cCp—TIg+ [["kﬂ[
t+1

19: return Beaver_triples = {([ax]", [bx]", [e]")i L)

Final protocol of dual-mode triple generation. Clearly, the
fast path built from OptRanTriGen cannot guarantee G.O.D.
Considering the reconstruction of 2¢-degree shares in line 15
of Algorithm 3, it has to wait for all parties’ shares to ver-
ify they are consistent w.r.t. a unique 2¢-degree polynomial.
That means, if any party crashes, OptRanTriGen would stuck
forever. Therefore, we introduce a fallback mechanism as de-
scribed in Algorithm 4, which can securely restore robustness
in the bad case that the fast path fails to progress in time or
encounters inconsistent verification.

The subtlety of fallback in an asynchronous network is that
different honest parties might quit the fast path with different
progresses. Figure 5 illustrates how our fallback mechanism
resolves this threat. We first let each party maintain a safe
buffer to temporarily withhold the outputs of the latest two
OptRanTriGen from immediate output (as their immediate

Preserve or Discard Pending Trlples

Finalized safe buffer y ‘
fastpar endlng 2 ending 1 l
J Failed R

................................

Fallback

: Pessimistic

...|OptRanTriGen HOp(RanTﬂGen HOptRanTnGen HOptRanTriGen Htcv-BAH —
al

r-3 r-2 r-1 r

Figure 5: Dual-mode triple generation with fallback

output might cause disagreement if unexpectedly encounter-
ing fallback). Given the safe buffer, once a party P, aborts in
the r-th OptRanTriGen if detecting misbehavior or timeout, it
can just invoke a two-consecutive-value Byzantine agreement
(tcv-BA) with input r — 1 (i.e., the index of the latest com-
pleted OptRanTriGen). Then, tcv-BA outputs R, and P; reacts
accordingly, to discard or preserve triples in its safe buffer.
Finally, the honest parties would have totally consistent fast-
path output after tcv-BA completes, and they can activate the
pessimistic path by running AsyRanTriGen to recover G.O.D.

Security analysis of dual-mode triple generation. The se-
curity of Algorithm 4 can be summarized as follows.

Theorem 3 (Validity, Secrecy, and Liveness of Dual-mode
Triple Generation). Algorithm 4 securely realizes the desired
properties of AMPC'’s offline phase of multiplication triple.

Below, we briefly outline the security intuition. See Ap-
pendix G.3 of the full version for details.

e For validity, we first prove a lemma: if any honest party
outputs in the r-th OptRanTriGen of fast path, then all
honest parties already output triples up to the (r-1)-th
OptRanTriGen. Then, for the validity and agreement of
tcv-BA, all honest parties must obtain a common R dur-
ing fallback, and R represents an OptRanTriGen instance
where at least an honest party has outputted. Therefore,
all honest parties can finalize consistent fast-path triples
with the same progress according to R-1.

e For secrecy, it is straightforward as both fast and pes-
simistic paths have provable secrecy, and our sequential
composition of them would inherit their secrecy.

e Liveness is immediate, as (i) everyone can quit from a
failed fast path after timer expires, (ii) the termination of
tcv-BA and AsyRanTriGen then ensure the pessimistic
path to always progress even if in the worst case.

Algorithm 4 Dual-mode offline triple generation > Code for P;

Input: System parameters
Output: A sequence of multiplication triple shares

1: initialize a timer A that expires after T

2: initialize safe buffer Pending_1 = 0 and Pending_2 = 0

3: forre {1,2,3,--- }:

4: reset timer A and activate an OptRanTriGen, instance for r
5 if OptRanTriGen, returns Beaver_triples, before A expires:
6 if Pending_2 not empty: output Pending_2

7: Pending_2 = Pending_1, Pending_1 = Beaver_triples,
8. else//If OptRanTriGen, either aborts or doesn’t output in time
9: activate tcv-BA with input » — 1 and wait for it returns R
/[Preserve fast-path triples until the (R-1)-th OptRanTriGen
10: if R = r —2: discard Pending_2 and Pending_1
11: if R = r — 1: output Pending_2 and discard Pending_1
12: if R = r: output Pending_2 and Pending_1
13: break

14: while true: run an AsyRanTriGen instance and output its result

Complexities. Our fast path prepares triples with amortized
O(n) communication, in the good case of a synchronous net-
work without actual corruptions. In the worst case, our pes-
simistic path attains an amortized O(n?) per-triple overhead.
Both paths achieve concrete improvements as well: (i) the
fast path reduces the number of communication rounds by
3 compared to hbMPC; (ii) the pessimistic path reduces the
number of shared secrets by a factor of 3 compared to GS23.

7 Towards Efficient AMPC-as-a-Service

Realizing Dumbo-MPC as robust AMPCaaS. Given our
robust offline protocols, we can directly instantiate the robust
offline phase of Dumbo-MPC using them. While for the on-
line phase, it can mostly inherit the already performant and
robust design from hbMPC, which consists of three main sub-
phases: (i) function ordering, (ii) input solicitation and (iii)
function evaluation. Here “function ordering” enables AMPC
servers reach an agreement on the function to evaluate, “input
solicitation” lets AMPC servers gather the private inputs from
a sufficient number of clients (which usually is realized by a
special variant of asynchronous Byzantine agreement known
as asynchronous common subset, and can also be dedicatedly
optimized as discussed in Appendix E of the full version [79]),
and finally, “function evaluation” lets AMPC servers privately
evaluate the function on the solicited private inputs.

