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Abstract
Multiplication and other non-linear operations are widely

recognized as the most costly components of secure two-party
computation (2PC) based on linear secret sharing. Moreover,
the comparison protocol (or Wrap protocol) is essential for
various operations such as truncation, signed extension, and
signed non-uniform multiplication. This paper aims to opti-
mize these protocols by avoiding invoking the costly compar-
ison protocol, thereby improving their efficiency.

We propose a novel approach to study 2PC from a geomet-
ric perspective. Specifically, we interpret the two shares of
a secret as the horizontal and vertical coordinates of a point
in a Cartesian coordinate system, with the secret itself repre-
sented as the corresponding point. This reformulation allows
us to address the comparison problem by determining the
region where the point lies. Furthermore, we identify scenar-
ios where the costly comparison protocol can be replaced
by more efficient evaluating AND gate protocols within a
constrained range. Using this method, we improve protocols
for truncation, signed extension and signed non-uniform mul-
tiplication, all of which are fundamental to 2PC. In particular,
for the one-bit error truncation protocol and signed extension
protocols, we reduce the state-of-the-art communication com-
plexities of Cheetah (USENIX’22) and SirNN (S&P’21) from
≈ λ(l +1) to ≈ λ in two rounds, where l is the input length
and λ is the security parameter. For signed multiplication with
non-uniform bit-width, we reduce the communication cost of
SirNN’s by 40% to 60%.

1 Introduction

In today’s digital age, data plays a crucial role in society and
individual lives. However, certain data is sensitive and can
not be exposed to others, which limits its potential utility.
To address this issue, the concept of secure computation has
emerged. Secure multi-party computation (MPC) [7, 26, 27],
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a fundamental cryptographic primitive, enables multiple par-
ticipants to jointly evaluate a function without exposing their
inputs. Participants can not obtain additional information ex-
cept for the function’s output.

Machine learning has become a highly influential field in re-
cent years, demonstrating significant potential for application
and innovation across various domains. However, address-
ing data security concerns in machine learning has gradually
become a research hot-spot. Notable contributions in two-
party secure inference have been proposed recently, such as
CrypTFlow2 [24], Delphi [20], SirNN [23], CipherGPT [11],
moreover the works of SecureML [21], MiniONN [17], Chee-
tah [13], SecretFlow [18] and ABY2 [22] also focus on the
training phase. Due to the complex operations involved in
machine learning frameworks, general methods in secure
two-party computation are not suitable for directly design-
ing privacy-preserving machine learning (PPML) schemes.
This necessitates the development of customized and efficient
protocols, as demonstrated in works such as [6, 9, 16, 19, 28].

It is well established that multiplication and non-linear op-
erations, such as truncation and comparison, are the primary
performance bottlenecks in secure two-party computation
(2PC). For example, truncation contributes more than 50%
of communication overhead in CrypTFlow2 [13, 24], and the
comparison protocol accounts for more than 68% of the to-
tal runtime in CryptGPU [25, 28]. In PPML schemes, real
numbers must be encoded into fixed-point representation, and
secure two-party computation protocols are performed over
a ring Z2l . As for non-linear operations, OT-based protocols
on ring Z2l can perform 40% ∼ 60% better than on the prime
field Zp in terms of bandwidth consumption [13]. For linear
layers, computing the product of two fixed-point numbers is
required to perform matrix multiplication and convolution
operations. As a result, the decimal places in the product
with fixed-point representation form will increase, then trun-
cation is required to maintain the precision of decimal and
prevent overflow. A detailed analysis of this protocol shows
that the cost of truncation is nearly half that of multiplica-
tion, accounting for over one-third of the total cost in the



multiplication-then-truncation protocol.
The expensive truncation protocol primarily depends on

a comparison or Wrap protocol, which can be regarded as
a variant of the Millionaires’ problem [27]. Specifically, in
secure two-party computation, a secret value x is shared as x=
x0 + x1 mod L, where participant P0 holds x0 and participant
P1 holds x1. Alternatively, this can be expressed as x = x0 +
x1−w ·L, where w= 1 if x0+x1 ≥ L, and w= 0 otherwise. To
implement the truncation protocol, we first need to compute w,
which involves determining whether x0+x1 ≥ L (i.e., whether
x0 ≥ L− x1, where P0 holds x0 and P1 holds L− x1). The
communication complexity of this comparison protocol is
O(λl) in O(log l) rounds [24].

We also observed that the comparison protocol significantly
contributes not only to truncation but also to signed exten-
sion and signed non-uniform multiplication in SirNN [23],
making these operations computationally and communica-
tionally expensive when dealing with signed numbers. We
focus on secure two-party computation (2PC) in the semi-
honest setting and are motivated by the need to reduce the
costs associated with truncation, signed extension, and signed
non-uniform multiplication protocols, thereby enhancing the
overall performance of 2PC.

1.1 Our Contributions
In this work, we address the challenges associated with design-
ing protocols for functions with signed inputs by proposing
a novel geometric method. This method allows us to replace
the costly comparison protocol with more efficient evaluating
AND gate protocols when the input is constrained, thereby
reducing communication costs and improving efficiency.
Formal contributions. We achieve the following contribu-
tions:

• We introduce an innovative geometric method for de-
signing and optimizing secure two-party computation
protocols for signed functions, which can also serve as a
valuable research tool in MPC.

• We apply our geometric method to develop new proto-
cols for truncation, signed extension and signed multipli-
cation with non-uniform bitwidths. Compared to state-
of-the-art protocols, our approach significantly improves
both runtime and communication efficiency.

To be more specific, the results of our proposed applications
can be listed as follows.

New truncation protocols. This work proposes both one-
bit error truncation protocol and faithful truncation proto-
col, designed to truncate k bits from an l-bit shared value x.
Compared to the state-of-the-art truncation protocols in Chee-
tah [13] and SirNN [23], our new one-bit error and faithful
truncation protocols achieve a communication improvement

by factors approximately l +1 and l+3
k+1 , respectively. The de-

tails of communication comparison are shown in Table 1(a).
For typical parameters l = 37 and k = 12, experimental results
show that our one-bit error and faithful truncation protocols
have an approximate 35× and > 3× improvement compared
to the works in Cheetah and SirNN, respectively. Addition-
ally, the performance of one-bit error truncation protocol with
known MSB in Cheetah [13] is also improved by > 1.6×.

New signed extension protocols. We also propose new
signed extension protocols with constraint, achieving an (m+
1)× improvement in communication compared to SirNN.
Moreover, experimental results demonstrate a > 18.47× im-
provement in runtime. The details are provided in Table 1(b).

New signed multiplication with non-uniform bitwidths
protocol. We propose a new signed non-uniform multiplica-
tion protocol for inputs of m-bit x and n-bit y. A detailed
comparison of the communication between SirNN’s mul-
tiplication protocol and ours for input length (m,n) and
(m+1,n+1) is shown in Table 2. Moreover, our implemen-
tation demonstrates that our multiplication protocol outper-
forms SirNN’s, achieving approximately 1.7× improvement
in runtime and 1.5× reduction in communication costs for
parameters m = 20 and n = 30.

1.2 Related works
1.2.1 Truncation Protocol

The truncation protocol truncates k bits from x ∈ ZL, where
L = 2l , to compute x ≫ k. SecureML [21] proposed a local
truncation protocol with no communication but introducing
two types of errors: esmall and ebig. esmall is a one-bit error that
occurs with a probability of 1

2 , while the ebig error is bounded
by 2l and occurs with a probability of 2lx−l+1, where lx repre-
sents the significant number of bits of input. CrypTFlow2 [24]
proposed a faithful truncation protocol that eliminates errors
entirely by invoking two comparison protocols over l bits and
k bits to address ebig and esmall , respectively. Subsequently,
SirNN [23] proposed an optimized faithful truncation proto-
col that replaces the two comparison protocols with the Wrap
protocol over l−k and k bits, followed by an evaluating AND
gate protocol.

Recently, Cheetah [13] proposed a truncation protocol that
results in only esmall errors, also known as the one-bit error
truncation protocol, asserting that the impact of a one-bit
error on some practical application scenarios such as PPML
is negligible. This approach requires only one call to the
comparison protocol and one call to B2A protocol.

1.2.2 Protocols for functions with signed input

SirNN [23] proposed several protocols for computing func-
tions with signed inputs, including truncation, signed exten-



Table 1: Comparison of overhead with prior work for truncation and signed extension protocols. We suppose the input is shared
on Z2l (for truncation protocol) or Z2m (for signed extension protocol) and |x| ≤ 2lx where lx ≤ l − 1 (or lx ≤ m− 1). Then
for general x ∈ Z2l , we have lx ≤ l −1, and the constraint |x| ≤ 2l

3 and |x| ≤ 2l

4 can be denoted as lx ≤ l −1.58 and lx ≤ l −2,
respectively. λ is the security parameter and is usually set as 128.

(a) Comparison with the state-of-the-art of secure 2PC truncation protocols, where k is the number of bits to be truncated.

Benchmark Method Comm. (bits) Round Constraint

Trun.
(1-bit error)

Cheetah [13] < λ(l +1)+14l + k log l +2 lx ≤ l −1
Πk

trun1, Sec.5.1.1 222λλλ+++222kkk 2 lx ≤ l −1.58
Πk

trun2, Sec.5.1.1 λλλ+++ kkk 2 lx ≤ l −2
Trun. known MSB

(1-bit error)
Cheetah [13] 2λ+ k+2 4 known MSB(x)

Ours, Sec.5.1.2 λλλ+++ kkk 2 known MSB(x)

Trun.
(Faithful)

CrypTFlow2 [24] < λ(l +2+ k)+19l +14k log l +2 lx ≤ l −1
SirNN [23] < λ(l +3)+15l + k+20 log l +3 lx ≤ l −1

Πk
trunf

, Sec.5.1.3 <<< λλλ(((kkk+++222)))+++ lll +++111555kkk logkkk+++222 lx ≤ l −2

(b) Comparison with the state-of-the-art of secure 2PC signed extension protocol that extend x ∈ Z2m to x ∈ Z2n , where M < N.

