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Abstract
Many blockchain networks aim to preserve the anonymity of
validators in the peer-to-peer (P2P) network, ensuring that
no adversary can link a validator’s identifier to the IP address
of a peer due to associated privacy and security concerns.
This work demonstrates that the Ethereum P2P network does
not offer this anonymity. We present a methodology that en-
ables any node in the network to identify validators hosted
on connected peers and empirically verify the feasibility of
our proposed method. Using data collected from four nodes
over three days, we locate more than 15% of Ethereum val-
idators in the P2P network. The insights gained from our
deanonymization technique provide valuable information on
the distribution of validators across peers, their geographic
locations, and hosting organizations. We further discuss the
implications and risks associated with the lack of anonymity
in the P2P network and propose methods to help validators
protect their privacy. The Ethereum Foundation has awarded
us a bug bounty, acknowledging the impact of our results.

1 Introduction

Ethereum is a blockchain that emphasizes decentralization,
aiming to keep its consensus mechanism accessible to many
participants, which contributes significantly to the complexity
of its protocol. In particular, Ethereum faces challenges in
scaling its consensus protocol while remaining accessible to
smaller participants. The large number of validators involved
in the consensus process and their extensive message ex-
changes lead to unprecedented complications. To address this
challenge, innovative scaling solutions for the peer-to-peer
(P2P) network have been proposed and implemented [78].

Our work demonstrates the impact of these scaling solu-
tions on the privacy and security of the Ethereum P2P network
and blockchain. We outline how to deanonymize validators in
the P2P network by mapping a validator’s identifier to the IP
address of the machine it is hosted on. Our technique relies

*These authors contributed equally to this work.

solely on observing attestation (i.e., consensus layer vote)
messages received from peers (i.e., nodes with established
TCP connections). By analyzing messages from a peer p, we
can infer whether a validator v is hosted on this peer.

Concretely, the main vulnerability stems from the current
broadcast implementation, in which nodes are only responsi-
ble for propagating a pre-determined subset of all attestations.
Thus, when a peer p sends an attestation created by validator
v that falls outside their broadcasting responsibility, we can
infer that the attestation was produced by p itself. If we ob-
serve this behavior repeatedly, we demonstrate that with high
confidence the attesting validator v is connected to the peer p.

The Ethereum P2P network’s privacy issue poses a major
security risk, allowing attackers to identify nodes associated
with validators set to create new blocks. This could lead to
(D)DoS attacks, halting chain progress, or more targeted at-
tacks on nodes associated with validators handling high value
blocks, letting a subsequent malicious validator scoop these
profits. We hope our work highlights this lack of privacy and
informs future privacy-enhancing solutions.

Contributions. We summarize our main contributions:
• We propose a simple and low-cost technique for a node

in the network to deanonymize its peers, i.e., infer which
validators they host.

• We perform a measurement study to demonstrate the fea-
sibility of the deanonymization. Using four nodes in just
three days, we can locate more than 15% of validators in
the P2P network.

• We outline the implication of the lack of anonymity in
Ethereum’s P2P network (e.g., fairness, liveness and safety
concerns) and discuss possible mitigations.

• Finally, we expose novel security risks in the P2P network,
highlighting how validators concentrate on certain peers
(e.g., we locate over 19,000 validators on a single peer) and
how they are spread globally and across organizations (i.e.,
cloud service and internet service providers). We also dis-
cover that operators for different staking pools run multiple
pools’ validators on the same machine, creating undesirable
dependencies.



Responsible Disclosure

We submitted a bug report to the Ethereum Foundation,
disclosing the vulnerabilities presented in this paper. The
Ethereum Foundation awarded us a bug bounty, acknowl-
edging the impact of our results. We discuss further ethical
considerations in Section 12.

2 Background

In the following, we provide an overview of the Ethereum
blockchain and its P2P network.

2.1 The Ethereum Blockchain

The Ethereum blockchain operates as a Proof-of-Stake
blockchain, and consists of the consensus layer (also called
the Beacon chain) and the execution layer. Individuals can
pay 32 ETH to become a validator, i.e., a participant in the
consensus algorithm. The 32 ETH represent a validator’s
stake and can be confiscated in case of inactivity or malicious
behavior. An individual can either run their own validator(s),
i.e., solo/home stake or stake through a staking pool. Staking
pools allow participants to pool resources to partake in the
consensus algorithm with arbitrarily sized amounts of stake.1

The consensus algorithm is divided into epochs, with each
epoch lasting 32 slots [28]. A slot lasts 12 seconds, resulting
in an epoch duration of 6 minutes and 24 seconds. A slot
corresponds to one new block appended to the blockchain.
Among other validity rules, each block must be created (or
proposed) by the corresponding validator assigned to it and
have sufficient attestations of its correctness from the group
(or commitee) of validators assigned to it. We give an overview
of relevant details below.

Validators. Three main duties fall on validators [27]. First,
during each slot one validator is selected to propose a new
block. Second, during each epoch, each validator is assigned
to a committee in one slot to make an attestation. Finally, with
some probability, a validator is chosen as an aggregator for
a slot they are attesting, i.e., they are tasked with collecting
attestations and publishing an aggregate. Validators are iden-
tified by an ID, linked to a private/public key pair. The logical
entity described is hosted on a validator client, a separate
entity with access to one or multiple validator private keys.

Nodes. A validator client interacts with the rest of the network
through a consensus node, also referred to as node through-
out. A node manages its own identity, consisting of a pub-
lic/private key pair, linked to an IP address and port number.
This information is shared through Ethereum Node Records
(ENR), which are propagated across the network. Importantly,

1Note that the staking pool is responsible for fully operating the valida-
tor(s), unlike in Proof-of-Work mining pools.
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Figure 1: The graph Π depicts the peering connections main-
tained by nodes. Agg depicts the subgraph along which ag-
gregations and blocks are propagated. It contains the same
vertices as Π with fewer edges. S0 to S63 depict the subnets
and their associated subgraphs where attestations are prop-
agated. By default, nodes randomly select two subnets to
participate in.

a node can host any number of validators, as these two enti-
ties are kept separate, in part for security reasons (see Sec-
tion 9). Moreover, a node might not host any validators, e.g.,
researchers who simply want to read the blockchain state.

2.2 Scaling Attestation Dispersal in Ethereum
The Ethereum P2P network protocol facilitates the exchange
of messages – most importantly blocks, attestations, and at-
testation aggregations – among peers, which is required for
the blockchain to progress.

Given the sheer scale of Ethereum’s validator set, with
more than one million active validators [7], it is not feasible
for every validator to vote (i.e., broadcast an attestation) in
every slot or to broadcast each attestation to all nodes in the
network. This is particularly important since Ethereum strives
to enable solo stakers to run their own nodes, necessitating low
hardware and network requirements. Thus, voting is divided
along multiple dimensions.

Time Division Across Slots. Each validator is tasked with
attesting only once per epoch in a randomly assigned slot,
which means, on average, once every 32 slots. As a result,
only a fraction of validators vote in each slot. In turn, to
achieve deterministic safety, block finalization occurs at the
epoch level through a finality gadget [15]. This approach
trades off latency to reduce message complexity.

Network Division Across Committees. Validators’ attes-
tations are further divided into 64 committees [24]. Within



each committee, a set of validators (16 on average) is as-
signed as aggregators. These aggregators collect and com-
bine attestations into a single aggregated BLS signature [26].
Consequently, a node does not need to hear every individual
attestation to stay synchronized but can rely on these aggrega-
tions. This division of attestations into committees is mirrored
in the network layer, which is also divided into 64 attestation
subnets (also called topics) and an additional subnet for at-
testation aggregates (see Figure 1) [25]. Each committee is
assigned to one of these 64 subnets, and the corresponding
attestations are broadcast only within the respective subnet.

Gossip Protocol. A further network optimization to reduce
message complexity is that messages are shared using a prob-
abilistic broadcast implementation called GossipSub [77].
When a validator signs an attestation, the consensus node to
which it is connected publishes the attestation to the corre-
sponding subnet by sending it to a subset of peers that are part
of this subnet, these are called the node’s fanout for this sub-
net. Note that the sending consensus node itself does not need
to be subscribed to this subnet, as committee assignments for
validators change every epoch.

