
Encarsia: Evaluating CPU Fuzzers via Automatic Bug Injection

Matej Bölcskei
ETH Zurich

Flavien Solt
ETH Zurich

Katharina Ceesay-Seitz
ETH Zurich

Kaveh Razavi
ETH Zurich

Abstract
Hardware fuzzing has recently gained momentum with many
discovered bugs in open-source RISC-V CPU designs. Com-
paring the effectiveness of different hardware fuzzers, how-
ever, remains a challenge: each fuzzer optimizes for a dif-
ferent metric and is demonstrated on different CPU designs.
Furthermore, the number of newly-discovered bugs is not an
appropriate metric since finding new bugs becomes increas-
ingly more difficult as designs mature. We argue that a corpus
of automatically injectable bugs will help compare hardware
fuzzers to better understand their strengths and weaknesses.
Through a large-scale study of 177 software-observable bugs
in open-source RISC-V CPUs, we discover that CPU bugs can
be modelled by manipulating conditional statements or sig-
nal drivers. Based on this observation, we design ENCARSIA,
a framework that automatically transforms the intermediate
representation of a given CPU design to inject bugs that are
equivalent to incorrect conditions or assignments at the HDL
level. To ensure that an injected bug has an observable ar-
chitectural effect, we leverage formal methods to prove the
existence of an architectural deviation due to the bug-specific
transformation. We evaluate ENCARSIA by injecting bugs
into three open-source RISC-V CPUs, fuzzing these CPUs
with recently-proposed CPU fuzzers, and comparing their bug-
finding performance. Our experiments reveal key insights into
the limitations of existing hardware fuzzers, including their
inability to cover large sections of the designs under test, inef-
fective coverage metrics, and bug detection mechanisms that
often miss bugs or produce false positives, highlighting the
urgent need to reassess current approaches.

1 Introduction

To satisfy the ever-increasing demand for diverse hardware
targeting wide ranges of applications from secure Internet of
Things (IoT) devices to high-performance computing (HPC)
systems, new hardware is being developed at an unprece-
dented pace. This momentum has created a high demand for

usable and effective tools and methodologies to verify the cor-
rectness and security of these hardware designs at all stages
of their development.

Hardware fuzzing is a recent and popular response to this
pressing demand [5,6,9,14,22,26,29,30,32,42,45,48]. Given
its scalability, ease of adoption, and demonstrated ability to
find bugs in real-world designs, hardware fuzzing has become
an essential tool in the hardware validation toolbox. However,
hardware fuzzing research often makes conflicting claims
as to the underlying mechanism behind their effectiveness,
revealing a profound lack of understanding about what truly
drives fuzzing performance.

Fuzzer evaluation. We posit that this confusion stems from
the lack of a standardized framework for evaluating hardware
fuzzers. Instead, existing work relies on either some coverage
that they achieve during the fuzzing process, or the number of
new naturally-occurring bugs they find in real-world designs.
Coverage is known to be a poor proxy for bug-finding ability
in software [28], and the discovery of new naturally-occurring
bugs is a noisy metric that is hard to compare across different
fuzzers due to diverse tested hardware designs and versions. In
particular, a fuzzer that finds bugs in a given design may find
fewer new bugs due to the increasing maturity of the design,
even if it is capable of finding more complex bugs. Inserting
bugs manually is a labor-intensive option [16, 40] that has to
be repeated per design, in particular if the bug-inserted designs
are not shared with the community. Automatic injection of
bugs is a promising alternative.

Encarsia. We introduce ENCARSIA† , the first framework
for automatically injecting realistic bugs into arbitrary RTL
designs. To guide the design of ENCARSIA, we first conduct a
comprehensive survey of bugs reported in four popular open-
source RISC-V CPUs of various complexities and design
paradigms: Ibex [33], CVA6 [20], Rocket [1] and BOOM [4].
We find that all these bugs resemble two simple syntactic

†Encarsia is a genus of tiny parasitic wasps belonging to the family
Aphelinidae. These wasps are commonly used in biological control programs
to manage pest populations, particularly whiteflies and scale insects.

transformations: mix-ups of signals or logic expressions and
errors in conditional statements. Based on this observation,
ENCARSIA applies these syntactic transformations to auto-
matically inject diverse and realistic bugs in a given HDL
design. However, such transformations may not necessarily
be reachable or result in an architecturally-visible effect. To
certify that the injected bugs are observable and have a func-
tional effect, we rely on formal verification.

We evaluate ENCARSIA on three RISC-V CPUs, namely
Ibex, Rocket and BOOM, and evaluate three state-of-the-art
hardware fuzzers: DifuzzRTL [26], ProcessorFuzz [6], and
Cascade [42]. We find that these fuzzers are able to find re-
spectively 41.67%, 41.67%, and 40% of the bugs injected by
ENCARSIA in 24 hours of fuzzing. ENCARSIA reveals short-
comings in both the design and evaluation of these fuzzers:
(1) existing fuzzers fail to reach large sections of the designs
due to limitations in their test generation mechanism, (2) for
parts of the designs that the fuzzers do reach, existing cover-
age metrics fail at effectively guiding the fuzzers to exercise
those areas sufficiently, and (3) current fuzzers’ bug filtering
mechanisms result in both false positives and false negatives.
Based on these insights, we propose future research directions
for improving hardware fuzzing. For example, fuzzers might
benefit from higher-level coverage metrics, either at the ar-
chitectural level or at the microarchitectural level, given that
current fuzzers seem neither able to reach good ISA coverage,
nor to explore all microarchitectural corner cases.

Contributions. We make the following contributions:

• We survey the bugs reported in four popular open-source
RISC-V CPUs: Ibex, CVA6, Rocket and BOOM.

• We design and implement ENCARSIA based on a new
model for automatically injecting realistic bugs into RTL
designs based on multiplexer tree corruptions and wire
connection mix-ups, and a formal methodology to ensure
that injected bugs are architecturally observable.

• We implement and evaluate ENCARSIA by injecting bugs
in three popular open-source RISC-V CPUs and assess-
ing three state-of-the-art hardware fuzzers. Our assess-
ment provides insights into the limitations of existing
hardware fuzzers and proposes future research direc-
tions.

Open sourcing. ENCARSIA is open source and we have
put particular attention in making it user-friendly and well-
documented to facilitate its adoption by the community. Ad-
ditional information can be found at the following URL:
https://comsec.ethz.ch/encarsia.

2 Background
We provide the necessary background on hardware design
representations (Section 2.1), hardware fuzzing (Section 2.2)
and manual bug insertion (Section 2.3).

DUT

ISA Simulator

110100010
000010011

110100010
000010011

Mismatch?

Mutation

Seed
Programs

Input
Program

Execution
Trace

Detected
Bug

Delete
Input

Increased
Coverage?

Yes
Yes

No

Figure 1: Typical hardware fuzzer workflow.

2.1 Hardware representations
Hardware designs are represented at various levels of abstrac-
tion throughout their development. During the design phase,
they are typically described using Hardware Description Lan-
guages (HDLs) such as Verilog or VHDL, often at a high level
of abstraction, like the behavioral or register-transfer level
(RTL). HDLs usually provide multiple ways of expressing
the same concept for the convenience of the designer. For in-
stance, conditional assignments of signals can be represented
using if or case statements, or ternary operators. Automated
tools convert HDLs into an Intermediate Representation (IR)
that abstracts away the syntactic sugar [46]. Various process-
ing is then performed on this IR, before converting it back
into HDL or another format suitable for the next step in the
hardware design flow.

For example, the front-end of the Yosys [46] open-source
synthesizer converts HDL designs into RTL Intermediate
Language (RTLIL) representations. In RTLIL, Yosys models
hardware designs as networks of macro-cells, representing
functional components such as logic gates or arithmetic units,
interconnected by wires. Furthermore, Yosys models Verilog
signal assignments [27] as connections between a wire and it’s
driver signal that supplies it with a logic value. Driver signals
can be constants, wires, or combinations thereof. Yosys trans-
forms conditional assignments into multiplexer trees where
the assigned signal is connected to the output, the results of
each branch are connected to the inputs, and the conditions
controlling the assignment are connected to the select sig-
nals. Yosys then applies further transformations to the RTLIL
representation through procedures known as passes (e.g., to
implement optimizations).

2.2 Hardware fuzzing
Hardware fuzzers generate randomized inputs in an attempt
to trigger and observe bugs in designs under test (Figure 1).
They can target CPUs [5, 6, 9, 14, 22, 26, 29, 30, 42, 48] or
more generic hardware [32, 45]. CPU fuzzers leverage the
well-defined behavior of a CPU, as specified by the ISA, to
test meaningful variations of valid instruction sequences, es-
sentially programs, rather than relying on random binary data
that rarely triggers CPU functionality. Typically, fuzzers gen-

https://comsec.ethz.ch/encarsia

Table 1: Evaluation methodologies adopted by some recent
hardware fuzzers. Cov.: coverage evaluation. Nat.: discovery
of natural bugs. Synth.: discovery of synthetic bugs.

Fuzzer Cov. Nat. Synth.

RFUZZ [32] ✓ ✗ ✗
DifuzzRTL [26] ✓ ✓ ✓
DirectFuzz [9] ✓ ✗ ✗
Trippel et al. [45] ✓ ✗ ✓
TheHuzz [30] ✓ ✓ ✗
ProcessorFuzz [10] ✓ ✓ ✗
MorFuzz [48] ✓ ✓ ✗
Cascade [42] ✓ ✓ ✗

erate new programs through mutation, such as flipping bits,
swapping operands, or rearranging instructions to explore new
CPU behaviors. To guide this process, fuzzers use coverage
feedback, which tracks the parts of the ISA or CPU exer-
cised by each test. Programs are executed on the CPU, and if
they increase coverage, they are retained for further mutation,
otherwise, they are discarded. Several coverage metrics have
been proposed, such as multiplexer control coverage [32], con-
trol register coverage [26], and aggregated simulator-reported
coverage [30].