Benchmark Method Comm. (bits) Round Constraint

SExt.
SirNN [23] < λ(m+1)+13m+n logm+2 lx ≤ m−1

Π
m,n
SExt1, Sec.B.1 222(((λλλ+++nnn−−−mmm))) 2 lx ≤ m−1.58

Π
m,n
SExt2, Sec.B.1 λλλ+++nnn−−−mmm 2 lx ≤ m−2

Table 2: Comparison of the communication with SirNN’s signed multiplication with our Π
m,n
SMul, where µ = min{m,n} and

ν = max{m,n}. For given parameter (m,n), we list the communication of SirNN’s multiplication protocol with inputs shared on
m-bit and n-bit ring. While for our multiplication protocol, we list the communication of Π

m,n
SMul and Π

m+1,n+1
SMul , where the second

protocol ensures the constraints |x|< 2m+1

4 and |y|< 2n+1

4 are satisfied.

Input length SirNN [23] Π
m,n
SMul and Π

m+1,n+1
SMul , Sec.5.3 Improvement

(m,n)
< λ(3µ+ν+4)+µ(µ+2ν+1)

+16(m+n)
λ(2µ+12)+µ(µ+1)+2mn+4(m+n) ≈ 2µ+(m+n)+4

2µ+12 ×
λ(2µ+14)+µ(µ+3)+2mn+6(m+n) ≈ 2µ+(m+n)+4

2µ+14 ×

(10,50) < 12300 5446 2.25 ×
5854 2.21 ×

(20,30) < 13920 8476 1.64 ×
8884 1.64 ×

(30,30) < 19020 12186 1.56 ×
12634 1.56 ×

sion and signed multiplication with non-uniform bitwidths
protocols. They first design the protocols for unsigned in-
puts and then convert them to signed versions. However, their
method requires invoking costly comparison protocols, lead-
ing to significant overhead.

1.3 Organisation

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the overview of our techniques. In Sec-
tion 3, we provide the necessary preliminaries. Section 4

introduces our geometric method for computing signed value.
We then apply this method to design new truncation, signed
extension and signed multiplication protocols in Section 5,
We implement experiments for these protocols in Section 6
and conclude this paper in Section 7.

2 Overview of Our Techniques

Notations. We use ⌊·⌋ and ⌈·⌉ to represent the floor and ceil-
ing functions, respectively. We consider an l-bit ring ZL where
L = 2l . Let 111{state} denote the indicator function, which



equals 1 if state is true and 0 otherwise. For x = x0 + x1
mod L ∈ ZL, the Most Significant Bit (MSB) for x ∈ ZL is
defined as MSB(x) = 111{x ≥ 2l−1}. Additionally, we define
Wrap(x) =Wrap(x0,x1,L) = 111{x0 + x1 ≥ L}. The functions
int(x) and uint(x) represent the signed and unsigned values
in Z, respectively, where int(x) = uint(x)−MSB(x) ·L. For
a signed integer x, we write x ≫ k to denote the arithmetic
right-shift of x by k-bit. Additionally, for convenience, we
define |x|< B as x ∈ [0,B)∪ [L−B,L), where we allow x to
take on the value of L−B. To denote shares on the rings Z2
and ZL, we use the notation [[·]]B and [[·]]L, respectively. The
expression x =L y indicates x ≡ y mod L. Suppose D1 and
D2 are two families of distributions, the symbol D1

c≈ D2
denotes they are computationally indistinguishable. In our fol-
lowing protocols, λ is the security parameter and is typically
set to 128.

2.1 Protocols for functions with signed inputs
In two-party secret sharing, a secret value is encoded as an
unsigned integer on ring ZL, and shared as uint(x) = x =
x0 + x1 mod L. However, most functions take signed input
int(x). For example, the truncation protocol can be computed
as x ≫ k = ⌊ int(x)

2k ⌋. SirNN [23] proposed a method that first
designs a protocol for functions with unsigned input and then
converts it to a signed version. In this work, we directly take
the signed value as input and design protocols for functions
with signed input. We begin by determining how to compute
int(x) from x0 and x1 without mod L operation.

For uint(x) = x = x0 + x1 mod L, we have that uint(x) =
x0 +x1 −Wrap(x0,x1,L) ·L and int(x) = uint(x)−MSB(x) ·
L, where MSB(x) = 1 if x ≥ L

2 , else MSB(x) = 0, and
Wrap(x0,x1,L) outputs 1 if x0 + x1 ≥ L, else outputs 0. Thus,
the signed x can be written as:

int(x) = x0 + x1 − (Wrap(x0,x1,L)+MSB(x)) ·L. (1)

We define the signed coefficient as MW(x0,x1,L) =
Wrap(x0,x1,L)+MSB(x), and abbreviate it as MW(x,L) or
simply MW(x) when there is no ambiguity. From the defini-
tions of Wrap and MSB function we have:

MW(x) =MW(x0,x1,L) =


0, if x0 + x1 ∈ [0, L

2 )

1, if x0 + x1 ∈ [L
2 ,

3L
2 )

2, if x0 + x1 ∈ [ 3L
2 ,2L)

.

(2)
Once we obtain MW(x), we can compute int(x) and proceed
to design protocols for public functions. Thus, the key to per-
forming protocols with signed input is computing MW(x).
Traditionally, this computation involves invoking a com-
parison protocol, which introduces significant overhead. In
this work, we propose a new geometric method to compute
MW(x), requiring one or two cheap AND operations and
avoiding the costly comparison protocol.

2.2 The idea for computing MW(x)

For x = x0+x1 mod L, we interpret x0 as the horizontal coor-
dinate and x1 as the vertical coordinate, which together repre-
sent the point P(x0,x1) in a two-dimensional plane. Given x,
considering x0 as the independent variable and x1 as the depen-
dent variable, the expression d = x0 + x1 (without mod L)
or x1 =−x0 +d represents a straight line with a slope of −1
and an intercept of d. Thus, the expression x0 + x1 > a repre-
sents the area above the straight line x1 = −x0 +a. Further,
x0 + x1 ∈ [a,b) corresponds to the area between two lines:
x1 = −x0 + a and x1 = −x0 + b. From this geometric per-
spective, the problem of computing MW(x) in Equation 2
reduces to determining whether the point P lies below the line
x1 = −x0 +

L
2 or above the line x1 = −x0 +

3L
2 , as depicted

in Figure 1(a). In other words, MW(x) = 0,1 and 2 if P falls
into the pink, blue and green area, respectively. Therefore,
computing MW(x) is equivalent to identifying which area P
falls into.

x

y

L

LL
2

L
2

L
2

L
2

(a) x ∈ ZL.
x

y

L

LL
3

2L
3

L
3

2L
3

L
3

2L
3

L
3

2L
3

(b) |x|< L
3 .

Figure 1: Feasible region of P(x0,x1) .

We can efficiently determine whether a point P(x0,x1) is
located within a square area by performing a simple AND
operation. Specifically, 111{a < x0 < b}∧111{c < x1 < d}= 1
if and only if P(x0,x1) located in the square area with vertices
(a,c),(b,c),(b,d) and (a,d). However, to compute MW(x),
we need to identify a triangle area (the pink and green area in
Figure 1(a)). To address this, we separate the three feasible
regions of point P so that they are sufficiently far apart, ensur-
ing that a square covers only one triangular area. Specifically,
we limit the input as |x| < L

3 , where x ∈ [0, L
3 )

⋃
[ 2L

3 ,L) and
x0 + x1 ∈ [0, L

3 )
⋃
[ 2L

3 , 4L
3 )

⋃
[ 5L

3 ,2L), with the feasible region
of P shown in Figure 1(b).

In this figure, P falls within the pink area if and only if
it falls into the square area with vertices (0,0),(0, L

3 ),(
L
3 ,

L
3 )

and (L
3 ,0). Therefore, MW(x) = 0 if and only if 111{x0 <

L
3}∧

111{x1 <
L
3}= 1. Similarly, MW(x) = 2 if and only if 111{x0 ≥

2L
3 }∧111{x1 ≥ 2L

3 }= 1, andMW(x)= 1 in other cases. Overall,
only two AND operations are required to compute MW(x)
when |x| < L

3 , avoiding the need for the costly comparison
protocol. Further, only one AND gate is needed to compute
MW(x) when |x|< L

4 . The details are shown in Section 4.2



and Section 4.3.

2.3 Application
We apply our method to design protocols for functions with
signed inputs, including the truncation, signed extension and
signed non-uniform multiplication protocols, where these
functions all take the form f (int(x)), as referred in Equation 3,
Equation 9 and Equation 10. By leveraging our geometric
method to compute MW(x) and int(x), we can efficiently im-
plement these protocols when the input is constrained by the
boundaries L

3 or L
4 . Additionally, we discuss how to meet the

constraints in Section 5.4.

3 Preliminaries

3.1 Cryptographic Primitives
3.1.1 Fixed-Point representation

To perform cryptographic operations, real numbers are en-
coded as elements on the ring ZL using their fixed-point rep-
resentation. In this representation, a real number x̂ is repre-
sented by an l-bit integer x ∈ ZL, where the first l − k bits
of x denote the integer part of x̂ and the last k bits represent
the fractional part. This representation can be expressed as
x = Fix(x̂, l,k) = ⌊x̂ ·2k⌋ mod L. To decode x back into the
real number x̂, we simply calculate x

2k .

3.1.2 Secret Sharing Scheme

In this paper, we utilize a 2-out-of-2 additive secret sharing
scheme. A secret value x is shared between two parties P0 and
P1 as [[x]]L = ([[x]]L0 , [[x]]

L
1) such that x = [[x]]L0 +[[x]]L1 mod L.

For L = 1, we use [[x]]B to denote the boolean shares. More-
over, the state "P0 and P1 hold (or output) [[x]]L" means that
each party Pi holds (or outputs) [[x]]Li for i ∈ {0,1}. For sim-
plicity, we abbreviate [[x]]Li as xi when the context is clear.

Additive secret sharing provides perfect secrecy of x since
each party Pi only knows xi, revealing no information about x
even if he has infinite computational power. In this scheme,
to securely compute a public function y = f (x), we design a
protocol Π f that takes [[x]]L as inputs and outputs y0 and y1
such that y = y0 + y1 mod L = f (x).