Notably, each above online sub-phase can be realized via
black-box invocation of standard techniques, and they are
neither the bottleneck of efficiency nor the obstacles to robust-
ness, so our primary focus is the design and implementation
of a more efficient robust offline phase throughout the paper.
For those reasons, we wouldn’t repeat the online phase design
here, and refer readers interested in its details to Appendix E
of the full version [79].

Optimizing consensus component. Dumbo-MPC heavily
relies on MVBA—a specific asynchronous Byzantine agree-
ment protocol, to overcome network asynchrony by explicitly
reaching consensus in both the online and offline phases. For
efficiency of this critical component, we put forth the notion
of optimistically terminable asynchronous MVBA (otMVBA)
and give its generic construction. Our otMVBA construction
is an MVBA that can deterministically and responsively ter-
minate in 5 asynchronous rounds, under optimistic conditions
like the network is synchronous and a certain party is honest.

As opposed, earlier MVBAs [4, 45, 56, 68] terminate in
about 7 rounds after at least one invocation of randomized
coin flipping, even if in the best conditions.'' Our core idea
to realize optimistic termination is forbidding the arbitrary
choice of output during the pessimistic case, by enforcing
a non-leader party to either (i) obtain a threshold signature
attesting that no honest party would ever output in the good
case, or (ii) wait for another mutually exclusive threshold
signature fixing the good-case output. Readers interested in
otMVBA can find sufficient details in Appendix H of the full
version [79].

8 Implementation and Evaluations

We implemented Dumbo-MPC, especially its offline phase.'”
The triple generation protocol of GS23 [54] is also imple-
mented for fair comparison. We finally evaluate and experi-
mentally compare Dumbo-MPC, hbMPC [66] and GS23, in
different network settings with varying system scales and dif-
ferent fault numbers. Note that we do not evaluate the incom-
parable protocols like DXKR?23 [41] for generating double
random sharing, as their pre-processed 2¢-degree secret shares
could fail in reconstruction during the online phase, compro-
mising either online robustness or optimal n/3 resilience.

8.1 Implementation and Experiment Setup

Implementation. All evaluated protocols are written in the
same language of Python 3 as forks of the open-source im-
plementations of hbACSS [80] and hbMPC [66]. The p2p
channels utilize unauthenticated TCP sockets, and concurrent
tasks are managed by Python’s asyncio library. We use pair-
ing friendly elliptic curve BLS12-381 for Dumbo-MPC, atop
which Boldyreva’s BLS threshold signature [18] and KZG
polynomial commitment [62] are implemented. For GS23, we
use secp256k1 curve to implement Pedersen commitments.
All elliptic curve implementations are from gnark-crypto [22].
We choose a 256-bit prime field for Shamir secret sharing.

Experiment setup. We evaluate Dumbo-MPC and GS23
[54] using AWS EC2 c6a.8xlarge instances installing Ubuntu
20.04 LTS and equipped with 32 vCPUs and 64 GB mem-
ory.]3 We run tests with varying scales for n = 4, 10, 22, and
31 parties in the same AWS region at Virginia, which reflects
a LAN deployment setting. As an affordable and reproducible
WAN benchmarking approach, we utilize Linux TC tool to re-
strict the upload bandwidth of each instance to 500 Mbps and

Ditto [49] once presented 2-chain VABA and claimed it as an MVBA
with 5-round optimistic latency, but its recentest version withdraws the result.

12Note that the online phase is not efficiency bottleneck, and it can be
mostly forked from hbMPC [66] with adaptions to its consensus components.

13Note that we choose the high-profile EC2 instance to accommodate
large memory requirement instead of achieving parallelization speed-up, cf.
our experiments conducted on different EC2 instances (see Appendix 1.2 of
the full version [79]), which reveals there is no performance gain through
parallelization over extra CPUs.

set the network’s round-trip time (RTT) to 150 ms, followed
by re-running all tests in this simulated WAN setting.

8.2 Evaluation results

Choices of batch size. Dumbo-MPC has a critical parameter
of batch size, which specifies the number of random secrets
taken as input in each triple generation protocol. Clearly, the
throughput of triples is closely related to the choice of batch
size: A larger batch size might render a higher throughput, as a
result of amortizing the fixed overheads, but an unnecessarily
large batch might cause dramatic increment of latency. We
evaluate Dumbo-MPC under varying batch sizes (1000, 5000,
10000, 15000 and 20000) in the LAN setting at different
scales of n=4, 10, 22 and 31. Figures 6 and 7 plot the trade-
off between throughput and batch size in AsyRanTriGen and
OptRanTriGen, respectively. Clearly, while the batch size
increases, throughput starts to grow rapidly but soon becomes
stable. In almost all scales, the throughput reaches a plateau
after the batch size > 5000, thus leading us to choose a fixed
batch size of 5000 throughout all later experiments.

