
AudioMarkNet: Audio Watermarking for Deepfake Speech Detection

Wei Zong*
University of Wollongong, Australia

Yang-Wai Chow
University of Wollongong, Australia

Willy Susilo
University of Wollongong, Australia

Joonsang Baek
University of Wollongong, Australia

Seyit Camtepe
CSIRO Data61, Australia

Abstract
Deep generative models have improved significantly in recent
years to the point where generated fake images or audio are
now indistinguishable from genuine media. As a result, hu-
mans are unable to differentiate between real and deepfake
content. While this presents a huge benefit to the creative
sector, its exploitation to fool the general public has resulted
in a real-world threat to society. To prevent generative models
from being exploited by adversaries, researchers have devoted
much effort towards developing methods for differentiating
between real and generated data. To date, most existing tech-
niques are designed to reactively detect artifacts introduced by
generative models. In this work, we propose a watermarking
technique, called AudioMarkNet, to embed watermarks in
original speech. The purpose is to prevent speech from being
used for speaker adaptation (i.e., fine-tuning text-to-speech
(TTS)), which is commonly used for generating high-fidelity
fake speech. Our method is orthogonal to existing reactive
detection methods. Experimental results demonstrate the
success of our method in detecting fake speech generated
by open-source and commercial TTS models. Moreover, our
watermarking technique achieves robustness against common
non-adaptive attacks. We also demonstrate the effectiveness
of our method against adaptive attacks. Examples of water-
marked speech using our proposed method can be found on a
website1. Our code and artifacts are also available online2.

1 Introduction

The rapid advancement of deep generative models is ex-
tremely beneficial to the creative sector. In the audio do-
main, Text-to-Speech (TTS) allows natural speech to be gen-
erated from text, as is employed in various interactive appli-
cations [27]. However, this technological advancement raises
concerns because it is now difficult, or even impossible, to
distinguish between real and generated data. If an adversary

1https://sites.google.com/view/fakespeechdetection.
2https://zenodo.org/records/14722182.

has access to a victim’s recorded speech, e.g., a video on so-
cial media, the adversary can use a TTS model to mimic the
victim’s voice for malicious purposes. As a real-world exam-
ple, criminals have stolen millions of dollars using software
to synthesize a chief executive’s voice3.

To prevent generative models from being exploited, a great
deal of effort has been devoted towards developing methods
for detecting generated data. One research direction relies on
discovering artifacts introduced by deep generative models in
a reactive manner [3, 19]. However, continuous advances in
deep generative models result in fewer artifacts, which will
eventually make generated data technically indistinguishable
from real data. Another limitation of detecting artifacts is that
most methods cannot explain the reason for their results. This
severely limits the practicality of such methods in law en-
forcement because explainability is crucial for deep learning
models to be used for legal purposes [9].

To overcome the limitations of reactive detection, another
line of research is to proactively use watermarking techniques
for detecting fake data. The goal is to embed predefined wa-
termarks in generated data such that fake data can be detected
reliably and the predictions can be explained. This line of
research can be divided into two categories. The first focuses
on responsible disclosure of generative models [23,37]. Work
in this category aims to insert watermarks into generative
models before they are published. Although such work has
demonstrated effectiveness in detecting fake data, it cannot
work if an adversary trains their own generative models from
scratch.

The other category of work focuses on detecting modifica-
tions by generative models [1,10]. Predefined watermarks are
embedded in the original data to protect it from malicious use.
If an adversary modifies watermarked data using generative
models, the embedded watermarks can still be detected. This
effectively deters the spread of fake data.

While most efforts to date have focused on detecting fake
images, in this paper, we focus on detecting fake speech syn-

3https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-
in-unusual-cybercrime-case-11567157402

https://sites.google.com/view/fakespeechdetection
https://zenodo.org/records/14722182


thesized using a TTS model. Our goal is to protect publicly
accessible speech from being exploited by an adversary to ma-
liciously impersonate a person using voice cloning techniques.
Our proposed watermarking technique can be categorized as
detecting modifications by generative models (i.e., TTS). In
particular, modification by a TTS model refers to changing
the linguistic content while preserving a speaker’s voice, i.e.,
voice cloning.

