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Abstract
Speech synthesis technology has brought great convenience,
while the widespread usage of realistic deepfake audio has
triggered hazards. Malicious adversaries may unauthorizedly
collect victims’ speeches and clone a similar voice for ille-
gal exploitation (e.g., telecom fraud). However, the existing
defense methods cannot effectively prevent deepfake exploita-
tion and are vulnerable to robust training techniques. There-
fore, a more effective and robust data protection method is
urgently needed. In response, we propose a defensive frame-
work, SafeSpeech, which protects the users’ audio before up-
loading by embedding imperceptible perturbations on original
speeches to prevent high-quality synthetic speech. In Safe-
Speech, we devise a robust and universal proactive protection
technique, Speech PErturbative Concealment (SPEC), that
leverages a surrogate model to generate universally applicable
perturbation for generative synthetic models. Moreover, we
optimize the human perception of embedded perturbation in
terms of time and frequency domains. To evaluate our method
comprehensively, we conduct extensive experiments across
advanced models and datasets, both subjectively and objec-
tively. Our experimental results demonstrate that SafeSpeech
achieves state-of-the-art (SOTA) voice protection effective-
ness and transferability and is highly robust against advanced
adaptive adversaries. Moreover, SafeSpeech has real-time ca-
pability in real-world tests. The source code is available at
https://github.com/wxzyd123/SafeSpeech.

1 Introduction

In recent years, the rapid growth of generative artificial in-
telligence (AI) [4] has drawn broad social attention. People
are amazed by the excellent capabilities of AI, which ben-
efits from the continuous progress in deep neural networks
(DNNs). In speech synthesis, or voice cloning, models trained
on large-scale speech corpus can now generate highly realistic
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Figure 1: Speech synthesis hazards in real-world scenarios,
e.g., the attacker utilizes Bob’s public voices with TTS tools
to bypass the voiceprint lock and achieve telecom fraud.

audio [27–29]. Through fine-tuning pre-trained models, the
latest one needs only a few minutes of speech samples to syn-
thesize high-quality speeches with realistic timbre, rhythm,
and phonemes. Although early voice cloning technology is
mostly used for positive purposes, such as cloning deceased
lovers’ voices to provide comfort, there have recently been
cases of this tool being abused for illegal activities, e.g., Fig-
ure 1. Moreover, criminals used deepfake speech to pose as a
German boss and tricked a British subsidiary head into trans-
ferring $243,000 [54]. Tackling deepfake speech is vital for
the integrity and security of voice-based systems in daily life.
Existing Defenses and Limitations. To counter the threat
of deepfake speech, existing voice protection methods like
AntiFake [68], VSMask [61], and AttackVC [19], focus on
leveraging adversarial examples to make the synthetic sam-
ples do not resemble the original speaker in terms of timbre,
preventing zero-shot speech synthesis (or voice conversion).

However, although previous methods have certain effects,
they also have serious limitations: (1) Protection Scenarios.
Current voice protection techniques focus on zero-shot sce-
narios, i.e., employing one reference audio to clone voice
during the inference stage. However, in addition to zero-shot
scenarios, adversaries may also fine-tune models, which poses
a more severe challenge for two reasons. Firstly, many mod-
els do not support zero-shot systhesis [27–29, 62], and fine-
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tuning can achieve better quality. Secondly, previous methods
based on adversarial examples cannot withstand fine-tuning
techniques. (2) Synthesis Quality Prevention. Previous voice
protection methods on adversarial examples can generate dis-
similar but high-quality deepfake speeches, which means that
these speeches can still be utilized. However, we aim to make
the synthesized audio significantly low-quality and cannot
be utilized to address the deepfake issue fundamentally, i.e.,
synthesis quality prevention. High-quality deepfake speeches
pose security risks. First, adversaries can conduct large-scale
searches for new victims with similar voices. Second, syn-
thetic audio might still be utilized maliciously, such as voice
assistants in telecom fraud, to conceal the true identity.
Motivation. Many regions have introduced regulations on
generative AI governance and data protection, like Califor-
nia’s Consumer Privacy Act (CCPA) [34], making voice pri-
vacy protection urgent. We conduct this work for two motiva-
tions. Firstly, we aim for broader voice protection, covering
training time and deepfake audio quality. Fine-tuning-based
speech synthesis is crucial as it can cover more TTS models
and produce higher-quality audio. Secondly, large language
models (LLMs) [4, 58] have developed continuously. LLMs
can generate high-quality human-like text for TTS models,
promoting realistic deepfake speech production. Synthesiz-
ers incorporating LLMs (e.g., BERT-VITS2 [1] and GPT-
SoVITS [2]) also need consideration.
Technical Challenges. In addressing the aforementioned is-
sues, we have to overcome these challenges: (1) Effectiveness
and Transferability. We need to design voice protection that
is effective against fine-tuning. Additionally, the algorithm
should possess strong transferability across various TTS mod-
els. (2) Modal Selection. The input of TTS models is multi-
modal, such as waveform, spectrogram, and corresponding
text. It is crucial to decide the most sensible modality of
the anti-learning perturbations. (3) Robustness. Previous data
protection methods [20, 68] are vulnerable to adaptive train-
ing [63]. Therefore, our method should be robust against ad-
vanced adaptive adversaries for real-world applications. (4)
Imperceptibility. The embedded perturbation should be im-
perceptible or align with human perception, necessitating a
design optimization method for noise incorporation that en-
sures human acceptance or harmlessness. Overall, successful
voice protection should satisfy the prevention of synthetic
speech intelligibility (i.e., synthesis quality) and speaker tim-
bre similarity against training-stage voice cloning.
Our Response Strategies. In response to these challenges,
we introduce SafeSpeech, a framework to safeguard data by
embedding specifically designed perturbation while preserv-
ing text consistency before audio uploading. To effectively
protect voice at training time and enhance transferability,
we propose pivotal objective optimization with less compu-
tational time based on a surrogate model. Additionally, to
achieve further protection, we introduce the Speech PErtur-
bative Concealment (SPEC) techniques based on Kullback-

Leibler divergence, which better conceals speech information.
These approaches lead to voice protection in terms of speech
quality and timbre similarity. To optimize the audibility of
embedded noise, ℓp norm may not fully adapt to human [68]
and we devise perceptual optimization functions to reduce
human audibility. The safeguarded audio by our proposed
SafeSpeech ensures that the synthesized audio is not similar
and undermines the speeches’ usability, thus providing a more
effective and robust defense against various adaptive attackers
utilizing a novel voice protection method.
Experiments and Evaluation. To validate the effectiveness
of SafeSpeech, we conduct experiments on current SOTA
TTS models and well-known datasets across various met-
rics. Our extensive experiments demonstrate that SafeSpeech
achieves the SOTA protection effect against train/test-time
voice cloning. SafeSpeech is also highly robust facing per-
turbation removal, data augmentation, model (or data) recov-
ery, and adaptive robust training, etc. Moreover, the physical-
world test demonstrates that SafeSpeech possesses high ro-
bustness and real-time capabilities with continuous on-site
voice protection. In the user study, we evaluate the human per-
ception and most participants believe synthetic speeches after
protection cannot deceive them. Compared to previous meth-
ods [19, 61, 68], SafeSpeech has stronger effectiveness and
robustness, preventing fine-tuning-based speech synthesis.
Novelty and Contributions. In this paper, we achieve inno-
vation in three levels: (1) Algorithm. We propose the pivotal
objective optimization and the SPEC technique, which can
achieve better effect, transferability, robustness, and efficiency.
(2) Scenario. Compared to previous literature [19,61,68], we
consider the fine-tuning strategies, presenting a more protec-
tive scenario than zero-shot voice cloning. (3) Application.
By utilizing a lightweight surrogate model and simplified
objective, we can achieve real-time protection in real-world
applications. The CCPA emphasizes personal data privacy
and regulates business data handling. Our SafeSpeech pre-
vents unauthorized and malicious voice exploitation. Our
main contributions can be summarized as follows:

• We propose SafeSpeech which for the first time protects
our voice at training time in our best knowledge by em-
bedding imperceptible perturbation against unauthorized
exploitation and malicious speech synthesis.

• We devise a robust and universal perturbative technique
named Speech PErturbative Concealment against malicious
speech synthesis. For noise imperceptibility, we introduce
a hybrid perceptual function, combining STOI and STFT
loss, to optimize human perception and reduce inaudibility
in terms of time and frequency domains.

• We comprehensively evaluate SafeSpeech across ten SOTA
models and two datasets during training and testing phases.
The SafeSpeech is robust against adaptive adversaries.

• SafeSpeech can achieve real-time protection in our real-
world test and takes only 10.606 seconds to generate
speaker-specific perturbation with continuous protection.



Original 
Waveform

Embeddings

SafeSpeech

Texts

...

E
n
c
o
d
e
r

D
e
c
o
d
e
r

Minimize 
Error

Surrogate Model

Speech PErturbative Concealment

+

Lmel Lnoise

Gaussian NoiseReal Audio

Lperception

Synthetic Audio

Not Fooled

Synthesis SystemProtected Audio

uploading

...

Public Access

Noises

Permission 

denied

...
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Figure 2: The SafeSpeech safeguards voice by constructing a surrogate TTS model that minimizes the designed objectives (Lmel
and Lnoise with perception constraint Lperception detailed in Section 4). Despite attackers fine-tuning advanced TTS models from
social platforms, they cannot produce high-quality synthetic speech to circumvent voiceprint locks or deceive victims’ families.

2 Preliminaries

Mainstream speech synthesis utilizes a DNN-based model
to input signals with timbre and audio features, and these
models usually consist of an encoder and decoder architecture
(e.g., Figure 2). Compared to traditional rule-based synthesis
methods [43], current TTS models [1, 27, 29] can achieve a
better voice cloning effect with a few samples. In this context,
we explore privacy preservation strategies for TTS synthesis.
Voice Anti-Cloning. AntiFake [68], VSMask [61], and At-
tackVC [19] are three voice protection methods based on
adversarial examples ensuring zero-shot TTS models can-
not synthesize voiceprint-similar speech. Our SafeSpeech, in
contrast, goes beyond mere voiceprint similarity and infer-
ence stage protection, as it actively prevents the usability of
deepfake speech. SafeSpeech considers the protection of the
timbre feature and synthesis quality based on unlearnable
examples, a training stage data protection technique.
Data Poisoning. Our method can be regarded as a special
type of clean-label and triggerless data poisoning, while the
task purposes are significantly distinct. Data poisoning attack
aims to degrade the model’s performance on clean samples
by modifying training samples. Previous data poisoning at-
tacks [41,65] have focused on identifying the most influential
samples to affect model learning and modifying these train-
ing samples (e.g., changing labels [56] or embedding large
perturbations [65]). The primary aim of poisoning attacks is
to degrade the overall performance of the model after poi-
soning a portion of the data resulting in the inability to use
the authorized data normally, while in the protective scenario
discussed in this paper, we aim to protect audio data rather
than poisoning the model to degrade its performance. In other
words, the perturbations added by SafeSpeech affect the pro-
tected samples without affecting the unprotected ones. This
point will be discussed in Section 7.2.3 by experiments.
Unlearnable Examples. In classification tasks, let a DNN-
based classifier be f , which accepts input data x with corre-
sponding label y. We regard the clean training and testing

datasets as Dc and Dt , respectively. The creation of unlearn-
able examples is facilitated by a perturbation optimizer that
treats Dc as the input and produces an unlearnable dataset Du
by embedding a perturbation δ to samples in Dc. When train-
ing on Dc, the model f demonstrates excellent performance
on Dt but suffers from poor performance when training on Du.
The perturbation generation relies on a bi-level structure [20]
which optimizes both the perturbation and the parameter:

argmin
θ

Ex,y[min
δ

L( fθ(x+δ),y)], (1)

where fθ is a classifier with the trainable parameter θ.
Research [16, 20] indicates that minimizing errors in the

training objectives can initially disrupt the training process.
However, to achieve effective and robust voice protection,
more advanced techniques must be designed.

3 Threat Models

In the threat model, we introduce a priori knowledge, capa-
bility, and limitations of the adversary, defender, and system.