CPU fuzzers detect bugs by comparing a CPU’s behavior
to a reference model such as an Instruction Set Architecture
(ISA) simulator [26, 30, 42]. These fuzzers often advertise
the number of new bugs they find in real-world designs to
demonstrate their effectiveness [5, 6, 9, 14, 22, 26, 29, 30, 42,
48], yet this metric does not easily lend itself to comparison
across different fuzzers due to the diversity of tested hardware
designs and versions. Furthermore, bugs become harder to
find as designs undergo more testing and become more mature.
Table 1 summarizes evaluation methodologies of some recent
hardware fuzzers. We distinguish natural bugs found in real-
world designs from synthetic bugs that are manually inserted.

2.3 Manual bug insertion
To inject bugs into hardware designs, researchers have been
so far relying on manual insertion, in two distinct contexts.
The first context is the insertion of specific example bugs
to demonstrate the effectiveness of one specific fuzzer at
detecting them [24–26, 45]. These ad-hoc bugs are few (not
more than 7) and might be biased, given that they are built
specifically to illustrate a given fuzzer’s effectiveness. In
particular, these very few bugs are never later used by others
for comparison. The second context is the manual insertion of
some dozens of bugs to organize competitions [16]. To inject
realistic and diverse bugs, this laborious manual process relied
on industry partnerships and strong familiarity with the target
design. Consequently, the design used for competitions has
been CVA6 for years [49] and these manually-injected bugs
are few and generally not disclosed to the public [40].

3 Overview of Challenges

We provide an overview of the challenges that guided the
design of ENCARSIA. First of all, it is necessary to understand
the properties of natural bugs, since evaluating fuzzers on
synthetic bug corpora must reflect the fuzzer’s ability to detect
bugs that occur in real designs.

CHALLENGE 1.
Understand and unify the characteristics of natural bugs.

In Section 4, we conduct a comprehensive survey of 1672
pull requests across four popular RISC-V CPUs of various
complexities and from different maintainers. We find that
bugs with highly-complex effects can often be traced back
to simple code modifications. We further observe that two
types of transformations are sufficient to capture them. The
first transformation involves signal mix-ups, such as the use
of incorrect operators in expressions or assignments. The
second transformation pertains to broken conditionals, which
encompass incorrect if conditions or the absence of a default
case in a switch statement, among other issues.

The second challenge concerns the translation of these
source-level observations to the practical injection of bugs.

CHALLENGE 2.
Automatically and realistically transform RTL designs.

In Section 5, we present ENCARSIA, a fully automatic and
easy to use bug injection framework based on the observa-
tions made in our survey. We leverage Yosys’ intermediate
representation (IR) to manipulate wire connections and multi-
plexer trees that respectively represent expression operands
and conditionals. Concretely, ENCARSIA takes an RTL de-
sign, injects realistic bugs in the IR provided by Yosys, and
outputs the modified design.

The third challenge concerns the quality of injected bugs.

CHALLENGE 3.
Ensure that the injected design transformations are archi-
tecturally observable.

In Section 6, we employ formal verification to ensure that
the injected transformations have an architecturally observ-
able effect. We provide two setups: one more performance-
oriented using the closed source JasperGold and one more
accessible to the community using Yosys. Aware of the in-
jected transformations, ENCARSIA adopts a two-step assume-
guarantee approach to guide the formal verification process
of Yosys. To ensure that one bug will not hide another, we
limit the injection to a single bug per design at a time.

Overcoming these challenges, we provide the first open
synthetic corpus of CPU bugs in Section 7 and derive new
insights about hardware fuzzing in Section 8.

Table 2: Overview of surveyed CPUs, detailing data width
(DW), pipeline stages (St), out-of-order execution (OoO) ca-
pability, hardware description language (HDL) used, as well
as wire and cell counts.

Design DW St OoO HDL Wires Cells

Ibex [41] 32 3 N SV 21.6k 24.5k
CVA6 [49] 64 6 N SV 903k 945k

Rocket [2] 64 5 N Chisel 495k 781k
BOOM [13] 64 10 Y Chisel 880k 1320k

Table 3: Summary of manually analyzed PRs, with bugs iden-
tified as causing software-observable ISA deviations.

Pull Requests (PRs) Observable

Design Pre-filtered Oldest Newest bugs

Ibex 42 PR #31 PR #343 31
CVA6 41 PR #27 PR #225 33
Rocket 50 PR #13 PR #592 49
BOOM 41 PR #7 PR #512 46

Total 174 159

4 Understanding the Causes of Bugs
To understand the characteristics of natural bugs found in
real-world CPUs, we survey bugs in four popular open-
source designs. We also survey bugs manually crafted for
the HACK@EVENT competitions [16]. We focus on bug
patches, as they provide root-cause information.

4.1 Collecting natural and synthetic bugs
We describe our methodology for collecting bugs from open-
source designs and manually assembled corpora.

4.1.1 Open-source designs

We collect bugs from four open-source CPUs of various
complexities and design paradigms (Ibex [33], CVA6 [20],
Rocket [1], BOOM [4]) based on their public issue trackers,
summarized in Table 2. The brief description of the bugs’
symptoms provided in the issue reports is often insufficient
to determine root causes and filter out non-observable bugs.
Hence, we focus on Pull Requests (PRs) and filter them for
actual bug fixes. Using GitHub’s REST API [19], we collect
the first 100 PRs per design containing the keyword ’fix’ and
filter them to include only those that modify design source
files. We opt for keyword-based filtering over more principled
options, such as GitHub labels, due to their inconsistent usage.
For instance, only 4 out of 1529 CVA6 PRs are labeled as
bugs. Keyword filtering yields a substantial bug dataset and
proves unbiased by capturing 20 of 27 labeled bugs in BOOM.
Some PRs may still be false positives, e.g., performance im-
provements, while others address multiple bugs, with up to 65
commits. Therefore, we manually examine the textual report

1 a s s i g n illegal_csr_insn_o =
2 illegal_csr | illegal_csr_priv;
3 a s s i g n csr_we_int =
4 -- csr_wreq & ~illegal_csr_priv & ...;
5 ++ csr_wreq & ~illegal_csr_insn_o & ...;

Listing 1: Example of a signal mix-up in PR #399 of the
Ibex CPU. The designer mistakenly uses a partial result of an
access check instead of the final result, allowing unauthorized
access to debug CSRs.

and the HDL-level fix (Verilog or Chisel) of each commit in
the PRs and determine the architecturally-observable bugs.
We analyzed a total of 310 code changes. Table 3 indicates
the number of pre-filtered PRs, the range of PR numbers (#)
and the number of observable bugs.
Manually assembled corpora. For evaluating verification
methodologies Dessouky et al. [16] manually compile a set of
hardware bugs, which they claim to be uniquely challenging
for state-of-the-art verification techniques. While the original
corpus presented in the paper provided only brief descriptions
of the bugs, later iterations of the competition included some
bug fixes. The HACK@DAC 2019 corpus featured 4 such
bug fixes, while the HACK@DAC 2021 corpus expanded this
by 26. To ensure that ENCARSIA is generic enough to also
model these selected bugs, we include them in our survey.

4.2 Bug classification
Our goal is to identify recurring structural patterns among the
bugs, enabling their automatic injection through simple circuit
transformations. In an initial exploratory phase of our survey,
we observed that bugs affect a wide range of components and
HDL constructs. Yet, despite this diversity, we found that the
affected HDL constructs fall into two groups: wrong logic
in signal drivers and mistakes in conditionals. This led us to
define the following categories.
Signal mix-ups. Signal mix-ups encompass confusion of
signals, functions, or other elements in assignments or expres-
sions. They usually arise from human errors due to signals
having similar names, types, or purpose. An example of a
signal mix-up observed during the initial exploratory phase
(Ibex PR #399) is shown in Listing 1. In this example, the
designers mistakenly used a partial result of an access check
instead of the final result, allowing unauthorized access to the
debug CSRs.
Broken conditionals. Broken conditionals refer to incorrect
conditional statements, for example mishandling of excep-
tional cases like special values in floating-point arithmetic,
or signal updates in wrong design states. These usually arise
from designers either forgetting an exceptional case or spec-
ifying wrong conditional expressions, or generally making
algorithmic mistakes. A simplified example of a broken con-
ditional observed during the initial exploratory phase (Ibex
PR #277) is shown in Listing 2. In this example, the designers

1 always_comb begin
2 csr_rdata_int = ’0;
3 illegal_csr = 1’b0;
4 unique case (csr_addr_i)
5 CSR_MSTATUS: csr_rdata_int = mstatus_q
6 CSR_DCSR: begin
7 csr_rdata_int = dcsr_q;
8 ++ illegal_csr = ~debug_mode_i;
9 end

10 d e f a u l t : begin
11 illegal_csr = 1’b1;
12 end
13 endcase
14 end

Listing 2: Example of a broken conditional derived from pull
request #277 of the Ibex CPU. The designer forgot to include
a check to ensure the CPU is in debug mode upon access to
debug CSRs, which allows unintended access.

forgot a check to ensure that the CPU is in debug mode upon
access to debug CSRs, which allows users unintended access.