3.1.3 Oblivious Transfer

Oblivious transfer (OT) is a fundamental protocol in secure
multi-party computation [4]. In a general

(2
1

)
-OTl , the sender

inputs two l-bit messages m0, m1 and the receiver inputs a
choice bit b. The protocol ensures that the receiver learns mb
without gaining any knowledge of mb⊕1. Simultaneously, the
sender remains unaware of the value of b and learns nothing.

The communication cost for
(2

1

)
-OTl is λ+2l in 2 rounds.

In the scenarios where the sender’s messages are correlated, a

more efficient correlated OT (COT) [2]
(2

1

)
-COTl is used, with

communication cost of λ+ l in 2 rounds. Additionally, we can
implement

(n
1

)
-OTl using the IKNP-style OT extension [14],

with communication 2λ+nl.

3.1.4 2PC Functionalities

We use the symbol Πl
f to denote the protocol that securely

evaluates function f (·) with input shared over the ring Z2l . In
this work, we use the following two-party protocols.

Comparison. The comparison protocol is also known as Mil-
lionaires’ or Wrap protocol, which is used to compare two
values without revealing them. In Millionaires’ protocol, P0 in-
puts a x ∈ZL and P1 inputs a y ∈ZL, then output [[111{x < y}]]B.
The Wrap protocol also can be realized using Πl

Mill with in-
put L− 1− x and y, since Wrap(x,y,L) = 111{L− 1− x < y}.
Recently, CrypTFlow2 [24] proposed an efficient Πl

Mill with
communication less than λl +14l in log l rounds.

Evaluating AND gate. The ΠAND takes inputs ([[x]]B, [[y]]B)
and outputs [[x∧ y]]B. CrypTFlow2 [24] implement this proto-
col using Beaver bit-triples [3,24], with a total communication
λ+20 in 2 rounds.

Boolean to Arithmetic (B2A). The protocol Πl
B2A takes

boolean shares [[x]]B as input and outputs arithmetic shares
[[x]]L of the same value. This conversion can be achieved using
COT with a communication λ+ l bits in 2 rounds [24].

Bit multiplication. In this work, we propose a new bit mul-
tiplication protocol Πl

BitMul, where P0 inputs a bit u and P1
inputs a bit v, then returns [[u∧v]]L, with communication λ+ l
in 2 rounds. There are two key differences between Πl

BitMul

and ΠAND: (1) Πl
BitMul takes inputs u and v held by P0 and

P1, respectively, while ΠAND operates on two shared bits;
(2) Πl

BitMul directly outputs u∧ v in algebraic sharing form,
whereas ΠAND outputs Boolean shares that require an addi-
tional Πl

B2A conversion to algebraic shares, increasing the
total communication to 2λ+ l+20. The details of Πl

BitMul are
provided in Appendix A.

Multiplexer (MUX). Πl
MUX has two inputs, an arithmetic

shares [[x]]L and a boolean shares [[y]]B. The output is an arith-
metic shared [[z]]L, where z = x if y = 1 and z = 0 if y = 0.
Recently, SirNN [23] proposed an implementation of this pro-
tocol by using COTs, with a total communication 2λ+2l in
2 rounds.

3.2 Threat Model and Security
We consider a static semi-honest probabilistic polynomial
time (PPT) adversary A , where each participant follows the
specification of the protocol and the adversary can corrupt
at most one participant. Formally, the standard simulation-
based notion of security in the presence of semi-honest adver-
saries [5, 8] is that



Definition 1. (Semi-Honest Security). Let f : X1 ×X2 → Y
be a randomized functionality and let Π be a protocol. We
say that Π securely computes f in the presence of a single
semi-honest corruption if there exists an efficient simulator S
such that for every corrupted party i ∈ {0,1} and every input
x ∈ X1 ×X2 we have:

{outputΠ(x),viewΠ
i (x)}

c≈ { f (x),S(i,xi, fi(x))}

where viewΠ
i (x) is the view of party i in an execution of Π on

input x, outputΠ(x) is the output of all parties in an execution
of Π on input x, and fi(x) denotes the i-th output of f (x).

3.3 Truncation Protocol
Truncation is a crucial non-linear operation in fixed-point
calculation, often combined with multiplication protocol to
maintain the precision of decimal values. Given two real
number x̂, ŷ ∈R, where x̂ ·2k, ŷ ·2k ∈ Z, the product of x̂ and ŷ
in fixed-point representation is expressed as Fix(x̂ŷ, l,k) = xy ·
2k = ⌊Fix(x̂,l,k)·Fix(ŷ,l,k)

2k ⌋. Consequently, a truncation operation
that shifts k bits is required after computing the product of
two fixed-point numbers.

We denote the truncate or arithmetic right-shift k-bit op-
eration for x ∈ ZL as x ≫ k. For int(x) ∈ Z, the truncation
operation can be expressed as x ≫ k = ⌊ int(x)

2k ⌋. From Equa-
tion 1, the truncation operation can be computed as:

x ≫ k =L ⌊x0 + x1 −MW(x) ·L
2k ⌋

= ⌊x0

2k ⌋+ ⌊x1

2k ⌋−MW(x) ·2l−k +δ

, (3)

where δ = {x0 mod 2k + x1 mod 2k > 2k} = Wrap(x0
mod 2k,x1 mod 2k,2k) ∈ {0,1}, and MW(x) is defined as
Equation 2. The proof of Equation 3 is provided in Ap-
pendix C.1. Therefore, the essential step in computing x ≫ k
involves computing MW(x) and δ. Additionally, in some sce-
narios where 1-bit errors are tolerated, δ can be disregarded,
resulting in the computation of x ≫ k−δ, known as one-bit
error truncation.

3.4 Signed Extension protocol
The extension protocol extends an m-bit number x ∈ ZM to
an n-bit number y ∈ ZN , where M = 2m, N = 2n, and m < n.
SirNN [23] proposed zero and signed extension protocols
for extending the bitwidths of unsigned and signed numbers,
respectively.

For x ∈ ZM , the zero extension is defined as y =
ZExt(x,m,n) ∈ ZN , where uint(x) = uint(y). While the
signed extension is y = SExt(x,m,n) ∈ ZN , where int(x) =
int(y). For x = x0 + x1 mod M, the zero extension protocol
outputs ZExt(x,m,n) = x0 + x1 −Wrap(x0,x1,M) ·M. The
signed extension protocol can be computed as SExt(x,m,n) =

ZExt(x′,m,n)−2m−1, where x′ = x+2m−1 mod M, with the
same overhead as the zero extension protocol.

3.5 Signed Multiplication with non-uniform
bitwidths

For x ∈ ZM and y ∈ ZN , where M = 2m and N = 2n, the
non-uniform multiplication protocol computes z = xy ∈ ZMN .
SirNN [23] initially proposed an unsigned non-uniform mul-
tiplication protocol to compute z = uint(x) ·uint(y) as:

uint(x) ·uint(y) = (x0 + x1 −wx ·2m) · (y0 + y1 −wy ·2n)

= x0y0 + x1y1 + x0y1 + x1y0 −2m ·wxy

−2n ·wyx−2m+n ·wx ·wy,
(4)

where wx =Wrap(x0,x1,2m) and wy =Wrap(y0,y1,2n). The
main overhead lies in computing the cross terms and the Wrap
function. Then they propose the signed non-uniform multipli-
cation protocol based on unsigned non-uniform multiplication
protocol, with the same overhead.

4 Computing MW Using Geometric Method

4.1 Two-party Secret sharing from Geometric
Perspective

For x = x0 + x1 mod L, we regard P(x0,x1) as a point in the
Cartesian coordinate system, where x0 is the abscissa and x1
the ordinate. According to the definition MSB(x) = 111{x≥ L

2},
we have that MSB(x) = 0 if and only if (note that there is no
mod L operation):

0 ≤ x0 + x1 <
L
2 or L ≤ x0 + x1 < L+ L

2

and MSB(x) = 1 if and only if:

L
2 ≤ x0 + x1 < L or L+ L

2 ≤ x0 + x1 < 2L.

The feasible region for the point P(x0,x1) is depicted in Fig-
ure 2(a), where MSB(x) = 0 if and only if point P(x0,x1) falls
into the pink area, and MSB(x) = 1 if and only if P falls into
the green area.

In many practical application scenarios, although x is
shared on x ∈ ZL, the actual data range might be smaller
and bounded by Lx. Specifically, the signed input int(x) ∈ Z
is within the interval [−Lx,Lx), or denoted as |int(x)| < Lx
or |x|< Lx, where Lx ≤ L

2 . Therefore, x ∈ [0,Lx)
⋃
[L−Lx,L),

where the first interval represents int(x) being positive and
less than Lx, while the second interval represents int(x) being
negative but not less than −Lx. In this case, MSB(x) = 0 if
and only if

0 ≤ x0 + x1 < Lx or L ≤ x0 + x1 < L+Lx



and MSB(x) = 1 if and only if

L−Lx ≤ x0 + x1 < L or 2L−Lx ≤ x0 + x1 < 2L.

The feasible regions for P when |x| < Lx and Lx <
L
2 are

shown in Figure 2(b), where the four possible regions for P
are defined as:

A : {(x0,x1)|x0,x1 ∈ ZL , 0 ≤ x0 + x1 < Lx},
B : {(x0,x1)|x0,x1 ∈ ZL , L−Lx ≤ x0 + x1 < L},
C : {(x0,x1)|x0,x1 ∈ ZL , L ≤ x0 + x1 < L+Lx},
D : {(x0,x1)|x0,x1 ∈ ZL , 2L−Lx ≤ x0 + x1 < 2L}.

From Figure 2(b) we can deduce that MSB(x) = 0 if and
only if P ∈ A

⋃
C , and MSB(x) = 1 if and only if P ∈ B

⋃
D .

Further, since Wrap(x0,x1,L) = 111{x0 + x1 ≥ L}, the Wrap
function determines whether the point P lies above or below
the line y = −x+L, where Wrap(x) = 1 if P ∈ C

⋃
D and

Wrap(x) = 0 if P ∈ A
⋃

B . Thus, the MW(x) can be com-
puted by determining the area P falls into, where

MW(x) =


0, if P ∈ A
1, if P ∈ B

⋃
C

2, if P ∈ D
. (5)

Then the problem of computing MW(x) is reduced to deter-
mining the area in which P lies.
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Figure 2: Feasible region of P(x0,x1) from a geometric per-
spective.