3.1 Adversary Capability
We assume that the adversary is the third-party entity that
can utilize the current most advanced TTS models to achieve
successful voice cloning of the victim on unprotected data.
To simulate experienced adversaries in the real world, we
consider three of their capabilities:
Capability of Data Access. The development of the Internet
has exposed more data to the public with potential threats.
Adversaries can directly download the uploaded audio of
the victim from public media on the Internet (e.g., YouTube,
Facebook) using web crawler technology or some permis-
sion bypass mechanisms. They cannot access the original
unprotected audio if obtained speeches are protected.
Capability of Customized and Robust Training. Adver-
saries can leverage various advanced speech synthesis models.



Attackers can achieve speech synthesis to bypass speaker
verification or human perception. At the same time, we con-
sider a stronger adversary, that is, the adversary can detect
the abnormal perturbations embedded for protection and em-
ploys the most advanced defensive data augmentation and
robustness training, such as perturbation removal, adversar-
ial training, specific data poisoning defensive methods, and
speech transformation, to seek high-quality speech synthesis.
Capability of Model Recovery. We assume that the adversary
is an experienced model trainer. If the speech synthesis does
not achieve the desired effect after fine-tuning the TTS model
utilizing the acquired audio, then he may realize that the
model has been poisoned and restore it to the initial state
against the protection strength detailed in Section 7.2.1.

3.2 Defender Description

Defender Limitations. To more faithfully replicate real-
world scenarios, we restrict the defender to only having ac-
cess to the synthesized audio from the model’s output and is
unaware of the model training method of the attacker. The
defender can only introduce perturbation to the original au-
dio. Additionally, we restrict that the generation of noise does
not depend on a priori knowledge for users’ application, e.g.,
the utilized model for speech synthesis, and the protection
of the speaker’s samples can poison all or only part of the
samples. Moreover, we assume the uploading condition when
the protected audio can defend potential and the most ad-
vanced data augmentation and robust training, etc., strategies
for confidential exploitation in the real world after uploading
the perturbative protected samples.
System Capabilities. System, i.e., SafeSpeech in this pa-
per, needs to effectively generate perturbation for the audio
that users want to protect before uploading. For the aim of
voice protection, SafeSpeech should generate perturbation
without affecting the use of unprotected audio. Moreover, the
generated perturbation should be imperceptible or at least per-
ceptually acceptable. Audio protected by SafeSpeech should
achieve timbre and synthesis quality protection, while also en-
suring transferability across different models. In conclusion,
we design our protective system for the two aims:

• System Aim 1 (SA1): Timbre Protection. Our goal is to
achieve a state where fine-tuning on protected audio cannot
synthesize audio that resembles the target victim.

• System Aim 2 (SA2): Quality Protection. The “synthesis”
quality protection represents the synthetic speech is low-
quality and cannot be utilized normally in daily life.

Previous adversarial-examples-based voice protection [19,
61,68] can only achieve SA1 in zero-shot scenarios. However,
to fundamentally prevent deepfake audio, the defender needs
to meet SA1 and SA2 in zero-shot and fine-tuning scenarios.

4 SafeSpeech Methodology

In response to speech synthesis defense at training time, we
design SafeSpeech to achieve voice anti-cloning. Figure 2
presents the workflow of SafeSpeech and the attacker’s mali-
cious action. For data protection, we introduce the optimiza-
tion objective and propose the proactive defense mechanisms
of the pivotal function and SPEC. While, for perception opti-
mization, we introduce the perception metrics, i.e., STFT, and
STOI, to better the human perception of protected samples.
Problem Formulation. As we introduced in Section 1, we
aim to prevent high-quality deepfake audio generation and
propose a universal and robust perturbative voice protection
method. Based on this, we design to solve an error-minimizing
problem including effect and perception. We express the ob-
jectives of SafeSpeech by the following formula:

argmin
δ

L(G(x+δ),x)+αP(x+δ),

s.t. H(G(x+δ)) ̸= H(G(x)),

SV (G(x+δ)) ̸= SV (G(x)),

H(x+δ)≈ H(x),

(2)

where G(·), SV (·) are a speech synthesizer and speaker verifi-
cation system respectively, P(·) is the auditory function, and
H(·) is the human perception according to input audio. L(·) is
the objective, x is an input audio, α is a weight coefficient, and
δ is the perturbation bounded by ℓp norm as ||δ||p≤ radius ε

for the limitation of human perception.

4.1 Data Protection
To effectively mitigate the unauthorized speech synthesis in
real-world scenarios, the generation process of protected au-
dio should be devoid of reliance on a priori knowledge. This is
crucial as we cannot predict the training strategies of the adap-
tive attackers. In the design of SafeSpeech, we aim to produce
an effective, robust, and universal perturbation preventing
training-time speech synthesis across different models.
Unlearnable Audio. Previous voice protection based on ad-
versarial examples cannot be effective during the training
stage, which is an unavoidable scenario. We aim to solve this
based on training-stage data protection [20] and introduce an
error-minimizing (EM) noise. The EM problem reduces the
error of the model simulating the normal training process by
perturbation so that there is “nothing” to learn when training
on the safeguarded dataset as we introduced in Eq. (1).

It is significant to decide the optimization objective, be-
cause TTS models often engage in multi-task learning with
multimodal inputs, like audio accompanied with relevant text
guidance. Under the assumption of the defender, we can only
modify the user’s original audio while preserving the integrity
of the text input. Generative speech synthesis models typ-
ically learn from the input data and generate outputs with



similar distributions. They may also incorporate discrimina-
tors or speaker encoders to improve the high-quality audio
generation. However, considering the various architectures of
different models, we focus on optimizing the generator, as it
is most related to output information and audio quality.

By optimizing the objective function using perturbation,
the error of the model has been greatly reduced and it is
possible to make audio unlearnable for the model to think
that there is “nothing” to learn. The objective function of the
generator g from a TTS model can be expressed by following
the single-level loop with multi-modal inputs:

LT T S =
k

∑
i=0

Li [g(text,spec(x+δ)),x,θ] , (3)

where x represents the raw waveform, and spec(·) computes
the linear spectrogram from inputs, and θ is the parameter.

Therefore, the core solution is to decide Li.
Pivotal Objective Selection. When applying noise to op-
timize the multi-task learning problem, directly using the
objectives of TTS models yields unsatisfactory perturbative
results (Section 6.4). Moreover, this is highly inefficient, re-
quiring specifying a unique optimization approach for each
TTS model. In this part, we will first illustrate why direct opti-
mization is ineffective through examples, and then proceed to
carefully analyze the features of TTS models and propose our
pivotal objective function and its principles to be satisfied.

Different TTS models own different objective functions and
components. For instance, BERT-VITS2 [1] comprises four
components, with the generator containing eight objective
functions, and the optimization function can be expressed as:

(4)LG = Lrecon + Lkl + Ldur + Ladv(G)

+ L f m(G) + LDurD + Lscore + Lencoder,

where Lrecon denotes the reconstruction loss between ground
truth and generated speech. Lkl and Ldur represent the KL
divergence loss and duration loss. Ladv and L f m are the adver-
sarial training loss and feature-matching loss of the generator.
LDurD is the duration discriminator loss, Lscore computes the
similarity score of embeddings from the generated and real
audio, and Lencoder represents the encoder loss.

Among these, the duration loss Ldur only depends on the
input text and cannot be optimized via perturbation. Further-
more, VITS [29] has five objective functions that are different
from BERT-VITS2. Consequently, directly applying the eight-
loss setup from BERT-VITS2 for perturbation may not yield
a universally applicable approach in VITS or other models.

Moreover, through a thorough analysis of the objective
function, we realize that the optimization effect is closely
related to the multi-modal input characteristics of the model.
We can only interfere with audio waveform, so that objec-
tive functions unrelated to audio can not be effectively af-
fected. Furthermore, due to the various structures and op-
timization objectives of different models, it is advisable to

Figure 3: The convergence speed comparison of different
objective functions when optimizing by perturbation.

devise a universal function adapting different generative TTS
models for the perturbation universality.

The selection of an optimization objective is crucial given
our lack of knowledge about the attacker’s training model and
structure. So, we should stick to the following listed principles
of the pivotal function selection:
(a) The objective function can be optimized by perturbation;
(b) To ensure that universal perturbation is independent of

a priori knowledge, the objective function should be
universal across various TTS models;

(c) The function should be easily optimized through pertur-
bation, such as achieving a rapid rate of convergence or
containing relatively rich information entropy.

For example, in Eq. (4), the Ldur is not related to the wave-
form x violating the principle (a). These three principles must
be considered in data protection guiding the transferability of
the perturbation. When designing SafeSpeech, it is crucial to
ensure that the users can perform perturbations regardless of
the model they are using. This poses a challenging question:

Is it possible to devise a perturbative method that is
universally applicable for all generative TTS models?

In the scenario of this paper, a universal perturbation
method implies identifying an optimization target that is con-
sistent across different models. Upon further reflection, we
recognize that generative TTS models typically aim to output
audio or spectrograms that follow a distribution similar to the
input [27–29, 35, 36, 48, 50, 51, 55], with training involving
fitting these distributions to optimize the generator. There-
fore, we propose to measure the distance between the model’s
output and the input waveform as our pivotal optimization
target. Drawing from common TTS objective functions, we
select the ℓ1 distance to compute the similarity between the
mel-spectrograms of the synthesized audio x̂ and real input x.
For end-to-end TTS, we first compute the mel-spectrograms
for both the output and the input audio. If the model outputs
spectrograms, we can then directly optimize them. This mel
function can be formulated as:

Lmel = ||xmel− x̂mel ||1. (5)

The reason for choosing the function Lmel as our pivotal



objective lies in the fact that generative TTS models serve the
synthetic speeches x̂ as the models’ outputs. Crucially, we pos-
sess the capability to calculate the ℓ1 distance between these
outputs and real speeches, a computation that remains agnos-
tic to the models’ complex architecture. The mel optimization
function Lmel also satisfies the principles (a) and (b). In the
following, we analyze the selection from the perspective of
convergence speed of principle (c). We use 10 samples for
a batch and optimize them for 100 epochs on BERT-VITS2.
The convergence speed is presented in Figure 3. We can ob-
serve that the recon function Lmel has the fastest convergence
speed, starting from the highest initial value of 98.8 and even-
tually dropping to 16.7, and approaches convergence at the
40th epoch. In contrast, other objective functions have slow
convergence speeds with hardly any noticeable decrease, so
they are hard to optimize via perturbation. Therefore, we tar-
get the objective function with the fastest convergence speed
and easiest optimization as a part of the data protection.

Compared with vanilla objective optimization, i.e., initial
unlearnable examples [20], selecting a generalized and fastest-
converging function from multi-objective functions for op-
timization can enhance the effectiveness of protection and
reduce time costs. This is because, when using perturbation to
optimize the multi-task objectives, the values in the gradient
space are influenced by the optimization directions of multiple
functions, making it difficult for the loss to converge. In con-
trast, choosing Lmel allows the gradient to be optimized only
in one and the fastest direction, thereby enabling a universal
and effective protection method.

The experimental comparison between utilizing vanilla and
simplified optimization objective is presented in Section 6.4.
Drawing from the aforementioned analyses, we select the
pivotal objective Lmel as a core component of SafeSpeech.
Speech PErturbative Concealment. During the optimiza-
tion process, we find that optimizing Eq. (5) can effectively
make the synthesizer produce unclear speech. However, if
we listen attentively, there are still parts of the slightly au-
ditory pronunciation, and its background noise is relatively
low. Moreover, we hope that the synthesizer can only gener-
ate noise when training on a SafeSpeech-protected dataset to
achieve SA1 and SA2, and the robustness of the perturbation
must be guaranteed. Based on this, we aim to propose a more
effective and robust defense mechanism. When training the
synthesizer, we expect the generator to produce noise. There-
fore, in the perturbation optimization procedure, we utilize a
Gaussian-distributed random noise z, leading the generator
to produce noise. We aim that the distribution of the syn-
thesized output can increasingly approximate a real noise
distribution z. Based on this, we employ the Kullback-Leibler
(KL) divergence as part of the optimization objective due
to its asymmetry. Lower values of KL scatter mean that the
output of the model is more similar to the noise distribution,
which can achieve the low-quality of deepfake speech. At the
same time, for both the random noise and generated audio,

we extract mel-spectrogram feature zmel and x̂mel , to acquire
more relative information, and reduce the ℓ1 distance as Eq.
(5). The objective function can be described as:

Lnoise = DKL(x̂mel ,zmel)+ ||x̂mel− zmel ||1, (6)

where DKL represents the KL divergence of two distributions.
Based on the above, we desire the model to learn the per-

turbations rather than speech information. To achieve this, we
propose a method named Speech PErturbative Concealment
(SPEC), which combines the mel function and the noise loss
function assigning a suitable weight and can be expressed by:

LSPEC = Lmel +βLnoise. (7)

where β is the hyperparameter to be set.
In conclusion, we introduce a pivotal objective function

aimed at simplifying the multi-task learning problem to
achieve effectiveness at the training stage and enhance trans-
ferability. Furthermore, we design the Speech PErturbative
Concealment method that measures the two distributions be-
tween synthesized speech and random noise, thereby conceal-
ing the speaker’s information with a stronger protection.