4.2.1 Classification

We manually classify each bug fix identified in our survey
into the two categories: signal mix-ups or broken condition-
als. If they contain multiple modifications, including both
types, we classify them as both. Listing 3, which resembles
an excerpt from a simplified cipher block chaining crypto-
graphic module, illustrates our classification approach. Any
erroneous assignment of a signal, function, or other entity in
assignments or expressions (outside conditions) is classified
as a signal mix-up. Bug M1 in Listing 3 is a name mix-up
in a continuous assignment, where one of the operands of its
assigned logic expression is incorrectly chosen (like Rocket
PR #349). Bug M2 shows a more complex case of a mix-up of
a whole logic expression (state == ENCRYPT && enable_i)
with a single signal (enable_i) (like BOOM PR #437). Bug
M3 shows a mix-up in a clocked assignment and within a
conditional statement (like Ibex PR #286).

We classify bugs affecting conditional assignments as bro-
ken conditionals when they involve missing cases or incorrect
conditions. Bug C1 of Listing 3 is an example where a nested
conditional is forgotten (like CVA6 PR #138). This implies
that the condition for the resulting assignment, in this case of
next_state, is too loose. Similar bugs might, for example,
create access control vulnerabilities. Bug C2 exemplifies a
missing case in a switch statement (like BOOM PR #173).
This bug exemplifies forgetting a certain edge case such as a
reset for a register, a default case, or an overflow check.

Some bugs, like bug M4, are signal mix-ups in the body of a
conditional statement (like Ibex PR #169). To avoid overlaps
between the two categories, we classify bugs that concern
solely the conditionally assigned values, but do not modify
any conditions, as signal mix-ups.

1 module cbc (
2 input logic clk,
3 input logic reset ,
4 input logic valid_i ,
5 input logic enable_i ,
6 input block_t plaintx_i ,
7 output block_t ciphertx_o
8);
9 state_t state , next_state;

10 block_t prev_cipher_blk;
11

12 // bug M1: wrong continuous operand choice
13 --a s s i g n cipher = plaintx_i ^ state;
14 ++a s s i g n cipher = plaintx_i ^ prev_cipher_blk;
15

16 // bug M2: forgotten operand
17 a s s i g n cipher_valid = enable_i;
18 ++a s s i g n cipher_valid = enable_i &&
19 ++ (state == ENCRYPT);
20

21 // States
22 always_ff @(posedge clk, posedge reset) begin
23 i f (reset) begin
24 state <= IDLE;
25 prev_cipher_blk <= ’0;
26 end e l s e begin
27 state <= next_state;
28 // bug M3: wrong register assignment
29 -- prev_cipher_blk <= plaintx_i;
30 ++ prev_cipher_blk <= cipher;
31

32 ciphertx_o <= cipher_valid ? cipher : ’0;
33 ...
34 end
35 end
36

37 // Next state logic
38 always_comb begin
39 next_state = state;
40 case (state)
41 IDLE: begin
42 // bug C1: forgotten conditional
43 ++ if (valid_i) begin
44 next_state = ENCRYPT;
45 ++ end
46 end
47 ENCRYPT:
48 // bug M4: wrong state transition
49 -- next_state = IDLE;
50 ++ next_state = ENCRYPT_FINAL;
51 // bug C2: missing case
52 ++ ENCRYPT_FINAL: begin
53 ++ if (!valid_i) begin
54 ++ next_state = IDLE;
55 ++ end
56 ++ end
57 endcase
58 end
59 ...
60 endmodule

Listing 3: Simplified cipher design with six bugs. Bugs M1-
M4 are mix-ups, corresponding to wrong operand choices,
with different contexts and sensitivities (continuous or clocked
assignment). Bugs C1-C2 are broken conditionals.

Table 4: Number of bug fixes per design and category.

Source Conditionals Mix-ups Total

Ibex [41] 17 14 31
CVA6 [49] 22 11 33
Rocket [2] 8 41 49
BOOM [13] 13 33 46

HACK@DAC19 2 2 4
HACK@DAC21 4 10 14

Total 66 111 177

Results. Table 4 summarizes the results of our survey, con-
firming that all identified observable bugs indeed do fall into
one of the two categories. Of the 177 relevant bugs found in
our survey, 111 (63%) were signal mix-ups, 66 (37%) were
broken conditionals. Appendix A provides some examples
per category and CPU.

Security implications. We further studied whether the bugs
could have security implications by comparing its effects to
those of hardware bugs that have previously been assigned
CVE numbers [10, 12, 26, 42, 48]. In conclusion, all architec-
turally observable bugs could impact security in one way or
another (with different severities), because attackers may de-
liberately create conditions where the bug leads to an attacker-
chosen architectural effect.

5 Transforming Hardware
Given our newfound knowledge of bugs, we proceed to the
design of ENCARSIA. We implement ENCARSIA as a series
of netlist transformation passes in the Yosys Open SYnthesis
Suite [46]. We start by injecting signal mix-ups through swaps
on signal connections (Section 5.1), and then reproduce bro-
ken conditionals by corrupting multiplexer trees (Section 5.2).
For each bug category, we describe the affected hardware
structures in the intermediate representation of Yosys and
how to model the bugs within this representation.

5.1 Signal mix-ups
As discussed in Section 4, signal mix-ups are erroneous uses
of signals, functions, or other entities in assignments or ex-
pressions. We now explain how ENCARSIA injects signal
mix-up transformations in assignments and expressions.

Assignments. In the intermediate representation of Yosys, as-
signments, known as connections, are pairs of wires with their
driver signals. For instance, the Verilog statement assign
sig_a = sig_b; is represented as (sig_a, sig_b). We in-
ject signal mix-ups by replacing driver signals (the right-hand
side of assignments) with other random signals present in the
same RTL module. This resembles replacing a driver with
the logic expression, constant or signal that is assigned to
the new driver and therefore models arbitrary logic bugs. We

illegal_csr_priv

illegal_csr csr_we_intcsr_wreq

Figure 2: Intermediate representation of logical expressions
in Yosys, as derived from Listing 1.

illegal_csr_priv

illegal_csr csr_we_intcsr_wreq
$1
$2 $3

$4
$5 $6

$8
$7

Figure 3: Injecting a signal mix-up into a logical expression
(Figure 2). Intermediate wires are shown in red. After injec-
tion, csr_we_int will be erroneously high if csr_wreq and
illegal_csr are both high.

only replace drivers to avoid introducing statically detectable
bugs such as multi-driven wires. ENCARSIA randomly selects
two such connections and replaces the driver of the first con-
nection with that of the second. When the newly connected
signals differ in width, ENCARSIA truncates the wider signal
to match the width of the narrower one. If the new driver
is a constant smaller than the driven wire, we sign-extend
it. This is consistent with the implicit Verilog behavior for
mismatching signal widths [27].

Logical expressions. Expressions are translated into a series
of logical cells interconnected by signals (Figure 2). Mix-ups
in expression operands therefore correspond to a wrong signal
being connected to a cell port. Each cell keeps its own internal
dictionary that maps ports to the connected signals. To unify
the injection of mix-ups in simple assignments and logic
expressions, we insert an intermediate wire between each cell
port and the signal originally connected to it (Figure 3). This
way, injecting a mix-up at the intermediate wire is equivalent
to injecting a mix-up at the cell port. Intermediate wires are
later cleaned up using a standard optimization pass.

5.2 Broken conditionals
Broken conditionals refer to issues arising from improper
handling of exceptional cases or, e.g., operations allowed only
in a specific privilege mode. Yosys represents conditionals
as multiplexer trees, a hierarchical arrangement of multiplex-
ers where each level progressively narrows down the set of
possible expressions assigned to the signal at the root of the
tree (Figure 4). At each level of the multiplexer tree, the select
signals, derived from the conditions of the assignment, deter-
mine the appropriate branch to follow, ultimately selecting
the correct expression to assign. In this representation, broken
conditionals correspond to a potential branch missing from
the multiplexer tree, or an incorrectly derived select signal that

CSR_DPC

1'b1

~debug_mode_i
illegal_csr

CSR_MSTATUS

1'b0

Figure 4: Intermediate representation of conditional assign-
ments in Yosys, as derived from Listing 2. CSR_DPC and
CSR_MSTATUS are select signals, illegal_csr is the root of
the tree.

1'b1

~debug_mode_i

1'b0

illegal_csr

1'b0

1'b1

1'bX

CSR_DCSR

1'b0

1'b0

1'b1

CSR_MSTATUS

Figure 5: ENCARSIA’s table representation of conditional
assignments. The columns on the left of the arrow represent
select signal combinations, the column on the right contains
the expression that is selected for the multiplexer tree root.

does not match the condition of the assignment. Hence, this
abstraction allows handling complex conditional assignments
with a unified injection approach.

Table representation. ENCARSIA abstracts these multiplexer
trees into a table representation (Figure 5). The table maps
specific select signal combinations to the corresponding ex-
pression chosen in that case. This abstract representation
allows ENCARSIA to inject realistic complex transformations
into conditional assignments by performing simple operations
on the table, such as removing or adding cases, thus avoiding
the need to modify the circuit following each operation.

Table construction. ENCARSIA iterates over all wires in the
circuit to identify multiplexer trees. It marks as multiplexer
roots those wires that are driven by a multiplexer but do not
drive any other multiplexer. These wires correspond to signals
that are conditionally assigned with different expressions.

To construct the table, ENCARSIA performs a depth-first
search of the multiplexer tree, starting at the root. During this
traversal, ENCARSIA records the select signal values required
to follow a given path. Every time ENCARSIA reaches an
input signal that is not itself an output of a multiplexer, it
discovers a new potential expression to be assigned to the
root. Thus, it adds a new row to the table with the discovered
input signal and the recorded select signal values, expanding
the table’s columns as necessary and filling existing rows
with X (i.e., “don’t care” value) for the newly added columns.
This process is repeated for each path in the multiplexer tree,
resulting in a table that contains all possible conditionally
chosen expressions (right most column in Figure 5) with their
specific select signal combinations (left columns in Figure 5).