—a—n=4 =——e=p=22
2500 —e =n=10 --+--n=31
2 400 /
Q
@300 |
E - - =t
L*5200
:tt — u w—u — e e E— O — A w—
100] ¢ =i LTI e 3
1000 5000 10000 12000

N (# of input secrets)
Figure 6: Throughput v.s. batch in AsyRanTriGen.

3 18001

2 ———n=4 =——e=pn=22

8 14001 —o=n=10 +++-+-n=31

8

B1000{ = == = = = = =

=]

S 6001 Y g fy S—

+* e, TR PO R
200

1000 5000 10000 15000 20000
N (# of input secrets)

Figure 7: Throughput v.s. batch in OptRanTriGen.

Triple throughput. Figures 8 and 9 plot the throughput per-
formance of Dumbo-MPC compared with GS23 and hbMPC,
in the LAN and WAN settings, respectively. Though through-
puts of all evaluated protocols decrease while the system scale
is larger, AsyRanTriGen of Dumbo-MPC outperforms GS23
if n > 10 in LAN, and is always superior to GS23 in WAN. In
particular, when n = 31, AsyRanTriGen realizes a throughput

of 94 triples/sec in LAN, 2X that of GS23. For our OptRanTri-
Gen protocol, it can optimistically generate 349 triples/sec
when n = 31 in the LAN setting, resulting in a throughput
6X of GS23 and about 10% larger than hbMPC. Moreover,
restricting bandwidth to 500 Mbps and RTT to 150 ms only
causes marginal decrement in triple throughput. When n = 31
in WAN, OptRanTriGen (resp. AsyRanTriGen) generates 339
(resp. 72) triples/sec, 7X (resp. 2X) that of GS23.

S ., =¢ DumboMPC(Asy.)
§ 16001\ + = +=*DumboMPC(Opt.)
g ——hbMPC
» 12001
2
£ 8001
Gy
S 400/
+*
0 4 10 22 31
Scale (# of parties)

Figure 8: Throughput v.s. scale in the LAN setting.

< 15001 *, =+ :DumboMPC(Asy.)
8 1200 e DumboMPC(Opt)
=
2 —=—hbMPC
% 900
£ 600
5
- 300
0 4 10 22 31
Scale (# of parties)

Figure 9: Throughput v.s. scale in the WAN setting.

Communication cost. Figure 10 reports the amortized per-
node communication for each triple. As expected, OptRanTri-
Gen and hbMPC have the least communication (i.e., constant
per-node overhead about 10 KB for each triple). GS23 ex-
hibits the worst asymptotic behavior and is concretely worse
than AsyRanTriGen, since GS23 needs to share 3n secret per
triple but AsyRanTriGen only shares n secrets per triple.

400/ —— DumboMPC(Opt.) el
2 |-+ DumboMPC(Asy) %
> ‘\('
g 300 =+ -hbMPC PR
= -
= 200 ==-GS23 .~
rd
g 100 -7
O v
//
0
4 10 2 3]
Scale (# of parties)

Figure 10: Communication cost per node per triple.

Performance with fallback. To understand the performance
of the evaluated protocols in the bad case, we examine an ex-
ecution that begins with optimistic conditions and later enters
a bad case due to a malicious party. As Figure 11 plots, al-
though both Dumbo-MPC and hbMPC can outperform GS23
during the good case, hbMPC grinds to a halt when a party
misbehaves (as shown by the red region in Figure 11). Clearly,
Dumbo-MPC achieves the best of both AsyRanTriGen and
OptRanTriGen, harvesting efficiency in good case and simul-
taneously preserving robustness in all situations.

=== DumboMPC
® hbMPC -—
_?_3_45000 —FaIIback_l—-
b ——GS23,-
ol

0 5 101520 25 303540
Execution Time (sec.)

Figure 11: Execution with fallback for n = 4 (in LAN).

Additional tests. We defer more evaluation results like the
impact of crash nodes and the pre-processing latency of spe-
cific tasks (auction and shuffling) to Appendix I of the full
version [79].

9 Conclusion

We design Dumbo-MPC—a set of concretely efficient AMPC
protocols in the classic offline-online paradigm, to circumvent
the severe robustness-efficiency trade-off of existing AMPC
protocols like GS23 and hbMPC. Dumbo-MPC is also the
first implemented AMPC with all-phase G.O.D., featuring
a novel dual-mode robust offline phase dedicated optimiza-
tions for each crucial sub-protocols. Extensive experiments
showcase its promising performance in various applications.

Acknowledgments

We thank the anonymous reviewers of USENIX Security
2025 for their valuable comments and suggestions. We also
sincerely thank Hanwen Feng for many fruitful discussions
about the concurrent (un)composability of some state-of-the-
art batch asynchronous complete secret sharing protocols.
Yuan Su, Jiliang Li, and Chengyi Dong are supported in
part by the National Key Research and Development Program
of China under Grant 2022YFB2702800, and in part by the
NSFC (No. 62472347 and No. 62102305). Yuan Lu is par-
tially supported by NSFC (No. 62102404), CAS Project for
Young Scientists in Basic Research (No. YSBR-035), and the
Youth Innovation Promotion Association CAS. Yuyi is par-
tially supported by the Natural Science Foundation of Hunan

Province, China (No. 2024JJ5128). Qiang is supported in part
by ARC Discovery Project #250101739, Google Australia
via the Digital Future Initiative, Stellar Development Foun-
dation Academic Research Grants, and SOAR Prize from the
University of Sydney.