4.2 Perception Optimization

The perturbation should be generated without interfering with
the normal exploitation of data samples. So the imperceptibil-
ity of the noise is an important factor. In the process of noise
generation introduced in Section 4.1, ℓp norm is employed to
limit the perturbation boundary so that the overall magnitude
of the noise values can not be particularly large. However,
the limitation of the perturbation in the value aspect cannot
completely represent human perception. Based on this, Safe-
Speech utilizes the noise perception module to reduce the gap
between the ℓp norm and human perception. We optimize the
audio perception in the time and frequency domains.

For better noise perception and imperceptibility, we employ
Short-Time Objective Intelligibility (STOI) [70] score as our
main part of the perception module. STOI score represents
speech intelligibility as an objective metric, which computes
the correlation of short-time temporal envelopes of the clean
and protected audio, ranging from 0 to 1 and a higher score
indicates better speech quality. STOI score is closely related to
the human auditory perception and optimizing STOI function
Lstoi brings a more natural sound. Moreover, we follow the
principles to compute Lstoi introduced in [70].

On the other hand, we consider the time and frequency
domain of audio for better perception optimization in the ℓp
radius. Short-Time Fourier Transform (STFT) [72] performs
well in feature extraction, so we utilize the ℓ2 distance as part
of our perception loss which can be expressed by:

Lst f t = ||STFT(x+δ)−STFT(x)||2. (8)



Algorithm 1: SafeSpeech.
Inputs: (x, text) ∈ Dc, perturbation δ, surrogate model M ,

optimization numbers max_epoch.
Parameters: random Gaussian noise z, ℓp norm boundary

radius ε, weight coefficients α and β.
Output: protected audio x′.

1 δ← init_perturbation_set(−ε,ε);
2 x′← x+δ;
3 for j← 1 to max_epoch do
4 x̂←M (spec(x′), text,other_input);
5 C1← Lmel(x̂mel ,x);
6 C2← DKL(x̂mel ,zmel)+∥x̂mel − zmel∥1;
7 if Perception_Optimize then
8 C3← Lperception(x,x′);
9 C ← C1 +β ·C2 +α ·C3;

else
10 C ← C1 +β ·C2;

end
11 δ← Clamp(−sign(∇xC ),−ε,ε);
12 x′← x+δ;

end
13 evaluation_optimize_hyperparameters().

Based on the above, the perception module of SafeSpeech
crafts a hybrid optimization function:

Lperception = Lstoi +Lst f t . (9)

Method Conclusion. Combining proposed data protection
and perception optimization techniques, the objectives of Safe-
Speech L can be expressed by:

L = LSPEC +αLperception, (10)

where α is the weight coefficient the same as in Eq. (2), which
balances the imperceptibility and effectiveness in Section 6.4.

Algorithm 1 shows the detailed description of SafeSpeech.
The SafeSpeech can optimize the perturbation for max_epoch
steps. init_perturbation_set assigns the perturbation to
a random initial value within radius ε. If the effectiveness
performance dissatisfies the user’s expectation, the hyperpa-
rameter, such as max_epoch and ε, can be changed to enhance
the protection performance until achieving a satisfactory level
in the last step evaluation_optimize_hyperparameters.

To summarize, SafeSpeech achieves training-stage voice
protection by introducing the pivotal objective and SPEC
technique. In the pivotal objective, we innovatively select the
function with the fastest convergence rate and universality
to optimize, i.e. the Lmel in Eq. (5). In the SPEC technique,
considering the asymmetry of the KL divergence, which can
better measure the difference between real and synthetic dis-
tributions, we propose a speech concealing technique based
on KL divergence to enhance the effectiveness, which is also
novel compared to previous methods.

5 Experimental Settings

In this section, we describe our experimental settings on mod-
els, datasets, hyperparameters, and metrics. All the experi-
ments were conducted on one NVIDIA A800 GPU.

5.1 Baselines
For a broader comparison, we consider two types of data
protection: perturbative availability poisons (PAP) [39, 67],
which protects data during the training stage, and voice
protection techniques. Referring [39], we employ SOTA PAP
baselines, including AdvPoison [15], SEP [11], and PTA [20].
In terms of voice protection, we utilize two open-source pro-
tection approaches: AntiFake [68] and AttackVC [19]. We
provide a detailed comparison in Appendix A.
Adversarial Poisoning (AdvPoison) [15]. Fowl et al. [15]
demonstrated that adversarial examples, particularly targeted
attacks, can achieve more protective effectiveness.
Self-Ensemble Protection (SEP) [11]. The perturbation dy-
namically interferes with a DNN during its whole training pro-
cess. Based on this, Chen et al. [11] proposed self-ensemble
protection. It uses intermediate checkpoint models in a self-
ensemble way to enhance and better simulate a training and
dynamic model, improving perturbation generalization.
Patch-To-All (PTA). For VITS [29], MB-iSTFT-VITS [27]
and BERT-VITS2, a fast and efficient training strategy, win-
dowed generator training, is utilized to randomly crop a fixed-
length sample from a complete audio. Drawing inspiration
from comparable process methods employed in adversarial
attacks, we devise an approach, Patch-To-All, which gener-
ates perturbation that minimizes the error from fragment au-
dio [20] and patches it to the entire sample as a comparison.
AntiFake [68], AttackVC [19]. Given a clean sample x from
speaker victim i, the speaker’s timbre feature Ei is computed
by an encoder. Subsequently, a targeted speaker j with the
least similar timbre (in AntiFake) or randomly selected with
the opposite gender (in AttackVC) is identified with timbre
feature E j. A perturbation is added to the original sample x
in such a way that Ei becomes similar to E j, thereby accom-
plishing voice cloning that results in timbre dissimilarity to
the speaker victim i. We utilize the tools they have released
to convert an original speech into a protected one.

5.2 Text-To-Speech Synthesizers
To comprehensively evaluate the effectiveness and transfer-
ability of SafeSpeech, we have selected a range of models
for evaluation. On the one hand, we choose some classic,
widely used, and improved models with fine-tuning capabili-
ties in the TTS field. On the other hand, we select the latest
and top-performing SOTA models based on the benchmark,
TTSDS [3]. These models vary in architecture, encompassing
those based on generative flow (GlowTTS [28]), Variational



Autoencoder (VAE) architectures (VITS [29] and MB-iSTFT-
VITS [27]), encoder-decoder frameworks (OpenVoice [45]),
diffusion models (StyleTTS 2 [36] and TorToise-TTS [7]),
and flow matching (F5-TTS [12]).

Due to the remarkable capabilities of LLMs in dialogue
and text generation, the advanced and latest TTS models, e.g.,
BERT-VITS2 [1], XTTS [8], and FishSpeech [37], have gen-
erally integrated LLM components with synthesizers. In this
setup, the LLM learns and emulates pronunciation charac-
teristics and speaking styles of the target speakers, while the
synthesizer focuses on learning and replicating the timbre fea-
tures. This combination has led to a significant improvement
in terms of synthetic naturalness. We provide a more detailed
and comparative introduction to each model in Appendix B.

We utilize models with fine-tuning capabilities, i.e., BERT-
VITS2, StyleTTS 2, MB-iSTFT-VITS, VITS, and GlowTTS,
to validate the protective effect at training time in Section
6.1, and zero-shot models, i.e., TorToise-TTS, XTTS, Open-
Voice, FishSpeech, and F5-TTS, to evaluate at inference time
in Section 6.3. For GlowTTS, VITS, MB-iSTFT-VITS, and
StyleTTS2, we use pre-trained models on LJSpeech [23]
speech corpus. For BERT-VITS2, we utilize the model trained
on a large-scale multilingual and multi-speaker speech corpus.

5.3 Experimental Datasets
We leverage utterances from two standard speech synthesis
datasets for method assessment. LibriTTS [69] is utilized to
evaluate the performance of our method in targeted single-
speaker with long sentences, while CMU ARCTIC [30] is
harnessed to assess multiple speakers with shorter sentences.
LibriTTS [69]. For effective fine-tuning, we select the top
speaker who exhibits the highest similarity in voiceprint to the
targeted speaker of LJSpeech. [23] from the LibriTTS train-
clean-100 subset which is derived from LibriSpeech [44]
corpus, a large-scale of speakers corpus.
CMU ARCTIC [30]. CMU ARCTIC includes audio record-
ings from 18 speakers and the speech content is nearly similar.
For each speaker, we select 100 samples for fine-tuning. For
the training dataset, we randomly shuffled each dataset and
employed 80% of the audio samples for training, reserving
the remaining 20% for evaluation. More detailed information
on the two datasets is presented in Appendix B.

5.4 Hyperparameters and Metrics
In this part, we outline the hyperparameters in our experiments
and evaluation metrics objectively and subjectively.
Hyperparameters. In the fine-tuning process, we keep the
conventional hyperparameters in [27–29, 36] while setting
the correct sampling rate in our customized dataset. In noise
generation, we set the perturbation radius ε as 8/255 to reach
a balance of human perceptibility and unlearnability and opti-
mize the noise until the perturbation performs well. To ensure

the effectiveness of synthesis, we train the models 100 epochs
for single speaker and 200 epochs for multi-speaker datasets.
It is worth noting that we changed the input of the models
from spectrograms to the original waveform to better fit the
realistic training scenarios. We set the α in Eq. (10) as 0.05 to
balance the imperceptibility and unlearnability and the β in
Eq. (7) as set as 10 to achieve the best perturbative poisoning.
Metrics. We consider the subjective and objective metrics:
• Mel-Cepstral Distortion (MCD) [32]: MCD, using Dy-

namic Time Warping mode, measures the disparity in audio
features between synthesized and real audio, reflecting dif-
ferences in speech content, timbre, etc.

• Word Error Rate (WER) [25]: WER measures pronunci-
ation clarity by a pre-trained medium-size Whisper [46]
to recognize text. Higher MCD and WER represent worse
speech clarity to achieve synthesis quality protection.

• Speaker Similarity (SIM) [25]: SIM is a metric to evalu-
ate the timbre similarity between two speeches. Higher
SIM represents the larger timbre similarity. We follow the
principles from [25] and leverage ECAPA-TDNN [13] as
the speaker encoder to compute the cosine similarity score
between the real and synthetic speeches. When the SIM
exceeds 0.25, personal voice has been successfully cloned
in timbre [13]. The Attack Success Rate (ASR) is calcu-
lated by the ratio of successfully cloned samples in speaker
similarity (i.e., SIM > 0.25) to the total number of samples.

• Signal-to-Noise Ratio (SNR) [68]: SNR calculates the ratio
between the embedded perturbation and the original audio
to measure the levels of perturbation volume.

• Naturalness [6]: We utilize the advanced DNN-based au-
dio predictor, UTMOSv2 [6] model, to evaluate the speech
naturalness objectively. Moreover, we evaluate the natural-
ness subjective by human survey. Higher values of SNR
and Naturalness represent better speech quality.

• Mean Opinion Score (MOS) [33]: MOS is a subjective
evaluation metric that measures human perception of audio
quality, typically ranging from 0 to 5, with higher values
indicating better audio quality.
In conclusion, achieving higher MCD and WER values

effectively fulfills SA2, preventing the malicious usage of
synthesized samples. Simultaneously, maintaining a lower
SIM adheres to SA1, realizing the identification protection.

6 Experiments and Analyses

For a comprehensive conclusion, we evaluate the effective-
ness, transferability, and audibility of SafeSpeech. The effec-
tiveness and transferability of SafeSpeech have been demon-
strated against speech synthesis based on fine-tuning in Sec-
tion 6.1 and zero-shot in Section 6.3, respectively. Addition-
ally, we assess the naturalness and human perception of pro-
tected audio (in Section 6.1 and 6.2) and conduct a subjective
evaluation to investigate the deceptive effects of synthesized



Table 1: Comparison of the TTS models trained on clean, random Gaussian noise added, patch-to-all (PTA), adversarial poisoning
(AdvPoison), self-ensemble protection (SEP), AntiFake, AttackVC, and our proposed Speech PErturbative Concealment (SPEC)
safeguarded dataset. The best and second-best unlearnability results are highlighted with bold and underlined, respectively.