Table transformations. Transformations of the tables can
represent realistic subtle mistakes that designers make, accord-
ing to our survey. Removing a single row from the table can
model a designer forgetting to consider a special case. Turn-
ing a select signal into an X (known as “don’t care” value) can
model cases where designers place insufficient constraints on
a case. Conversely, turning a “don’t care” select signal into a
specific value can model bugs where constraints are placed
on cases mistakenly. These transformations cover the entirety
of the bugs in conditional logic that we revealed in the survey.

Transformed circuit construction. Once manipulated, the
tables must be translated from their abstract representation
back into standard circuitry. This allows the circuit to be
simulated, instrumented, or otherwise analyzed by fuzzers
(or other testing tools). We achieve this by translating the
table into a Yosys internal pmux cell, which is a many-input
multiplexer that utilizes one-hot encoding (where only one bit
is high per possible select value) [27]. Each row in the table
represents a possible case in the conditional assignment. We
want an entry’s assignment expression to propagate exactly
when the select signal matches the corresponding select values
in the table. Thus, we connect the expression to one of the
inputs of the pmux. The corresponding one-hot select bit is
created by adding an eq cell that compares the select signal
combination from the table to the actual select signal value.
The output of the pmux cell is then connected to the root
wire that was originally driven by the multiplexer tree. The
Yosys backend for translating RTLIL back into Verilog then
translates the pmux cell into a process resembling the original
conditional statement.

6 Verification of Observability

The transformations outlined in Section 5 do not necessarily
introduce observable bugs, as they do not consider the higher-
level semantics of the modified circuitry. Consider a CPU
employing triple modular redundancy to safeguard against
single event upsets. A transformation that corrupts the major-
ity voting mechanism to select the minority value instead of
the majority is undetectable by current CPU fuzzers. This is
because they do not model single event upsets in the simula-
tion, so redundant circuits always produce identical outputs
and reach the correct consensus. Including these transfor-
mations in our evaluation corpus would skew the results by
making fuzzers search for innocuous transformations.

Miter circuits. To address this challenge, we leverage miter
circuits [3], which provide the original and transformed De-
sign Under Test (DUT) with the same inputs at all times, and
monitor for differences in the observable outputs, e.g., the ar-
chitectural registers. Given that the two versions of the DUT
only differ in the transformation performed by ENCARSIA,
any difference in the observable elements proves that this
transformation has an observable effect. This approach allows

1 property propagated;
2 host_observables != reference_observables;
3 endproperty
4 c_propagated: cover property (propagated);
5

6 p_boot: assume property (in_boot_addr_i == 0);
7 p_hart: assume property (in_hart_id_i == 0);

Listing 4: SVAs for proving the observability of injected bugs.

us to define a bug observation in a more formal and precise
manner using SystemVerilog Assertions (SVAs), specifically
as discrepancies in the values of visible elements between the
two DUTs (c_propagated in Listing 4). Formal tools like
JasperGold [8] can effectively explore all possible states and
transitions to find cover traces or disprove the coverability of
such design properties.

Two-step proof approach. Model checking is expensive
in terms of computations and memory. Its performance can
be boosted by providing invariants [11, 17] or partitioning the
problem using assume-guarantee reasoning [15]. Generally,
automatically deriving invariants is hard [17, 47]. However,
when transforming the CPU, ENCARSIA is aware of one key
information: the trigger. For example, in a multiplexer tree
transformation, we know that the transformation can only
affect the design’s output once the modified rows of the cor-
responding table are selected. Hence, to reduce the search
space for the formal verifier, ENCARSIA adopts a two-step
assume-guarantee approach. First, we instruct the SAT solver
to find inputs that satisfy the trigger condition, using a prop-
erty similar to c_propagated but on the mixed-up signal
instead of the architecturally visible signal. Second, if the first
step succeeded, we constrain the SAT solver to preserve the
triggering sequence and instruct it to propagate the discrep-
ancy to a user-defined list of architecturally-visible signals.

Formal setup. To limit the search space and avoid false
positives due to uninitialized states, we constrain the formal
setup to resemble the initialization done by fuzzers. We ini-
tially reset the CPUs and configure several critical control and
status registers to predefined values. For example, we set the
FS field of the mstatus register to 1 to enable floating-point
instructions. We model these configurations with initial value
abstractions and constraints for the first clock cycle to accel-
erate verification. We also seek to prevent the verifier from
using debug or testing features that are typically encapsu-
lated within an SoC and therefore inaccessible to fuzzers. To
this end, we restrict the considered input behavior using SVA
assume statements. For example, we limit Ibex to a single
hardware thread (p_hart in Listing 4).

Formal verification. For verification, we instruct Jasper
to cover the aforementioned c_propagated property, which
proves that the transformation can provoke an architecturally
observable deviation from the original design. On the other
hand, if the property is not covered, the transformation is
deemed ineffective and excluded from the evaluation.

Table 5: Number of transformations (#Transf.) and average
time required for a transformation (Avg. T.).

Design
Mix-ups Conditionals

#Transf. Avg. T. #Transf. Avg. T.

Ibex [41] 1210 213 ms 1111 88 ms
Rocket [2] 931 134 ms 718 65 ms
BOOM [13] 1230 886 ms 982 407 ms

7 Evaluation

We first generate a fuzzer evaluation corpus, EnCorpus and
evaluate ENCARSIA in terms of injection and verification
performance (Section 7.1). Next, we detail our methodology
for evaluating fuzzers with EnCorpus and validate it using an
example fuzzer and target design [41] (Section 7.2). We then
evaluate three open-source hardware fuzzers using EnCorpus
and conclude with an extensive discussion of the insights
gained from this evaluation and concrete recommendations
for future research into hardware fuzzing (Section 8).

Evaluation setting. We evaluate ENCARSIA on a machine
equipped with two AMD EPYC 7H12 processors, each run-
ning at 2.6 GHz (256 logical cores in total) and 1 TB of
DRAM. The injection is implemented as a series of passes
in the Yosys Open SYnthesis Suite [46] (v0.37, commit
a5c7f69e). For verification, we utilized JasperGold [8] (ver-
sion Jasper Apps 2022.09p001, 64-bit) running its four default
engines in parallel across four cores. Time measurements ob-
tained from parallel testing are reported as the aggregate of
the durations recorded by each individual core.

We evaluated DifuzzRTL [26] (commit d2dc9f82), Proces-
sorfuzz [10] (commit de6b7ef5) and Cascade [42] (commit
e916c7e0) with their default parameters. We chose these
three fuzzers as they are among the few open-source fuzzers.
Additionally, they represent different approaches to CPU
fuzzing: DifuzzRTL and ProcessFuzz are guided by distinct
coverage metrics, while Cascade is black-box. They also have
different algorithms for generating instructions sequences. We
intend to uncover the impact of these design decisions.

7.1 EnCorpus
We evaluate ENCARSIA by generating EnCorpus, a unified
corpus of 90 bugs for evaluating hardware fuzzers.

Injection. We measure the performance of ENCARSIA by
injecting bugs into Ibex, Rocket, and BOOM. We injected
approximately 1’000 transformations per design and category
and summarize the results in Table 5. We observe that even for
a complex design like BOOM, ENCARSIA requires on average
less than a second for performing each transformation.

Another important aspect of the injection process is the
diversity of transformations that can be applied to the design.
We have identified in Section 4 that bugs can be modeled by

Table 6: Verification performance of ENCARSIA. We report the number of transformations that we tried to verify (#Transf.), the
verification success rate (Succ. %), and the average time taken to verify a single bug (Avg. T.).

Design
Mix-ups Conditionals

#Transf. Succ. % Avg. T. #Transf. Succ. % Avg. T.

Ibex [41] 116 45 % 211 s 1065 4.5 % 116 s
Rocket [2] 242 44 % 194 s 396 8.1 % 117 s
BOOM [13] 276 24 % 258 s 982 2.3 % 195 s

two types of transformations: signal mix-ups and broken con-
ditionals. We injected 3371 signal mix-ups that impact 2482
signals spread across 121 distinct modules. We injected 2811
broken conditionals that impact 202 multiplexer trees spread
across 37 distinct modules. This underlines the diversity of
locations that can be affected by ENCARSIA.

Verification. We evaluate the verification performance by
measuring both the failure rate and the time required to verify
observability. We run JasperGold for the transformations and
set a timeout of 40 core minutes. The verification is consid-
ered successful if JasperGold successfully covers the property
shown in Listing 4. The non-successful proofs timed out.

Table 6 summarizes the results. The percentage of mix-ups
successfully verified by Jasper lies between 23% and 45% and
decreases with increasing design complexity. The percentage
of verified conditionals is consistently low across the designs,
i.e., between 2.3% and 8.1%. While a larger time-out may
increase this number, we trade-off for overall verification time,
since, as we will see in the following, the verified bugs are
diverse enough to evaluate differences between fuzzers.

7.2 Fuzzer evaluation methodology

We present our fuzzer evaluation methodology on bugs in-
jected by ENCARSIA, followed by a case study on Ibex [41],
only supported by Cascade.

Attribution. A key challenge in evaluating fuzzers is at-
tributing deviations from the expected behaviour to the spe-
cific bugs responsible for them [31]. When a single designs
is affected by multiple bugs without an accurate attribution,
a fuzzer that repeatedly triggers the same bug might appear
more effective than another fuzzer that identifies multiple
distinct bugs within the same design. Although various au-
tomated techniques for crashing input deduplication have
been proposed in software, they have generally proven to be
ineffective [31]. Additionally, no such methods have been
proposed for hardware. As a result, recent studies on hard-
ware fuzzing have relied on manual examination of flagged
traces [10, 26, 30, 42, 48]. To eliminate this labor-intensive
process, we inject one bug per design at a time.