Ethics Considerations

We have made every effort to address the ethical considera-
tions necessary to ensure our work enhances security, privacy,
and societal benefit while minimizing potential risks, during
the course of designing and implementing our more efficient
AMPC-as-a-Service protocol. This research deliverable is
specifically crafted to improve the resilience and confidential-
ity of a fundamental privacy-preserving technique—secure
multiparty computation, particularly in adversarial deploy-
ment environments where an attacker may influence the net-
work and simultaneously compromise up to one-third of geo-
logically distributed participants, with the goal of eliminating
the need for a trusted third party to protect user privacy.

We recognize that, like many cryptographic technologies,
our protocol could potentially be misused by malicious ac-
tors to conceal harmful activities in real-world applications.
However, we are confident that the technical innovations and
societal benefits of our protocol far outweigh these risks, as it
provides a new solution to the significant challenge of miti-
gating large-scale privacy breaches of Internet peers.

Additionally, we are committed to responsibly disclosing
any vulnerabilities that may arise, whether due to design flaws
or implementation issues. Our research also emphasizes ac-
cessibility, inclusivity, and openness, ensuring that even or-
ganizations with limited resources and technical expertise
can benefit from our work, advancing fairness in security and
privacy research. Furthermore, our protocol adheres to all
relevant legal and regulatory frameworks.

Through all these efforts, we aim to deliver secure, reliable,
and ethically responsible secure multiparty computation pro-
tocols that are feasible for Internet deployment, with a focus
on transparency and accessibility for the community.

Compliance with the Open Science Policy

Our entire codebase is packaged as a single self-contained
open-source library and can be downloaded from the
following link: https://github.com/dcy456/Dumbo-MPC.
The permanent record of our code is also available at:
https://zenodo.org/records/14678208.

References

[1] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita
Patra. Perfect asynchronous MPC with linear commu-
nication overhead. In Proc. EUROCRYPT 2024, pages
280-309, 2024.

[2] Ittai Abraham, Gilad Asharov, Arpita Patra, and Gilad
Stern. Perfectly secure asynchronous agreement on a
core set in constant expected time. Cryprology ePrint
Archive, 2023.

[3] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, and Gilad Stern. Bingo: Adaptively se-
cure packed asynchronous verifiable secret sharing and
asynchronous distributed key generation. pages 39-70,
2023.

[4] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegel-
man. Asymptotically optimal validated asynchronous
byzantine agreement. In Proc. PODC 2019, pages 337—
346, 2019.

[5] Ittai Abraham, Benny Pinkas, and Avishay Yanai.
Blinder—scalable, robust anonymous committed broad-
cast. In Proc. CCS 2020, pages 1233-1252, 2020.

[6] Gilad Asharov and Yehuda Lindell. A full proof of the
bgw protocol for perfectly secure multiparty computa-
tion. Journal of Cryptology, 30(1):58-151, 2017.

[7] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lin-
dell. An end-to-end system for large scale p2p mpc-as-
a-service and low-bandwidth mpc for weak participants.
In Proc. CCS 2018, pages 695-712, 2018.

[8] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In Proc. CRYPTO 1991, pages
420432, 1992.

[9] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
round complexity of secure protocols. In Proceedings of
the twenty-second annual ACM symposium on Theory
of computing, pages 503-513, 1990.

[10] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient
multi-party computation with dispute control. In Proc.
TCC 2006, pages 305-328, 2006.

[11] Zuzana Beerliova-Trubiniovd and Martin Hirt. Perfectly-
secure MPC with linear communication complexity. In
Proc. TCC 2008, pages 213-230, 2008.

[12] M Ben-Or, Avi Wigderson, and S Goldwasser. Com-
pleteness theorems for noncryptographic fault-tolerant
distributed computations. In Proc. STOC 1988, pages
1-10, 1988.

[13] Michael Ben-Or, Ran Canetti, and Oded Goldreich.
Asynchronous secure computation. In Proc. STOC 1993,
pages 52-61, 1993.

[14] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asyn-
chronous secure computations with optimal resilience.
In Proc. PODC 1994, pages 183-192, 1994.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asyn-
chronous secure computations with optimal resilience
(extended abstract). In Proc. PODC 1994, pages 183—
192, 1994.

Fabrice Benhamouda, Shai Halevi, and Tzipora Halevi.
Supporting private data on hyperledger fabric with se-
cure multiparty computation. IBM Journal of Research
and Development, 63(2/3):3-1, 2019.

Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk,
Yiping Ma, and Tal Rabin. SPRINT: High-throughput
robust distributed schnorr signatures. In Advances in
Cryptology — EUROCRYPT 2024, pages 62-91, 2024.

Alexandra Boldyreva. Threshold signatures, multisig-
natures and blind signatures based on the gap-diffie-
hellman-group signature scheme. In Proc. PKC 2003,
pages 31-46, 2002.