Dataset Method
BERT-VITS2 [1] StyleTTS2 [36] MB-iSTFT-VITS [27] VITS [29] GlowTTS [28]

MCD(↑) WER(%)(↑) SIM(↓) MCD(↑) WER(%)(↑) SIM(↓) MCD(↑) WER(%)(↑) SIM(↓) MCD(↑) WER(%)(↑) SIM(↓) MCD(↑) WER(%)(↑) SIM(↓)

D1

ground truth - 15.813 - - 15.813 - - 15.813 - - 15.813 - - 15.813 -
clean 5.171 24.024 0.604 4.806 23.525 0.587 4.922 21.345 0.668 5.270 20.208 0.652 7.722 30.725 0.466

random noise 5.444 27.747 0.472 5.457 23.617 0.466 5.397 24.654 0.489 5.503 33.267 0.449 9.853 49.675 0.311
AdvPoison [15] 10.474 57.699 0.322 9.310 27.765 0.347 8.069 35.221 0.393 8.594 50.696 0.402 13.001 94.769 0.190

SEP [11] 8.367 57.921 0.321 7.208 26.003 0.315 7.638 62.634 0.272 8.000 55.917 0.292 14.252 81.753 0.209
PTA [20] 11.193 59.035 0.286 9.688 26.846 0.248 9.763 54.695 0.242 10.039 72.304 0.240 17.889 85.018 0.144

AttackVC [19] 6.376 31.141 0.525 4.660 20.419 0.419 5.665 27.384 0.527 5.188 29.940 0.638 8.939 62.572 0.289
AntiFake [68] 7.740 48.966 0.254 7.755 42.890 0.214 6.748 58.420 0.234 6.164 63.604 0.221 12.341 98.410 0.090
SPEC (ours) 14.771 99.610 0.204 10.278 57.693 -0.011 13.826 94.706 0.172 11.566 93.270 0.178 22.093 102.407 0.081

D2

ground truth - 8.290 - - 8.290 - - 8.290 - - 8.290 - - 8.290 -
clean 5.629 21.658 0.658 5.079 6.660 0.561 5.709 9.700 0.588 5.591 12.460 0.626 7.702 30.186 0.425

random noise 6.012 26.330 0.570 6.275 10.497 0.466 6.103 11.794 0.469 6.168 16.491 0.516 9.586 37.921 0.343
AdvPoison [15] 10.438 37.924 0.398 10.257 13.775 0.292 9.150 28.340 0.359 9.286 52.709 0.349 14.207 87.318 0.072

SEP [11] 8.284 50.569 0.433 8.405 14.347 0.289 8.390 32.622 0.322 8.768 46.412 0.338 14.423 76.617 0.118
PTA [20] 11.504 46.619 0.365 9.470 15.961 0.368 11.041 29.436 0.249 12.040 57.050 0.280 17.835 82.882 0.084

SPEC (ours) 15.175 80.291 0.273 12.303 16.967 0.267 13.631 54.763 0.206 13.387 72.909 0.243 19.646 96.279 0.069

D1 and D2 represent LibriTTS and CMU ARCTIC datasets, respectively.

speech on humans. Finally, we perform ablation studies fo-
cusing on the method components and the hyperparameters.

6.1 Effectiveness and Transferability

The assessment of SafeSpeech’s effectiveness encompasses
three different stages: the perturbation generation on the sur-
rogate model, training on safeguarded audio samples by dif-
ferent methods, and evaluation of the synthetic performance.
Perturbation Generation. We select BERT-VITS2 as the
surrogate model to generate perturbation due to its superior
performance in high-quality speech synthesis and fine-tuning
capability. We utilize the surrogate model to generate per-
turbation via SafeSpeech and evaluate its transferability on
other SOTA TTS models. For a comprehensive evaluation,
we select six baseline methods, including random noise and
the specifically generated perturbation.
Training on the Safeguarded Dataset. After acquiring spe-
cific noises from the surrogate model, we apply the pertur-
bation to the original audio, creating the protected dataset.
Fine-tuning on unprotected audio samples results in a plau-
sible speaker synthesizer. We compare this scenario with
SafeSpeech-protected audio and verify their unlearnability
across StyleTTS2, MB-iSTFT-VITS, VITS, and GlowTTS
without a priori knowledge of the model structures.
Speech Synthesis and Evaluation Results After training,
we assess the synthesizer’s performance on the test set. By
inputting a speaker ID and text, the synthesizer produces real-
istic deepfake audio. For each test sample, we supply the gen-
erator with speaker ID and text, yielding synthesized speech.
We evaluate it by measuring MCD and SIM between real and
synthesized speech and using WER to measure speech clarity.
Effectiveness and Transferability Analyses. Table 1 shows
the experimental results. Our proposed SPEC has achieved
excellent protection performance on both single-speaker and
multi-speaker datasets in terms of timbre (SIM) and speech

Table 2: Objective evaluation of the similarity and naturalness
between protected and original real audio samples.

AdvPoison SEP PTA AntiFake AttackVC SafeSpeech

Similarity(↑) 0.715 0.703 0.776 0.719 0.974 0.859

Naturalness(↑) 3.343 2.571 2.515 2.824 4.289 3.021

intelligibility (MCD and WER). On the LibriTTS dataset,
the SPEC effectively safeguards speeches from being learned
with a significant increase in WER from 24.024% of the clean
dataset to 99.610%. High WER values represent low speech
quality (SA2). And SIM is the lowest at 0.204 which satisfies
SA1. Moreover, the results show a broad range of transferabil-
ity across TTS models with distinct structures. Compared to
the PAP methods for data protection during the training stage
and voice protection techniques for the inference stage and
speaker similarity, the SPEC approach demonstrates superior
performance in preventing the usage and high similarity of
the synthesized audio with outstanding transferability. The
reasons encompass two aspects. (1) The pivotal objective
optimization is a universal objective, ensuring better effective-
ness and transferability. (2) The SPEC technique can effec-
tively conceal the speaker’s information, thereby successfully
preventing the model from learning audio samples.
Perception Analyses. In the design of SafeSpeech, we opti-
mize the perception of the perturbation in the time and fre-
quency domain (Section 4.2). It is crucial that the perturbation
cannot affect the normal use of the audio or alter the timbre.
Therefore, we objectively evaluate the best speaker similarity
(the SIM metric) and naturalness between the protected and
clean audio. Table 2 illustrates the results of our experiments,
which show that compared to better-performing baselines, e.g,
PTA and AntiFake, SafeSpeech achieves a similarity score
of 0.859, indicating almost no alteration in the timbre, and a
naturalness score of 3.021. Moreover, we balance the effec-
tiveness and perception by sampling α in Section 6.4.



Table 3: The subjective evalu-
ation of the ground truth (GT)
and synthesized speech.

MOS(↓)
GT 4.756 ± 0.103

clean 4.677 ± 0.114
PTA 2.008 ± 0.191

SPEC (ours) 1.070 ± 0.161

Table 4: Human percep-
tual evaluation of the sim-
ilarity and naturalness be-
tween protected and orig-
inal real audio samples.

Similarity Naturalness
98.333% 3.190 ± 0.189

This experiment confirms that SafeSpeech is effective and
transferable with minimal alteration of the original audio.

6.2 User Study
In the real world, deepfake speech usually needs to deceive
human victims. Therefore, in this section, we explore the
human perception of protected samples and synthetic speech.
Preliminary Work. The Human Ethics Research Commit-
tee affiliated with the primary author determined that this
study was exempt from further human subject review. We cre-
ated the anonymous questionnaire and recruited participants
through the Credamo platform.
Participants. We recruited 80 participants (after filtering in
Appendix C), all of whom were between 18 and 40 years
old and had proficient English skills. Before participating, we
obtained their consent and provided an average compensation
of $0.30 per participant. Their average spent time is 241.075
seconds, providing reliable subjective results.
Study Setting. To throughout evaluate, we have designed
three parts in each questionnaire with 23 questions to explore
the synthesis quality, speaker similarity between protected
and original audio, and the naturalness of protected audio.
Part 1: Synthesis Quality. We selected three ground truth and
synthesized audio from the clean, better-performing baseline
(PTA), and SafeSpeech-protected datasets (twelve samples in
total) to validate the subjective quality. The participants rated
the audio quality on a scale from 0 to 5. Table 3 shows the
results. Clean synthesized samples have the MOS value of
4.677±0.114, indicating good audio perceptual quality and
the potential to deceive participants. In contrast, the MOS for
the audio synthesized from the SafeSpeech-protected dataset
is much lower at 1.070±0.161, reflecting the poor audio qual-
ity and inability to deceive participants effectively.
Part 2: Speaker Similarity. The experiments in Part 1 demon-
strate the perceptual effectiveness of SafeSpeech and we also
consider if the protected audio retains a similar timbre to the
original. We select three pairs of protected audio and original
audio with one pair from different speakers for the experi-
ment. Table 4 shows that 98.333% of participants believe the
protected audio came from the same speaker as the original,
indicating minimal alteration to the original speaker’s timbre.
Part 3: Naturalness of Protected Audio. We aim to degrade
the detectability of human perception. In this part, we ask

Figure 4: Speaker similarity of synthesized samples after zero-
shot voice cloning on the clean and protected audio.

participants to rate the naturalness of the protected audio
from 0 to 5 [68]. Table 4 shows that the naturalness score
for the protected audio is 3.190±0.189. Generally, a score
above 3 is considered to indicate relatively high quality [68].
Therefore, most participants find the protected audio is natural
or the embedded perturbation is acceptable.

6.3 Defense against Zero-Shot Voice Cloning

When adversaries derive the audio samples of the target
speaker, they may apply them to fine-tune a synthesizer or con-
duct zero-shot cloning with a limited number of samples. Zero-
shot voice cloning requires fewer computational resources
than fine-tuning but degrades the synthetic result. The experi-
ments in Section 6.1 demonstrate SafeSpeech’s effectiveness
at training time. However, we also aim SafeSpeech can still
perform well against zero-shot voice cloning. In this section,
we utilize five advanced SOTA TTS models, i.e., TorToise-
TTS [7], XTTS [8], OpenVoice [45], FishSpeech [37], and F5-
TTS [12], with outstanding zero-shot capability to evaluate the
synthesis on two clean and protected samples, respectively.
Experiments and Results. Figure 4 presents the speaker sim-
ilarity, i.e., the SIM metric, between the clean and SafeSpeech-
protected synthesized speech to real audio. Surprisingly, al-
though the generation process of perturbations does not de-
pend on these zero-shot models, and the perturbation is specif-
ically considered for the training phase, SafeSpeech can still
protect our speech during the inference procedure on the un-
seen and advanced models. On the F5-TTS, the SIM value
drops from 0.885 for clean samples to 0.094 for protected
samples. Even the FishSpeech, which exhibits the best per-
formance against noise, achieves only a SIM of 0.301 on
protected samples. This indicates that SafeSpeech remains
effective in defending against zero-shot voice cloning.
Analyses. This effectiveness is due to our proposed SPEC
method in Section 4.1, which leverages the surrogate model
to guide the synthesized speech more noise-like via the KL
divergence, thereby concealing the original speaker’s informa-
tion. Consequently, this approach ensures protection during
both the fine-tuning and zero-shot stages.



Table 5: The difference between the vanilla and our proposed
pivotal function as optimization function.