Uninterrupted fuzzing. To provide a measure of difficulty
for a fuzzer to detect a bug, we do not interrupt the fuzzing
campaign once a bug is detected. This allows us to measure

Table 7: Cascade’s bug detection performance on Ibex. The
table shows whether each bug was detected (✓) or not (✗).

Bug 1 2 3 4 5 6 7 8
Mix-ups ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗

Cond. ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Bug 9 10 11 12 13 14 15 Total
Mix-ups ✓ ✓ ✓ ✗ ✓ ✓ ✓ 9/15
Cond. ✓ ✗ ✗ ✗ ✗ ✗ ✗ 1/15

the number of times a bug is detected by a fuzzer, i.e., the
number of fuzzer-provided inputs that trigger the bug.

Eliminating false positives. The underlying designs might
be affected by natural bugs. To avoid imprecisions in the
survey, we filter them out by discarding fuzzing inputs that
signal a bug in both the non-injected and the injected version.
In total, 1% of inputs produced false positives for DifuzzRTL
and were hence filtered out.

Results on Ibex. We first apply our evaluation methodology
on Cascade using 15 (verified) bugs per category injected into
Ibex. Each bug was tested by Cascade for the duration of
24 hours on a single core. The results of the evaluation are
presented in Table 7. Cascade successfully identified 9 out of
the 15 signal mix-ups and 1 out of the 15 broken conditionals.

Some bugs were harder to detect than others. Over 24
hours, the easiest bugs were detected by 99 % of the programs,
while the hardest by only 0.02 % (6 out of 30’239 programs).
This matches the results of the original Cascade evaluation,
where most bugs were found in the first 10 core minutes,
while some required 17 core hours [42]. This corroborates
the representativity of the bugs injected by ENCARSIA. If
Cascade was 10x slower, it could have missed some bugs over
24 hours. Does this imply that higher performance would lead
to detection of even more bugs? In Section 8, we evaluate
factors that affect fuzzers’ bug detection ability.

8 Insights into Hardware Fuzzing

We explore various aspects of hardware fuzzing to understand
the key factors that determine whether a bug will be detected.

Table 8: Bugs detected by DifuzzRTL (DF) and Processor-
Fuzz (PF) with coverage disabled.

Bug
Rocket BOOM

Mix-ups Cond. Mix-ups Cond.

DF PF DF PF DF PF DF PF

1 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

2 ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

3 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

4 ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

5 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

6 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

7 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

8 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

10 ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗

11 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

12 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

13 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

14 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tot. 5 5 5 5 9 9 6 6

8.1 Granularity of differential fuzzing

Differential fuzzers such as DifuzzRTL [26], Processor-
Fuzz [10], TheHuzz [30] and HyPFuzz [14] adopt various
policies to detect divergences between the design under test
and a golden model. We do not have access to TheHuzz and
HyPFuzz, and the authors did not respond to our questions.
We are therefore constrained to exclude these two fuzzers
from our evaluation. DifuzzRTL and ProcessorFuzz are built
on a similar instruction generation infrastructure and thus al-
low for a fair comparison. DifuzzRTL places a read function
at the end of each program that reads the register file, CSRs
and some other architecturally visible elements to be used for
the comparison. ProcessorFuzz continuously logs the values
of several manually defined internal signals, with the intuition
that a bug symptom might later be shadowed. We evaluate
detection granularity on Rocket and BOOM, which are the
only designs supported by both fuzzers. We will evaluate the
fuzzers on 15 bugs per category on each design, for 24 hours
each, on a single core.

Results. We evaluate DifuzzRTL and ProcessorFuzz on the
aforementioned corpus of bugs with coverage initially dis-
abled to prevent any coverage-induced bias. Table 8 summa-
rizes the results of the evaluation and shows that both fuzzers
found exactly the same set of bugs (5/15 mix-ups, 5/15 condi-
tionals). This leads us to the first insight of this evaluation:

Insight 1. Instruction-granular bug detection mechanisms
do not demonstrate greater potential for detecting bugs.

Table 9: Bugs detected by DifuzzRTL (DF) and Processor-
Fuzz (PF) with coverage enabled.

Bug
Rocket BOOM

Mix-ups Cond. Mix-ups Cond.

DF PF DF PF DF PF DF PF

1 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

2 ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

3 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

4 ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

5 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

6 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

7 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

8 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

10 ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗

11 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

12 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

13 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

14 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tot. 5 5 5 5 9 9 6 6

8.2 Coverage metrics
Recently, several papers proposed using hardware-specific
coverage metrics to guide fuzzers towards uncovering new
bugs. The generic hardware fuzzer RFUZZ [32] observes mul-
tiplexer select coverage to guide the fuzzer to explore new
paths through the design. DifuzzRTL [26] found that multi-
plexer select coverage is flawed because multiplexers are not
clock sensitive, resulting in the capture of irrelevant interme-
diate signals. Hence, DifuzzRTL relies on control register cov-
erage, which tracks the states of clocked registers driving the
select signals. ProcessorFuzz [10] suggests that much of these
registers are datapath-related and that the state of the CPU is
better captured by monitoring CPU specific control and status
registers (CSRs). The other family of coverage-guided CPU
fuzzers [14, 30], which are not open-source, relies on a sum
of simulator-provided coverage metrics. In this experiment,
we evaluate whether the two state-of-the-art coverage metrics
introduced by DifuzzRTL and ProcessorFuzz effectively help
fuzzers discover new bugs.

Results. We evaluate DifuzzRTL and ProcessorFuzz on the
same set of bugs, this time with coverage enabled. We do not
evaluate RFUZZ, which is by construction not able to detect
bugs [32]. Table 9 shows that both fuzzers performed equally
well, detecting exactly the same set of bugs as when coverage
is disabled (Table 8). This leads us to the second insight:

Insight 2. The hardware-specific structural coverage met-
rics, advertised as central by many fuzzers, are of little help
in detecting bugs.

Table 10: Bugs detected by DifuzzRTL (DF) with coverage
enabled and Cascade (CA). The fuzzers identify different
bugs, indicating that seed programs influence RTL bug detec-
tion.

Bug
Rocket BOOM

Mix-ups Cond. Mix-ups Cond.

DF CA DF CA DF CA DF CA

1 ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

2 ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

4 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗

5 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

6 ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗

7 ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

8 ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

9 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

10 ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗

11 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

12 ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓

13 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

14 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Tot. 5 7 5 4 9 10 6 5

8.3 Importance of the seeds

DifuzzRTL and ProcessorFuzz adopt different coverage feed-
back mechanisms, but they rely on the same seed pro-
grams [10]. On the other hand, Cascade is a fuzzer that builds
programs explicitly from the bottom up and claims to generate
valid complex programs [42]. Hence, Cascade can be seen as
a seed generator, with seeds distinct from those of DifuzzRTL
and ProcessorFuzz. In this experiment, we evaluate whether
differences in seed programs affect bug detection ability.

Results. We compare Cascade and DifuzzRTL on the pre-
vious set of bugs. Results, summarized in Table 10, show
that different seed programs result in the discovery of differ-
ent bugs per design, as opposed to the feedback mechanism,
which corroborates our finding from Section 8.2. While both
fuzzers exhibit comparable performance on Rocket (Cascade:
11/30, DifuzzRTL: 10/30) and BOOM (Cascade: 15/30, Di-
fuzzRTL: 15/30), there is a notable difference in the bugs that
they detect. Cascade detects 6 bugs that DifuzzRTL does not,
while DifuzzRTL detects 5 bugs that Cascade does not.

Insight 3. The fuzzer seeds are a key factor that determines
which bugs will eventually be detected.

Figure 6 summarizes the time to bug detection for the bugs
that were detected by all fuzzers. On these bugs, Cascade,
which operates in a black-box manner, is at least one order of
magnitude faster than DifuzzzRTL and ProcessorFuzz when

DifuzzRTL

Rocket DifuzzRTL

BOOM ProcessorFuzz

Rocket ProcessorFuzz

BOOM Cascade

Rocket Cascade
BOOM

0

2

4

Fir
st

 d
et

ec
tio

n
(h

)

Figure 6: Time to bug detection for bugs that were detected
by all fuzzers. The horizontal bars indicate the average.

it comes to detecting the same bugs. This corroborates that
not only structural coverage does not appear to help finding
bugs, but also that coverage feedback strategies tend to slow
down bug discovery. Given that fuzzing campaigns are usually
time-bounded, this can ultimately lead to missed bugs.

Insight 4. Fuzzing that relies on state-of-the-art structural
coverage feedback is slower at finding the same bugs as
black-box fuzzing.

8.4 Case studies
We closely examine a selection of the injected bugs to gain
further insights into hardware fuzzing.

BOOM mix-up 9. In the CVA6 PR #27, the multiplier was
not flushed due to missing handshake signals. Similarly, the
signal mix-up 9 injected by ENCARSIA into BOOM affects
the multiplier handshake signals, causing it to drop multipli-
cation requests. This bug only requires the fuzzer to issue a
multiplication instruction to trigger, hence is relatively eas-
ily detectable. Nevertheless, DifuzzRTL fails to detect this
bug due to an error that prevents it from using instructions in
the RISC-V M extension when testing CPUs implementing
the RISC-V G subset (extensions I, M, A, F, and D). While
fuzzers detect many bugs in the components that they test,
most of the undetected bugs reside in components completely
untested by the fuzzers, like e.g. in the handling of compressed
instructions (like Ibex PR #48).

Insight 5. Fuzzers often do not test the entire ISA.