Dan Boneh, Rosario Gennaro, Steven Goldfeder,
Aayush Jain, Sam Kim, Peter M. R. Rasmussen, and
Amit Sahai. Threshold cryptosystems from threshold
fully homomorphic encryption. In Proc. CRYPTO 2018,
pages 565-596, 2018.

Dan Boneh, Rosario Gennaro, Steven Goldfeder,
Aayush Jain, Sam Kim, Peter MR Rasmussen, and Amit
Sahai. Threshold cryptosystems from threshold fully ho-
momorphic encryption. In Proc. CRYPTO 2018, pages
565-596, 2018.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating
2-dnf formulas on ciphertexts. In Proc. TCC 2005, pages
325-341, 2005.

Gautam Botrel, Thomas Piellard, Youssef El
Housni, Arya Tabaie, Gus Gutoski, and Ivo Kub-
jas. Consensys/gnark-crypto: v0.11.2, 2023.

Gabriel Bracha and Sam Toueg. Resilient consensus
protocols. In Proc. PODC 1983, pages 12-26, 1983.

Zvika Brakerski. Fully homomorphic encryption with-
out modulus switching from classical gapsvp. In Annual
cryptology conference, pages 868—886, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (leveled) fully homomorphic encryption with-
out bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 309—
325, 2012.

Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Proc. CRYPTO 2001, pages 524-541,
2001.

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Jour-
nal of Cryptology, 2005.

Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang.
On communication-efficient asynchronous mpc with
adaptive security. In Proc. TCC 2021, pages 35-65,
2021.

Ashish Choudhury. Optimally-resilient unconditionally-
secure asynchronous multi-party computation revisited.
Cryptology ePrint Archive, Paper 2020/906, 2020.

Ashish Choudhury, Martin Hirt, and Arpita Patra. Asyn-
chronous multiparty computation with linear communi-
cation complexity. In Yehuda Afek, editor, Proc. DISC
2013, pages 388402, 2013.

Ashish Choudhury and Arpita Patra. Optimally resilient
asynchronous mpc with linear communication complex-
ity. In Proc. ICDCN 2015, 2015.

Ashish Choudhury and Arpita Patra. An efficient frame-
work for unconditionally secure multiparty computation.
IEEE Transactions on Information Theory, 63(1):428—
468, 2017.

Ashish Choudhury and Arpita Patra. On the commu-
nication efficiency of statistically secure asynchronous
MPC with optimal resilience. Journal of Cryptology,
36(2):13, 2023.

Ran Cohen. Asynchronous secure multiparty computa-
tion in constant time. In Proc. PKC 2016, pages 183—
207. 2016.

Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis
Zikas. Constant-round asynchronous multi-party com-
putation based on one-way functions. In Proc. ASI-
ACRYPT 2016, pages 998-1021, 2016.

Ivan Damgard, Martin Geisler, Mikkel Krgigaard, and
Jesper Buus Nielsen. Asynchronous multiparty compu-
tation: Theory and implementation. In Proc. PKC 2009,
pages 160-179, 2009.

Ivan Damgard, Yuval Ishai, Mikkel Krgigaard, Jes-
per Buus Nielsen, and Adam Smith. Scalable multiparty
computation with nearly optimal work and resilience.
In Proc. CRYPTO 2008, pages 241-261, 2008.

Ivan Damgard, Marcel Keller, Enrique Larraia, Vale-
rio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure mpc for dishonest majority — or: Break-
ing the spdz limits. In Proc. ESORICS 2013, pages 1-18,
2013.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Ivan Damgard and Jesper Buus Nielsen. Scalable and
unconditionally secure multiparty computation. In Proc.
CRYPTO 2007, pages 572-590, 2007.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Proc. CRYPTO 2012, pages
643-662, 2012.

Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias,
and Ling Ren. Practical asynchronous high-threshold
distributed key generation and distributed polynomial
sampling. In Proc. USENIX Security 23, pages 5359—
5376, 2023.

Sourav Das, Zhuolun Xiang, and Ling Ren. Asyn-
chronous data dissemination and its applications. In
Proc. CCS 2021, pages 2705-2721, 2021.

Sourav Das, Zhuolun Xiang, and Ling Ren. Powers of
tau in asynchrony, 2024.

Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew
Miller, Lefteris Kokoris-Kogias, and Ling Ren. Practical
asynchronous distributed key generation. In Proc. SP,
pages 2518-2534, 2022.

Sisi Duan, Xin Wang, and Haibin Zhang. Fin: Practical
signature-free asynchronous common subset in constant
time. In Proc. CCS 2023, pages 815-829, 2023.

Sisi Duan, Xin Wang, and Haibin Zhang. Practical
signature-free asynchronous common subset in constant
time. In Proc. CCS 2023, 2023.

Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, 2012.

Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic
computation: Secure fault-tolerant protocols and the
public-key model. In Conference on the Theory and
Application of Cryptographic Techniques, pages 135—
155, 1987.

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Son-
nino, Alexander Spiegelman, and Zhuolun Xiang.
Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. In Proc. FC 2022, pages
296-315. Springer, 2022.

Rosario Gennaro, Michael O Rabin, and Tal Rabin. Sim-
plified vss and fast-track multiparty computations with
applications to threshold cryptography. In Proc. PODC
1998, pages 101-111, 1998.