Method # Params Vanilla Pivotal (ours)

MCD(↑) WER(↑) MCD(↑) WER(↑)

BERT-VITS2 104.64 M 10.316 72.435 10.722 81.517
MB-iSTFT-VITS 80.78 M 9.074 64.421 9.945 73.756

VITS 82.42 M 9.773 64.614 10.419 87.846
GlowTTS 32.03 M 17.113 95.632 18.607 104.887

6.4 Ablation Study

In Section 4.1, we delve into the rationale behind objective
selection. Building upon this foundation, this section presents
a comprehensive comparison of the original and pivotal ob-
jective optimization methods, evaluating their effectiveness
and runtime performance in perturbation optimization. We
achieve a balance of effectiveness and perception of pertur-
bations by sampling α in Eq. (10). Meanwhile, our proposed
SPEC is a multi-task learning problem, so the setting of β

is an issue of interest. We conduct the ablation study on the
LibriTTS dataset and the BERT-VITS2 model.
Efficiency and Effectiveness of Pivotal Objective. In Sec-
tion 4.1, we have introduced the problem formulation and
illustrated the comparison between vanilla and pivotal unlearn-
able examples. To address a multi-task optimization problem,
we simplify it into a single-task optimization problem and
illustrate the principles of the pivotal function selection strat-
egy. Taking the BERT-VITS2 model as an example, through
the analysis of the convergence speed, we devise a universal
function that is most relevant to the audio content as part of
our target optimization function. This section compares using
the Lmel as the primary objective of optimizing the entire
generator functions in terms of efficiency and time cost.

Table 5 shows our experimental results. Among them, on
BERT-VITS2 we find that the WER increases from 72.435%
to 81.656%, which means less clear speech expression and
noisy background. We find that all have certain unlearnabil-
ity across three models. While achieving better protection,
choosing the pivotal function to optimize can greatly shorten
the noise optimization runtime. In our experiments, the time
for optimizing one identical sample to generate vanilla pertur-
bation is 10.3 seconds, whereas the time required for pivotal
optimized perturbation is 4.0 seconds, resulting in a nearly
61.2% reduction which can be employed for real-world appli-
cation. The improved efficiency is due to the pivotal function
optimization can avoid useless calculations.
Components Analyses. The objective function of SPEC is
described as Eq. (7) which in detail can be divided into three
parts: 1 the pivotal function; 2 the KL divergence using
Gaussian noise to lead the noise-like output; 3 the ℓ1 norm
between random noise and synthetic audio. To investigate how
each function affects the protective effect, we carry out the
ablation study on the LibriTTS dataset, considering the combi-
nation of functions: only 1 , 1 + 2 , 1 + 3 and 1 + 2 + 3 ,

(a) Component comparison. (b) Parameter β comparison.

(c) Comparison of perception and effect across different α.

Figure 5: Ablation study about components analyses and
hyperparameter settings on different evaluation metrics.

respectively. The results in Figure 5a demonstrate the different
effectiveness of the four functions. Among them, the intro-
duction of noise-leading methods in 2 and 3 both yield
better results than using the pivotal loss function 1 alone.
Additionally, we find that the combination of the three func-
tions, 1 + 2 + 3 , performs best on WER and the SIM value
is only 0.21, which is lower than the speaker similarity thresh-
old, indicating outstanding protection of the speaker’s timbre
when combining the three functions as Eq. (7).
Balance of Strength and Perception. In Section 4.2, we in-
troduce a perceptual loss based on two evaluation metrics for
perturbation, i.e., STFT and STOI, to enhance the impercepti-
bility in the time and frequency domain. Eq. (10) shows the
optimization objective of SafeSpeech, while the value of α

influences the effectiveness of protection and imperceptibil-
ity of the perturbation: a larger α results in better auditory
quality but weaker protective effect. We explore the balance
by sampling α from 0.001 to 1 with the SNR as the percep-
tual metric. Figure 5c illustrates the results. We can find that
when α is set to 0.05, the effectiveness metrics are higher than
“Baseline” (here we select PTA), i.e., resulting in an MCD of
12.516, a WER of 84.709%, and a SIM of 0.223. The percep-
tual metric increases from an initial 16.021 to 17.791, which
also surpasses the “Baseline” score of 16.578.
Hyperparameter Study. Our proposed objective Eq. (7)
shows a multi-task optimization problem, in which the value
of the weight coefficient β has a certain impact on the per-
formance of noise optimization. In this experiment, we study
how different values of β impact the unlearnability of pro-
tected audio. We carry out experiments on a single speaker
from LibriTTS and fine-tune the utterances for 100 iterations.
We establish a range for β from 0 to 100, with various inter-
vals, resulting in a total of fifteen distinct β values. Figure
5b shows the results of different β on the MCD and SIM
metrics. We observe that the impact of unlearnability remains
consistent across different values of β, enabling us to achieve



satisfactory results regardless of its specific setting. We find
that when β is set to 0.01 or 10, the timbre is protected achiev-
ing well, while the value of 10 also poisoning the dataset
with a higher MCD of 15.060 compared to 11.356. On this
basis, we have chosen β to be 10, which yields WER and SIM
values of 95.266% and 0.149, respectively. When compared
to the training on clean samples, the MCD and SIM values
stand at 5.217 and 0.648, respectively, thus demonstrating a
remarkable protection performance. The insensitivity of the
protective effect to the hyperparameter indicates the stability.

7 Robustness against Adaptive Attackers

SafeSpeech possesses high robustness against strong adaptive
adversaries. In this section, we consider and conclude three
levels of adversaries: (1) Data Level. Data-level technologies
include perturbation removal in Section 7.1.1, advanced data
augmentation in Section 7.1.2, and optimization-based speech
recovery in Section 7.1.3. (2) Model Level. Adversaries may
employ model recovery in Section 7.2.1, robust training in
Section 7.2.2, and fine-tuning with clean data in Section 7.2.3.
(3) Real-world Level. Protection in the physical world is also a
requirement at a higher level. We will evaluate the robustness
of SafeSpeech in the physical world in Section 7.3, as well as
the performance and time overhead in real-time scenarios.

7.1 Data-Level Robustness

7.1.1 Advanced Perturbation Removal

The embedded perturbation for protecting audio by Safe-
Speech may be detected by adversaries, and they can remove
this noise to improve the synthetic performance. In this sec-
tion, we consider the traditional denoising technique, spectral
gating (SG), as well as the current mainstream and advanced
denoising model based on deep learning, DEMUCS [49].
Traditional Denoise. SG aims to remove the relatively low
value in the time domain of the speech. After training with
SG denoising on audio protected by SafeSpeech, the results
show a WER of 69.321%, and a SIM of 0.233, indicating that
SafeSpeech remains relatively effective under this condition.
Advanced Denoise. DEMUCS can effectively eliminate per-
turbations and obtain approximately clean samples without
a noisy background. We train the model using DEMUCS-
denoised samples, resulting in a WER of 57.329% and a SIM
of 0.284. This indicates that the synthesized speech is dissim-
ilar and of low quality compared to the original samples.
Reason and Analyses. SafeSpeech is robust against tradi-
tional and advanced perturbation removal techniques. This
is because SafeSpeech embeds imperceptible perturbations,
while denoising can remove noise along with some original
speaker information, e.g., timbre, and phoneme features.

Table 6: The robustness quantization via data augmentation
and defensive methods. The underline values indicate the
most significant decreases in protection compared to training
without data augmentation, i.e., SPEC (“w/ o” in the Table).

Metric w/ o
Defense-based [21] Transformation-based Diffusion-based

RS Mel QD FL Speed Mask LPF MP3 AudioPure [64]

MCD(↑) 14.771 14.368 14.679 14.486 13.222 11.455 14.983 13.991 15.097 14.216
WER(↑) 99.610 96.781 99.149 91.363 97.306 97.444 100.899 98.082 93.545 85.711
SIM(↓) 0.204 0.168 0.179 0.238 0.227 0.106 0.247 0.252 0.261 0.227

7.1.2 Data Augmentation

In the real world, the attackers may adopt various data aug-
mentation methods to destroy the specific perturbation to
improve the model performance, so we hope that users’ up-
loaded audio protected by SafeSpeech can retain the consis-
tency of unlearnability when facing real-world speech syn-
thesis attacks with different data augmentation methods. For
a comprehensive evaluation, following [10, 68], we consider
three categories of effective data augmentation techniques:
defense-based, transformation-based, and diffusion-based.
• Defense-based Techniques: These include down-sampling

and up-sampling (RS), mel-spectrogram extraction and in-
version (Mel), quantization-dequantization (QD), and fre-
quency filtering (FL), which are designed to effectively
prevent adversarial audio examples from WaveGuard [21].

• Transformation-based Techniques: This category encom-
passes speed adjustment (Speed), time masking (Mask),
low-pass filtering (LPF), and MP3 compression, which are
commonly applied in real-world audio processing.

• Diffusion-based Techniques: AudioPure [64]. AudioPure
aims to disrupt the perturbed audio by diffusion model,
which represents the SOTA audio defense technique.
From the results in Table 6, we can observe that these data

augmentation techniques diminish the protective effect to a
certain extent. For instance, the WER decreases to 85.711%
by AudioPure, and the SIM metric drops to 0.261 by MP3
Compression. However, compared to clean samples or those
with random noise, the protection remains effective. This indi-
cates that SafeSpeech demonstrates robustness against audio
data augmentation techniques. The reason for this robustness
is that while data augmentation can disrupt the structures of
embedded perturbations, these transformations can also de-
grade speech quality (e.g., MP3 Compression, mel extraction,
and speed adjustment). Consequently, lower-quality speech
samples as input will result in the degradation of both the
quality and similarity of the synthesized speeches.

7.1.3 Optimization-based Speech Recovery

The adversaries may attempt to recover the original speech
from the perturbed state in a “reverse” direction as Safe-
Speech, with the critical challenge of determining the “reverse”
optimization direction. However, the optimization direction



remains unknown due to the lack of clean audio from the orig-
inal speaker. Further analysis reveals that SafeSpeech aims
to conceal the speaker’s privacy by embedding perturbations.
Therefore, the adversaries may leverage two types of feed-
back to determine the optimization direction [10, 68]: (1) The
naturalness score, aiming to restore it to an unperturbed state;
(2) By increasing adversaries’ capabilities, they can query a
speaker recognition system enrolled with the target speaker,
to recover the hidden characteristics.

Following [9, 22], we employ a black-box optimization
method, Natural Evolution Strategies (NES), with a total of
50000 queries to optimize a random sample from the Lib-
riTTS dataset. Then, the reversed sample is cloned by Fish-
Speech, resulting in a SIM value of 0.252. Compared to the
initial perturbed sample of a SIM of 0.168, this optimization-
based method can improve the synthetic performance but is
still far from the original sample’s SIM value of 0.561. The
reasons lie in two aspects. Firstly, adding perturbation during
this optimization degrades the speech quality. Secondly, the
“reverse” direction is estimated and not inaccurate.

7.2 Model-Level Robustness
7.2.1 Model Recovery

In this experiment, we verify the necessity of fine-tuning for
the target speaker and the feasibility of the adversary’s model
recovery technique by effectiveness comparison.

Before performing speech synthesis, the adversary already
possesses a model pre-trained on a large-scale dataset, and
subsequently acquires a protected dataset for fine-tuning, with
the hope of cloning the target speaker. However, after training,
they are unable to clone high-quality audio and realize that
the model may have been perturbed. Consequently, they can
recover from using the original model for voice generation,
so this experiment considers the model scenario and param-
eter restoration. We fine-tune the pre-trained model, BERT-
VITS2, and validate the untrained synthetic voice against
the LibriTTS speaker. The results are an MCD of 14.911, a
WER of 100%, and a SIM of 0.049, indicating that without
fine-tuning, the generated audio is not similar compared to
fine-tuning of MCD at 5.171, WER at 24.024%, and SIM at
0.604. Therefore, direct synthesis without fine-tuning cannot
achieve an effective synthetic result for the target victim.

We also find that the WER value is relatively high, which is
because the released BERT-VITS2 model is trained on a large-
scale dataset without setting the exact speaker number, while
our focus is on fine-tuning for a single speaker. Therefore, it
cannot completely load the weight files; only by fine-tuning
the pre-trained model can we generate audible audio.

7.2.2 Advanced Robust Training

Previous PAP methods show the vulnerability against robust
training techniques [16, 20]. In this section, we employ adver-

Table 7: The model performance across different defensive
perturbation radius ρu and adversarial perturbation radius ρa.