To ensure stability within a subnet, each node statically sub-
scribes to two topics by default, performing backbone duties,
which can be considered static subscriptions. Additionally, if
nodes need to receive messages from non-subscribed subnets
(e.g., for an upcoming aggregation duty), they can request
a dynamic subscription. Within a subscribed subnet, nodes
choose a subset of peers that are also in the subnet to share
messages with. The choice of this subset is based on peer-
performance.2 Nodes forward all messages they hear about
within a subnet to these best-performing peers. These connec-
tions make up the subgraphs of Figure 1.

3 Threat Model

In this work, we consider the P2P network of the Ethereum
consensus layer, where consensus messages are broadcast.
This system’s main goal is reliable, efficient and low latency
message delivery among a dynamic set of nodes hosting val-
idators. As a secondary goal, source anonymity is also de-
sired [69]. Below we detail two main threats in the absence
of source anonymity.

We consider an attacker aiming to create a wide-scale
deanonymization, namely map validators to IP addresses of
their hosting nodes. Importantly, since all validators have
equal stake, no particular validator must be targeted.

We assume a weak, passive attacker, with access to a few
nodes (without validators), limited time and hardware bud-
get. The attacker only has access to exchanged network-level
messages. All other data sources and attack vectors (off-chain

2Performance is based on a peer-scoring function which takes into account
several factors including speed and quantity of information forwarded [78].
Specifics on the behavior of this score function is out of scope.

data, clustering, etc.) are used for the verification of results.
Deanonymization is deemed successful if the probabil-

ity that a given validator resides at a particular IP address
is significantly higher than that expected from random as-
signment. The feasibility of deanonymizing a large portion
of Ethereum’s validators within the P2P network presents
significant security concerns, enabling various types of at-
tacks. These threats include those detailed in the following, as
well as others, such as undermining assumptions critical for
Danksharding [64] (a new Ethereum upgrade) and compromis-
ing censorship resistance. Notably, even imperfect knowledge
in these scenarios can inflict substantial harm on the network.

3.1 Taking-Out Preceding Block Proposers
Ethereum block rewards comprise both consensus layer re-
wards and execution layer rewards. The consensus layer re-
wards are constant and independent of the transactions in-
cluded in a block. In contrast, execution layer rewards consist
of transaction fees paid for (preferential) block inclusion. On
average, execution layer rewards are over three times higher
than consensus layer rewards and can surpass them by several
orders of magnitude due to the presence of MEV (Maximal
Extractable Value) in the Ethereum blockchain [41]. MEV
is any value that can be extracted by the block builder by
including, excluding, and reordering transactions in a block.

This disparity poses a risk to the consensus layer, as previ-
ous works [19, 68] have shown. Specifically, the consensus
layer is vulnerable to time-bandit attacks, where it can be
rational for a block proposer to fork the blockchain and ex-
tract the MEV from earlier blocks for personal gain. The
traditional time-bandit attack involves forking out the block
created by the previous proposer, which is more challenging
in Ethereum’s PoS system than in PoW [49].

Critically, attackers can exploit the lack of privacy in the
P2P network to enhance time-bandit attacks and bypass the
need to fork out the previous proposer’s block.

An attacker, as the proposer of slot n+1, can prevent the
proposer of slot n from submitting a block proposal [17].
By doing so, the attacker could claim higher execution layer
rewards, incorporating transactions from the previous slot and
any new transactions arriving in the interim.

The attacker, as the proposer of slot n+1, knows the iden-
tity of their victim (the proposer of slot n) in the consen-
sus layer well in advance, as proposers are assigned at least
one epoch (approximately six minutes) beforehand. If the
attacker can deanonymize the victim in the P2P network,
they might temporarily sever the victim’s connection to the
network through a (D)DoS attack or BGP hijacking. This
disruption only needs to last four seconds, as block proposers
have a four-second window to submit their proposal.

The success of this attack hinges on the attacker’s ability
to both identify the victim in the P2P network and disconnect
them. While some victims may have implemented mitigations



(as outlined in Section 9) that prevent the attack, an attacker
can simply wait for another opportunity when they are se-
lected as the block proposer and attempt the attack again.

3.2 Breaking Liveness and Safety
Even more concerning is the possibility of an attacker es-
calating the previous attack to compromise the liveness or
safety of Ethereum. To disrupt liveness, an attacker could
repeatedly sever the connection between the upcoming block
proposer and the network. If every such attack succeeded,
the blockchain would come to a standstill. However, achiev-
ing consistent success is improbable due to the mitigation
measures discussed in Section 9. Large staking pools, such
as Lido, are particularly likely to implement robust defenses.
Nevertheless, even if an attacker could disrupt just one in ev-
ery ten proposers, the consequences for the blockchain would
be significant, leading to delays and instability.

Rather than preventing a proposer from submitting a block
entirely, the attacker might instead seek to disrupt block prop-
agation to over one-third of the network. This could be
achieved by launching a sustained DoS attack on a signif-
icant portion of the network or leveraging BGP hijacking.
Such an attack would halt liveness, as the finality gadget –
responsible for confirming blocks – would fail to gather the
quorum required to finalize blocks. Again, the success of
this strategy hinges on the attacker’s ability to prevent block
proposals from reaching at least one-third of validators.

Alarmingly, an attacker could also threaten the safety of
the blockchain. Many Ethereum light clients optimistically
treat the chain’s head as finalized. By breaking synchrony
assumptions through targeted DoS attacks or BGP hijacking,
the attacker could exploit this optimistic behavior to introduce
safety violations [20]. For example, conflicting blocks might
appear finalized to different segments of the network, resulting
in inconsistencies that undermine the integrity of the chain.

Although such attacks are complex and resource-intensive,
they are made more feasible by the deanonymization tech-
niques discussed in the following.

4 Deanonymization Methodology

To ensure that their attack is as successful as possible, an
attacker would aim to locate all validators running on a peer
they are connected to, and thereby link validator IDs to their IP
address. We show that focusing on attestation messages and
their dissemination suffices for our deanonymization attack.

4.1 Ideal Approach
Given the background on Ethereum node behavior, we can
describe how an ideal peer (a peer who gives us perfect infor-
mation) would behave. We will guide the description with an
example of a real peer we connected to in our experiments

Figure 2: Attestations received from a peer over a four hour
window, where the vertical axis corresponds to the 64 sub-
nets. We identified four validators hosted on the machine,
represented in red, blue, yellow, and green. The attestations
by the remaining validators are shown in pink. Note that we
have anonymized the full IDs of the identified validators, but
emphasize that the IDs of these four validators are sequential.
For the identified validators, we receive attestations from a
wide variety of subnets. In contrast, the attestations from the
remaining validators primarily come from the two subnets the
peer predominantly serves (i.e., subnets 12 and 13), evidenced
by the repeated flow of attestations for these subnets (see the
long pink strip), as well as from short dynamic subscriptions
(see the smaller pink horizontal strips).

(see Figure 2). Let us assume we are connected to a peer
running V validators who is a backbone in3 two subnets. The
peer’s validators will thus attest V times per epoch. Let us
assume we receive perfect information from this peer, mean-
ing we are in their fanout for all subnets and they forward all
attestations they hear about in their two backbones to us. In
each epoch, we will receive V attestations from our peer for
their validators, and N · 2

64 for all other N validators.
Observation. An ideal peer will only send us an attestation in
a subnet they are not a backbone of if they are the signer of the
attestation, and we are in their fanout for the corresponding
subnet of the attestation.

Thus, in this scenario, we receive all attestations for the V
validators of the peer and can distinguish them as the only
attestations we do not receive from the two backbones of the
peer. Thus, linking validators to peers in this scenario is trivial.
In practice, however, network message data is not perfect.

Imperfect Information in Practice. To showcase this, we
turn to the example peer in Figure 2. On this peer, we will
identify four validators associated with the peer;4 their respec-
tive attestations are highlighted in red, blue, yellow, and green,
while the remaining attestations are shown in pink. Notice
that the attestations from these four validators, who have con-
secutive identifiers, appear equally distributed across subnets.
In contrast, the vast majority of attestations come from the

3We use the terms subscribed to and backbone in interchangeably.
4Using our heuristics introduced in the following subsection.



two subnets where the peer acts as a backbone (subnets 12
and 13 for the sample peer in Figure 2). Thus, we can locate
validators on our peers by observing how the attestations be-
longing to a validator, which we receive from the peer, are
distributed across subnets. Additionally, and this is where the
imperfect information comes into play, the validators hosted
on the peer are occasionally tasked with being aggregators in
a subnet approximately every 30 epochs per validator. During
these times, they temporarily become a backbone (see the
smaller pink horizontal strips) for these subnets and receive
attestations from multiple validators belonging to the subnet.