BOOM mix-up 3. This mix-up introduced a bug that only
gets triggered when the result of a floating-point division
equals zero. Cascade does not detect it because it excludes
f.div/f.sqrt instructions for some designs to filter out known
unfixed natural bugs to avoid re-detections. While such filter-
ing is desirable to continue the fuzzing campaign until the bug
has been fixed by the designers, it highlights that the filtering
must be more targeted towards the specific bug, rather than
excluding an instruction type [12]. A natural example that
might be filtered out is Rocket PR #574. While DifuzzRTL
and ProcessorFuzz test these instructions, they do not seem
to provide sufficiently interesting input values.

ProcessorFuzz introduces an instruction-granular bug de-
tection mechanism over DifuzzRTL. It then builds known
bug filtering on top of this new mechanism, ignoring bugs
previously recognized in the design. However, this system is
exclusively integrated within the new detection mechanism.
Since the original detection mechanism remains active and
unmodified by the authors, it is possible for a bug to be identi-
fied by the new system, categorized as a known bug, and then
rediscovered by the old system, resulting in a false positive.
These false positives often terminate test executions early and
therefore might mask new bugs.

Insight 6. Current filtering mechanisms for known bugs
broadly exclude test scenarios, hindering the discovery of
further bugs.

Rocket conditional 7. The CSRRS instruction in RISC-V
reads a CSR, performs a bitwise OR operation with the value
stored in the source register, and writes the result back to the
CSR. However, it includes a special case where, if the source
register is the zero register, the instruction should avoid any
side effects of writing to the CSR. Broken conditional 7 in
Rocket removes this special case for the FCSR register (like
Ibex PR #53). While Cascade does access FCSR, it only does
so via the CSRRW instruction, which includes no such special
case. As a result, Cascade fails to detect this bug.

Insight 7. Values seemingly coming from the same source
according to the ISA can be produced by different compo-
nents. Fuzzers often fail to cover these various cases.

BOOM mix-up 13. Signal mix-up 13 injected by ENCARSIA
into BOOM affects issue scheduling logic. However, due to
this injected bug, if an issue queue is full and the youngest
instruction is a variable-latency instruction, then a following
instruction dependent on the result of the variable-latency
instruction might be scheduled before it. Therefore, following
instructions read stale values. Similarly, conditional 3 only
gets triggered by sequences of independent floating-point
instructions that fill up a specific buffer. None of the three
fuzzers under study detected these bugs. PR #289 and #295 in
BOOM fixed bugs that only appeared when the reorder buffer
was full. This highlights the importance of testing all possible
microarchitectural paths through the design.

Insight 8. Fuzzers struggle to detect subtle bugs that arise
from corner cases in microarchitectural structures.

Interestingly, this case study also exposes strong similari-
ties between ENCARSIA-injected bugs and natural bugs.

8.5 Recommendations for fuzzing
Our findings demonstrate the need for more principled ap-
proaches in the development of hardware fuzzers. We provide

guidelines to help shape future hardware fuzzers.

Structural coverage: Coverage-guided fuzzers must rig-
orously evaluate the benefits of the underlying coverage
metric in discovering bugs.

Most coverage-guided fuzzer proposals do not evaluate
the effectiveness of their coverage metric in detecting new
bugs [14, 30, 48]. This impedes distinguishing the effective-
ness of the coverage metric from the seeds and instruction
generation scheme, which we have shown to be a key compo-
nent. ENCARSIA will provide a valuable tool for evaluating
this effectiveness by correlating the use of the feedback from
a given coverage metric with the actual bugs found.

ISA-based functional coverage: Fuzzers must maximize
ISA-based functional coverage.

In Section 8.3, we have shown that the quality of the seed
programs is a key factor in the effectiveness of a fuzzer. In Sec-
tion 8.4, we have shown that bugs are often missed because
the fuzzer does not test the corresponding design functional-
ity. Hence, maximizing ISA-based functional coverage [27]
of the seed programs to test all instruction variations with
various input values is a crucial prerequisite for effective
fuzzing. If fuzzers filter for known bugs, they need to restrict
the filtering to specific scenarios only, rather than excluding
instructions, as this might mask unknown bugs. Unfortunately,
many fuzzers [10, 26, 30, 32] put a strong emphasis on purely
structural coverage feedback to the detriment of taking the
functional coverage into account.

Microarchitectural coverage: Fuzzers might consider
feedback from microarchitectural components.

In Section 8.4, we have shown that bugs can arise from
corner cases in some microarchitectural structures. The ex-
isting coverage-guided fuzzers consider low-level structural
coverage, often related to multiplexer signals [26, 32, 48] or
toggle coverage [14, 30]. There is no evidence that coverage
feedback from such low-level metrics will translate into cov-
ering these interesting microarchitectural corner cases. One
natural way to improve bug detection might be to consider
functional coverage feedback from microarchitectural com-
ponents, such as the issue queue, the reorder buffer, or the
branch predictor, to guide the fuzzer towards corresponding
corner cases. Hence, an interesting future work direction is
to define a generic coverage metric that takes these common
microarchitectural components into account.

Black-box microarchitectural coverage model: Synthetic
bugs can aid in developing generic functional coverage
models of microarchitectural elements.

Black-box CPU fuzzing is on the rise because some CPUs
are closed-source [23, 36, 37, 44] and for performance rea-
sons [42]. Black-box fuzzers cannot benefit from direct feed-
back from microarchitectural components. However, they can
use black-box functional coverage models [36] described as
traces that are expected to exercise CPU internal corner cases.
We envision that a large-scale learning campaign based on
ENCARSIA-injected bugs and their verification traces could
generate a black-box functional microarchitectural coverage
model that could guide black-box fuzzers.

Breadth: Combining multiple state-of-the-art fuzzers leads
to a broader range of tested inputs.

While Cascade claims to be superior to DifuzzRTL in terms
of coverage and new bugs found, ENCARSIA clearly shows
that DifuzzRTL can find bugs that Cascade cannot. A sim-
ple, considerable improvement is to build a mixed fuzzer that
spends 50% of its time running Cascade and 50% running
DifuzzRTL. This mixed fuzzer indeed finds 21/30 bugs of
the study, 6 more than Cascade and 5 more than DifuzzRTL.
Importantly, traditional evaluations in terms of coverage and
new bugs found would not have revealed this, and Cascade, re-
leased after DifuzzRTL would appear to be objectively better
than the mixed fuzzer, while in practice, it can find fewer bugs.
One practical inconvenience of a mixed fuzzer is that it re-
quires the instrumentations and probing mechanisms of both
fuzzers, which is mostly an engineering challenge, but which
also conditions the practical adoption of the fuzzer. Since Cas-
cade boasts a low-effort adoption without any instrumentation
and a bug discovery based on non-termination, which is easy
to implement in practice, a more practical approach might be
to extend Cascade to generate broader programs.

9 Discussion

We discuss innocuous transformations, compatibility with
fuzzers that rely on HDL source code, specialization of our
verification framework, and automatic generation of addi-
tional bug-injecting transformations.

Correctness-preserving transformations. ENCARSIA lever-
ages formal methods to ensure that the transformations cause
architecturally observable deviations. Yet not all observable
transformations violate the specification, i.e., the ISA. For in-
stance, a transformation that unconditionally adds one clock
cycle of latency to all instructions is architecturally observ-
able but does not violate the RISC-V specification, provided
it does not violate the timing requirements of the memory
hierarchy or other critical components. When manually ana-
lyzing many bugs generated by ENCARSIA in Section 7, we
observed no such occurrence in practice. If such a case would
occur, its impact would be limited to a slight reduction in
the apparent performance of the fuzzers, and would affect all

fuzzers uniformly. We encourage further work that would rule
out such correctness-preserving transformations completely.
Changes at language level. To transform the design, EN-
CARSIA operates on the Yosys intermediate representation.
This process vastly transforms the syntax of the source code,
for example, by converting complex constructs into simpler
ones. This means that potential fuzzing techniques that rely
on the source code for input generation or coverage measure-
ment might be affected by the transformation. Since Yosys
does not yet support all SystemVerilog features, assertions
are not preserved in the generated code, which might affect
assertion-guided fuzzers.
Specialization. ENCARSIA relies on formal verification to
ensure that the injected bugs are architecturally observable. In
fact, the verification framework can be expanded to include
additional properties. For example, it can ensure triggerability
within a specific privilege level or other special configurations
with tolerated deviations from the base specification [44].
ENCARSIA can also focus on injecting bugs into a given
specific HDL module or set of modules. This permits the
evaluation of fuzzers on more specific functionalities of the
design. This is particularly useful for specialized fuzzers and
for evaluating blind spots of a given fuzzer.
Automatically Derived Transformations. Deriving our bug
injection transformations required considerable effort, includ-
ing manual analysis of numerous pull requests. This raises
the question of whether such transformations can be derived
automatically and what their potential applications might be.
Since our current transformations are highly generic and al-
ready cover all bugs identified in our survey, any additional
transformations would essentially be subsets of these. How-
ever, focusing on specific bug types or scenarios could enable
more detailed analysis that may not be possible with gen-
eral transformations, making it a valuable direction for future
research.