ρa
ρu = 8/255 ρu = 4/255

MCD(↑) WER(%)(↑) SIM(↓) MCD(↑) WER(%)(↑) SIM(↓)

0 14.771 99.610 0.204 10.921 76.110 0.302
2/255 14.592 92.891 0.214 8.538 55.581 0.292
4/255 12.361 99.079 0.147 6.554 55.127 0.315
8/255 11.323 82.504 0.188 7.946 68.467 0.246
10/255 11.060 94.608 0.198 8.621 80.703 0.225
12/255 11.771 107.829 0.220 9.086 84.630 0.243
16/255 12.262 113.238 0.193 10.304 94.940 0.237

sarial training to illustrate the robustness of SafeSpeech.
Adversarial Training. Adversarial training aims to generate
adversarial perturbations by maximizing errors and incorpo-
rating them into training samples to enhance the model’s
robustness and performance. After the adversary obtains the
protected samples, they can maximize the objective function
in Eq. (10) to generate adversarial perturbation that can miti-
gate SafeSpeech. Meanwhile, previous perturbative defense
mechanisms that generate perturbations based on ℓp norm
are vulnerable to attacks if the adversarial perturbation ra-
dius ρa exceeds the defensive data perturbation radius ρu. In
such cases, the effectiveness of data protection significantly
degrades, making non-robust data protection methods easy to
compromise. In this section, for a comprehensive evaluation
of the robustness of data protection, we set ρu to 8/255 and
4/255 respectively, while the ρa is varied across a range of val-
ues: 0,2/255,4/255,8/255,10/255,12/255,16/255, to con-
duct a thorough assessment of the adversarial training.

From Table 7, we can find that when ρa is greater than or
equal to ρu, the data protection effect can be reduced. For
example, when ρa and ρu are both 8/255, MCD and WER
decreased from 14.716 and 97.090% to 11.323 and 82.504%
respectively. However, the attack result of model performance
improvement is still not obvious, far higher than the threshold.
This proves that in the face of adversarial training, whether it
is less than, equal to, or greater than the ℓp radius, the attacker
still cannot maliciously clone the protected data.

7.2.3 Fine-tuning with Clean Data

In this section, we explore if SafeSpeech can be circumvented
by clean-data fine-tuning and analyze its difference from
data poisoning. Adversaries on the Internet may obtain both
clean and SafeSpeech-protected audio samples and employ
the mixed data for training to boost efficiency. If the model
performs poorly on a certain speaker after training, it may
suggest the speaker is protected. Then, they may use clean-
data fine-tuning to reduce the speaker’s impact on the model
and try to recover the model performance.
Training with mixed data. We randomly select five speakers
from the LibriTTS dataset [69], where speaker i is protected,
and the remaining four are clean speakers, forming a mixed
dataset for training on BERT-VITS2. The protected samples



account for approximately 14.6% (108 out of 738) of this
dataset. After training, the results present that cloning speaker
i yielded a WER of 108.336% and a SIM of 0.221 while
testing with clean speakers resulted in a WER of 16.506%
and a SIM of 0.686. This indicates that during joint mixed
training, the protected samples do not interfere with the clean
samples, nor do the clean samples mitigate the protected sam-
ples. Therefore, SafeSpeech only affects the audio that needs
protection, which is distinctly different from data poisoning.
Data poisoning aims to degrade model performance, meaning
perturbed audio would affect the clean samples.
Fine-tuning with clean data. The aforementioned scenario
illustrates that audio protected by SafeSpeech is not mitigated
by clean samples trained alongside it. Therefore, adversaries
may obtain additional clean samples for further fine-tuning
to mitigate the perturbed samples and recover the model’s
performance. We randomly select five new speakers from
the LibriTTS dataset to form a clean sample dataset for fine-
tuning, with a total of 616 training samples. After fine-tuning,
we test models on speaker i and result in a WER of 37.050%
and a SIM of 0.126. It can be observed that fine-tuning with
clean data leads to some improvement in clarity, but the simi-
larity is highly low. This is because fine-tuning with clean data
is conducted after training speaker i which means fine-tuning
overwrites the original speaker’s timbre and replaces it with
the characteristics of the fine-tuned samples, i.e., previous
speakers have not been “learned” to achieve effective cloning.

7.3 Real-World Robustness

In real-world scenarios, e.g., personal on-site presentations
or online live broadcasts, (near) real-time and effective pro-
tection is required. In this section, we test the robustness and
time overhead under real-time requirements in the real world.
We utilize a lightweight TTS model, MB-iSTFT-VITS [27],
as the surrogate model for perturbation generation.
Universality. For a single speaker, we generate perturbation
from an audio sample and apply it to pad or truncate other
samples. After fine-tuning with MB-iSTFT-VITS, the WER
is 72.472%, and SIM is 0.197, indicating SafeSpeech can
protect using just one segment of the target speaker’s audio.
Real-World Protection. We invite a volunteer to read Lib-
riTTS texts in a quiet room for 10 minutes for each test. The
initial volume of the room is 22 dBA. We deploy SafeSpeech
on a GPU-equipped device as the back end. The front end is
a Lenovo laptop with an Intel(R) microphone for recording
and a Lenovo BMS09 speaker for playing noise as the de-
fender. The whole process is: When the microphone captures
about 5 seconds of audio containing the target speaker, the
front end sends the recorded audio to SafeSpeech’s back end
(speaker → microphone → SafeSpeech). SafeSpeech then
generates perturbations from it and continuously sends pertur-
bations to the front-end speaker for playback (SafeSpeech→
speaker), thus achieving real-time protection in the real world.

(a) FishSpeech. (b) XTTS. (c) F5-TTS.

Figure 6: The results of synthetic speaker similarity in the
physical world across three TTS models and volumes.

Given that recording in real-world scenarios may suffer qual-
ity degradation, we apply SG denoise and “loud-norm” [59]
to the audio received by SafeSpeech to enhance vocal clar-
ity. Meanwhile, an adversary records the live sound from a
distance of 50 cm using a mobile device, Android VIVO.
Results and Analyses. Referring to VSMask [61], we evalu-
ate the protection effectiveness of perturbations at volumes
ranging from 40 dBA to 50 dBA, with random noise added as
a reference. We test the volumes for ten seconds and calculate
the averages. We conduct voice cloning tests on three models,
i.e., FishSpeech [37], XTTS [8], and F5-TTS [12]. Figure 6
illustrates the performance in the real world. It shows that
at 40 dBA, SafeSpeech can resist cloning attempts of Fish-
Speech and XTTS, whereas, at 50 dBA, these three models
cannot effectively clone the speaker with a SIM of 0.215 in
FishSpeech. Moreover, we find that SafeSpeech outperforms
random noise. This experiment demonstrates SafeSpeech’s
robustness in the real world. The reason for robustness lies
that real-world recording is equivalent to a transformation,
and SafeSpeech can resist data augmentation (Section 7.1.2).
Time Overhead. We build SafeSpeech on an NVIDIA A800
GPU device and average results over ten runs for reliability.
The whole process, from getting the initial audio to complete
playback, takes 13.898 seconds. It takes 10.606 seconds to
generate perturbation for the speaker and 0.369 seconds to
transmit the noise via various devices and networks. Com-
pared to VSMask [61], a real-time voice defender that takes
about 300 seconds to predict a speaker, SafeSpeech can pro-
tect on average in just a 14-second lead time for continu-
ous protection. The outstanding real-time capability comes
from the pivotal function of decreasing the computational
time and the choice of a lightweight surrogate model.

8 Discussions and Limitations

In this section, we discuss some unavoidable points.
Distinction from Data Poisoning. We aim that the protected
data cannot be learned by the TTS models. The experiment
in Section 7.2.3 illustrates this point. If an adversary unautho-
rizedly obtains the target speaker’s voice in a batch of data,
this batch of data cannot be learned or cloned, and it does not
affect the use of other authorized data. Data poisoning aims to
degrade the model’s performance. Although it protects unau-



thorized use to some extent, it also interferes with the use of
authorized data, thus affecting the right of other data to be
used, which is not our intention. Although SafeSpeech is like
data poisoning, our purpose and results are quite different.
Benifits. Compared to adversarial-example-based voice pro-
tection techniques [19, 61, 68], we propose the pivotal ob-
jective optimization based on unlearnable examples that can
effectively achieve training stage protection with a broader
application rather than zero-shot. Compared to PAP meth-
ods [11, 15, 20], we introduce the SPEC technique based on
KL divergence to guide the model output towards noise audio
with the actual speaker information seemly “Consealing”.
Further Effectiveness Enhancement. In the future, we can
improve the effectiveness of SafeSpeech by two measures.
First, since the generation of perturbations is constrained by
ℓp norm, increasing the perturbation radius can yield better ef-
fects, as proven by the experiment in Appendix D.3. Simulta-
neously, we can improve the acceptability of the perturbation
by proposed STFT and SIOT metrics. Secondly, utilizing the
surrogate model can be considered. From the experiment in
Appendix D.2, we can find that the specific perturbations gen-
erated on this model slightly outperform transferability-based
samples. Therefore, to improve the effectiveness of unknown
models, an ensemble of models can be employed as [68],
although this will come with a significant computational cost.
Broader Protective Strength. (1) Effectiveness. We have
evaluated the effectiveness of SafeSpeech under fine-tuning
and zero-shot scenarios on single and multiple-speaker
datasets. (2) Transferability. We use one surrogate model
to protect the dataset and validate the transferability across
the other ten models. (3) Robustness and Real-Time. We have
considered a wide range of robustness in data, model, and
real-world levels and confirm the real-time capability under
speaker→ microphone→ SafeSpeech→ speaker chain.
Long and Complex Audio. In daily utilization, users may
aim to protect much longer audio samples. SafeSpeech has
scalability and can handle longer and more complex audio.
In Section 7.3, the volunteer read audio that lasted about 10
minutes each test. Due to the universality of SafeSpeech, the
generated perturbations can be scaled to longer audio. We
have also demonstrated this point with the audio volume of
approximately two hours for the two datasets in Section 6.1.
Section 7.3 also demonstrates that the transmission time of
the perturbations on different devices is only 0.369 seconds
each time, which is acceptable. For more complex audio, e.g.,
containing significant noise, TTS models tend to produce
lower-quality outputs even without protection by SafeSpeech.

9 Related Work

9.1 Audio Privacy Preservation
Current voice privacy-enhancing techniques also include
speaker anonymization [14, 40] and audio watermarking [71].

Speaker anonymization aims to protect the speaker’s identity
in voice data while preserving the speech content [53]. Phys-
ical anonymization [17] can be used to isolate the original
speech, while logical anonymization [66] bypass the authenti-
cation system. Audio watermarking aims to protect the audio
copyright [42], content authentication [5], timbre certifica-
tion [38], etc., without altering the original audio quality by
embedding specific information. However, these methods can-
not achieve SA2 with high-quality synthesis.

9.2 Perturbative Availability Poisons
PAP techniques are designed to prevent models from learn-
ing (e.g., by adding perturbations to the data) [20, 39, 60].
Huang et al. [20] found that the model learns the embedded
error-minimizing noise rather than the information on clean
labels. Building on this, Fowl et al. [15] utilized adversarial
examples for more effective data poisoning. Yu et al. [67]
generated linearly separable Gaussian perturbations in the
ℓ2 plane. These approaches have achieved SOTA PAP in the
classification tasks [39]. Models may incorrectly assume that
the data is not worth learning during the learning process due
to the effect of specific clean-label noise, and thus discard
noisy data due to fitting problems, resulting in unlearnable
datasets. However, unlearnable examples [20] are fragile to
data augmentation [63] and robust training [16], which can
weaken the poisoning effect on unlearnable examples.

10 Conclusion

In this paper, we propose a proactive defense framework,
SafeSpeech, to protect our voices from unauthorized speech
synthesis via embedding imperceptible perturbations on orig-
inal speeches before publicly releasing them. Extensive ex-
perimental evaluation shows that SafeSpeech has the most
advanced voice protection effect to date, sufficient transfer-
ability to face various TTS models with distinct structures
and backbones, and can resist the strength of various adaptive
attackers in the real world. Moreover, SafeSpeech can effec-
tively achieve real-time voice protection under scenarios of
personal on-site presentations and reduce the security threats
brought by voice cloning in the real world.
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Ethics Considerations

We pay great attention to the potential safety issues that var-
ious research in society may raise, including those arising
during the experimental phase and the release of SafeSpeech
for use. In this paper, we strive to mitigate ethical concerns.
Subjective Consideration. A crucial purpose of our method
is to prevent individuals from being deceived by deepfake
audio, making human interaction experiments particularly im-
portant. Before conducting experiments, we considered eth-
ical implications and sought opinions from relevant entities.
The primary author’s affiliated Human Ethics Research Com-
mittee determined that this study was exempt from further hu-
man subject review. All participants are over 18 years old, and
we have sought their consent before experimenting. Through-
out the experiment, no additional information was collected
from the participants; all responses were anonymized. At the
same time, we have informed them in advance that the con-
tent in these audios (LibriTTS dataset [69]) comes from an
audiobook, and it is not a real event. Finally, the fake audio
produced by this experiment (especially high-quality usable
audio) is only used for the research of this experiment, not for
other research, and these deepfake speeches were abandoned
after the research was carried out.
Legitimate and Beneficial Usage. The initial intention of de-
signing SafeSpeech is to prevent malicious speech synthesis
and protect personal voice privacy. However, we recognize
that speech synthesis can also be legitimate and beneficial,
such as for disabled individuals who require speech synthe-
sis tools. Therefore, SafeSpeech should not impede positive
speech synthesis. Experimental results detailed in Section
7.2.3 demonstrate that training with a mix of protected and
clean audio does not affect the synthesis quality of unpro-
tected voices by SafeSpeech. Moreover, we will release Safe-
Speech by authorized request. If users want to utilize Safe-
Speech to protect their voices, they need to obtain our written
usage authentication and fill in the usage rules of SafeSpeech,
which state that legitimate and beneficial uses of TTS tools are
not allowed to be perturbed. Meanwhile, they should sign rel-
evant disclaimer clauses to ensure that their usage behaviors
are not related to the designer and publisher of SafeSpeech.