In practice, five main factors impact the level of information
we receive from a peer. First, nodes may run at non-default
parameters, such as in more than two backbones, increasing
the number of messages we receive from the peer. Second,
we may not receive all attestations that a peer generates due
to network reasons (e.g., disconnections or dropped network
packets), or dynamic membership in a peer’s fanouts which is
out of our control (a peer chooses whether to include us in a
fanout or not). Third, due to dynamic subscriptions or delayed
information, we may receive some backbone attestations from
a peer and not label them as such (see Figure 2). Fourth, a
validator client might use multiple nodes to propagate their
messages or use different nodes for separate tasks [58]. Fi-
nally, fifth, we only get propagated attestations from peers if
they give us a good peer score, thus we have to participate in
attestation propagation. Us announcing a subset of attestations
to our peers first in each backbone results in fewer attestations
from each peer. This should be rare if they are the original
signer of the attestations, and thus we make the following
assumption to guide the development of our heuristics.
Assumption. A peer will be the first to tell us about their
attestation most of the time.

4.2 Heuristic Approach
To handle imperfect information, we develop a heuristics
deanonymization approach to filter peers and narrow down
on validator IDs as follows: we consider a validator v to be
hosted5 on a peer p, if all of the following conditions hold:

C1 The proportion of non-backbone attestations for valida-
tor v exceed

0.9 ·
(

64−nsub(p)
64

)
,

where nsub(p) is the average number of subnets the peer
is subscribed over the connection’s duration.

C2 The peer is not subscribed to all 64 subnets.

5As pointed out in Section 4.1 a validator client might use multiple nodes
to propagate their messages. Thus, to put it differently, the node is associated
with the validator and we will use the terms interchangeably throughout. We
also observe such behavior, i.e., validators associated with multiple nodes, as
we will outline in Section 7. However, this behavior is rare and likely only
used by node operators of large staking pools given that running a consensus
node is expensive. Further, our methodology in theory allows us to locate all
consensus nodes associated with a validator.

C3 We receive at least every tenth attestation we expect for
the validator v from the peer.

C4 The number of attestations we receive for the validator v
from the peer p exceeds the mean number of attestations
per validator from peer p by one standard deviation.

By participating in all subnets w.h.p. we are added to sev-
eral fanouts of our peer.6 Condition 1 ensures that the propor-
tion of attestations we receive from p’s fanouts for a validator
v is at least 90% the expected value. We choose 90% conser-
vatively to analyze only those peers from which we receive
most attestations across all subnets.7

Condition 2 excludes any validators that are in all back-
bones as we would get no non-backbone attestations. Con-
dition 3 ensures that we analyze the peers for which we are
in several fanouts, removing those that would require a more
careful analysis (we leave these peers unlabeled).8 Lastly,
condition 4 disregards peers that are participating in rare,
non-default behavior such as broadcasting attestations in all
subnets without advertising their subscriptions.

The above conditions represent conservative heuristics such
that we analyze only peers for which our connections were
stable enough, for long enough, to ensure we have sufficient
data. In the extended version of this work [42], we provide a
detailed explanation of all heuristics and robustness testing
for each parameter choice.

5 Data Collection

We provide an in-detail explanation of how we collect data to
both run our heuristic deanonymization approach and validate
its results.

5.1 Ethereum Network-Layer Logging
We log all Ethereum network-layer messages by writing
our own listening node implementation based on the Prysm
client [67] (the most wide-spread consensus layer client for
Ethereum [1]). We call our modified consensus node RAIN-
BOW throughout, as RAINBOW acts as a Prysm, taking peer
input and breaking it down into the “colors” of the validators.

RAINBOW connects to up to 1,000 peers, and statically
subscribes to all subnets. These modifications allow us to
deanonymize a larger set of nodes given that we have a higher
peer count and observe attestations from all subnets. Other
than that, it behaves as any Prysm node would, but logs three
main sources of data. First and foremost, all attestations, their
origin, and their origin subnet are logged. Second, this data is
enriched by logging all advertised static subscriptions of our

6We discuss this likelihood further in this paper’s extended version [42].
7In robustness-testing we find that if we lower this to 30% we find an

additional 10K validators overall, accounting for less than 4% new validators.
8We use a conservative bound of at least one-tenth of messages across

all subnets, though consistent attestations in just one fanout may already be
enough to link validators.
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Figure 3: Reachable Beacon network nodes discovered in our
crawls over our measurement period.

peers. Finally, we save precise connection data for all nodes
we interact with.

Three instances of RAINBOW are run alongside a Geth
execution client on AWS r5a.4xlarge machines, in the us-
east-1 (referred to as VA throughout), eu-central-1 (referred
to as FR throughout), and ap-northeast-2 (referred to as SO
throughout) data centers respectively. Additionally, we run
one node on a bare-bones server in Zurich (referred to as ZH
throughout). The data collection spans three days from (May
7, 2024 00:00 UTC to May 10, 2024 00:00 UTC). About
700 GB of compressed data is collected and loaded into SQL
databases for further processing.

Due to the gossiping nature of the network layer, the same
attestations are often received from multiple sources. In this
work, we only consider the attestation that we receive first.

5.2 Ethereum Network Coverage
To understand our coverage of the Ethereum Beacon network,
we gather measurements of all nodes in the network via our
own crawler implementation.

Similarly to the execution network of Ethereum (detailed
in [48] and [35]), a node in the Beacon network keeps a peer
table of nodes they have heard about, which they reference
when they need to make more peer connections. The peer
table is based on the Kademlia hash table [57] where each
node stores ENRs9 into buckets containing nodes whose ids
(a 256-bit unique identifier computed from the ENR) has
an XOR distance of i from itself for 0 ≤ i < 256. Nodes
periodically update their peer tables using the discv5 peer
discovery protocol [33]. We leverage the discovery protocol
messages to enumerate a node’s peer table, and repeat this for
all nodes we hear about in the network.

We run our crawler starting at 00:00 UTC on May 7, 8,
and 9, and record all discovered ENRs for nodes running on
the main Beacon network. We discover an average of 16.5K
unique IPs (20K unique node IDs) running on the mainnet

9An ENR record encodes various information about a node including
its network public key, IP, TCP/UDP ports, protocols supported and their
versions, among others.

each day, with a cumulative 20,240 IPs (28,998 IDs) found in
the three days of crawls.

Additionally, each hour we send an in-protocol ping mes-
sage to all ENRs discovered in the previous crawl to distin-
guish nodes that are reachable in the network (i.e., are not
behind a NAT or firewall and thus can accept incoming con-
nections from our RAINBOW nodes), we show this in Figure
3.10 We discover an average of 8.1K unique IPs (8.4K node
IDs) that are reachable (at some point) each day, with a to-
tal of 8,941 IPs (9,468 IDs) of reachable nodes found in the
three-day measurement period.

Thus, we can lower-bound the number of reachable on-
line nodes in the network during our measurement period
as 8,941. Our RAINBOW nodes are able to maintain suffi-
ciently long connections with approximately half of these
(see Section 6.1).

5.3 Validator Entity Labeling
To validate and verify our deanonymization, we perform a
validator clustering, i.e., grouping Ethereum validators by the
entity they belong to (e.g., staking pools). We then investigate
whether the sets of validators located on the same machine are
consistent with the validator clustering – validators located
on a peer belong to the same entity.

We take the pubkey_mapping dataset from
mevboost.pics [79], which provides labels for validators,
and make the following amendments:

• We monitor the Beacon chain deposit contract on the
Ethereum blockchain to collect the deposit address(es) –
the address(es) used to deposit the 32 ETH required for
validator activation. For the top 15 entities, we identify
deposit addresses used over 100 times and attribute any
validator funded by these addresses to the corresponding
entity.

• We apply a similar approach to the fee recipient ad-
dress(es), which are used by validators to receive ex-
ecution layer rewards. For the top 15 entities, we gather
fee recipient addresses used over 100 times. Any valida-
tor exclusively using one such address is then attributed
to the corresponding entity.