10 Related Work

We first discuss contemporary hardware fuzzer evaluations
based on coverage and natural bugs. We then discuss manual
bug insertions, bug surveys and software bug injection.
Fuzzer evalution via coverage. Coverage is typically in-
volved in fuzzer evaluations. RFUZZ [32] compares with
random testing by measuring multiplexer select coverage. Di-
fuzzRTL [26] measured its own coverage when turning on
or off coverage feedback. Some fuzzers compare with other
fuzzers on a new coverage metric [14, 30], or compare with
other fuzzers on their original coverage metrics [10, 42, 48].
No work has ever shown any correlation between coverage
and bug discovery abilities in hardware fuzzing.
Fuzzer evaluation via natural bug discovery. Natural bugs
are often used to evaluate hardware fuzzers [10, 26, 30, 42,
48]. While intuitive, this approach for comparison has several

drawbacks. First, natural bugs are increasingly harder to find
as designs mature. Second, fuzzers are rarely evaluated on
natural bugs found by older fuzzers. Finally, the lack of ground
truth makes it impossible to derive fundamental performance
metrics such as miss rates. ENCARSIA provides a systematic
alternative for more fairly comparing hardware fuzzers.

Manually Assembled Corpora. Manually inserted bugs are
occasionally involved in fuzzer evaluations. DifuzzRTL [26]
uses one synthetic RTL module with one manually inserted
bug for comparison with RFUZZ. The inserted bug is tailored
to DifuzzRTL’s coverage metric and might not be realistic.

Manually inserting realistic bugs into real-world designs is
complex and demands a deep understanding of the design and
the nature of bugs themselves. The HACK@EVENT compe-
tition series [16] is a rigorous attempt to create a manually
compiled corpus of bugs. Its reliance on industry partners
has led to a lack of transparency and reluctance to release the
bugs to the public [40]. Of the ten competitions held over the
past five years, the corpus has only been released for three.
Additionally, among the 170 bugs released as part of these
three corpora, only 28 included detailed descriptions or fixes.
26 bugs from the 2021 corpus closely resemble or are iden-
tical to those from the 2019 corpus. The HACK@EVENT
competition has struggled to meet the demand for new bugs
and has continued using the same CPU, CVA6, for years.

Survey of hardware bugs. A few past studies have focused
on the analysis of real-world bugs, but on different aspects.
RemembERR [43] is a database that classifies around 2’500
errata from recent x86 CPUs, The black-box nature of the
entries classified in this database, however, hampers the un-
derstanding of structural properties of the bugs. Ma et al. [35]
performed a review of 68 bugs in reconfigurable designs and
produce tools to help developers simulate and deploy recon-
figurable designs as well as a manually-created testbed of 20
well-documented bugs specific to FPGA designs [34].

Bug injection in software. Previous research has examined
software bug injection. LAVA [18] proposed to cause segmen-
tation faults if user-provided data matches specific arbitrary
key values. The realism of these bugs has been many times
questioned [7, 21, 31], and LAVA leaves artifacts that can be
detected by white-box fuzzers [7]. Apocalypse [39] replaces
LAVA’s key equality condition with finite state machines to
implement conditions under which a bug is triggered. Sem-
Seed [38] uses machine learning to train on a corpus of real-
world bugs and uses this model to adapt the learned patterns
to the local context of the target program. FixReverter [50]
derives a formal grammar from the real-world bugs and uses
this grammar to generate new bugs. None of these approaches
is directly applicable to hardware fuzzing, as software and
hardware bugs are fundamentally different. ENCARSIA is the
first systematic approach for injecting bugs into hardware.

11 Conclusion

We presented ENCARSIA, the first framework that automat-
ically injects realistic bugs into RTL designs to support the
evaluation of fuzzers. Based on ENCARSIA, we provide En-
Corpus, a unified evaluation corpus made of 90 synthetic bugs
verified to have an architecturally visible effect. To design
ENCARSIA, we first conducted a comprehensive survey of
bugs fixed in four popular open-source RISC-V CPUs of vari-
ous complexities and design paradigms and found that these
bugs can be modeled by wire connection mix-ups and errors
in conditional statements. ENCARSIA leverages the Yosys
intermediate representation to automatically inject transfor-
mations that reflect these representative bugs and employs
formal verification to check whether these injected bugs are
architecturally visible. We evaluate ENCARSIA using three
RISC-V CPUs and three state-of-the-art CPU fuzzers. Based
on this evaluation, we provide insights into the shortcomings
of current fuzzers and suggest future directions for hardware
fuzzer development, particularly regarding structural and func-
tional coverage, and breadth of the input space.

Acknowledgements

We thank the anonymous reviewers for their valuable feed-
back. This work was supported in part by the Swiss State
Secretariat for Education, Research and Innovation under con-
tract number MB22.00057 (ERC-StG PROMISE).

12 Ethics Considerations

In conducting this research, we took several ethical precau-
tions to ensure that our work did not pose any risks to real-
world systems, individuals, or intellectual property. The fol-
lowing sections detail our approach to injected bugs, potential
misuse, data collection, and intellectual property compliance.

Injected bugs. In this paper, we intentionally inject bugs
into RISC-V CPUs to assess the effectiveness of different
bug detection techniques. These bugs are introduced solely
in local instances of the devices and do not affect any public
implementations of the CPUs. Consequently, our research
does not create any security vulnerabilities in real-world sys-
tems, whether active or otherwise, and therefore, no disclosure
process is required.

Risks of misuse. Risks of Misuse: While ENCARSIA could
potentially be exploited to introduce bugs into proprietary
hardware designs, such misuse would necessitate specific
access to the design files. Given the requirement for this level
of access, we assess the likelihood of direct misuse of our
work to be low.

Data collection. The research did not involve any human
subjects No personal data was processed or analyzed. All

data collected as part of this study was sourced from public
GitHub repositories.

Intellectual property. All tools used in this study, both open-
source and commercial, were used in full compliance with
their respective licenses.

13 Open Science

We make the artifacts of our study publicly avail-
able to the research community via https://github.
com/comsec-group/encarsia and https://doi.org/10.
5281/zenodo.14664723.

13.1 Artifact contents
These artifacts are mainly made of the following components:

• The detailed results of our RISC-V CPU survey.

• The source code of ENCARSIA, our custom-developed
bug injection and verification tool.

• Two versions of ENCARSIA’s verification setup: one
based on proprietary JasperGold (to the extent of what
our license agreements allow to share) and another based
on the open-source Yosys.

• The EnCorpus set of CPU bugs.

• Reproducible evaluations of DifuzzRTL, Processorfuzz,
and Cascade against the bug set.

13.2 Reproducibility
To facilitate reproducibility of our study, we release the com-
plete evaluation setup as a Docker container. The container
contains all scripts and configurations necessary to replicate
our experiments. Specifically, it contains the Python script
used to execute all tools within ENCARSIA in the correct
sequence to generate a set of verified bugs. It then runs multi-
ple instances of selected fuzzers in parallel to evaluate them
across these bugs, significantly reducing the wallclock dura-
tion of the evaluation. The container also includes the setup
details for operating all three fuzzers (DifuzzRTL, Processor-
fuzz, Cascade) on each core (Ibex, Rocket, BOOM), cover-
ing everything from the device source code with fixed bugs
and the surrounding System-on-Chip to the fuzzer and core
configurations. We believe that these artifacts enables other
researchers to verify, reproduce, and extend our study.

13.3 Usability in future research
To let other researchers use our artifacts and better evaluate
further bug detection research, we provide detailed guidelines
on how to inject CPU bugs into arbitrary RISC-V CPUs.

References

[1] CHIPS Alliance. Rocket Chip Generator. https:
//github.com/chipsalliance/rocket-chip. Ac-
cessed: 2024-08-30.

[2] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach,
Scott Beamer, David Biancolin, Christopher Celio,
Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, et al. The rocket chip generator. Tech. Rep.
UCB/EECS-2016-17, 2016.

[3] Armin Biere, Matti Järvisalo, Marijn JH Heule, and Nor-
bert Manthey. Equivalence checking of hwmcc 2012
circuits. In Proceedings of SAT Competition, 2013.

[4] RISC-V BOOM. The Berkeley Out-of-Order RISC-
V Processor. https://github.com/riscv-boom/
riscv-boom. Accessed: 2024-08-30.

[5] Niklas Bruns, Vladimir Herdt, Daniel Große, and Rolf
Drechsler. Efficient cross-level processor verification
using coverage-guided fuzzing. In VLSI, 2022.

[6] Niklas Bruns, Vladimir Herdt, Eyck Jentzsch, and Rolf
Drechsler. Cross-level processor verification via endless
randomized instruction stream generation with coverage-
guided aging. In IEEE DATE, 2022.

[7] Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt,
William Robertson, and Tim Leek. Evaluating synthetic
bugs. In ACM ASIACCS, 2021.

[8] Cadence. Jasper RTL Apps. https:
//www.cadence.com/en_US/home/tools/
system-design-and-verification/
formal-and-static-verification/
jasper-verification-platform.html. Accessed:
2024-08-08.

[9] Sadullah Canakci, Leila Delshadtehrani, Furkan Eris,
Michael Bedford Taylor, Manuel Egele, and Ajay Joshi.
Directfuzz: Automated test generation for rtl designs
using directed graybox fuzzing. In ACM/IEEE DAC,
2021.

[10] Sadullah Canakci, Chathura Rajapaksha, Leila
Delshadtehrani, Anoop Nataraja, Michael Bedford
Taylor, Manuel Egele, and Ajay Joshi. Processorfuzz:
Processor fuzzing with control and status registers
guidance. In HOST, 2023.

[11] Katharina Ceesay-Seitz, Sarath Kundumattathil Mo-
hanan, Hamza Boukabache, and Daniel Perrin. Formal
property verification of the digital section of an ultra-low
current digitizer asic. In accellera DVCON EUROPE,
2021.

https://github.com/comsec-group/encarsia
https://github.com/comsec-group/encarsia
https://doi.org/10.5281/zenodo.14664723
https://doi.org/10.5281/zenodo.14664723
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html

[12] Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi.
µcfi: Formal verification of microarchitectural control-
flow integrity. In ACM CCS, 2024.