Vipul Goyal, Yanyi Liu, and Yifan Song.
Communication-efficient unconditional mpc with

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

guaranteed output delivery. In Proc. CRYPTO 2019,
pages 85-114, 2019.

Vipul Goyal, Chen-Da Liu-Zhang, and Yifan Song. To-
wards achieving asynchronous MPC with linear com-
munication and optimal resilience. In Proc. CRYPTO
2024, pages 170-206, 2024.

Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed
output delivery comes free in honest majority mpc. In
Proc. CRYPTO 2020, pages 618-646, 2020.

Jens Groth and Victor Shoup. Design and analysis of
a distributed ecdsa signing service. Cryptology ePrint
Archive, Paper 2022/506, 2022.

Jens Groth and Victor Shoup. Fast batched asyn-
chronous distributed key generation. In Proc. EURO-
CRYPT 2024, pages 370-400, 2024.

Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang,
Jing Xu, and Zhenfeng Zhang. Speeding dumbo: Push-
ing asynchronous bft closer to practice. 2022.

Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In Proc. CCS 2020, pages 803818, 2020.

Martin Hirt and Jesper Buus Nielsen. Robust multiparty
computation with linear communication complexity. In
Proc. CRYPTO 2006, pages 463-482, 2006.

Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek.
Cryptographic asynchronous multi-party computation
with optimal resilience. In Proc. EUROCRYPT 2005,
pages 322-340, 2005.

Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek.
Asynchronous multi-party computation with quadratic
communication. In Automata, Languages and Program-
ming, pages 473-485, 2008.

Sanket Kanjalkar, Ye Zhang, Shreyas Gandlur, and An-
drew Miller. Publicly auditable mpc-as-a-service with
succinct verification and universal setup. In 2021 IEEE

European Symposium on Security and Privacy Work-
shops (EuroS&PW), pages 386411, 2021.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Proc. ASIACRYPT 2010, pages 177-
194, 2010.

Marcel Keller. Mp-spdz: A versatile framework for
multi-party computation. In Proc. CCS 2020, pages
1575-1590, 2020.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Marcel Keller, Emmanuela Orsini, and Peter Scholl.
Mascot: faster malicious arithmetic secure computation
with oblivious transfer. In Proc. CCS 2016, pages 830—
842, 2016.

Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: making spdz great again. In Proc. EUROCRYPT
2018, pages 158-189, 2018.

Donghang Lu, Thomas Yurek, Samarth Kulshreshtha,
Rahul Govind, Aniket Kate, and Andrew Miller. Hon-
eybadgermpc and asynchromix: Practical asynchronous
mpc and its application to anonymous communication.
In Proc. CCS 2019, pages 887-903, 2019.

Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo
transformer: Asynchronous consensus as fast as the
pipelined bft. In Proc. CCS 2022, pages 2159-2173,
2022.

Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang.
Dumbo-mvba: Optimal multi-valued validated asyn-
chronous byzantine agreement, revisited. In Proc.
PODC 2020, pages 129-138, 2020.

Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla
Jean-Louis, Alexander Frolov, Tyler Kell, Tyrone Lob-
ban, Christine Moy, Ari Juels, and Andrew Miller. Can-
did: Can-do decentralized identity with legacy compati-
bility, sybil-resistance, and accountability. In Proc. SP
2021, pages 1348-1366, 2021.

Fabio Massacci, Chan Nam Ngo, Jing Nie, Daniele
Venturi, and Julian Williams. Futuresmex: secure, dis-
tributed futures market exchange. In Proc. SP 18, pages
335-353, 2018.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In Proc.
CCS 2016, pages 31-42, 2016.

Christian Mouchet, Bertrand Elliott, and Hubaux Jean
Pierre. An efficient threshold access-structure for rlwe-
based multiparty homomorphic encryption. Journal of
Cryptology, 36(10):1-20, 2023.

Arpita Patra, Ashish Choudhury, and C Pandu Rangan.
Efficient asynchronous verifiable secret sharing and mul-
tiparty computation. Journal of Cryptology, 28:49-109,
2015.

Arpita Patra, Ashish Choudhury, and C. Pandu Ran-
gan. Efficient asynchronous multiparty computation
with optimal resilience. Cryptology ePrint Archive, Pa-
per 20087425, 2008.

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

A

B Prabhu, K Srinathan, and C Pandu Rangan. Asyn-
chronous unconditionally secure computation: An effi-
ciency improvement. In Proc. INDOCRYPT 2002, pages
93-107, 2002.

Marc Rivinius, Pascal Reisert, Daniel Rausch, and Ralf
Kiisters. Publicly accountable robust multi-party com-
putation. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 2430-2449, 2022.

Victor Shoup and Nigel P Smart. Lightweight asyn-
chronous verifiable secret sharing with optimal re-
silience. Journal of Cryptology, 37(3):27, 2024.

K Srinathan and C Pandu Rangan. Efficient asyn-
chronous secure multiparty distributed computation. In
Proc. INDOCRYPT 2000, pages 117-129, 2000.