• Finally, we remove any labels for validators that were
assigned multiple labels in the data set.

6 RAINBOW Nodes Analysis

We begin by reviewing the number of peers we connect to,
followed by an analysis of our deanonymization results for

10We note that the in-protocol ping messages use the node’s ENR value,
and some nodes do not respond if the ENR used is not up-to-date. Since
the ENR changes if any of the values encoded change (e.g., a change in
subnet subscriptions), ENRs change with some frequency. The gradual drop
of responses over time we see in Figure 3 can be explained by both general
network churn and ENRs learned in the previous crawl becoming outdated.



peers

seen with established connections with long connections

FR 7,656 6,975 1,017
SO 7,816 7,122 1,142
VA 10,213 9,821 2,207
ZH 9,578 7,784 1,942

overall 11,219 10,785 4,372

Table 1: Number of unique peers seen, with connections and
with long connections (i.e., >32 epochs) by each RAINBOW
node and overall. We consider a unique peer to be a unique
IP port combination. VA and ZH RAINBOW nodes saw and
had more (long) connections than those in FR and SO.

the validators on these peers.

6.1 Peering Overview
Over the three-day data collection period, our four rainbow
nodes attempted connections to 11,219 unique peers and suc-
cessfully established connections with 10,785 (see Table 1).
Finally, they held sufficiently long connections with 4,372
unique peers over the four rainbow nodes, representing ap-
proximately half of the reachable network (see Section 5.2)
and one-third of the estimated total network size [44]. Here,
we consider a peer to have a long connection, if the total con-
nection time over the three days lasted more than 32 epochs.
Note that we disregard individual connections shorter than
one epoch. Throughout, we consider a unique peer to be a
unique IP port combination.11

We further note that the VA RAINBOW node attempts con-
nections and also successfully connects to the highest number
of peers, whereas the ZH node only trails behind slightly. The
FR and SO nodes exhibit smaller numbers of peers, both the
number they attempt to connect and the number to which they
establish long connections to. In particular, FR and SO only
have around half the number of long connections in compari-
son to the other two RAINBOW nodes.

This is also evident when looking at the number of peers
the nodes maintain at any point in time. In Figure 4, we plot
the number of peers our RAINBOW nodes have throughout
the measurement period. We observe that VA has the most
peers on average with 645 and, except for a couple of short-
lived dips in the peer count, maintains more peers than any
other machine. Similarly, the ZH machine consistently has
the second-highest peer count with an average of 537. Finally,
the FR and SO RAINBOW nodes have lower peer counts on
average with 369 and 339 respectively. Further, their peer
counts exhibit very similar patterns, i.e., dips in the peer count
around the same time. For instance, around 8:00 UTC on 8
May. Interestingly, the peer count on the VA machine also

11Note that we used unique IPs in the crawler as not all ENRs provide a
port, but for peer connections, we may connect to more than one node behind
an IP but at different ports. Additionally, a node may change its public peer
ID, though the same validators remain at the node.
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Figure 4: Number of peers each of our RAINBOW nodes is
connected to over time. On average, the VA node is connected
to 645 peers, ZH is connected to 537 peers, FR is connected
to 369 peers, and SO is connected to 338 peers.

drops around the same time, but immediately goes back up in
contrast to the FR and SO RAINBOW nodes where the peer
count never fully recovers. We are unsure of the cause of these
drops, this may be an artifact from AWS. However, while
these drops in peer count potentially impact the number of
peers we can deanonymize, they do not impact our accuracy.

Lastly, we explore the unique peers we connected to for the
period required for the analysis. We investigate the pairwise
overlap across the RAINBOW nodes in Table 2. We observe
the biggest relative overlap between the FR and SO RAINBOW
nodes with 496 – around half of the peers these two nodes
maintain long connections with overlap. Additionally, both
the FR and SO nodes have an overlap of approximately 550
long peers with the VA node, while this constitutes more than
half the long peers of the FR and SO nodes it only accounts
for one-fourth of the VA long peers. Finally, the ZH node
has the smallest overlap with the remaining nodes in relative
and absolute terms. Possibly this is related to the three other
nodes all being run from AWS and thus connecting to a more
similar set of peers.

FR SO VA ZH

FR 1,017 496 543 197
SO 496 1,142 592 205
VA 543 592 2,207 495
ZH 197 205 495 1,942

Table 2: The pairwise overlap between the peers our RAIN-
BOW nodes (FR, SO, VA, and ZH) had sufficiently long (> 32
epochs) connections with. In total, we had long enough con-
nections to 4,372 peers over the three-day period.

6.2 Deanonymization
Next, we perform our deanonymization of the peers to which
we were connected for a sufficiently long period. Using our
Heuristic Approach of Section 4.2 we divide peers into four
categories as follows:
Deanonymized. We have located validator(s) on the machine



deanonymized no validators 64 subnets rest

FR 46.61% 43.91% 0.60% 8.88%
SO 43.75% 43.57% 0.26% 12.41%
VA 59.28% 33.12% 0.50% 7.10%
ZH 58.39% 33.35% 0.78% 7.48%

overall 52.35% 37.52% 0.69% 9.46%

Table 3: Percentage of peers that (1) we deanonymized val-
idators on, (2) have no validators, (3) are subscribed to all 64
subnets, and (4) the rest by RAINBOW node. Notice that the
vast majority fall in the first two buckets, i.e., we can either
locate validators on them or say with high certainty that there
are no validators hosted on the peer.

with the aforementioned conditions.

No Validators. We did not receive a single non-backbone
attestation from the peer and thus can safely assume that there
are no validators hosted on the peer.12

64 Subnets. The peer is subscribed to all subnets. Thus, we
will never receive a non-backbone attestation from the peer
and our deanonymization does not work. Note that this is only
a very small proportion of the peers.

Rest. Those peers from which we receive at least one non-
backbone attestation but are not able to locate any validators
hosted on the peer. Thus, these peers are in the grey – there
may or there may not be validators hosted on them.

Multiple reasons could lead to a peer falling into the gray
area. For one, we take a conservative approach to classifying
validators, assuming we are in all fanouts most of the time
for a given peer (i.e., receive 90% of expected attestations).
It is possible that we are only in a subset of fanouts or in
some fanouts for short periods of time, thus receiving the
peer’s attestations for a relatively short period even though we
maintain the connection for longer. Additionally, it could be
that we received attestations that appear to be non-backbone
from the peer before our RAINBOW node was able to update
the subnets a peer is subscribed to.

In Table 3, we indicate the percentage of peers that fall in
the respective categories. We start by noting that the distri-
bution is similar across all three RAINBOW nodes with the
most significant chunk of peers either being deanonymized
or hosting no validators. Further, only few peers subscribe to
all 64 subnets. The remaining validators make up 7% to 13%
depending on the RAINBOW node, and less than 10% overall.

Note that the FR and SO nodes connect to a larger propor-
tion of no-validator peers than the VA and ZH nodes. As a
result, the VA and ZH nodes can locate more validators on
their peers, i.e., deanonymize more peers. We hypothesize that
VA and ZH have higher-quality information and thus maintain
more long-term peers and make it to more fanouts. This is
a chicken-or-the-egg scenario, where being better connected

12This gives us a conservative lower bound on the number of validator
nodes, and roughly matches previous analyses which estimate about half the
network to be running at least one validator [14] - more details in Section 10.
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Figure 5: The cumulative number of peers each of our RAIN-
BOW nodes connected to over time, as well as the cumulative
count across all.

leads to better connections given the greedy behavior of the
network. It is unclear why VA and ZH have this advantage.

Finally, we wish to highlight that out of the peers for which
we do not conclude that they host no validators, our methods
can deanonymize 84.57% across the four RAINBOW nodes.

6.3 Deanonymizations Over Time and Across
RAINBOW Nodes

Next, we explore the impact of attack duration and the num-
ber of machines on the portion of the network that can be
deanonymized.

In Figure 5, we look at the cumulative unique new peers our
RAINBOW nodes connected to with long connections over the
measurement period. We observe an almost linear increase
in the cumulative number of new long connections, two-fold
the amount for the VA machine with most new connections.
This highlights the advantage of deploying multiple nodes to
increase the number of validators located in the network.