4.2 Computing MW When |x|< L
3

From Figure 2(b), it can be observed that if Lx ≪ L, then P ∈
A if and only if x0 < Lx and x1 < Lx. Therefore, in this case,
only one AND operation is required to determine whether
P ∈ A . Based on this observation, we set Lx =

L
3 , then the

feasible region of (x0,x1) for |x| < Lx is shown in Figure 3.
We define {

a = 111{x0 <
L
3}∧111{x1 <

L
3}

d = 111{x0 ≥ 2L
3 }∧111{x1 ≥ 2L

3 } , (6)

then from Figure 3 we can intuitively deduce that a = 1 if
and only if x0 <

L
3 and x1 <

L
3 , indicating P ∈ A . Similarly,

d = 1 if and only if x0 ≥ 2L
3 and x1 ≥ 2L

3 , indicating P ∈ D.
If a = d = 0, then P ∈ B

⋃
C . Theorem 1 formalizes this

conclusion, with the proof provided in Appendix C.2.

Theorem 1. For x = x0 + x1 mod L and |x| < L
3 , we have

x0 + x1 ∈ [0, L
3 )

⋃
[ 2L

3 , 4L
3 )

⋃
[ 5L

3 ,2L). Furthermore, x0 + x1 ∈
[0, L

3 ) if and only if x0 <
L
3 and x1 <

L
3 ; x0 + x1 ∈ [ 5L

3 ,2L) if
and only if x0 ≥ 2L

3 and x1 ≥ 2L
3 ; otherwise, x0+x1 ∈ [ 2L

3 , 4L
3 ).

Based on Theorem 1, we can determine the range of x0+x1
or the area P falls into by computing the values of a and d in
Equation 6. Then the MW(x) can be computed as MW(x) =
1−a+d, which requires only two AND operations but not the
costly comparison protocol. We propose new protocol Π

l,l′
MW1

to compute [[MW(x,L)]]L
′
with input [[x]]L, where L′ = 2l′ . The

details are provided in Algorithm 1. Since P0 holds 111{x0 <
L
3}

and 111{x0 ≥ 2L
3 }, and P1 holds 111{x1 <

L
3} and 111{x1 ≥ 2L

3 }, we
can invoke the Πl′

BitMul to compute [[a]]L
′

and [[d]]L
′
. Finally,

we can compute [[MW(x,L)]]L
′
= 1− [[a]]L

′
+[[d]]L

′
.

Algorithm 1: Computing MW(x,L) with |x| < L
3 ,

Π
l,l′
MW1:

Input: P0 and P1 hold [[x]]L where |x|< L
3 and L = 2l .

Output: P0 and P1 output [[MW(x,L)]]L
′

where
MW(x,L) =Wrap(x0,x1,L)+MSB(x).

1 P0 and P1 invoke Πl′
BitMul with input x0 <

L
3 and

x1 <
L
3 to learn [[a]]L

′
.

2 P0 and P1 invoke Πl′
BitMul with input x0 ≥ 2L

3 and
x1 ≥ 2L

3 to learn [[d]]L
′
.

3 P0 and P1 output 1− [[a]]L
′
+[[d]]L

′
.

Correctness and security. The correctness of Π
l,l′
MW1 is en-

sured by Equation 2 and Theorem 1. The only interaction
between P0 and P1 occurs in performing Πl′

BitMul. Therefore,
the security of Π

l,l′
MW1 relies on the security of Πl′

BitMul.

Complexity. Π
l,l′
MW1 calls Πl′

BitMul twice in parallel to obtain
the shared value of MW(x) over the ring ZL′ , with a total
communication 2λ+2l′ in 2 rounds.

4.2.1 Why limit |x|< L
3

In Theorem 1 and Algorithm 1, we constrain the input range
to |x| < L

3 . We now explain why this constraint can not be
further relaxed. When a = 1, the point P actually falls in
the square region SA with vertices at (0,0),(0, L

3 ),(
L
3 ,0) and

(L
3 ,

L
3 ), as indicated by the red square in the bottom left corner

of Figure 3. However, since we limit |x|< L
3 , it follows that

x0 + x1 <
L
3 , restricting P to the triangular area with vertices

at (0,0),(0, L
3 ) and (L

3 ,0), ensuring that P falls within area A .
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Figure 3: Feasible region of P(x0,x1) for |x|< L
3 .

To ensure P ∈ A when a = 1, the square region SA must not
overlap with any other area, specifically area B . Therefore,
we impose the constraint |x|< L

3 . Otherwise, if this constraint
is relaxed to |x| < L′

x where L′
x >

L
3 , then a = 111{x0 < L′

x}∧
111{x1 < L′

x} = 1 when x0 = x1 =
L
3 . While point (L

3 ,
L
3 ) falls

in area B , leading to misclassification.

4.3 Computing MW When |x|< L
4

The feasible region for P(x0,x1) under the constraint |x|< Lx
consists of three distinct areas: A , B

⋃
C , and D . As a result,

MW(x) is a two-bit value, requiring two AND operations.
However, by translating P to the left by Lx (mod L), we get
a new point P∗(x∗0,x1) where the feasible region of P∗ is re-
duced to two distinct areas. In this scenario,MW(x∗) becomes
a one-bit value and may be computed with only one AND op-
eration. In the remainder of this subsection, we demonstrate
how to compute MW(x∗) and subsequently derive MW(x)
from MW(x∗).

By limiting |x| < L
4 , the feasible regions for P(x0,x1)

and P∗(x∗0,x1) where x∗0 = x0 − L
4 mod L are shown in Fig-

ure 4(a) and Figure 4(b), respectively. According to the def-
inition of MW in Equation 2 and Figure 4(b), we have that
MW(x∗) = 1 if and only if P∗ ∈ B ′⋃C ′, and MW(x∗) = 2
if and only if P∗ ∈ D ′⋃E ′. Additionally, Figure 4(b) indi-
cates that P∗ ∈ D ′⋃E ′ if and only if x∗0 ≥ L

2 and x1 ≥ L
2 since

|x|< L
4 . Therefore, for |x|< L

4 , MW(x∗) can be computed as
MW(x∗) = 111{x∗0 ≥ L

2}∧ 111{x1 ≥ L
2}+ 1, requiring only one

AND operation. Finally, we give the following Theorem 2 to
show how to compute MW(x) from MW(x∗). And the proof
of this theorem is provided in Appendix C.3.

Theorem 2. For x = x0 + x1 mod L and |x| < L
4 , if x∗0 =

x0 − L
4 mod L and x∗ = x∗0 + x1 mod L, then MW(x) =

MW(x∗)−111{x0 <
L
4}.

Based on Theorem 2, we propose Algorithm 2 to compute

MW(x), where we limit |x|< L
4 and requiring only one call

to ΠBitMul.

Algorithm 2: Computing MW(x,L) with |x| < L
4 ,

Π
l,l′
MW2:

Input: P0 and P1 hold [[x]]L where |x|< L
4 and L = 2l .

Output: P0 and P1 output [[MW(x,L)]]L
′
.

1 P0 sets x∗0 = (x0 − L
4 ) mod L.

2 P0 and P1 invoke Πl′
BitMul with input 111{x∗0 ≥ L

2} and
111{x1 ≥ L

2} to learn [[d∗]]L
′
.

3 P0 output [[d∗]]L
′

0 +1−111{x0 <
L
4} mod L′ and P1

output [[d∗]]L
′

1 .

Correctness and security. The correctness of Π
l,l′
MW2 is en-

sured by Theorem 2, and the security comes from the security
of ΠBitMul.

Complexity. Π
l,l′
MW2 requires only a single call to Πl′

BitMul,
resulting in a total communication cost of λ+ l′ in 2 rounds.
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Figure 4: Feasible region of P(x0,x1) and P∗(x∗0,x1) for |x|<
L
4 , where x∗0 = x0 − L

4 mod L.

4.3.1 Why set |x|< L
4

Now we interpret why we set the bound B as B = L
4 and

it can not be larger. Intuitively, from Figure 4(b) we can
deduce that if B > L

4 , then there will intersection between
the dashed box area in the upper right corner and area C .
For example, for point (x∗0,x1) = (L

2 −1, L
2 ), MW(x∗) should

be 1 as it falls into area C , while 111{x∗0 ≥ L
2} ∧ 111{x1 ≥

L
2}+ 1 = 2, therefore a misclassification occurs. Formally,
for x = x0 + x1 mod L and |x| < B, let x∗ = x0 −B mod L,
then x∗ + x1 ∈ [L− 2B,L)

⋃
[2L− 2B,2L). We define d∗ =

111{x∗0 ∈ [L − 2B,L)} ∧ 111{x1 ∈ [L − 2B,L)}, then to prevent
misclassification, the minimum x∗0 + x1 that makes d∗ = 1
must exceed the maximum x∗0 + x1 that makes d∗ = 0, which
yields B ≤ L

4 and |x|< L
4 .



4.4 Computing MW Probabilistically Locally
For |x|< Lx, an intuitive observation from Figure 2(b) is that
if Lx ≪ L, then the areas of A and D will be significantly
small, making it highly probable that P will fall within B ∪C .
Consequently, we can assume that P always falls within B

⋃
C

and directly set MW(x) = 1 and int(x) = x0 + x1 −L. This
introduces a small failure probability as the assumption fails
when P ∈ A

⋃
D. We give an accurate probability for P ∈

B
⋃

C or MW(x) = 1 for a given |x|< Lx in Theorem 3, and
the proof is shown in Appendix C.4.

Theorem 3. For a given input x = x0 + x1 mod L satisfying
|x| < Lx where Lx ≤ L

2 , the probability that x0 + x1 ∈ [L−
Lx,L+Lx) is 1− |int(x)+1|

L .

The failure probability in Theorem 3 is |int(x)+1|
L , which

is bounded by Lx+1
L for |x|< Lx. Therefore, in some scenar-

ios, we can set a sufficiently small Lx and large enough L to
make the failure probability negligible, allowing us to directly
output MW(x) = 1 without communication.