Yuan Su, Yuan Lu, Jiliang Li, Yuyi Wang, Chengyi
Dong, and Qiang Tang. Dumbo-MPC: Efficient fully
asynchronous MPC with optimal resilience. Cryptol-
ogy ePrint Archive, Paper 2024/1705, 2024. URL.:
https://eprint.iacr.orqg/2024/1705.

Yurek Thomas, Luo Licheng, Fairoze Jaiden, Kate
Aniket, and Miller Andrew. hbacss: How to robustly
share many secrets. In Proc. NDSS 2022, pages 1187—
1201, 2022.

Antoine Urban and Matthieu Rambaud. Robust multi-
party computation from threshold encryption based on
rlwe. Cryptology ePrint Archive, 2024,

Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
Global-scale secure multiparty computation. In Proc.
CCS 2017, pages 39-56, 2017.

Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew
Miller. Long live the honey badger: Robust asyn-
chronous {DPSS} and its applications. In Proc.
USENIX Security 23, pages 5413-5430, 2023.

Haibin Zhang and Sisi Duan. Pace: Fully parallelizable
bft from reproposable byzantine agreement. In Proc.
CCS 2022, pages 3151-3164, 2022.

Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma:
Decentralized computation platform with guaranteed
privacy. arXiv preprint arXiv:1506.03471, 2015.

Additional Related Studies and
Alternative Design Choices

A.1 Additional related work

MPC has attracted a great amount of attentions since its for-
mulation in 1980’s, and it has been a subject involving a huge

https://eprint.iacr.org/2024/1705

line of studies. Here we go over a few relevant results and dis-
cuss their limitations in the context of realizing more efficient
fully asynchronous MPC.

MPC protocols based on additive secret sharing, such as
SPDZ [38] and EMP [82] and its descendants [63], can tol-
erate dishonest majority with resilience ¢ < n. However, they
would be aborted if there is any corrupted party, and thus
might fail to realize G.O.D. The lack of G.O.D. (or more gen-
eral, the loss of fairness) is inherent for any dishonest majority
MPC protocols without extra setups.

Synchronous MPC in the honest majority setting has been
extensively studied [11, 48, 51, 53, 58], and achieved O(n)
per-gate communication complexity, but their robustness and
even privacy might be violated in an asynchronous net-
work. In particular, dispute control [10], that is restarting
the computation after detecting and eliminating faulty par-
ties, is used to handle faulty parties for r < n/3 [11, 39] and
t < n/2 [39, 53, 58] to construct secure MPC protocols in
synchronous network. However, such protocols depending
on the ability to time out participated parties are vulnerable
to unresponsive attack [66]. As such, if ¢ honest parties are
temporarily isolated from the network due to asynchrony, the
honest nodes would be removed from the system, and the
remaining malicious parties may jeopardize the privacy of
(clients’) private inputs. HyperMPC [7] is designed to adapt
to low bandwidth MPC based on [11] in the n/3 setting, and
fails to guarantee output as it works with 2¢-shares both in
the offline and online phase. In the offline phase, random
double sharing of security with abort is needed to generate
double shares (e.g., degree-t shares and a degree-2¢ shares of
some random secrets). During online phase, parties have to
reconstruct 2¢-shares, which is infeasible to provide G.O.D.
in the asynchronous setting with /3.

In the asynchronous setting, MPC protocols usually em-
ploy asynchronous agreement protocols (e.g., asynchronous
common subset [15, 45, 57, 71, 84]) to evaluate the function
with only the n —t fastest parties’ inputs. The topic was ini-
tially studied in the setting of computationally-unbounded
adversaries [13, 14, 30, 32, 73, 75, 78]. Perfectly secure asyn-
chronous MPC without any error probability recently was
also designed for (¢ < n/4) with linear per-gate communica-
tion overhead [1]. Unconditionally secure asynchronous MPC
protocols can also be designed to realize optimal # < n/3 toler-
ance (in the presence of negligible small error probability). In
this setting, the first design [15] incurs O(n'!) per-gate com-
munication complexity, and later was improved to O(n>) [74]
and O(n*) [29, 33]. Very recently, Goyal et al. [52] proposed
the first unconditionally secure AMPC with linear per-gate
communication and optimal resilience of ¢ < n/3, but un-
fortunately, it has a prohibitive O(n'%) circuit-independent
communication overhead (which might be not surprisingly
as the stringent setting of unconditional information-theory
setting brings extra design overhead). Their AMPC consists

of two processes: process 1 needs to share 1;;4.'2\' + 34

crets to generate one triple, and process 2 requires to share
108(2N+3) 27

g, Ta,t %, where N is the batch size, n is the num-
ber of parties, and € is suggested as 0.1. Setting N = O(n),
generating one triple necessitates the sharing of at least 14400
secrets in process 1, and at least 216000 secrets in process 2.

For computationally secure AMPC using cryptography,
several protocols are proposed based on additive/somewhat
threshold homomorphic encryption [28, 31, 60], where arith-
metic operations are performed on ciphertexts in the online
phase. In [31], threshold somewhat homomorphic encryption
(e.g., BGN cryptosystem [21]) is used as a primitive to con-
struct encrypted MPC protocol, which might take expected
O(2V") time to decrypt ciphertext using Pollard’s lambda
method (where w is the bit-length of secret share field), likely
causing its implementation only suitable for Boolean circuits
(or arithmetic circuits defined over very small fields). hbMPC
[66] does not require any homomorphic encryption, and it
is proposed to guarantee output in the online phase but only
provides security with abort in the offline phase (since its
offline requires to reconstruct 2z-shares).