Additionally, we also look at the number of validators
deanonymized by our nodes over time in Figure 6. We per-
form our deanonymization on six hour fragments of our data,
i.e., we analyze the first 6, 12, 18, and so forth, hours of data
up until the entire collection period. Note that the number of
deanonymized peers can decrease over time, which is particu-
larly noticeable for the SO RAINBOW node. This may occur
if an initially strong connection to a peer weakens as time
passes such that it no longer satisfies our heuristics.13 While a
more careful analysis could consider only the best connection
period for each peer, for a more cautious analysis we omit
these from the numbers in the previous section.

In Figure 6, we observe a sharp initial increase in the num-
ber of deanonymized validators14 during the first one and a
half days. Although this trend slows significantly over time,
the total number of deanonymized validators continues to
grow throughout the measurement period. This growth is

13Such behavior might be observed if a peer removes us from a fanout.
14Note that this figure excludes validators located on P2P service provider.

See Section 7.1 for details.
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Figure 6: The number of validators (excl. service providers)
deanonymized by our RAINBOW nodes over time, as well
as the cumulative count across all. Note that the number of
deanonymized peers can decrease over time as an initially
good connection to a peer can degrade over time. This is
particularly evident for the SO RAINBOW node.

smaller than that of new peer connections (see Figure 5) as
we come across more nodes that are not running validators.

Overall, we conclude that various factors impact the suc-
cess of deanonymization. A longer time horizon and deploy-
ing more nodes are generally advantageous, as highlighted in
our analysis. Other factors, such as geographical location and
hardware configurations (e.g., bare-metal servers versus vir-
tual machines), significantly influence a node’s performance
within the network [48]. Low-latency connections in partic-
ular play a critical role in determining the performance of a
node in the network. At the same time, networks are inherently
complex, and a node’s performance can vary unpredictably.

An attacker aiming to deanonymize the most validators
would benefit from deploying multiple nodes in the network
over an extended time horizon. The associated costs depend
on how the nodes are deployed. Our measurements were rel-
atively expensive, as we operated three nodes using AWS
machines, with network traffic being the primary expense.15

However, in general, a residential internet connection is suffi-
cient, and the hardware requirements for Ethereum full nodes
are modest [4] (less than 1,000 US$). While these expenses
are not trivial, they are minor compared to the potential profits
from such attacks. For context, the total MEV extracted since
the Ethereum Merge in September 2021 amounts to 598,019
ETH (approximately 2 billion US$) [79].

Furthermore, an attacker could optimize costs by refining
their strategy – for example, rotating through peers instead of
keeping long-term connections to peers on which validators
are already deanonymized.

7 Verification

Overall, we locate 252,293 validators across the four RAIN-
BOW nodes – approximately a fourth of the validator set

15Each node incurred a cost of approximately 100 US$ per day.

validators validators (excl. service providers) non-unique validators

FR 14,388 14,388 4,363
SO 13,771 11,185 2,411
VA 74,904 52,916 3,415
ZH 215,293 132,443 16,062

overall 252,895 161,057 16,172

Table 4: Number of validators located by each RAINBOW
node and overall. The first column indicates the total num-
ber of validators, the second column excludes validators from
peers we identify to be P2P service providers (see Section 7.1),
and the third column indicates the validators with a non-
unique mapping to an IP port combination (see Section 7.2).

(see column one in Table 4). The ZH RAINBOW node
deanonymizes the majority with 215,293 while the VA node
deanonymizes 74,904. Further, we deanonymize 13,771, and
14,388 validators with the FR and SO nodes respectively.

Before delving deeper into the insights about the Ethereum
P2P network derived from our deanonymization, we first vali-
date the deanonymization itself. Notably, while we lack access
to ground truth data, we employ several methods to assess
the accuracy of our results. Although these methods are not
definitive, they collectively provide valuable insights into the
quality of our deanonymization. Specifically, we undertake
the following three steps: (1) verify the consistency of val-
idators hosted on the same machine, (2) analyze whether val-
idators can be uniquely identified as being hosted on a single
machine, and (3) confirm whether the same set of validators
is identified on a peer across multiple RAINBOW nodes.

7.1 Consistency of Validator Sets
We start by investigating whether the set of validators our
analysis concludes to be hosted on each peer is consistent
with their attributes, e.g., they all belong to the same staking
pool as opposed to belonging to five different staking pools.
We consider a set of validators on a peer16 to be consistent, if
one of the following holds:
Γ1 We have entity labels for at least 30% of the validators

and at least 90% of these are identical.17

Γ2 At least 90% of the validators were funded by the same
deposit address.

Γ3 At least 90% of the validators have exclusively used the
same fee recipient address.

Γ4 The IDs of the validators can be aggregated into a few
groups with consecutive IDs. We cap the number of
groups to be at most one-tenth of the number of valida-
tors at that peer.

The first condition is the most straightforward – we consider
a validator set to be consistent if we have sufficiently many

16Recall that a peer is a unique IP port combination.
17Note that we make five exceptions where we find validators from two

staking pools that both enlist at least one common node operator on the same
machine. It appears that the node operator runs validators from different
staking pools. We provide a discussion of this phenomenon in Section 8.3.



peers validators

consistent inconsistent unknown consistent inconsistent unknown

FR 95.50% 0.64% 3.85% 98.70% 0.28% 1.02%
SO 95.77% 0.60% 3.62% 79.89% 18.89% 1.22%
VA 94.08% 0.77% 5.15% 67.42% 31.02% 2.64%
ZH 91.74% 1.35% 6.91% 58.99% 46.63% 2.25%

overall 93.75% 0.92% 5.33% 63.67% 39.67% 2.24%

Table 5: Percentage of peers with a consistent validator set
and validators belonging to a consistent validator set across
our four RAINBOW nodes as well as overall. Notice that the
vast majority of peers have a consistent validator set.

labels for the validator and they are largely identical. Note
that we do not require them to be fully identical as there
could be small inconsistencies in the entity label data set.
Conditions 2 and 3 are very similar in that we require that the
addresses used to deposit the stake and receive the execution
layer rewards are largely identical for the validators in the set.
Using the same address for either indicates that the validators
belong to the same entity, i.e., the entity that controls the
respective address. Finally, if the validators in the set have
consecutive IDs this also indicates that they belong to the
same entity, as the entity is likely to deposit the 32 ETH stake
for a couple of validators in a row. This would otherwise be
too much of a coincidence. Finally, a peer where we locate
only a single validator is trivially consistent.

Next, we consider the validator set associated with a peer
to be inconsistent if:
C1 We have entity labels for at least 10% of the validators,

but less than 90% of these are identical (except if they
are not all ENS names18 or Rocketpool19).

The above condition is the counterpart to condition 1 for la-
beling a validator set as consistent. Importantly, we are less
restrictive, i.e., only require 10% of the labels as opposed to
30%, when deciding whether the validator set is inconsistent.
We make exceptions for two known examples where we ex-
pect inconsistencies. All other peers are labeled as unknown.

Table 5 shows the consistency of the validator sets located
on the peers, both by percent of each node’s peers and the
proportion of located validators that are part of a consistent
validator set. We highlight that the vast majority of valida-
tor sets located on peers are consistent – 93.75% of peers
across all machines.

When we, however, turn to the proportion of validators
these figures experience a significant shift – only 63.67% of
validators located are part of consistent sets. This is a result
of the inconsistent validator sets being significantly larger on
average than the average validator set size. We proceed with
a more in-depth investigation of these inconsistent validators.

Service providers. There are a total of 17 peers on which
we locate inconsistent validator sets containing at least 200

18Human-readable names associated with Ethereum addresses
19Rocketpool validators are often home run and an individual could run

their personal and Rocketpool validators on the same machine.
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Figure 7: Pairwise overlap of the validator set of all peers
with an inconsistent set of at least 200 validators. The darker
the color of cell (i, j), the larger the proportion of validators
in the set of peer j also found on peer i.

validators, with the biggest validator set having 84,165 val-
idators. We calculate the pairwise overlap between these sets
and visualize the result in Figure 7 with peers sorted by size
(i.e., peer 0 has the largest validator set, and peer 16 has the
smallest). Each peer has a non-zero overlap with at least one
of the other peers, and there is significant overlap between
many of the peers. We presume that these peers are what we
will refer to as P2P service providers throughout, i.e., ser-
vice providers that help validators to quickly disseminate and
receive messages e.g., bloXroute [11].