4.5 Computing MW with Known MSB

In certain scenarios, the MSB of the input is known in clear
or secret sharing form. In these cases, computing MW(x)
reduces to computing Wrap(x) from MSB(x). SirNN [23]
proposed an MSB-to-Wrap protocol to compute Wrap(x) from
MSB(x) as follows:

Wrap(x0,x1,L) = ((1⊕MSB(x))∧ (m0 ⊕m1))⊕ (m0 ∧m1),
(7)

where mi is the most significant bit of xi for i ∈ {0,1}. There-
fore, when MSB(x) is known in shared form, two ΠAND

are required to compute [[Wrap]]B along with two Πl′
B2A to

compute [[MW(x)]]L
′
= [[Wrap(x)]]L

′
+ [[MSB(x)]]L

′
, where

L′ = 2l′ . The total communication cost is 4λ+ 2l′ + 40 in
4 rounds. For the case MSB(x) is known in clear, only one
Πl′

BitMul is needed to compute [[Wrap(x)]]L
′
, with a total com-

munication cost λ+ l′ in 2 rounds.

5 Application to Practical Protocols

In this section, we propose new truncation, signed extension
and signed multiplication with non-uniform bitwidth proto-
cols using the geometric method in Section 4.

5.1 New Truncation Protocols
We begin with the truncation protocol, where the truncation
operation is computed as Equation 3. Moreover, the one-bit
error truncation operation can be written as

x ≫ k−δ =L= ⌊x0

2k ⌋+ ⌊x1

2k ⌋−MW(x) ·2l−k. (8)

Thus, the one-bit error truncation protocol can be imple-
mented by computing MW(x), as discussed in Section 4.

5.1.1 One-bit Error Truncation Protocol with Constraint

We propose two new one-bit error truncation protocol Πk
trun1

and Πk
trun1, with constraints |x| < L

3 and |x| < L
4 , where we

can invoke ΠMW1 and ΠMW2 to compute MW(x), respectively.
The details are listed in Algorithm 3 and Algorithm 4. Note
that only [[MW]]2

k
but not [[MW]]L needs to be computed, as

[[MW]]2
k · L

2k =L [[MW]]l · L
2k .

The correctness of both Πk
trun1 and Πk

trun2 come from Equa-
tion 8, where MW(x) is computed based on Πk

MW1 and Πk
MW2,

respectively. Therefore the security of these two protocols
comes from the security of Πk

MW1 and Πk
MW2. Moreover,

Πk
MW1 and Πk

MW2 need two and one calls for Πk
BitMul, resulting

the communication costs of Πk
trun1 and Πk

trun2 to be 2λ+2k
and λ+ k, and both need two rounds of communication. It is
worth noting that the communication cost of our one-bit error
truncation is independent of the input length l.

Algorithm 3: One-bit error truncation with constraint
|x|< L

3 , Πk
trun1:

Input: P0 and P1 hold [[x]]L where |x|< L
3 and L = 2l .

Output: P0 and P1 get [[x ≫ k]]L with one-bit error.
1 P0 and P1 invoke Πk

MW1 with input [[x]]L to learn
[[MW]]2

k
.

2 P0 and P1 output ⌊ x0
2k ⌋+ ⌊ x1

2k ⌋− [[MW]]2
k · L

2k .

Algorithm 4: One-bit error truncation with constraint
|x|< L

4 , Πk
trun2:

Input: P0 and P1 hold [[x]]L, where |x|< L
4 and L = 2l .

Output: P0 and P1 get [[x ≫ k]]L with one-bit error.
1 P0 and P1 invoke Πk

MW2 with input [[x]]L to learn
[[MW]]2

k
.

2 P0 and P1 output ⌊ x0
2k ⌋+ ⌊ x1

2k ⌋− [[MW]]2
k · L

2k .

5.1.2 One-bit Error Truncation Protocol with Known
MSB

When MSB is known, we can apply the method in Section 4.5
to compute MW(x), followed by using Equation 8 to per-
form the one-bit error truncation protocol. Recently, Chee-
tah [13] proposed a one-bit error truncation protocol with
known MSB in clear, involving invoking a ΠAND to com-
pute MSB(x0)∧MSB(x1), followed by a Πk

B2A to convert the
result to algebraic sharing. In contrast, our method directly
computes the algebraic sharing of MSB(x0)∧MSB(x1) using



Πk
BitMul. This reduces the communication cost from 2λ+2+k

to λ+ k and eliminates 2 rounds of communication.
For the case [[MSB]]B is known, MW(x) can be computed

using Equation 7, and the one-bit truncation protocol can be
implemented using Equation 8. The total communication for
this method is 3λ+ k+40 in 4 rounds.

5.1.3 Faithful Truncation Protocol

We analyzed the one-bit error truncation protocols in the previ-
ous subsections, which output [[x≫ k]]L−δ. To implement the
faithful truncation protocol, we need to compute δ =Wrap(x0
mod 2k,x1 mod 2k,2k), where a comparison protocol with
k-bit input is invoked. We construct the faithful truncation
protocol based on Πtrun2 which limits |x|< L

4 , as detailed in
Algorithm 5. Similarly, the faithful truncation protocol can
also be implemented based on Πtrun1 or the one-bit error trun-
cation protocol with known MSB, depending on the range of
x.

Algorithm 5: Faithful truncation with constraint |x|<
L
4 , Πk

trunf
:

Input: P0 and P1 hold [[x]]L where |x|< L
4 and L = 2l .

Output: P0 and P1 get [[x ≫ k]]L.
1 P0 and P1 invoke Πk

trun2 to learn [[t]]L.
2 P0 and P1 invoke Πk

Mill with input x0 mod 2k and
2k − (x1 mod 2k) to learn output [[ε]]B.

3 P0 and P1 invoke Πl
B2A with input [[ε]]B ⊕1 to learn

[[δ]]L.
4 P0 and P1 output [[t]]L +[[δ]]L.

Correctness and Security. The correctness of Πk
trunf

comes
from Equation 3, and the security comes from the security of
Πk

trun2, Πk
Mill and Πl

B2A.

Complexity. Πk
trunf

need one call to Πk
trun2, one call to Πk

Mill

and one call to Πl
B2A. The total communication is < λ(k+

2)+ l+15k in logk+2 rounds as the Πtrun2 and ΠMill can be
implemented in parallel.

5.1.4 Probabilistic Truncation Protocol

Using the idea in Section 4.4, we can assume MW(x) = 1
and compute x ≫ k − δ = ⌊ x0

2k ⌋+ ⌊ x1
2k ⌋− 2l−k locally. The

failure probability of this probabilistic truncation protocol is
|int(x)+1|

L according to Theorem 3, which is bounded by 2lx−l

for x ∈ Z2l with constraint |x|< 2lx .
The local truncation protocol proposed in SecureML [21]

is the same as ours. However, they estimated the failure prob-
ability to be bounded by 2lx+1−l . In their proof, they intro-
duce a variable r, and set x0 = x+ r mod L and x1 = L− r,
then demonstrate the local truncation protocol holds when
2lx ≤ r < L − 2lx , yielding a failure probability of 2lx−l+1.

However, their proof overlooks the fact that for a given input
x, the sign of x is fixed. Therefore, it is only necessary to
ensure either 2lx ≤ r or r < L−2lx . We address this oversight
and give a more accurate failure probability for Πlocal_trun,
which is half of SecureML’s estimate.

Security issue. In USENIX’23, Li et al. [16] identified a se-
curity issue in the probabilistic truncation protocol used in
SecureML and also ours, demonstrating that the views of an
ideal adversary and a corrupted party are not indistinguish-
able. However, the probabilistic truncation protocols in both
SecureML and ours are performed locally. Therefore, this se-
curity issue stems from the overly strict definition of the ideal
probabilistic truncation functionality (Functionality 2 in [16])
adopted in their work. To address this issue, we redefine the
ideal probabilistic truncation functionality FtrunPr as follows:
FtrunPr receive x0 and xi from P0 and P1, respectively. Then
it computes t0 = ⌊ x0

2d ⌋ and t1 = L−⌊L−x1
2d ⌋ and sends ti to Pi

for i ∈ {0,1}. Under this revised definition, the probabilistic
truncation protocol is clearly secure.

5.2 New Signed Extension Protocol
Similar to the truncation protocol, the signed extension proto-
col can be implemented by computing MW(x). We propose
a new method to implement the signed extension protocol
based on the following Lemma 1.

Lemma 1. For x = x0 + x1 mod M, suppose y = y0 + y1
mod N where N > M, and

(y0,y1)=


(x0,x1), if x0 + x1 ∈ [0, M

2 )

(x0,x1 +N −M), if x0 + x1 ∈ [M
2 ,

3M
2 )

(x0 +N −M,x1 +N −M), if x0 + x1 ∈ [ 3M
2 ,2M)

.

Then int(x) = int(y).

The proof of Lemma 1 is provided in Appendix C.5. Based
on Lemma 1, for x ∈ ZM and y ∈ ZN , the signed extension
protocol can be computed as:

y =N x0 + x1 +MW(x0,x1,M) · (N −M). (9)

Thus, the signed extension protocol can be performed by com-
puting MW(x0,x1,M) as described Section 4. The details
of protocols for signed extension under constraints |x|< M

3 ,
|x|< M

4 , and probabilistic signed extension protocols are pro-
vided in Appendix B.

5.3 Application to Signed Multiplication with
Non-uniform Bitwidths

In this section, we study the signed non-uniform multi-
plication protocol, which takes as input [[x]]M and [[y]]N ,
where x = uint(x) = x0 + x1 mod M, y = uint(y) = y0 + y1
mod N, M = 2m and N = 2n, and outputs [[z]]MN satisfying



int(z) = int(x) · int(y). Using Equation 1, we can compute
int(x) · int(y) as:

int(x) · int(y) = (x0 + x1 −Mx ·2m) · (y0 + y1 −My ·2n)

= x0y0 + x1y1 + x0y1 + x1y0 −2m ·Mxint(y)

−2n ·Myint(x)−2m+n ·Mx ·My

= x0y0 + x1y1 + x0y1 + x1y0 −2mMxy−2nMyx

+2m+n(Mx ·MSB(y)+My ·MSB(x)−Mx ·My)

,

(10)
where Mx =MW(x0,x1,M) and My =MW(y0,y1,N). In this
equation, the term xiyi for i ∈ {0,1} can be computed lo-
cally, and taking the result modulo 2m+n eliminates the last
term. We follow the method from SirNN to compute the
cross-terms xiy1−i for i ∈ {0,1} by invoking two instances
of Π

m,n
CrossTerm. The details of Π

m,n
CrossTerm are provided in Ap-

pendix D. The primary difference between our method and
SirNN’s is that we compute MW(x) and MW(y) instead of
Wrap(x) and Wrap(y), thereby avoiding the need for costly
comparison protocols.