In this research, we consider the scenario where water-
marks are embedded in speech data before it is released to
the public. If an adversary applies speaker adaptation (i.e.,
fine-tuning TTS) using the watermarked speech, the gener-
ated fake speech will also contain our predefined watermarks.
In this manner, the detection of a watermark in fake speech
makes the detection outcomes explainable and also trans-
forms fake speech detection into a simple task of detecting
the existence of watermarks.

Speaker adaptation is crucial and widely used to improve
the fidelity of voice cloning. It is especially useful when there
is a distribution shift between the target voice and the training
data [5]. Commercial voice cloning services usually require
users to upload samples of a target voice to fine-tune their
internal TTS models. When the models are ready, a user can
generate fake speech using the target voice by simply entering
a string of text.

Our method is conceptually similar to a dataset poisoning
attack in the sense that our watermarks “poison” the training
set used for fine-tuning TTS models. Our watermarks are
specially designed to cause a TTS model to learn predefined
patterns if it is fine-tuned on the “poisoned” data. This is
not a trivial task because the linguistic content output by a
TTS model can completely differ from the original speech.
To demonstrate the real-world practicality of our method, we
demonstrate that our watermarks can be learned successfully
by commercial online voice cloning services, of which their
internal workings are unknown.

Our contributions are summarized as follows:

• This work proposes a watermarking technique for pro-
tecting original speech from being exploited by voice
cloning. This understudied research direction is orthogo-
nal to existing reactive detection works.

• Our watermarks successfully transferred to TTS models
with different architectures and trained on different data.

• Our watermarks also successfully transferred to commer-
cial online voice cloning services. Thus, demonstrating
the practicality of our method in the real world.

• Our watermarks are robust against attacks that are com-
monly used for evaluating audio watermarks.

• We also show the robustness of our watermarks against
adaptive attacks, specifically designed to defeat our
method.

2 Related Work

The study of detecting fake images [25, 37] significantly in-
spired work on detecting fake speech. In contrast to the image
domain, where there is a huge body of work, research on
detecting fake speech is limited. One line of work focuses
on liveness detection, which relies on physical properties of
human speech [39].

In contrast, another line of work focuses on reactively de-
tecting artifacts in fake speech, which has attracted much at-
tention [3, 18, 33–35]. By exploiting large pre-trained models
for calculating embeddings of speech, fake speech detection
was able to achieve high accuracy [3]. However, continuous
improvements in deep generative models and the lack of ex-
plainability, impede further development in this direction.

The recently proposed Antifake [38] exploited adversarial
perturbations to prevent the synthesis of fake speech. The idea
was to generate adversarial examples to fool synthesizers such
that generated speech would not be perceived as being spo-
ken by the victim. Antifake is fundamentally different from
our work because Antifake aims to fool speaker embedding
models using adversarial examples, while our method aims
to allow TTS models to learn our watermarks.

Similar to fake image detection, researchers have also pro-
posed to watermark speech generative models [7, 23]. For
instance, Ren et al. [23] embedded source speaker identities
as watermarks in the vocoder component of a target system.
As discussed, this type of defense is ineffective if an adversary
can train models from scratch or fine-tune pre-trained models
that are publicly available. To date, the use of watermarks to
protect speech from being exploited by voice cloning remains
underexplored.

WavMark [6] and AudioSeal [26] are recently proposed
audio watermarking techniques that focus on embedding wa-
termarks into already generated deepfake speech. Our work
differs from these because the objective of our method is to
transfer our watermarks to TTS models.

Liu et al. [17] recently proposed Timbre Watermarking,
which uses an encoder-decoder architecture to embed audio
watermarks. This method shares a similar idea with our work
and the generated watermarks can also transfer to TTS mod-
els. However, Timbre Watermarking extracts watermarks by
calculating the average of features along the time axis, result-
ing in complex watermark patterns. In contrast, our method
extracts watermarks from each 1-second section, resulting in
simple watermark patterns (a visual example can be found
in Section 10.3 in the Appendix). While the complex Tim-
bre Watermarking patterns may be less noticeable, they are
vulnerable to noise. In Section 7.11, we show that a simple
ensemble attack of Gaussian noise and resampling results in
Timbre Watermarking failing to detect fake speech, whereas
our method was still effective.



Figure 1: Our watermarking technique allows for detecting voice cloning by a TTS model. Resulting fake speech will contain
watermarks embedded in the original speech, which enables the detection of fake speech in a reliable and explainable manner.