Our main reasons for believing these peers to be service
providers are that (1) they have access to attestations from a
diverse (i.e., inconsistent) and large set of validators and (2)
they have a large overlap in the validator set with different
peers. Lower overlaps between these peers could be due to a
variety of reasons including the peers belonging to different
providers or geographical differences.

Given that we suspect these 17 peers to be P2P service
providers, i.e., they likely do not operate the validators but
have priority access to their messages, we exclude them from
our deanonymization. The second column in Table 4 indicates
the number of validators we locate after excluding the afore-
mentioned service providers. Overall we 161,057 validators
– more than 15% of the network.

7.2 Uniqueness of Validator-IP Mapping
To further verify our deanonymization we investigate the
uniqueness of validator-IP port mappings – whether we only
map a validator to a single IP or multiple ones. Column three
in Table 4 indicates the number of validators with non-unique
IP mapping. In total, there are 16,172 such non-unique val-
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Figure 8: Number of peers deanonymized (see Figure 8a) and validators located (see Figure 8b) by top ten countries.

idators, roughly 10% of all deanonymizations.
While this initially seems significant, closer inspection re-

veals special behavior by certain peers. Nearly three-fourths
of the overlap involves peers in the same city, suggesting that
some entities, possibly to ensure validator uptime, relay mes-
sages from their validators through multiple machines. As
discussed in Section 9, such practices can enhance validator
privacy. However, our deanonymization still ties these valida-
tors to the peer sets we connect to. We find strong evidence
of this behavior for many non-unique validator-IP mappings.
The remaining overlap, less than 1% of all deanonymized
validators (excluding service providers), is minimal and may
result from similar practices.

7.3 Similarity of Deanonymizations

The final analysis we perform is to verify our deanonymiza-
tion is checking whether we locate the same set of validators
on a peer (i.e., IP port combination) from multiple RAIN-
BOW nodes. In total, we deanonymized validators from more
than one RAINBOW node for 794 peers. For 762 (95.96%)
of these peers, we located the exact same set of validators on
the machine from all RAINBOW nodes that were connected
to the peer. Further, on average the overlap of the validator
sets is 99.20%. Thus, our deanonymization appears robust
– we locate the same validator set on a peer from different
geographically distributed RAINBOW nodes.

8 Insights

We conclude our analysis by drawing insights from our
deanonymization. Due to ethical reasons, we are careful to
obfuscate any exact details – we never reveal which validators

we map to a particular IP or how a specific staking pool di-
vides their validators across peers. We begin by investigating
the pairwise overlap between validators we deanonymized
across the four RAINBOW nodes in Table 6 and find that
there is quite a significant overlap between the validators
deanonymized. For instance, the overlap between the valida-
tors deanonymized on the FR, SO, and VA RAINBOW nodes
with the ZH RAINBOW node is more than half of the total val-
idators deanonymized on the three former RAINBOW nodes.

FR SO VA ZH unique

FR 14,388 2,842 5,326 10,769 2,675
SO 2,842 11,185 5,855 9,221 691
VA 5,326 5,855 52,916 27,717 23,577
ZH 10,769 9,221 27,717 132,443 93,854

Table 6: Pairwise overlap of deanonymized validators across
machines, as well as the number of unique validators per
machine. With the exception of the ZH node, half of the
validators deanonymized on a RAINBOW node have also been
deanonymized by at least one other RAINBOW node.

8.1 Geographical Distribution
We continue by analyzing the geographical distribution of
the peers we deanonymize. This not only gives insight into
the network but can also help us understand the differences
between the efficacy of our RAINBOW nodes.

On a continent basis, 46.79% of the peers we deanonymize
are located in Europe, 38.05% in North America, 9.95% in
Asia, 4.16% in Oceania, 0.77% in South America, and 0.27%
in Africa. In Figure 8a, we show the number of peers on
which we deanonymized validators by RAINBOW node as
well as overall per country for the top ten countries. We
deanonymized the largest number of peers in the United States
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Figure 9: Number of peers deanonymized (see Figure 9a) and validators located (see Figure 9b) by top ten organizations. Note
that while half of the deanonymized peers are run on cloud services, we locate ∼90% of validators on cloud services.

making up 33.03% of the peers. This is more than double
the number of peers we deanonymize in the next two biggest
countries. This is similar to the overall geographical distri-
bution of peers in the network, where the United States and
Germany make up the biggest proportions. Additionally, we
also observe a geographical bias of our RAINBOW nodes in
terms of the peers on which they deanonymize. Most notably,
the VA RAINBOW node deanonymizes more peers in the
United States than the ZH RAINBOW node. Similarly, the ZH
node deanonymizes more peers in most European countries
in comparison to the VA node.

In Figure 8b we further provide insights regarding the num-
ber of validators deanonymized by each RAINBOW node per
country. We start by highlighting the most striking difference
to the previous figure: most validators we locate are hosted in
the Netherlands (i.e., 12.71%), while the United States only
comes in fourth place. Note that a difference in the figures
is expected given a non-uniform distribution of validators
across machines. In general, we observe that there is a larger
proportion of validators in Europe as opposed to peers with
validators. In particular, 70.90% of the validators we locate
are in Europe, 12.48% are in North America, 11.46% are in
Asia, 5.08% are in Oceania, 0.05% are in Africa and 0.03%
are in South America. Additionally, we again notice the same
geographical bias, i.e., the SO node’s high relative proportion
of deanonymizations in Australia and South Korea.

We further repeat the preceding analysis for organizations
instead of countries in Figure 9. The largest organization in
terms of the number of peers is Comcast a residential ISP with
5.97% and the following three (Hetzner, OVH, and Amazon)
are cloud providers (see Figure 9a). Around half of the peers
we deanonymize are hosted through cloud providers, whereas
the other half run through residential ISPs, i.e., home stakers.
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Figure 10: Cumulative distribution function (cdf) of the num-
ber of validators hosted per peer. We only locate a single
validator on 27% of peers, while there at least 100 validators
located on around 11% of peers. The vertical lines indicate
100, 250, 300, 350, 400, 500, and 1,000.

There is a large shift in these figures when we turn from
peers (see Figure 9a) to validators (see Figure 9b). For one,
eight out of the ten largest organizations are cloud providers
and all of the biggest seven are cloud providers. We locate
the largest number of validators in Amazon data centers, i.e.,
19.07%. Surprisingly, the ZH node deanonymizes by far the
largest proportion of validators in Amazon data centers even
though it is the only RAINBOW node not run from an
Amazon data center. Finally, we highlight that around 90%
of the validators are run through cloud providers, with the
other 10% belonging to residential ISPs.

8.2 Validator Distribution

For those peers on which we deanonymize validators, we
proceed by analyzing how many validators they host (see Fig-
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Figure 11: Cumulative distribution function of the number of
validators hosted per peer for the biggest five staking pools.

ure 10). There is only a small number of validators located
on most peers: a single validator on around 27% of our peers,
with more than half of our peers having no more than four val-
idators. In fact, we see that only 11% of peers have more than
100 validators. We further note that an in-detail inspection of
Figure 10 reveals that for those peers that host many valida-
tors (i.e., more than 100), there is a bias towards a “round”
number of validators to be hosted on a peer. This is evident by
increases in the cdf at 100, 250, 300, 350, 400, 500, and 1,000
validators per peer. The gray vertical lines indicate these. For
one, this indicates that large organizations running multiple
validators on a machine tend to divide validators across nodes
in round numbers as one would expect, e.g. an organization
controlling 10,000 validators might divide them across 10
nodes and run 1,000 validators on each node. Additionally,
this observation also indicates that our deanonymization
technique locates all validators hosted on a machine as it is
less likely for these “round” numbers to be a coincidence.

8.3 Staking Pools
We continue our analysis by taking a deeper look at the prac-
tices of large staking pools, which we can observe as a result
of our deanonymization. All statistics contained in this section
concern the largest five staking pools (i.e., Lido, Coinbase,
Ether.Fi, Binance, and Kraken [7]) and we do not reveal to
which particular staking pool any statistic concerns.