Another challenge is that MW(x), MW(y) ∈ {0,1,2} are
two-bit values, therefore we can not use the ΠMUX to com-
pute MW(x) · y and MW(y) · x. Instead, we propose a new
multiplexer protocol ΠMUX3 with two-bit choice, which is
then used in our signed non-uniform multiplication protocol.

5.3.1 Multiplexer Protocol with Two-bit Choice

We introduce a new multiplexer protocol Πl
MUX3 which takes

as input arithmetic shares of a and c on ring ZL and Z4, re-
spectively, where c ∈ {0,1,2}. The protocol returns shares of
y = a · c on the same ring ZL. We parse c as c[0]||c[1], giving
y = 2c[0] ·a+ c[1] ·a where c[0],c[1] ∈ {0,1}. This requires
a digit decomposition protocol and two ΠMUX protocols to
compute a · c.

For a two-bit value c shared on Z4 as c = [[c]]40 + [[c]]41
mod 4, it can be represented as c = c[0]||c[1] =MSB(c)||(c
mod 2). The boolean sharing of c[1] can be computed
locally as c[1] = ([[c]]40 mod 2)⊕ ([[c]]41 mod 2). To com-
pute c[0] = MSB(c), we use the DReLU or MSB protocol
from CrypTFlow2 [24]. CrypTFlow2 computes MSB(c) as
MSB(c) = msb0 ⊕msb1 ⊕ carry where msbi = [[c]]4i [0] for
i ∈ {0,1} and carry = 111{[[c]]40[1] + [[c]]41[1] > 1}. However,
since [[c]]40[1] and [[c]]41[0] are two one-bit values, we have
111{[[c]]40[1]+[[c]]41[1]> 1}= [[c]]40[1]∧ [[c]]41[1]. As a result, only
one ΠAND is needed to convert [[c]]4 to [[c]]B. We then perform
our Πl

MUX3 to compute y = c ·a as described in Algorithm 6.

Note that for the case c = 2, y = 2a may overflow L, and
the output of Πl

MUX3 is actually 2a mod L. However, this
overflow does not affect the correctness of our multiplication
protocol, as 2m ·Mx · y =2m+n 2m · (Mx · y mod 2n).

Algorithm 6: Multiplexer protocol with two-bit
choice, Πl

MUX3:

Input: P0 and P1 hold [[a]]L and [[c]]4 where a ∈ ZL,
and c ∈ Z4 is a two-bit number.

Output: P0 and P1 output [[y]]L, where y = c ·a
mod L.

1 For i ∈ {0,1}, Pi parses [[c]]4i as [[c]]4i [0]||[[c]]4i [1], and
set [[c[1]]]Bi = [[c]]4i [1].

2 P0 and P1 invoke the ΠAND with input [[c]]40[1] and
[[c]]41[1] to get [[carry]]B.

3 P0 and P1 set [[c[0]]]B as [[c]]40[0]⊕ [[c]]41[0]⊕ [[carry]]B.
4 P0 and P1 invoke the Πl

MUX with input [[2a]]L and
[[c[0]]]B to learn [[t0]]L.

5 P0 and P1 invoke the Πl
MUX with input [[a]]L and

[[c[1]]]B to learn [[t1]]L.
6 P0 and P1 output [[t0]]L +[[t1]]L.

5.3.2 New Signed Multiplication with Non-uniform
Bitwidths Protocol

Now we propose our signed non-uniform multiplication pro-
tocol Π

m,n
SMul based on Equation 10, and the details are shown

in Algorithm 7. In this algorithm, we limit the input ranges
as |x| < M

4 and |y| < N
4 . Accordingly, we invoke two Π

L,4
Mw2

to compute Mx and My in line 4-5. Next, two ΠMUX3 are in-
voked to compute g = My · x and h = Mx · y, followed by the
computation of N ·g and M ·h. The output is shared on ring
ZL where L = 2l and l = m+n.

Algorithm 7: Signed non-uniform multiplication pro-
tocol, Π

m,n
SMul:

Input: P0 and P1 hold [[x]]M and [[y]]N where M = 2m,
N = 2n, |x|< M

4 and |y|< N
4 .

Output: P0 and P1 output [[xy]]L where L = 2l and
l = m+n.

1 P0 and P1 invoke the following protocols:
2 Π

m,n
CrossTerm with input x0, y1 to learn [[c]]L.

3 Π
m,n
CrossTerm with input x1, y0 to learn [[d]]L.

4 Π
m,2
MW2 with input [[x]]M to learn [[Mx]]

4.
5 Π

n,2
MW2 with input [[y]]N to learn [[My]]

4.
6 Πm

MUX3 with input [[x]]M and [[My]]
4 to learn [[g]]M .

7 Πn
MUX3 with input [[y]]N and [[Mx]]

4 to learn [[h]]N .
8 P0 and P1 output

x0y0 + x1y1 +[[c]]L +[[d]]L −N · [[g]]M −M · [[h]]N
mod 2l .

Correctness and Security. The correctness of Π
m,n
SMul comes

from Equation 10, and the security comes from the security
of ΠCrossTerm, ΠMW and ΠMUX3.



Complexity. Π
m,n
SMul invokes two Π

m,n
CrossTerm, two Π

L,4
MW2,

one Π
l,2,m
MUX3 and one Π

l,2,n
MUX3. The communication of two

Π
m,n
CrossTerm is µ(2λ + µ + 1) + 2mn where µ = min(m,n),

and the communication of the remaining sub-protocols is
12λ+ 4m+ 4n+ 44. Therefore, the total communication is
about (2µ+12)λ+µ2 +µ+2mn+4(m+n).

5.3.3 Signed Uniform Multiplication Protocol with
Known MSB

SirNN [23] implements the multiplication protocol by first
computing uint(x) · uint(y) as Equation 4, which requires
calculating wx =Wrap(x0,x1,2m) and wy =Wrap(y0,y1,2n).
When the MSB is known, the MSB-to-Wrap protocol can be
invoked to compute the Wrap function, thereby reducing the
overall overhead of the unsigned uniform multiplication pro-
tocol. Following SirNN’s method, this method can then be
converted to signed version without introducing extra com-
munication.

5.3.4 Comparison with SirNN’s Multiplication Protocol

The signed multiplication protocol in SirNN requires two
calls to Π

m,n
CrossTerm to compute the cross term. Additionally, it

involves invoking one instance each of Πm
Wrap, Πn

Wrap, Πm
MUX

and Πn
MUX, resulting in a communication cost of (m+ n+

4)λ+16(m+n). The total communication is roughly λ(3µ+
ν+4)+µ(µ+2ν+1)+16(m+n). Compared with SirNN’s
signed multiplication, our Π

m,n
SMul reduces the communication

overhead by approximately (m+n−8)λ+12(m+n), leading
to a total reduction in communication cost by about 40% to
60%.

The constraint on our Π
m,n
SMul is that |x| < M

4 and |y| < N
4 .

To meet this constraint for an m-bit input x and an n-bit input
y without priori knowledge, they must be shared on Z2m+1

and Z2n+1 , respectively, which allows us to perform Π
m+1,n+1
SMul

and obtain [[z]]m+n+2, where int(z) = int(x) · int(y). Although
this extension necessitates using Π

m+1,n+1
SMul instead of Π

m,n
SMul,

which increases the communication required for computing
the cross-term, the overall overhead is still reduced since the
costly comparison protocols are avoided. The communication
comparison in Table 2 confirms this conclusion. Moreover,
to obtain [[z]]2

m+n
, Pi just set [[z]]2

m+n

i = [[z]]2
m+n+2

i mod 2m+n

locally for i ∈ {0,1}.

5.4 Satisfying the Constraint

The primary challenge now lies in ensuring that the constraint
is satisfied. We first demonstrate that only one bit of redun-
dancy is required to satisfy the constraint L

3 or L
4 . For x ∈ ZL,

we already have −L
2 ≤ int(x)< L

2 implying |x| ≤ L
2 , where the

first bit represents the sign of x. Therefore, reducing the range
of x by at most half is sufficient to meet the constraint |x| ≤ L

3

or |x| ≤ L
4 . We then consider the following three scenarios to

show how to meet the constraint.

• Given or assumed in advance that |x| is relatively
small. In many practical application scenarios, the input
x is shared on a large ring ZL to prevent overflow, while
the actual value of x often relatively small, and bounded
by a small range Lx. For example, SecureML [21] sets
Lx = 232 while L= 264, and Bicoptor [28] considers a 13-
bit input on 64-bit ring. In these scenarios, the constraint
is naturally satisfied, making our protocols applicable.

• The plaintext x can be shared over larger ring. In a
secure computation task where F(x) is being computed,
the data holder first shares his l-bit data x over ring ZL
as [[x]]L, then performs protocols to securely evaluate the
function f (x). To satisfy the constraint in our protocols,
we let the data holder shares the l-bit x over a slightly
larger ring Z2L as [[x]]2L. This ensures that the constraint
|x|< L

4 is satisfied, enabling our protocols work.

• P0 and P1 have [[x]]L. In case where P0 and P1 only have
shares of x on ring ZL, a traditional signed extension pro-
tocol in SirNN [23] is required to extend [[x]]L to [[x]]2L,
thereby satisfying our constraint. Although this exten-
sion protocol involves invoking the comparison protocol,
which increases communication, we expect that when
the function F(·) contains many truncation, extension or
multiplication operations, and the total overhead will be
reduced by using our protocols.

Although computing F(x) on a larger ring may increase
the overhead for some sub-protocols, such as the comput-
ing cross-term protocol in multiplication protocol with non-
uniform bitwidth, the improvements that come from our op-
timized protocols significantly reduce the overall overhead
(see Section 6.2 for details). Furthermore, it should be noted
that this extension does not increase the communication cost
of the MSB or DReLU protocol, which is frequently used
and has high communication. Since x is an l-bit number, we
can reduce the [[x]]2L to [[x]]L by performing a local mod L
operation, and then compute [[MSB(x)]]B with the l-bit input.