3 Threat Model

In this study, we focus on developing a watermarking scheme
that detects voice cloning by a TTS model. The attacker’s
primary objective is to use samples of a victim’s voice to
generate speech using a TTS model to impersonate the vic-
tim. The source of the victim’s speech samples can be public
datasets or video/audio-sharing websites. Similar to other
watermarking approaches, to protect speech against voice
cloning, our watermarks must be embedded in speech sam-
ples before they are released to the public. Fig. 1 illustrates
a practical scenario where our watermarks can be used to
protect publicly accessible speech data from exploitation.

Fig. 1(a) shows the case where no defense is deployed. A
user records speech and uploads it to the Internet. For example,
the user may be a voice actor contributing to an open speech
dataset. An adversary then downloads the user’s speech and
fine-tunes a TTS model using the speech (i.e., speaker adap-
tation). The adversary can then exploit the generated fake
speech for profit, e.g., uploading the fake speech to a social
media platform to impersonate the target.

In contrast, Fig. 1(b) shows an example scenario of how our
watermarking scheme can be employed to deter the spread of
fake speech. At the start, our watermarks are embedded in a
user’s original recorded speech to uniquely identify the user
before the speech is released to the public. If an adversary
downloads the watermarked speech and clones the victim’s
voice using a TTS model, the watermarks embedded in the
original speech will transfer to the generated fake speech.
Hence, attempts to impersonate the victim can be detected
based on the presence of our watermarks in the fake speech.
In this manner, our watermarks can deter the spread of fake
speech.

4 Problem Definition and Assumptions

Let t represent a well-trained TTS model that transforms text
input into waveforms. An adversary uses t for generating fake
speech. A key assumption of our work is that the adversary

applies speaker adaption, i.e., fine-tuning t using watermarked
speech. Otherwise, it is impossible for generated speech to
contain watermarks because the training of t is independent
of the watermarks.

A speech sample is represented with a sequence of floating-
point values, where each value ranges between [−1,1]. Our
watermarks are represented with a bit string, i.e., a sequence of
0s and 1s. Mathematically, let f : [−1,1]n,{0,1}m → [−1,1]n

be the function to embed watermarks of length m into speech
of length n, where n indicates the number of floating-point
values in the sequence. Let g : [−1,1]n →{0,1}m be the func-
tion to retrieve watermarks of length m from speech of length
n. f and g must fulfil the following requirements:

• The effect of embedded watermarks on the intelligi-
bility of speech is negligible. Given original speech
x ∈ [−1,1]n and a watermark w ∈ {0,1}m, we require
that:

p◦ f (x,w)≈ p(x), (1)

where p represents the human perception function. If
the embedded watermarks affect intelligibility, it will
decrease the value of the watermarked speech.

• The original watermarks can be retrieved correctly from
fake speech. After an adversary fine-tunes t using wa-
termarked speech x′ = f (x,w), t learns the embedded
watermark w. This results in the generated fake speech
also containing w:

g◦ t(s) = w, (2)

where s is the fake speech’s text.

• No false positives for speech without watermarks. Let
W be the set of registered watermarks. The output of
decoded speech without watermarks must not be in W:

g(x) /∈W, (3)



Figure 2: Overview of our proposed watermarking scheme. Message w is the watermark to embed in original speech x using the
encoder. Fake speech t(s) is input into the decoder to retrieve any embedded watermarks.

5 Proposed Method

5.1 Overview

We adopt the widely used encoder-decoder architecture for
embedding and retrieving watermarks. Fig. 2 illustrates an
overview of our method. Given a message w, which can be
a user’s unique identifier, we embed it into a set of original
speech x to obtain watermarked speech x′. If an adversary fine-
tunes a TTS model using x′, the TTS model will learn our
watermarks such that generated fake speech will contain our
watermarks. When fake speech t(s) is input into the decoder,
the watermark w′ will be retrieved. Fake speech is successfully
detected if w′ = w.

5.2 Insight

Other than unpredictable linguistic content, another challenge
to overcome in detecting fake speech is variability in the
duration of fake speech. This makes retrieving watermarks a
non-trivial task. The vast variability in the duration of fake
speech also makes detecting fake audio more difficult than
detecting fake images, which generally take certain sizes.