Open Science

Before commencing the experiments, we are grateful for the
open-source nature of the software and dataset used in this
work and have taken into account the benefits that the prin-
ciples of open science bring to research. Therefore, we have
opened our source code, datasets, and pre-trained models on
https://zenodo.org/records/14736906, accompanied by a de-
tailed description, e.g., the README file. The datasets and mod-
els we used are all open-source files, with no proprietary
datasets or models, and we have provided references or links
to pre-trained models for indexing.

References

[1] Bert-vits2. https://github.com/fishaudio/
Bert-VITS2, 2024.

[2] Gpt-sovits. https://github.com/RVC-Boss/
GPT-SoVITS, 2024.

[3] Ttsds. https://huggingface.co/spaces/ttsds/
benchmark, 2024.

[4] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
and S. Anadkat. Gpt-4 technical report. arXiv, 2023.

[5] A. A. AlSabhany, A. H. Ali, and M. Alsaadi. A
lightweight fragile audio watermarking method using
nested hashes for self-authentication and tamper-proof.
Multimedia Tools and Applications, 2024.

[6] K. Baba, W. Nakata, Y. Saito, and H. Saruwatari. The
t05 system for the VoiceMOS Challenge 2024: Transfer
learning from deep image classifier to naturalness MOS
prediction of high-quality synthetic speech. In SLT,
2024.

[7] J. Betker. Better speech synthesis through scaling. arXiv,
2023.

[8] E. Casanova, K. Davis, E. Gölge, G. Göknar, I. Gulea,
L. Hart, A. Aljafari, J. Meyer, R. Morais, and S. Olayemi.
Xtts: a massively multilingual zero-shot text-to-speech
model. In INTERSPEECH, 2024.

[9] G. Chen, S. Chenb, L. Fan, X. Du, Z. Zhao, F. Song, and
Y. Liu. Who is real bob? adversarial attacks on speaker
recognition systems. In SP, 2021.

[10] G. Chen and Y. Zhang. Songbsab: A dual prevention
approach against singing voice conversion based illegal
song covers. In NDSS, 2025.

[11] S. Chen, G. Yuan, X. Cheng, Y. Gong, M. Qin, Y. Wang,
and X. Huang. Self-ensemble protection: Training
checkpoints are good data protectors. In ICLR, 2023.

[12] Y. Chen, Z. Niu, Z. Ma, K. Deng, C. Wang, J. Zhao,
K. Yu, and X. Chen. F5-tts: A fairytaler that fakes fluent
and faithful speech with flow matching. arXiv, 2024.

[13] B. Desplanques, J. Thienpondt, and K. Demuynck.
Ecapa-tdnn: Emphasized channel attention, propagation
and aggregation in tdnn based speaker verification. In
INTERSPEECH, 2020.

[14] F. Fang, X. Wang, J. Yamagishi, I. Echizen, M. Todisco,
N. Evans, and J. Bonastre. Speaker anonymization using
x-vector and neural waveform models. In SSW, 2019.

https://zenodo.org/records/14736906
https://github.com/fishaudio/Bert-VITS2
https://github.com/fishaudio/Bert-VITS2
https://github.com/RVC-Boss/GPT-SoVITS
https://github.com/RVC-Boss/GPT-SoVITS
https://huggingface.co/spaces/ttsds/benchmark
https://huggingface.co/spaces/ttsds/benchmark


[15] L. Fowl, M. Goldblum, P. Chiang, J. Geiping, W. Czaja,
and T. Goldstein. Adversarial examples make strong
poisons. In NeurIPS, 2021.

[16] S. Fu, F. He, Y. Liu, L. Shen, and D. Tao. Robust un-
learnable examples: Protecting data privacy against ad-
versarial learning. In ICLR, 2022.

[17] K. Hashimoto, J. Yamagishi, and I. Echizen. Privacy-
preserving sound to degrade automatic speaker verifica-
tion performance. In ICASSP, 2016.

[18] P. He, J. Gao, and W. Chen. Debertav3: Improving
deberta using electra-style pre-training with gradient-
disentangled embedding sharing. In ICLR, 2023.

[19] C. Huang, Y. Y. Lin, H. Lee, and L. Lee. Defending
your voice: Adversarial attack on voice conversion. In
IEEE SLT, 2021.

[20] H. Huang, X. Ma, S. M. Erfani, J. Bailey, and Y. Wang.
Unlearnable examples: Making personal data unex-
ploitable. In ICLR, 2021.

[21] S. Hussain, P. Neekhara, S. Dubnov, J. McAuley, and
F. Koushanfar. {WaveGuard}: Understanding and miti-
gating audio adversarial examples. In USENIX Security,
2021.

[22] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box
adversarial attacks with limited queries and information.
In ICML, 2018.

[23] K. Ito and L. John. The lj speech dataset. https:
//keithito.com/LJ-Speech-Dataset/, 2017.

[24] W. Jang, D. Lim, J. Yoon, B. Kim, and J. Kim. Univnet:
A neural vocoder with multi-resolution spectrogram dis-
criminators for high-fidelity waveform generation. In
INTERSPEECH, 2021.

[25] Z. Jiang, J. Liu, Y. Ren, J. He, Z. Ye, S. Ji, Q. Yang,
C. Zhang, P. Wei, C. Wang, X. Yin, Z. Ma, and Z. Zhao.
Mega-TTS 2: Boosting prompting mechanisms for zero-
shot speech synthesis. In ICLR, 2024.

[26] T. Kaneko, K. Tanaka, H. Kameoka, and S. Seki. istftnet:
Fast and lightweight mel-spectrogram vocoder incorpo-
rating inverse short-time fourier transform. In ICASSP,
2022.

[27] M. Kawamura, Y. Shirahata, R. Yamamoto, and
K. Tachibana. Lightweight and high-fidelity end-to-end
text-to-speech with multi-band generation and inverse
short-time fourier transform. In ICASSP, 2023.

[28] J. Kim, S. Kim, J. Kong, and S. Yoon. Glow-tts: A gen-
erative flow for text-to-speech via monotonic alignment
search. In NeurIPS, 2020.

[29] J. Kim, J. Kong, and J. Son. Conditional variational
autoencoder with adversarial learning for end-to-end
text-to-speech. In ICML, 2021.

[30] J. Kominek. Cmu arctic databases for speech synthesis.
CMU-LTI, 2003.

[31] J. Kong, J. Kim, and J. Bae. Hifi-gan: Generative ad-
versarial networks for efficient and high fidelity speech
synthesis. In NeurIPS, 2020.

[32] R. Kubichek. Mel-cepstral distance measure for objec-
tive speech quality assessment. In PACRIM, 1993.

[33] K. Kumar, R. Kumar, T. De Boissiere, L. Gestin, W. Z.
Teoh, J. Sotelo, A. De Brebisson, Y. Bengio, and A. C.
Courville. Melgan: Generative adversarial networks for
conditional waveform synthesis. In NeurIPS, 2019.

[34] C. S Legislature. California consumer privacy act of
2018, 2018.

[35] N. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu. Neural speech
synthesis with transformer network. In AAAI, 2019.

[36] Y. A. Li, C. Han, V. Raghavan, G. Mischler, and N. Mes-
garani. Styletts 2: Towards human-level text-to-speech
through style diffusion and adversarial training with
large speech language models. In NeurIPS, 2024.

[37] S. Liao, Y. Wang, T. Li, Y. Cheng, R. Zhang, R. Zhou,
and Y. Xing. Fish-speech: Leveraging large language
models for advanced multilingual text-to-speech synthe-
sis. arXiv, 2024.

[38] C. Liu, J. Zhang, T. Zhang, X. Yang, W. Zhang, and
N. Yu. Detecting voice cloning attacks via timbre wa-
termarking. In NDSS, 2024.

[39] Z. Liu, Z. Zhao, and M. Larson. Image shortcut squeez-
ing: Countering perturbative availability poisons with
compression. In ICML, 2023.

[40] X. Miao, X. Wang, E. Cooper, J. Yamagishi, and
N. Tomashenko. Speaker anonymization using orthogo-
nal householder neural network. TASLP, 2023.

[41] L. Muñoz-González, B. Biggio, A. Demontis, A. Pau-
dice, V. Wongrassamee, E. C. Lupu, and F. Roli. To-
wards poisoning of deep learning algorithms with back-
gradient optimization. In AISec, 2017.

[42] I. Natgunanathan, P. Praitheeshan, L. Gao, Y. Xiang,
and L. Pan. Blockchain-based audio watermarking tech-
nique for multimedia copyright protection in distribution
networks. TOMM, 2022.

[43] Y. Ning, S. He, Z. Wu, C. Xing, and L. Zhang. A re-
view of deep learning based speech synthesis. Applied
Sciences, 2019.

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/


[44] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur.
Librispeech: an asr corpus based on public domain audio
books. In ICASSP, 2015.

[45] Z. Qin, W. Zhao, X. Yu, and X. Sun. Openvoice: Versa-
tile instant voice cloning. arXiv, 2023.

[46] A. Radford, J. W. Kim, T. Xu, G. Brockman,
C. McLeavey, and I. Sutskever. Robust speech recogni-
tion via large-scale weak supervision. In ICML, 2023.

[47] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. Language models are unsupervised multi-
task learners. OpenAI blog, 2019.

[48] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and
T. Liu. Fastspeech 2: Fast and high-quality end-to-end
text to speech. In ICLR, 2021.

[49] S. Rouard, F. Massa, and A. Défossez. Hybrid trans-
formers for music source separation. In ICASSP, 2023.

[50] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly,
Z. Yang, Z. Chen, Y. Zhang, Y. Wang, and R. Skerrv-
Ryan. Natural tts synthesis by conditioning wavenet on
mel spectrogram predictions. In ICASSP, 2018.

[51] K. Shen, Z. Ju, X. Tan, E. Liu, Y. Leng, L. He, T. Qin,
S. Zhao, and J. Bian. Naturalspeech 2: Latent diffusion
models are natural and zero-shot speech and singing
synthesizers. In ICLR, 2024.

[52] H. Siuzdak. Vocos: Closing the gap between time-
domain and fourier-based neural vocoders for high-
quality audio synthesis. arXiv, 2023.

[53] B. M. L. Srivastava, N. Vauquier, M. Sahidullah, A. Bel-
let, M. Tommasi, and E. Vincent. Evaluating voice
conversion-based privacy protection against informed
attackers. In ICASSP, 2020.

[54] C. Stupp. Fraudsters used ai to mimic ceo’s voice in
unusual cybercrime case. The Wall Street Journal, 2019.

[55] X. Tan, J. Chen, H. Liu, J. Cong, C. Zhang, Y. Liu,
X. Wang, Y. Leng, Y. Yi, and L. He. Naturalspeech:
End-to-end text-to-speech synthesis with human-level
quality. TPAMI, 2024.

[56] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu. Data
poisoning attacks against federated learning systems. In
ESORIC, 2020.

[57] H. Touvron, T. Lavril, G. Izacard, X. Martinet,
M. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Ham-
bro, and F. Azhar. Llama: Open and efficient foundation
language models. arXiv, 2023.

[58] H. Touvron, L. Martin, K. Stone, P. Albert, A. Alma-
hairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
and S. Bhosale. Llama 2: Open foundation and fine-
tuned chat models. arXiv, 2023.