6 Experiment

We conduct experiments to demonstrate the improvements
achieved by our novel approach, using the state-of-the-art
protocols proposed in Cheetah [13] and SirNN [23] as the
baselines. The open source code for the implementations of
SirNN [23] are available in the Secure and Correct Inference
(SCI) library [1]. For a comprehensive and fair comparison,
we also implement our protocols on the same unified platform,
leveraging the fundamental protocols provided by the SCI li-
brary and EMP toolkit. Additionally, we conduct experiments
based on the IKNP-style OT.



All experiments were conducted on a single machine run-
ning Ubuntu 20.04 with Intel Core i9-9900K 3.6GHz and
128GB of memory. We simulated network conditions using
the Linux ‘tc’ command. The simulated network settings in-
clude a LAN environment (1Gbps bandwidth and 0.3ms RTT
latency) and a WAN environment (30Mbps bandwidth with
30ms RTT latency). Our protocols are performed entirely
online without requiring an offline phase, and we report the
online time as total runtime. The code is publicly available at
https://zenodo.org/records/14643158 .

6.1 Microbenchmarks

Experiments on truncation and signed extension proto-
cols. We first implement our one-bit error truncation protocol
Πk

trun2, faithful truncation Πk
trunf

(based on Πk
trun2) and one-

bit error truncation with known MSB protocol and compared
them with the state-of-the-art works. The experimental results
are presented in Table 3. In this experiment, we consider two
settings Our1 and Our2, where the second setting allows the
one-bit redundancy. Compared to Cheetah [13], the commu-
nication cost of the one-bit error truncation protocol can be
improved by 34.86×. The running time can be reduced by
35.29× and 26.56× under the LAN setting and WAN setting,
respectively. Additionally, by leveraging the bit multiplica-
tion protocol, we improve the performance of the one-bit
error truncation protocol with known MSB in plaintext by
1.6×. Compared to SirNN [23], our faithful truncation pro-
tocol without error showcases a > 3× improvement in both
runtime and communication. Moreover, our signed extension
protocol achieved improvements ranging from 12× to 18×.

Experiments on signed multiplication with non-uniform
bitwidth protocols. We implement our signed non-uniform
multiplication protocol and compare it to SirNN’s [23], with
the experimental results presented in Table 4. We consider an
m-bit x and an n-bit y, and for SirNN’s multiplication protocol,
we let x and y be shared on rings ZM and ZN , where M = 2m

and N = 2n, respectively. For our protocol, we evaluate two
scenarios to satisfy the constraints. In the first scenario, we
assume the constraints are already met, meaning that we could
estimate or set |x|< M

4 and |y|< N
4 in advance, allowing us to

directly implement our Π
m,n
SMul with parameters m and n. In the

second scenario, we assume x and y are two plaintexts with
no prior knowledge. In this case, we share m-bit x and n-bit
y on rings Z2M and Z2N , to satisfy the constraints |x| < 2M

4
and |y| < 2N

4 . We then implement Π
m+1,n+1
SMul , with parame-

ters m+ 1 and n+ 1. Table 4 illustrates that Π
m+1,n+1
SMul only

increases the overhead by approximately 4% compared to
Π

m,n
SMul. Both Π

m,n
SMul and Π

m+1,n+1
SMul outperform SirNN’s multi-

plication protocol, achieving a 1.7× improvement under LAN
and a 1.4× under WAN.

Table 3: Comparing the running time and communication
costs of our protocols with the state-of-the-art. For truncation
protocol, we let l = 37 and the truncated length as k = 12. For
the signed extension protocol, we set m = 20 and n = 30. Our
Πtrunf is based on Πtrun2. For setting Ours1, we let x shared
over ring Z2l or Z2m . For setting Ours2, we add an additional
bit and suppose x shared over ring Z2l+1 or Z2m+1 to meet the
constraints. All experiments were conducted using a single
thread. The communication and timing are accumulated for
216 runs of the protocols.

Benchmark Method Time (ms) Comm.LAN WAN

Trun.
(1-bit error)

[13] 600 11797 38.00MB
Ours1 17 455 1.09MB
Ours2 17 444 1.09MB

35.29× 26.56× 34.86×

Trun.
(Faithful)

[23] 672 12821 40.53MB
Ours1 211 3935 11.32MB
Ours2 214 3920 11.33MB

3.14× 3.27× 3.57×
Trun.

(1-bit error,
known MSB)

[13] 29 834 2.11MB
Ours1 16 455 1.09MB
Ours2 18 498 1.09MB

1.61× 1.67× 1.93×

SExt.

[23] 314 5866 17.85MB
Ours1 18 450 1.07MB
Ours2 17 459 1.07MB

18.47× 12.77× 16.68×

Table 4: Comparing the running time and communication
costs of SirNN’s signed multiplication with non-uniform
bitwidths protocol with our Π

m,n
SMul. We set parameters m = 20

and n = 30 and implemented SirNN’s multiplication protocol
with input [[x]]2

m
and [[y]]2

n
. For our protocol, we implemented

Π
m,n
SMul and Π

m+1,n+1
SMul , where the latter ensures the constraints

are satisfied. All experiments were conducted using a single
thread. The communication and timing are accumulated for
216 runs of the protocols.

Method Time (ms) Comm.(MB)LAN WAN

SirNN [23] 1456 34825 104.12

Our Π
m,n
SMul

817 23557 66.62
1.78× 1.47× 1.56×

Our Π
m+1,n+1
SMul

822 24594 69.81
1.77× 1.41× 1.49×

https://zenodo.org/records/14643158


6.2 Biometric Matching (Minimum Euclidean
Distance)

Consider the scenario involving k shared biometric samples
(s⃗1, ..., s⃗k) and a shared query biometric sample c⃗. In the
privacy-preserving biometric matching task, the goal is to
identify the sample s⃗i closest to c⃗. We use Squared Euclidean
Distance (SED) to measure the distance, and then this task
involves computing SED and identifying the minimum dis-
tance, utilizing signed multiplication and comparison proto-
cols. Additionally, the truncation and reduction protocol from
SirNN [23] is applied to reduce input bitwidth and conse-
quently lower the overhead of the comparison protocols.

Let the elements in each s⃗i (for i = 1, ...,k) and c⃗ be m-bit
values. When using our ΠSMul, we represent these elements
as shared over m+1 bits rings, respectively. To ensure a fair
comparison and show the overhead introduced by the extra
bit, we also perform experiments using SirNN’s multiplica-
tion protocols with bitwidths (m,m) and (m+1,m+1). The
experimental results are summarized in Table 5, which indi-
cate that while sharing elements over larger rings will slightly
increase the overhead of SirNN’s protocol, our method im-
proves efficiency by more than 50%.

Table 5: Comparison of the overhead for Minimum Eu-
clidean Distance with m = 30 and k = 10.

Method Bitwidth Time (s) Comm (MB)LAN WAN

[23] m 5.84 193.14 401.91
m+1 5.94 195.13 407.72

Ours m+1 3.79 137.72 261.03
1.54× 1.40× 1.54×

6.3 Secure Inference
In this subsection, we showcase the performance of our
improved truncation protocol in secure deep neural net-
work (DNN) inference on network ResNet50 [10] and
DenseNet121 [12]. The results are summarized in Table 6.
In these tasks, we observe that the input values to truncation
protocols naturally satisfy our constraint |x|< L

4 , eliminating
the need for bitwidth adjustments. Consequently, we directly
replace the original truncation protocol with our optimized
version.

Our work follows the settings of prior work in CrypT-
Flow2 [24], using l = 37 and truncating k = 12 bits for
ResNet50, and l = 32 and k = 11 for DenseNet121. Exper-
imental results demonstrate a 13× to 24× enhancement in
the truncation protocol’s performance. Additionally, the to-
tal numbers of communication rounds are reduced by over
30%, resulting in an improvement for the overall runtimes
by 1.15× to 1.19×. These improvements stem solely from

Table 6: Performance comparison with CrypTFlow2 on
large-scale DNNs, where RN50 denotes ResNet50 and DNet
denotes DenseNet121. Runtimes are in seconds and commu-
nications are in GB.

Network System Truncation Total

Comm. Time Comm. Time Round

RN50 [24] 7.61 67.03 367.55 493.94 4652
Ours 0.34 2.69 360.28 428.67 3084

DNet [24] 6.62 58.46 212.63 347.59 10002
Ours 0.39 4.22 206.40 291.86 6392

the new truncation protocol, as no modifications were made
to other framework components. All secure inference exper-
iments are conducted using 4 threads on the network with
10Gbps bandwidth and 3ms RTT latency.

7 Conclusion and Future Work

In this paper, we propose a new geometric perspective to
study the secure two-party computation. Using this geometric
method, we can compute signed values to avoid invoking the
costly comparison protocols. We then apply this method on
truncation, signed extension and signed non-uniform multi-
plication protocols, where we can replace the comparison
protocols in these protocols with evaluating AND gate, thus
achieving an improvement. Compared to previous work, our
truncation and signed extension protocol achieve tens of times
improvement in run-time, and our signed non-uniform mul-
tiplication protocol achieves a 1.4× to 1.7× improvement.
Since we optimize the underlying operators, we believe that
our results can improve the efficiency of the entire two-party
computation framework. Besides, we anticipate that this geo-
metric method will emerge as a new research tool for MPC
and open avenues for further exploration and innovation.
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A Bit Multiplication Protocol

Suppose P0 holds a bit a, P1 holds a bit b, and they want to get
the share of a ·b on ZL, namely, [[a∧b]]L. A straightforward
method is first invoking ΠAND to get [[a∧b]]B, followed by a
ΠB2A to get [[a∧b]]L, with total communication 2λ+ l +20
bits in 4 rounds. Inspired by MASCOT [15] , we propose an
optimized method to directly calculate [[a∧b]]L from a and b
by invoking a single

(2
1

)
-COTl , with communication λ+ l bits

in 2 rounds. Our observation is that once bits a,b are treated
as arithmetic values, then [[a∧b]]L = [[a ·b]]L , the calculation
of which giving a special case of oblivious product evaluation



proposed in MASCOT [15] with 1 bit input range. Then, a
single instance of

(2
1

)
-COTl satisfied. The details are shown in

Algorithm 8. It is easy to see that by correctness of
(2

1

)
-COTl ,

[[a∧b]]L1 = x+a ·b. So [[a∧b]]L0 +[[a∧b]]L1 mod L = a ·b =
a∧b as required. Security directly follows from the security
of

(2
1

)
-COTl .