A recent work of Das et al. [41] presents an efficient asyn-
chronous random double sharing (ARDS) protocol, but the
result alone fails to robustly reconstruct 2¢-shares while eval-
uating a multiplication gate in the online phase for < n/3.
Very recently, a couple of studies [54, 77] achieve guaran-
teed output delivery in asynchrony, but with cubic per-gate
communication overhead in the worst case.

Other theoretic asynchronous MPC protocols feature a
constant-round online phase independent of the circuit depth,
making use of different underlying cryptographic primitives,
such as FHE [34] and pseudo-random generator [35]. But
they either exhibit a large communication overhead that is
quadratic in »n and linear in circuit size (to privately compute a
distributed version of garbled circuit through another AMPC
protocol like ours) [35], or/and suffer from large online com-
putational cost like expensive FHE self-ootstrappings that are
linear to the circuit’s multiplicative depth [34].

A.2 Efficiency issues of alternative designs

Noticeably, there indeed exist a few alternative design choices
of asynchronous triple generation with asymptotic complex-
ities that are similar to or even better than ours, but their
concrete performance could be problematic. Here we briefly
explain the reasons of their inferior performance.

Possible instantiations of Goyal et al. [52]. The AMPC pro-
tocol of Goyal et al. [52] achieves a communication cost of
O(|C|n + Dn* +nSx +n”) plus O(n?) invocations of ACSS
to share O(|C|) degree-t Shamir sharings, where |C| is circuit
size and D is circuit depth. Though Goyal et al. [52] originally
focus on the information theoretic setting, we nevertheless
can instantiate the protocol by more efficient computationally-
secure components, using the best-possible (computationally-
secure) ACSS [3, 80] and coin flipping [27]. However, for

concrete efficiency, the protocol of Goyal et al. [52] needs
to verifiably share hundreds or thousands of secrets for each
triple, if using their suggested security parameters. Though we
require n secrets to be shared for each triple (which is asymp-
totically worse), our approach is still concretely more efficient
for typical system scales like several dozens of parties.

Possible instantiations of Choudhury et al. [33]. Notice-
ably, if we employ the state-of-the-art computationally-secure
ACSS, such as hbACSS and Bingo, to instantiate the recent
(statistically-secure) AMPC framework from Choudhury et
al. [33], an AMPC with quadratic per-gate communication
overhead can also be realized, but its concrete efficiency is
significantly worse than our design, as it requires 6n secrets
to be shared for generating each triple, which is six times
larger than ours and three times larger than GS23. Shoup and
Smart [77] also observe that a happy path can be embedded to
the AMPC framework of Choudhury et al. [33] by (optimisti-
cally) waiting for messages sent from more than n — ¢ parties,
but this happy path has an execution flow same to the orig-
inal fully asynchronous protocol, which involves too many
redundant communication rounds to circumvent asynchrony,
making it concretely less efficient than our dedicated fast path
particularly tailored for the good case.

AMPC from tSHE/tFHE. In the Shamir-based tFHE/tSHE
scheme, smudging noise could be amplified by Lagrange co-
efficients during reconstruction, resulting in a modulus in-
crease on the order of O(n!?) [19]. To mitigate this modulus
growth, binary coefficients have been utilized in constructing
tFHE/tSHE schemes, but such approach incurs significant
space overhead, as the size of each secret key share grows to
at least O(n*?). Some recent works [72, 76] employ a thresh-
oldizer that uses additively shared secret keys to construct
tFHE/tSHE where each additive key share is re-shared lever-
aging Shamir secret sharing. But this thresholdizer essentially
requires all nodes to remain online to perform decryption, oth-
erwise when some party is not responsive due to trigger some
timeout, it would invoke the reconstruction of Shamir secret
sharing to publicly open this lost additive share, making it
clearly unsuitable for asynchronous settings (because an asyn-
chronous adversary can force to recover all honest parties’
additive key shares). It is also well known that we can also use
pre-shared noises to address the parameter explosion caused
by Lagrange interpolation in the Shamir-based tFHE/tSHE
scheme [81]. However, these noises must correctly be shared
within a specific range to follow an expected distribution,
whose efficient distributed generation in the asynchronous
network is another challenging problem to study.

	Introduction
	Practical Obstacles of AMPC
	Our Contribution

	Problem Definition & Technique Overview
	Problem: Asynchronous MPCaaS
	Challenges and Our Techniques

	Preliminaries
	Proof of Product Relation over KZG Polynomial Commitments
	Robust AMPC Offline Protocols
	Asynchronous Random Share Generation
	Asynchronous Random Triple Generation

	Adding Fast Path for Triple Generation
	Towards Efficient AMPC-as-a-Service
	Implementation and Evaluations
	Implementation and Experiment Setup
	 Evaluation results

	Conclusion
	Additional Related Studies and Alternative Design Choices
	Additional related work
	Efficiency issues of alternative designs