In Figure 11, we plot a cdf of the number of validators
hosted per peer for these five staking pools. Recall in our
earlier analysis (see Figure 10) the observation that node oper-
ators of staking pools tend to run a “round” number of valida-
tors on the same machine. We observe these same increases in
Figure 11. Here we observe an average of 709 validators on a
given peer, with the larger validator set containing 19,390 val-
idators. We highlight the security concern this raises: though
there are a million validators, just hundreds of these peers
going offline can stall Ethereum as more than two-thirds of
the validators must be online to guarantee liveness.

In Figure 12 we examine the distribution of validators in
large liquid staking services in greater detail. The histogram
shows the number of validators hosted by peers from the top
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Figure 12: Number of validators per peer for the biggest five
staking pools. Notice that we only deanonymize validators
from four of the five biggest staking pools.

five staking pools (four of which are deanonymized). While
some peers host fewer than 100 validators, most peers in these
pools host over 100, highlighting the economic benefits of
staking pools. The most validators we locate on a single peer
is 19,390.

Additionally, many staking pools utilize node operators,
and as a result, the protocols claim that the validators operated
by the different node operators are independent, which would
improve the decentralization of the consensus layer. How-
ever, given that many of the node operators run validators for
various staking pools, this creates a dependency between the
protocols. Even more so, we find five instances of validators
from two different staking pools that utilize the same node op-
erators being located on the same machine. Thus, many of the
major staking pools are not (fully) independent of each other.
This is especially concerning as the biggest staking pool alone
already holds nearly a third of the staking power. Further, data
regarding the distribution of validators across node providers
is not easily accessible, thus making the decentralization of
the Ethereum blockchain difficult to assess.

8.4 Implications on Decentralization

Decentralization of the P2P network as well as Ethereum’s
consensus layer is essential to prevent one party from ma-
liciously overtaking the network. The decentralization of
Ethereum’s PoS consensus layer is a topic of frequent discus-
sion, given that the largest staking pool Lido controls nearly
a third of the staking power – a critical safety threshold in
Ethereum PoS. To combat the criticism, Lido proclaims that
their validator set is operated by multiple independent node
operators and thus they should all be seen as independent
entities. While it is unclear whether this characterization is
accurate [38], our insights into the P2P network reveal a fur-
ther entanglement between different staking pools. As we
outline in the previous section, not only do node operators
run validators for different staking pools but we even find
that they run them from the same nodes. This shows that
staking pools are not always independent from each other,



e.g., whenever such a node goes offline, validators from
both protocols go offline. Similarly, we find that some peers
host thousands of validators. Our insights gained from the
deanonymization raise questions regarding the decentraliza-
tion and resilience of the Ethereum consensus layer.

9 Mitigations

We now discuss mitigations against our proposed
deanonymization technique presented in Section 4.

9.1 Providing Anonymity
We begin by discussing techniques that enhance anonymity
within the P2P network. Before delving into the details, it is
important to note that the current max effective balance for a
validator is 32 ETH, which results in many redundant valida-
tors being run and controlled by the same entity. However, in
the upcoming Pectra hardfork [66], the max effective balance
is set to increase to 2048 ETH [63]. This change will allow
entities to consolidate up to 64 validators into a single entity.
Consequently, the next hard fork has the potential to signifi-
cantly reduce the number of attestations propagated through
the P2P network. This reduction allows for the following ap-
proaches that slightly increase the number of P2P messages
to preserve anonymity. Importantly, with such an increase in
P2P messages, the reductions in signature verification (i.e.,
one per validator per attestation) remain preserved.

Additional Subnets. Taking over backbone duty for more
than two subnets is a rather straightforward way to miti-
gate the uncovered flaws. Indeed, our methodology fails at
deanonymizing nodes subscribed to 64 subnets. Raising the
number of subnets, however, is in direct contrast to the very
reason behind the existence of subnets: the reduction of the
message complexity, from ∼ nnodes ·nvalidators ·nmeshPeers, by
a factor of ∼ avgSubscribedSubnets

totalSubnets . However, as outlined previ-
ously, the number of messages in the P2P network is expected
to decrease with the upcoming hard fork, and thus approaches
that (slightly) increase the average number of subscribed sub-
nets should be tolerable.

Additional Nodes. Validator clients can connect to multiple
nodes to defend against our deanonymization. This can be
done through validator clients that support multiple connec-
tions (see e.g., the Vouch validator client [58]).

Validators have three main tasks to perform: broadcasting
attestations, aggregating attestations, and proposing blocks
(see Section 2). Our methodology solely relies on attestations,
but, as discussed in Section 3 the most straightforward impli-
cations of the deanonymization stem from hindering block
proposals. Thus, a simple mitigation is to run two nodes,
one for propagating and aggregating attestations, and another
where block proposals are broadcast. Alternatively, an entity
might decide to propagate their attestations through multiple

nodes, to either (i) increase the hardware requirements for a
DoS attack, or (ii) increase the time to deanonymization by
capping the amount of attestation sent by any node.

Solutions based on adding more nodes do not tackle the
root cause of the issue (likely just increasing the complexity
of deanonymization) and almost universally lead to higher
message complexity. Furthermore, they also result in larger
operating costs, that are especially difficult to bear for solo
stakers, thus going against the ethos of Ethereum.

Private Peering Agreements. Out of the box, the Lighthouse
and Prysm Ethereum clients provide the capacity to perform
private peering agreements – a set of trusted peers can be
defined who function as additional relays for gossip mes-
sages. This functionality is meant for increased performance
and reliability, however, it also makes it harder to uniquely
map validators to one IP. To be precise, through our pre-
sented deanonymization methodology, we could still deter-
mine the set of validators and the set of nodes that are part of
the peering agreement, but not which validator is hosted by
which node. Thus, a private peering agreement can provide
k-anonymity20 As a result, it would be necessary to target the
k peers in the peering agreement during an attack. This miti-
gation comes with two main caveats: First, k has to be chosen
large enough to make DoS attacks prohibitively costly. Sec-
ond, while peering agreements can be established off-band,
finding trustworthy peers may again be a prohibitive cost for
small participants, with the introduction of such complexities
potentially contributing to centralization. Based on our results
presented in Section 8, 50% of nodes hosting validators host
less than four. Nonetheless, private peering agreements can at
least mitigate against the threat of network-wide disruptions
(as outlined in Section 3). The positive effect of such a mitiga-
tion can be seen today in validators who make use of service
providers at the gossip layer (see Section 7).

Anonymous Gossiping. Established protocols like Dande-
lion [12, 29] and Tor [23] have been considered in the past in
the context of Ethereum [10, 47, 71]. The core idea of Dan-
delion is to first propagate messages along a path of a single
node (the stem phase), before releasing a message (the fluff
phase). This comes at a significant latency cost and is deemed
incompatible with the economic incentives of publishing mes-
sages quickly [10].

9.2 Defending Against DoS
Both main threats outlined in Section 3 can be exercised by
employing DoS. A (partial) mitigation could thus consist
of defending against DoS attacks. We consider this defense
independently, as it is typically orthogonal to anonymity.

Network Layer Defenses. The creators of libp2p provide
a list of implemented mitigations [53], including limiting

20In this context, a node is said to be k-anonymous if it cannot be distin-
guished from k-1 other nodes.



maintained connections, rate-limiting incoming connections,
and automatically adjusting the firewall. Nonetheless, manual
intervention may still be necessary, as these measures are not
expected to fully prevent an attack.

Giuliari et al. [37] present a list of traditional defense strate-
gies, such as IP-based filtering, cloud-based DoS protection,
overprovisioning, and VPNs. The authors argue that none of
these are satisfactory for consensus algorithms in a blockchain
setting. For Ethereum specifically, these concerns are even
more insurmountable, due to (i) Ethereum’s prohibitively
large network size (see Section 5.2) and (ii) the compara-
tively lower assumed economic power and hardware speci-
fications of solo stakers. Giuliari et al. [37] instead propose
a defense based on source authentication and rate limiting.
While promising, source authentication represents a shift for
Ethereum, and would thus require significant changes.

Secret Leader Election. Another way to combat DoS attacks
is for leaders (block producers) to remain anonymous until
they perform their duties. This is the goal of secret leader
election protocols [13]. This approach does not conflict with
any other assumptions needed, and might thus be the most
promising approach. Multiple proposals have already been
discussed in the context of Ethereum [16, 46], but none have
yet progressed beyond the design stage.