[59] E. Vickers. The loudness war: Background, speculation,
and recommendations. In Audio Engineering Society
Convention 129, 2010.

[60] D. Wang, M. Xue, B. Li, S. Camtepe, and L. Zhu. Prov-
ably unlearnable data examples. In NDSS, 2025.

[61] Y. Wang, H. Guo, G. Wang, B. Chen, and Q. Yan. VS-
Mask: Defending against voice synthesis attack via real-
time predictive perturbation. In WISEC, 2023.

[62] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss,
N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, and S. Bengio.
Tacotron: Towards end-to-end speech synthesis. arXiv,
2017.

[63] S. Wu, S. Chen, C. Xie, and X. Huang. One-pixel short-
cut: On the learning preference of deep neural networks.
In ICLR, 2023.

[64] S. Wu, J. Wang, W. Ping, W. Nie, and C. Xiao. Defend-
ing against adversarial audio via diffusion model. In
ICLR, 2023.

[65] C. Yang, Q. Wu, H. Li, and Y. Chen. Generative poi-
soning attack method against neural networks. arXiv,
2017.

[66] J. Yao, Q. Wang, P. Guo, Z. Ning, and L. Xie. Distinctive
and natural speaker anonymization via singular value
transformation-assisted matrix. TASLP, 2024.

[67] D. Yu, H. Zhang, W. Chen, J. Yin, and T. Liu. Availabil-
ity attacks create shortcuts. In KDD, 2022.

[68] Z. Yu, S. Zhai, and N. Zhang. Antifake: Using adversar-
ial audio to prevent unauthorized speech synthesis. In
CCS, 2023.

[69] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia,
Z. Chen, and Y. Wu. Libritts: A corpus derived from
librispeech for text-to-speech. arXiv, 2019.

[70] H. Zhang, X. Zhang, and G. Gao. Training supervised
speech separation system to improve stoi and pesq di-
rectly. In ICASSP, 2018.

[71] X. Zhang, X. Sun, X. Sun, W. Sun, and S. K. Jha. Robust
reversible audio watermarking scheme for telemedicine
and privacy protection. Computers, Materials & Con-
tinua, 2022.

[72] Z. Zhang and P. Huang. Hiddenspeaker: Generate im-
perceptible unlearnable audios for speaker verification
system. In IJCNN, 2024.



A Summary and Comparison of Related Work

In Table 8, we describe the comparison between SafeSpeech
and related works, including type, whether the perturba-
tion is end-to-end, protection stage, target task, transferabil-
ity enhancement technique, imperceptibility method, real-
time capability, and application scenario. Previous protec-
tion techniques can mainly be classified into two categories,
perturbative availability poisons and voice protection. PAP
safeguards data by preventing its unauthorized use in model
training. “Availability” in the PAP means that the source data
cannot be used for training purposes [67]. Voice protection
employs adversarial examples to prevent voice cloning at the
inference stage and protect personal identification.

B Details of Datasets and Models

In this section, we provide detailed information on datasets
and models utilized in the experiments.

Table 9: The detailed information of our selected datasets.

Name Nums Speakers (M/F) Sampling Rate Max/Min Length Average Length

D1 134 1 (0/1) 24000 9.94/0.61 (s) 4.51 (s)

D2 1800 18 (11/7) 16000 6.69/1.20 (s) 3.15 (s)

D1 and D2 represent the dataset LibriTTS and CMU ARCTIC respectively.

Dataset Information. Some details about the two datasets we
selected are shown in Table 9 including numbers of samples,
speaker categories, sampling rate of the dataset, maximum
length, minimum length, and average length of dataset.

Table 10: The detailed information of our selected models.

Models Type Structure Vocoder LLM NAR Hours

BERT-VITS2 [1] fine-tuning LLM + VAE HiFiGAN [31] DeBERTaV3 [18] - -

FishSpeech [37] zero-shot
LLM + Dual-AR Firefly-GAN Llama [57] % 720K

F5-TTS [12] flow matching Vocos [52]

-

!

95K

GlowTTS [28] fine-tuning flow-based
HiFiGAN [31]

24

MB-iSTFT-V [27] iSTFT + VAE 24

OpenVoice [45] zero-shot encoder-decoder 3.5K

StyleTTS 2 [36] fine-tuning diffusion-based
HiFiGAN [31]
iSTFTNet [26] 245

TorToise-TTS [7] zero-shot diffusion-based UnivNet [24] % 46K

VITS [29] fine-tuning VAE HiFiGAN [31] ! 24

XTTS [8] zero-shot LLM + VQ-VAE GPT-2 [47] % 27K

(1)VQ-VAE: Vector Quantized-Variational AutoEncoder. (2) Dual-AR: Dual Autoregressive.
(3) iSTFT: inverse Short-Time Fourier Transform. (4) FireflyGAN: FireflyGAN is an enhanced
vocoder proposed in the FishSpeech.

Model Information. To facilitate a more comprehensive com-
parison of the various models, we show the Table 10. This
table highlights differences among models across several key
dimensions: model type, structure, incorporation of the LLM
component, non-autoregressive (NAR) status, and the volume
of training dataset for the base models. In cases where models
do not incorporate the LLM component, this is indicated with

a dash (“-”) in the corresponding “LLM” column. It should
be noted that for BERT-VITS2, official disclosure regarding
the volume of training data is unavailable.

C Details of User Study

Filtering. To ensure participant seriousness, we designed
two simple English arithmetic questions in the questionnaire
at random positions. Incorrect answers to these questions
indicated a lack of seriousness, leading to the exclusion of
those responses. Additionally, we filtered out participants who
provided identical or random answers throughout.
Experimental Generalizability. To minimize the bias intro-
duced by subjective experiments and enhance the generaliz-
ability of the survey, we have employed several techniques.
(1) Adequate Participants. Compared to related works such as
AntiFake [68], which used 24 participants, and VSMask [61],
which used 25 participants, we invited 80 individuals to take
part in our survey. (2) Randomization and Anonymization:
The order of questions in the questionnaire was completely
randomized. We provided no hints or additional instructions
within the questions, and participants had no way of know-
ing which algorithm generated the audio they were currently
listening to. (3) Confidence Interval: Considering the poten-
tial bias, e.g., personal preferences of participants, in result
calculations of the subjective survey, we computed a 95% con-
fidence interval for MOS and naturalness values to provide
more reliable results as Eq. (11) and (12).

We assume that the MOS score of model i is µi, and in
addition, the 95% confidence interval [33] score is CIi, which
can be calculated using the following formula:

µ̂i =
1
Ni
·

Ni

∑
k=1

mi,k, (11)

CIi =

[
µ̂i−1.96

σ̂i√
Ni

, µ̂i +1.96
σ̂i√
Ni

]
, (12)

where σ̂i is the standard deviation of the scores collected.
Rating Principles In the questionnaire, participants listened
to each audio and rated its quality from 0 to 5 based on their
subjective perception. A score of 5 indicates excellent audio
quality (smooth and noise-free). 4 suggests good quality (min-
imal noise and delays, easy to understand). 3 means average
quality (with noise and delays but understandable). 2 denotes
fairly poor quality (requiring multiple repetitions to under-
stand). 1 indicates poor quality (very hard to understand), and
0 represents extremely poor quality (completely inaudible).

D Additional Experiments

In this section, we conduct an easier fine-tuning model, lever-
aging a web interface operation. Additionally, we study the
impact of the surrogate model and noise radius of the ℓp norm.



Table 8: Comparison of SafeSpeech and related works.

Method Type E2E Stage Target Task Transferability Imperceptibility Real-Time Application Scenario
Unlearnable
Examples [20]

Perturbative
Availability

Poison

!
Training image

classification

%
ℓ∞ norm

%

Protect data
against authorized training.

AdvPoison [15]

SEP [11] checkpoint ensemble

PTA [20, 29]
%

%

patch segment

AttackVC [19]
Voice Protection of

Identification Inference
voice conversion

ℓ∞ norm Protect personal
voice information against
malicious voice cloning.

VSMask [61]
!

zero-shot
speech synthesis

!

AntiFake [68] encoder ensemble Frequency Penalty and SNR %

SafeSpeech
(ours)

Voice Protection of
Synthesis Quality and

Identification
! Training

zero-shot and
fine-tuning

speech synthesis

pivotal and universal
objective optimization

STFT and STOI metrics
(time and frequency domain) !

(1)Transferability: The improvement techniques of transferability. (2) E2E: “End-to-End” represents whether the perturbation is embedded into the entire waveform not
in the latent space. (3) The source code of VSMask is not public and unavailable.

Table 11: The transferability performance when regarding
MB-iSTFT-VITS as our surrogate model.

Method BERT-VITS2 MB-iSTFT-VITS

MCD(↓) WER(%)(↓) SIM(↑) MCD(↓) WER(%)(↓) SIM(↑)

clean 5.099 25.095 0.625 5.139 20.913 0.623
PTA 9.949 59.646 0.266 8.892 47.569 0.219

SPEC (ours) 12.791 93.552 0.215 12.374 124.142 0.159

D.1 WebUI Operation

Recently, an efficiently fine-tuning TTS synthesis model
named GPT-SoVITS [2] has garnered over 38K stars in the
GitHub community, which supports WebUI-based training.

GPT-SoVITS has received numerous positive feedback as
public users are amazed at its convenience, high performance,
and efficient training operation. It consists of GPT [47] and
a VITS-based synthesizer, utilizing an LLM component to
make the synthesizer understand the text better. The two parts
are trained separately. To reproduce the attackers’ training
process, we use the web-based training method provided by
the authors. We upload SafeSpeech-protected audio to the des-
ignated path and do audio size division, automatic text recog-
nition, and annotation. Unlike previous experiments where
training text was manually annotated, we employ Whisper
in Section 5.4 to recognize text. Then we set the training
iterations for SoVITS and GPT as 25 and 50 respectively and
evaluate the performance on the web-based page.

The result shows that the SIM metric of the synthetic
speeches is only 0.25, meaning the dissimilarity between
synthetic and original speeches. In this experiment, we fine-
tune a well-known and advanced TTS model by web-based
operation, which ensures that we have not modified the model
and simulate a possible training scenario in the real world.

D.2 Alternative Surrogate Model Choice

SafeSpeech protects datasets based on the surrogate model.
In previous experiments, we choose BERT-VITS2 as the sur-

Table 12: Quantitative analysis on different perturbation
boundary ε with 4/255 and 16/255 on BERT-VITS2 model.

Methods
4/255 16/255

MCD(↑) WER(%)(↑) SIM(↓) MCD(↑) WER(%)(↑) SIM(↓)

clean 5.099 25.095 0.625 5.099 25.095 0.625
random noise 5.334 34.575 0.584 6.614 43.142 0.433

AdvPoison [15] 7.059 46.030 0.403 13.718 91.525 0.205
SEP [11] 6.084 44.926 0.401 12.737 83.804 0.263
PTA [20] 7.360 49.553 0.342 17.040 89.875 0.206

SPEC (ours) 10.921 76.110 0.302 18.634 105.385 0.093

rogate model in our previous experiments, while our methods
have no limitation on model selection. Therefore, the user
can utilize the specific model for specific scenarios, e.g., MB-
iSTFT-VITS in real-time applications.

Table 11 shows the experimental results when regarding
MB-iSTFT-VITS as the surrogate model. We can find that
after training on the protected dataset, the value WER of
124.142% means highly unclear synthesized audio, with a
speaker similarity from 0.623 trained on the clean samples
to 0.159, and the ASR of the speech synthesis attack is only
3.846% representing a successful defense. Moreover, the per-
turbation is also transferable on BERT-VITS2. This experi-
ment serves as an excellent demonstration of the versatility of
SafeSpeech in design, that noise generation does not depend
on a specific model with high effectiveness and transferability.

D.3 Perturbation Boundaries
The perturbation radius ε plays an important role in the ℓp
norm constraints of SafeSpeech. Higher ε can achieve better
effects but worse perception. Table 12 presents the results
when ε is 4/255 and 16/255, respectively. When ε takes
16/255, it can be found that the data protection effect is ex-
cellent, with SIM of only 0.093 and attack success rate of 0%,
and WER of 105.385%, which means a successful defense.
If users aim to realize stronger strength to mitigate the cir-
cumvention of SafeSpeech, larger ε can be set, containing the
perceptual optimization in Section 4.2.
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