Algorithm 8: Πl
BitMul.

Input: P0 holds a bit a and P1 holds a bit b.
Output: P0 and P1 output [[a∧b]]L, where L = 2l .

1 P0, P1 invoke
(2

1

)
-COTl , where P0 is the sender with

correlation function f (x) = x+a and P1 is the
receiver with input b. P0 learns x and sets
[[a∧b]]L0 = L− x and P1 learns [[a∧b]]L1 .

B Our Signed Extension Protocol

B.1 Signed Extension Protocol with Constraint

B.1.1 When |x|< M
3

For the case |x|< M
3 , we can compute MW(x) as Section 4.2

then perform our signed extension protocol Π
m,n
SExt1. The de-

tails are shown in Algorithm 9. The correctness of Π
m,n
SExt1

follows Equation 9 and Section 4.2. The security of Π
m,n
SExt1

comes from the security of ΠBitMul. Π
m,n
SExt1 invokes two

Π
n−m
BitMul in parallel, therefore the total communication is

2(λ+n−m) in 2 rounds.

Algorithm 9: Signed extension protocol, Π
m,n
SExt1:

Input: P0 and P1 hold [[x]]M satisfying |x|< M
3 where

M = 2m.
Output: P0 and P1 output [[y]]N , where M < N,

int(x) = int(y) and N = 2n.
1 P0 and P1 invoke Πk

MW1 with input [[x]]M to learn
[[MW]]2

n−m
.

2 P0 and P1 output x0 + x1 +N − [[MW ]]2
n−m ·M.

B.1.2 When |x|< M
4

For the case |x|< M
4 , we can use the method in Section 4.3 to

compute MW, as shown in Algorithm 10. The correctness of
Π

m,n
SExt follows Equation 9 and Theorem 2. The security comes

from the security of ΠBitMul. Π
m,n
SExt invokes one Π

n−m
BitMul in

parallel, therefore the total communication is λ+n−m in 2
rounds.

Algorithm 10: Signed extension protocol, Π
m,n
SExt2:

Input: P0 and P1 hold [[x]]M satisfying |x|< M
4 where

M = 2m.
Output: P0 and P1 output [[y]]N , where M < N,

int(x) = int(y) and N = 2n.
1 P0 and P1 invoke Πk

MW2 with input [[x]]M to learn
[[MW]]2

n−m
.

2 P0 and P1 output x0 + x1 +[[MW]]2
n−m · (N −M).

B.2 Signed Extension Protocol with Known
MSB

For the case MSB is known, we can first compute MW(x) us-
ing the idea in Section 4.5, then perform the signed extension
protocol by Equation 9, with the same overhead of computing
MW(x).

B.3 Probabilistic Signed Extension Protocol
Similar to the probabilistic one-bit error truncation protocol,
for signed extension protocol we can assume P ∈ B

⋃
C or

x0 + x1 ∈ [M
2 ,

3M
2 ). Then P0 and P1 can locally compute and

output y0 = x0 and y1 = x1+N−M locally. From Theorem 3,
the failure probability of the probabilistic signed extension
protocol is |int(x)+1|

M .

C Proofs

C.1 Proof of Equation 3
We first propose the following Lemma:

Lemma 2. For a, b, d ∈ Z, where d ̸= 0, we have:

⌊a+b
d

⌋= ⌊a
d
⌋+ ⌊b

d
⌋+δ,

where δ = 111{ a mod d
d + b mod d

d ≥ 1}.

Proof. For an integer a and a divisor d, we have a = d · ⌊ a
d ⌋+

a mod d, therefore a
d = ⌊ a

d ⌋+ a mod d
d . Then we have:

⌊a+b
d

⌋= ⌊a
d
⌋+ ⌊b

d
⌋+ ⌊a mod d +b mod d

d
⌋.

Therefore, the lemma is proven.

Based on Lemma 2, we can deduce that Equation 3 holds.

C.2 Proof of Theorem 1
Proof. For x0+x1 ∈ [0, L

3 ), it is obvious that x0 <
L
3 and x1 <

L
3 as x0,x1 ∈ ZL. Conversely, if x0 <

L
3 and x1 <

L
3 , then x0 +

x1 <
2L
3 , implying x0 + x1 ∈ [0, L

3 ) as |x| < L
3 . For x0 + x1 ∈



[ 5L
3 ,2L), it follows that x0 ≥ 2L

3 and x1 ≥ 2L
3 . If x0 ≥ 2L

3 and
x1 ≥ 2L

3 , then x0 + x1 ≥ 4L
3 which implies x0 + x1 ∈ [ 5L

3 ,2L).
For other values of x0 and x1, x0 + x1 will not falls into the
first and third intervals, therefore x0 + x1 ∈ [ 2L

3 , 4L
3 ).

C.3 Proof of Theorem 2

Proof. For |x| < L
4 , we have x0 + x1 ∈

[0, L
4 )

⋃
[ 3L

4 , 5L
4 )

⋃
[ 7L

4 ,2L). Then we prove this theorem
under the following cases:

• If x0 + x1 ∈ [0, L
4 ), then x∗0 + x1 = x0 − L

4 + L + x1 ∈
[ 3L

4 ,L). In this case, we have MW(x) = 0, MW(x∗) = 1
and 111{x0 <

L
4}= 1.

• If x0 + x1 ∈ [ 3L
4 , 5L

4 ), then:

– If x0 <
L
4 , then x∗0+x1 = x0− L

4 +L+x1 ∈ [ 6L
4 ,2L).

In this case MW(x) = 1, MW(x∗) = 2 and 111{x0 <
L
4}= 1.

– If x0 ≥ L
4 , then x∗0 + x1 = x0 − L

4 + x1 ∈ [ 6L
4 ,2L).

In this case MW(x) = 1, MW(x∗) = 1 and 111{x0 <
L
4}= 0.

• If x0 + x1 ∈ [ 7L
4 ,2L), then x∗0 + x1 = x0 − L

4 + x1 ∈
[ 6L

4 , 7L
4 ). In this case, we have MW(x) = 2, MW(x∗) = 2

and 111{x0 <
L
4}= 0.

C.4 Proof of Theorem 3

Proof. For a given x ∈ZL, we have x = x0+x1−Wrap(x) ·L,
and x can be either negative or non-negative. We first consider
the non-negative case, where x0 + x1 ∈ [0,Lx)

⋃
[L,L+ Lx).

The probability Pr[x0 + x1 ∈ [0,Lx)] = Pr[x0 + x1 = x] =
Pr[x0 ≤ x] = x+1

L . Therefore, for non-negative x, Pr[x0 + x1 ∈
[L,L+Lx)] = 1− x+1

L = 1− |int(x)+1|
L .

For the case x is negative, we have x0 + x1 ∈ [L −
Lx,L)

⋃
[2L − Lx,2L). The probability Pr[x0 + x1 ∈ [L −

Lx,L)] = Pr[x0 + x1 = x] = Pr[x0 ≤ x] = x+1
L . Since x is neg-

ative and x = x0 + x1, we have int(x) = x − L. Therefore,
Pr[x0 + x1 ∈ [L−Lx,L)] = x+1

L = 1− L−x−1
L = 1− |int(x)+1|

L .
In summary, for a given x, the probability that x0 + x1 ∈

[L−Lx,L+Lx) is 1− |int(x)+1|
L .

C.5 Proof of Lemma 1

Proof. For x = x0 + x1 mod M, uint(x) = x = x0 + x1 −
wrap(x) · M. Then int(x) = uint(x)−MSB(x) · M = x0 +
x1 − (wrap(x)+MSB(x)) ·M. Similarly, int(y) = y0 + y1 −
(wrap(y)+MSB(y)) ·N.

• For the case x0 + x1 ∈ [0, M
2 ), wrap(x) = MSB(x) = 0.

As y0 = x0 and y1 = x1, we have y0 +y1 <
M
2 . Therefore

wrap(y) =MSB(y) = 0 and int(x) = int(y) = x0 + x1.

• For the case x0 + x1 ∈ [M
2 ,M), wrap(x) = 0 and

MSB(x) = 1. As y0 = x0 and y1 = x1 + N − M, we
have y0+y1 = x0+x1+N−M ∈ [N− M

2 ,N). Therefore
wrap(y) = 0 and MSB(y) = 1. Then int(x) = int(y) =
x0 + x1 −M.

• For the case x0 + x1 ∈ [M, 3M
2 ), wrap(x) = 1 and

MSB(x) = 0. As y0 = x0 and y1 = x1 + N − M, we
have y0+y1 = x0+x1+N−M ∈ [N,N+ M

2 ). Therefore
wrap(y) = 1 and MSB(y) = 0. Then int(x) = int(y) =
x0 + x1 −M.

• For the case x0+x1 ∈ [ 3M
2 ,2M),wrap(x) =MSB(x) = 1.

As y0 = x0 + N − M and y1 = x1 + N − M, we have
y0 + y1 = x0 + x1 + 2N − 2M ∈ [N − M

2 ,2N). There-
fore wrap(y) = MSB(y) = 1. Then int(x) = int(y) =
x0 + x1 −2M.

In total, we have int(x) = int(y).

D Cross Term Multiplication Protocol in
SirNN [23]

In this work, we use the cross-term multiplication protocol
in SirNN [23] to compute the cross term x0y1 and x1y0, as
shown in Algorithm 11.

Algorithm 11: Cross Term Multiplication, Π
m,n
CrossTerm:

Input: P0 holds x ∈ Z2m and P1 holds y ∈ Z2n , where
m ≤ n.

Output: P0 and P1 output [[z]]2
l
, where z = x · y

mod 2l and l = m+n.
1 P0 parses x as an m-bit string x = xm−1|| · · · ||x0, where

xi ∈ {0,1}.
2 for i = {0, ...,m−1} do
3 P0 and P1 invoke

(2
1

)
-COTl−i, where P0 is the

sender with input xi and P1 is the receiver with
input y, and learn [[ti]]l−i.

4 end
5 For b ∈ {0,1}, Pb sets [[z]]2

l

b = ∑
m−1
i=0 2i · [[ti]]l−i

b .
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