Hence, we propose to divide original speech into sections
that are 1 second in duration. Watermarks are then embed-
ded into all such sections. When retrieving watermarks, fake
speech is also divided into 1-second sections, where we at-
tempt to retrieve watermarks from all these sections. This
strategy enables watermark retrieval from fake speech of any
duration and also allows our method to be applied to speech
streamed over the Internet.

As previously discussed, our method is analogous to a
dataset poisoning attack that guides a deep learning model to
learn desired properties by modifying the training data [4].
The desired properties aim to make a target model distin-
guishable from other independently trained models and they
are normally not correlated with the model’s task. Therefore,
these properties must be specially designed such that a target
model can easily learn them. To successfully “poison” a TTS
model, we embed watermarks in every frame of speech. This
makes a target model frequently encounter our watermarks
during speaker adaptation, which facilitates the learning of
watermark patterns.

5.3 Architecture

5.3.1 Encoder

The common practice in an encoder-decoder architecture for
embedding watermarks is to let the encoder fully generate
watermarked data [32, 36]. Not only must the encoder em-
bed watermarks but it also needs to make watermarked data
indistinguishable from the original data.

Inspired by the design of TrojanModel [40], we argue that
reconstructing original data unnecessarily increases the diffi-
culty of training the encoder. Instead, we design the encoder
to only learn perturbations applied to original speech. We do
not include any generative network simulator to represent a
potential TTS architecture used by an adversary when train-
ing the encoder. This ensures that our watermarks are not
overfitted to a specific TTS architecture.

Our encoder f is a deep neural network (DNN) composed
of wav2vec 2.0 [2], a Long Short-Term Memory (LSTM)
layer, and fully connected (FC) layers. The workflow of our
encoder is depicted in Fig. 3. There are 4 steps for embedding
a watermark in speech. The first is to transform speech from
the time domain into the frequency domain via the short-time
Fourier transform (STFT). The second step exploits wav2vec
2.0 to extract features from raw waveforms. Message w is
transformed by a linear layer to make its dimension consistent
with the extracted features. The results are then added to the
extracted features. This stabilizes training because it includes
more information on the intended watermarks.

The third step is to calculate perturbations representing
the watermark to embed. An LSTM layer and multiple FC
layers are stacked to transform features extracted in the last
step into frame-level perturbations. These perturbations are
added to the original STFT results. In practice, perturbations
are only added to the low-frequency components. There are
two reasons for this. First, although the human voice spreads
over a large range of frequencies, its power is mainly concen-
trated at low frequencies. Hence, forcing perturbations to be
at low frequencies will intertwine our watermarks with the
human voice so that they will be difficult to remove. Other-
wise, if watermarks are not intertwined with speech in the
frequency domain, an adversary can easily apply a filter to
remove watermarks while negligibly affecting the quality of
speech. Second, the masking threshold in acoustics suggests



Figure 3: The encoder consists of wav2vec 2.0, an LSTM layer, and FC layers. The watermark embedding workflow has 4
steps. The first uses STFT to transform input speech into the frequency domain. Then, wav2vec 2.0 extracts speech features and
message w is added to these features. The third step calculates perturbations representing the watermark to be embedded. The
final step adds the perturbations to STFT results from the first step and applies inverse STFT to reconstruct watermarked speech
in the time domain.

that a loud sound will make a soft sound inaudible if they are
close in frequency [28]. This means small perturbations at
the low frequencies will be masked by speech. This improves
the imperceptibility of our watermarks. The final step is to
add the watermark to original STFT results, generated in the
first step, and apply inverse STFT to transform data in the
frequency domain back to waveforms in the time domain.

5.3.2 Decoder

In comparison with the encoder, the architecture of the de-
coder g is simpler. It stacks multiple convolutional layers and
2 FC layers. The first FC layer increases the feature dimension
from the output of convolutional layers. The second FC layer
then projects hidden representations to the desired dimension.
We empirically determined that appending a dropout layer to
the first FC layer improves performance. Input to the decoder
is the log-scaled magnitude of STFT results calculated from
1-second speech sections.