Distributed Validator Technology (DVT). By splitting the
private key of a validator into multiple shares, using DVT
a validator can run from multiple clients and create signa-
tures even if some clients are unavailable [32]. The resilience
gained may also help validators create blocks even when
experiencing a DoS attack.

10 Related Work

Network Measurements and Attacks. The measurements
of Ethereum and other cryptocurrency networks most rele-
vant for our work are those that measure gossip properties
of these networks, observed miner centralization in Bitcoin
and Ethereum [21, 36, 48, 55]. Measurements of validator
centralization at a network-level have been limited. In a previ-
ous protocol version of Ethereum [34], nodes in the network
would subscribe to one (uniform) random attestation back-
bone per validator. Thus, previously, one could estimate lower
bounds for how many validators were on a node. This was
done in [14] where the authors estimated an average of 12K
nodes in the network with 5-6K running at least one validator.

A large body of literature explores deanonymization at-
tacks in the context of anonymity-preserving distributed
systems, such as Crowds and Tor [6]. Foundational mod-
els [31, 80] demonstrate how repeated path observations de-
grade anonymity over time, exploiting statistical biases to-
wards identifying initiators (so-called predecessor attacks).
Crowds’ probabilistic routing amplifies this vulnerability com-
pared to the fixed circuits used in Tor [65]. Other seminal

works focus on traffic correlation [60], timing attacks [72],
and learning-based attacks [61]. In comparison, our work
exploits the performance improvements introduced in Gossip-
Sub, making our deanonymization attack more effective.

For cryptocurrencies specifically, deanonymization attacks
have primarily taken advantage of network timing informa-
tion, e.g., by showing the possibility of tracking the source of
transaction data to the peer first to distribute the transaction in
the Bitcoin [8, 9, 30] and its Lightning Network [70], as well
as the Ethereum network [17,73]. Gossip protocols to prevent
such deanonymization attacks have also been proposed, such
as the family of Dandelion protocols [12, 29]. We highlight
that the aforementioned timing-based deanonymization at-
tacks require a connection to a large portion of the network to
be sure of the originating source of messages for each address.
Our attack, in contrast, takes advantage of protocol-level de-
tails that can be run from a single node to any number of
its peers. The danger of the potential deanonymization of
validators has been a topic of discussion on Ethereum for
many years. However, to the best of our knowledge, apart
from a meta-data-related technique [45, 69], no concrete
deanonymization methodologies have been proposed.

There is also a broader history of network-layer attacks
in cryptocurrency networks including Eclipsing [40, 43, 56],
network-partitioning [74,75], and routing manipulations such
as BGP-Hijacking [3] and its prevention [2] and miner-pool
networks routing attacks [76]. Protocol-level details have
also been utilized to infer peering relationships, such as the
structure of transaction messages and their broadcast behavior
in the Bitcoin [22, 59, 62] and Ethereum [52] networks, and
peer discovery messages in the Monero network [18].

Gossip Networks. GossipSub was introduced in 2020 [77].
An improved version (v.1.1) has been introduced a year
later [78]. We are not the first to present a weakness of Gossip-
Sub. Kumar et al. [51] for instance present a formal method
analysis of GossipSub and show that the score function is fair,
albeit exploitable. In a companion paper [50], they go on to
synthesize and simulate attacks on GossipSub.

Guerraoui et al. [39] study the fundamental limit of achiev-
able source anonymity in gossip on general graphs. Our analy-
sis is different, as it mainly considers the effect on anonymity
of splitting a single gossip network into multiple components.

11 Outlook

In this work, we present a simple and low-cost attack that
allows a node in the network to deanonymize the validators
associated with its peers. And to the best of our knowledge,
we are the first to quantify the resulting lack of privacy in
Ethereum’s P2P network.

There are several ways to strengthen the attack and
deanonymize a larger portion of the network. Our RAIN-
BOW nodes ran with closed ports, limiting connections to the



reachable part of the network. Running them with open ports
would expand connections and likely deanonymize more val-
idators. Additionally, we only consider the first occurence
of each attestation, but including duplicates would further
improve deanonymization. Lastly, our method focuses solely
on attestations, but other validator tasks (e.g., participation in
aggregation and sync committees) also leak information. This
information could not only enhance deanonymization, but
potentially also identify aggregators before they self-reveal,
opening up additional attack vectors.

Given that our “simple” attack deanonymizes a large pro-
portion of the validator set, the possibility of making it
stronger in light of the outlined implications is evermore
concerning. Thus, it is our belief that the development of
a privacy-preserving mechanism for the Ethereum P2P net-
work is of utmost importance, and we hope that our discussion
of mitigations can guide future work.

While this work focuses on Ethereum, it is important
to emphasize that the foundational elements enabling the
deanonymization attack are inherent to its use of the Gossip-
Sub [54] protocol. Developers planning to integrate Gossip-
Sub into their systems should carefully consider the privacy
implications associated with its subnet overlay feature.

12 Ethics Considerations

Our research aims to explore the lack of privacy for Ethereum
validators. As this research involves critical infrastructure
and the identification of organizational entities that may not
wish to be identified, we followed rigorous ethical guidelines
in accordance with the principles outlined in the Menlo Re-
port [5]. Below, we assess key stakeholders and detail how
each principle was addressed throughout the course of this
study.

Respect for Persons. The principle of respect for persons
requires that individuals’ autonomy and privacy are protected,
and informed consent is obtained whenever necessary. Valida-
tors are logical entities identified through pseudonyms, which
by design should make it so that they cannot be linked to
humans. Nonetheless, we ensured that no identifiable infor-
mation about any entities running Ethereum validators was
exposed. We minimized the use of identifiable data, by us-
ing it purely to verify the validity of our results. Moreover,
the analysis was done using publicly available data from the
Ethereum P2P protocols.

Beneficience. We systematically assess risks by identify-
ing key stakeholders, in order to maximize probable benefits
while minimizing probable harm. First, staking entities that
run Ethereum validators might suffer monetary harm, if an
attacker were to exploit the vulnerability we expose. In or-
der to minimize the likelihood of this scenario, we publish
neither our code nor the deanonymized validator dataset (see
Section 13). We further reached out to some larger entities,

informing them of our findings. We were also careful to only
run standard Ethereum clients to collect data. In particular, we
avoided rewriting client code to make deanonymization more
efficient, as this might have caused additional load on current
Ethereum nodes. Instead, our clients most likely had a net
positive impact, by contributing in forwarding P2P messages
for the duration of our experiment.

The risk that malicious actors benefit from our disclosure
is also counter-balanced by the mitigation strategies we put
forward. Due to the improved understanding of privacy leaks,
we can provide tools and mitigation strategies for Ethereum
validators to minimize the efficacy of potential attacks.

The Ethereum Foundation could itself be harmed, as their
reputation as stewards of the ecosystem might be questioned.
To mitigate such negative consequences, we have been in
contact with the Ethereum Foundation from the very start of
the project. Once our study was finished, we further disclosed
our findings through the bug bounty program. We made sure
to keep the entire project confidential until we got the written
approval to publish our results.

We believe that the Ethereum community can benefit from
the insights we are able to gain from the results of our
deanonymization. Many aspects, such as geographical decen-
tralization, could not be studied before. This improved under-
standing can further strengthen the security of the Ethereum
blockchain.

Finally, while the lack of anonymity was noted before, re-
searchers and engineers can benefit from the improved per-
spective we offer and can work on building a more robust and
private gossiping mechanism for the future.

Justice. The benefits (and risks) of research should be fairly
distributed. We did not single out specific individuals or or-
ganizations, and our work was conducted with the intent of
benefiting the broader Ethereum community. To this end, we
run RAINBOW nodes across multiple locations.

Respect for Law and Public Interest. In line with the prin-
ciple of respect for law and public interest, we conducted our
research in compliance with legal and regulatory frameworks
surrounding blockchain technology and data privacy. No ac-
tions were taken to exploit the vulnerabilities found; instead,
our research was conducted with the aim of improving the
Ethereum network’s security and privacy features.

13 Open Science

As discussed in Section 12, we believe that our collected data
is sensitive and should not be shared. Therefore, we only
present aggregated data and refrain from any analysis target-
ing single entities. We also suggest keeping our RAINBOW
client private, until appropriate countermeasures have been
implemented. Therefore, we refrain from making them pub-
licly available.
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