[13] Christopher Celio, David A Patterson, and Krste
Asanovic. The berkeley out-of-order machine (boom):
An industry-competitive, synthesizable, parameterized
risc-v processor. Tech. Rep. UCB/EECS-2015-167,
2015.

[14] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming
Andersen, Aakash Tyagi, Ahmad-Reza Sadeghi, and
Jeyavijayan Rajendran. Hypfuzz: Formal-assisted pro-
cessor fuzzing. In USENIX Security, 2023.

[15] Edmund M. Clarke, Thomas A. Henzinger, and Hel-
mut Veith. Handbook of Model Checking. Springer
International Publishing, 2018.

[16] Ghada Dessouky, David Gens, Patrick Haney, Garrett
Persyn, Arun Kanuparthi, Hareesh Khattri, Jason M.
Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran.
HardFails: Insights into Software-Exploitable hardware
bugs. In USENIX Security, 2019.

[17] Sushant Dinesh, Madhusudan Parthasarathy, and
Christopher W Fletcher. ConjunCT: Learning inductive
invariants to prove unbounded instruction safety against
microarchitectural timing attacks. In IEEE S&P, 2024.

[18] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim
Leek, Andrea Mambretti, Wil Robertson, Frederick Ul-
rich, and Ryan Whelan. Lava: Large-scale automated
vulnerability addition. In IEEE S&P, 2016.

[19] GitHub. GitHub REST API documentation.
https://docs.github.com/en/rest?apiVersion=
2022-11-28. Accessed: 2024-08-18.

[20] OpenHW Group. CVA6 RISC-V CPU. https://
github.com/openhwgroup/cva6/. Accessed: 2024-
08-30.

[21] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A ground-truth fuzzing benchmark. In PO-
MACS, 2020.

[22] Vladimir Herdt, Daniel Große, Eyck Jentzsch, and Rolf
Drechsler. Efficient cross-level testing for processor
verification: A risc-v case-study. In FDL, 2020.

[23] Jana Hofmann, Emanuele Vannacci, Cédric Fournet,
Boris Köpf, and Oleksii Oleksenko. Speculation at
fault: Modeling and testing microarchitectural leakage
of {CPU} exceptions. In USENIX Security, 2023.

[24] Muhammad Monir Hossain, Nusrat Farzana Dipu,
Kimia Zamiri Azar, Fahim Rahman, Farimah Farah-
mandi, and Mark Tehranipoor. Taintfuzzer: Soc security

verification using taint inference-enabled fuzzing. In
IEEE/ACM ICCAD, 2023.

[25] Muhammad Monir Hossain, Arash Vafaei, Kimia Zamiri
Azar, Fahim Rahman, Farimah Farahmandi, and Mark
Tehranipoor. Socfuzzer: Soc vulnerability detection
using cost function enabled fuzz testing. In IEEE DATE,
2023.

[26] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek,
Jangwoo Kim, and Byoungyoung Lee. Difuzzrtl: Dif-
ferential fuzz testing to find cpu bugs. In IEEE S&P,
2021.

[27] IEEE. IEEE Standard for SystemVerilog–Unified Hard-
ware Design, Specification, and Verification Language.
IEEE Std 1800-2023 (Revision of IEEE Std 1800-2017),
2024.

[28] Laura Inozemtseva and Reid Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
ACM/IEEE ICSE, 2014.

[29] Nursultan Kabylkas, Tommy Thorn, Shreesha Srinath,
Polychronis Xekalakis, and Jose Renau. Effective
processor verification with logic fuzzer enhanced co-
simulation. In IEEE/ACM MICRO, 2021.

[30] Rahul Kande, Addison Crump, Garrett Persyn, Patrick
Jauernig, Ahmad-Reza Sadeghi, Aakash Tyagi, and
Jeyavijayan Rajendran. TheHuzz: Instruction fuzzing
of processors using Golden-Reference models for find-
ing Software-Exploitable vulnerabilities. In USENIX
Security, 2022.

[31] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In ACM
CCS, 2018.

[32] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan
Bachrach, and Koushik Sen. Rfuzz: Coverage-directed
fuzz testing of rtl on fpgas. In IEEE/ACM ICCAD, 2018.

[33] lowRISC. Ibex RISC-V Core. https://github.com/
lowRISC/ibex. Accessed: 2024-08-30.

[34] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang
Zhang, Andrew Quinn, and Baris Kasikci. Reproducible
Hardware Bugs. https://github.com/efeslab/
hardware-bugbase. Accessed: 2024-09-02.

[35] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang
Zhang, Andrew Quinn, and Baris Kasikci. Debugging
in the brave new world of reconfigurable hardware. In
ASPLOS, 2022.

[36] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and
Mark Silberstein. Revizor: Testing black-box cpus
against speculation contracts. In ASPLOS, 2022.

https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://github.com/openhwgroup/cva6/
https://github.com/openhwgroup/cva6/
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://github.com/efeslab/hardware-bugbase
https://github.com/efeslab/hardware-bugbase

[37] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and
Mark Silberstein. Hide and seek with spectres: Efficient
discovery of speculative information leaks with random
testing. In IEEE S&P, 2023.

[38] Jibesh Patra and Michael Pradel. Semantic bug seeding:
a learning-based approach for creating realistic bugs. In
ACM ESEC/FSE, 2021.

[39] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt,
and Yu Hu. Bug synthesis: Challenging bug-finding
tools with deep faults. In ACM ESEC/FSE, 2018.

[40] Ahmad-Reza Sadeghi, Jeyavijayan Rajendran, and
Rahul Kande. Organizing the world’s largest hard-
ware security competition: challenges, opportunities,
and lessons learned. In GLSVLSI, 2021.

[41] Pasquale Davide Schiavone, Francesco Conti, Davide
Rossi, Michael Gautschi, Antonio Pullini, Eric Flamand,
and Luca Benini. Slow and steady wins the race? a
comparison of ultra-low-power risc-v cores for internet-
of-things applications. In PATMOS, 2017.

[42] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi.
Cascade: Cpu fuzzing via intricate program generation.
In USENIX Security, 2024.

[43] Flavien Solt, Patrick Jattke, and Kaveh Razavi. Re-
memberr: Leveraging microprocessor errata for design
testing and validation. In IEEE/ACM MICRO, 2022.

[44] Fabian Thomas, Lorenz Hetterich, Ruiyi Zhang,
Daniel Weber, Lukas Gerlach, and Michael Schwarz.
RISCVuzz: Discovering Architectural CPU Vulnera-
bilities via Differential Hardware Fuzzing. https://
ghostwriteattack.com/riscvuzz.pdf. Accessed:
2024-09-02.

[45] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky,
Garret Kelly, Dominic Rizzo, and Matthew Hicks.
Fuzzing hardware like software. In USENIX Security,
2022.

[46] Clifford Wolf, Johann Glaser, and Johannes Kepler.
Yosys-a free verilog synthesis suite. In Austrochip, 2013.

[47] Jiahui Xu and Lana Josipović. Automatic inductive
invariant generation for scalable dataflow circuit verifi-
cation. In IEEE/ACM ICCAD, 2023.

[48] Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin
Zhou, and Cong Wang. MorFuzz: Fuzzing processor via
runtime instruction morphing enhanced synchronizable
co-simulation. In USENIX Security, 2023.

[49] Florian Zaruba and Luca Benini. The cost of application-
class processing: Energy and performance analysis of

a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi
technology. In VLSI, 2019.

[50] Zenong Zhang, Zach Patterson, Michael Hicks, and
Shiyi Wei. {FIXREVERTER}: A realistic bug injection
methodology for benchmarking fuzz testing. In USENIX
Security, 2022.

A Survey Overview

In this Appendix, Table 11 provides an overview of the latest
two analyzed PRs per CPU and per category. We provide the
detailed survey results as part of the Artifacts of this paper.

Table 11: The latest two analyzed PRs per CPU and category.
(M = Mix-up, C = Broken Conditional)

Design PR# Bug Description Type

Ibex

343 Wrong physical memory M
protection address matching

332 Interrupt handler returned M
to misaligned address

277 Missing access checks on debug CSRs C
272 DRET (debug return) executes C

outside debug mode

CVA6

206 Mixed up array index between M
instruction and data cache

191 Race condition in M
data cache miss handler

191 Race condition in C
data cache miss handler

189 Wrong calculations due to floating C
point wrapper state machine

Rocket

592 Wrong signal order M
on bus protocol conversion

589 Wrong address and M
data generated on bus

574 Values changed when registers C
spilled to memory and read back

440 Wrong data cache probe C
acknowledgement data

BOOM

451 A mathematical util function M
performed a wrong computation

437 Illegal instruction M
dispatched into the LSU

448 Wrong address used for C
data cache releases

405 Tag update hazard for cache refills C

https://ghostwriteattack.com/riscvuzz.pdf
https://ghostwriteattack.com/riscvuzz.pdf

	Introduction
	Background
	Hardware representations
	Hardware fuzzing
	Manual bug insertion

	Overview of Challenges
	Understanding the Causes of Bugs
	Collecting natural and synthetic bugs
	Open-source designs

	Bug classification
	Classification

	Transforming Hardware
	Signal mix-ups
	Broken conditionals

	Verification of Observability
	Evaluation
	EnCorpus
	Fuzzer evaluation methodology

	Insights into Hardware Fuzzing
	Granularity of differential fuzzing
	Coverage metrics
	Importance of the seeds
	Case studies
	Recommendations for fuzzing

	Discussion
	Related Work
	Conclusion
	Ethics Considerations
	Open Science
	Artifact contents
	Reproducibility
	Usability in future research

	Survey Overview