5.3.3 Normalization

After each convolutional layer in the encoder and decoder, we
append an instance normalization layer [29] instead of the
widely used batch normalization layer. A batch normalization
layer compares all data in a batch, which makes sense for
images. As an example, if an image is brighter (or darker)
than other images in the same batch, that image may be a
daytime (or nighttime) scene. However, comparing speech
spectrograms in a batch may not be meaningful. For instance,
a loud voice does not mean that the speaker is male or female.
Therefore, we use instance normalization layers that normal-
ize each data point individually along a specific channel.

5.4 Loss Function
Fulfilling the requirements shown in Equations 1, 2, and 3 are
key to designing our loss function. To meet the requirement in

Equation 1, we need perturbations applied to the STFT results
of original speech to be small. Let δ represent the calculated
perturbations, the loss for optimizing δ is shown as follows:

ℓδ = ∥δ∥2
2 (4)

Minimizing ℓδ decreases squared ℓ2 norm of δ which will lead
to watermarked speech being similar to the original speech.

To meet the requirement in Equation 2, we propose to
optimize the squared difference between output logits of the
decoder g and target watermarks:

ℓwm = ∥g(x′)−h(w)∥2
2, (5)

where x′ is watermarked speech and w ∈ {0,1}m is the target
watermark. The function h is defined as:

h(w) = (w∗2−1)∗ τ (6)

The purpose is to change the target values from {0,1} to
{−τ,τ}. This enlarges the gap between different values to
improve model performance. τ represents the desired logit
values output by the decoder. It is preferable to set τ to a
small number. This choice aligns with common DNN training
pipelines that apply weight decay regularization to encour-
age the resulting DNN to contain small weights. In practice,
setting τ to 5 produces good empirical results.

To fulfil the requirement in Equation 3, we predefine a
watermark w0 /∈W, where W is the set of registered water-
marks. The idea is for original speech to be decoded as a fixed
watermark:

ℓorg = ∥g(x)−h(w0)∥2
2, (7)

where x represents original speech without watermarks.
Finally, the loss function to optimize is simply the weighted

sum of the losses from Equations 4, 5, and 7:

ℓ= α · lδ +β · lwm + γ · lorg (8)



5.5 Training
We train the encoder and decoder simultaneously in an end-to-
end way. During each iteration, original speech is randomly
divided into 1-second sections for embedding watermarks.
Then, the decoder attempts to retrieve watermarks from wa-
termarked speech. The decoder is also trained to extract the
fixed watermark w0 from original speech. Finally, the encoder
and decoder that achieve the smallest loss are saved. To im-
prove the robustness of our watermarks, we occasionally add
Gaussian noise to both watermarked and original speech be-
fore inputting them into the decoder. Adding Gaussian noise
prevents the decoder from relying on very subtle features,
since such features will be destroyed by Gaussian noise. This
in turn encourages the encoder to produce robust watermarks
that are not easily removed by Gaussian noise. We empir-
ically observed that this simple data augmentation strategy
was sufficient to achieve good performance.

5.6 Generating Watermarked Speech
After the encoder and decoder are well-trained, we embed wa-
termarks into the entire original speech. Specifically, original
speech is sequentially divided into 1-second sections. Then,
the encoder is applied to embed watermarks into all these
sections.

5.7 Inference
Given a suspect speech, we first divide it into 1-second sec-
tions before applying the decoder to retrieve watermarks in
each section. The decoded watermark is compared with a pool
of registered watermarks. If a registered watermark matches
the decoded watermark, that section is determined to be fake
speech.

6 Evaluation Metrics

We use the following metrics to evaluate the detection of fake
speech:

• Undetected Fake Length (UFL) measures the length
of time at which fake speech continuously escapes de-
tection in the context of multi-class classification:

UFL = len(g◦ t(s) ̸= w), (9)

where t(s) is fake speech. The function len(·) measures
duration in seconds. Unlike images, speech conveys in-
formation over time. Given predictions P and the tar-
get watermark w, UFL is an array of positive values.
Each element in UFL measures the length of time that
fake speech can escape detection, this indicates how
much information fake speech can convey without be-
ing detected. If UFL contains large values, it means

fake speech may successfully spread false information
without being detected, particularly when a user only
accesses part of it and not the full speech. In contrast, if
elements in UFL are all close to 0, it means fake speech
cannot convey meaningful information before it is de-
tected. The calculation of UFL can be found in our open
source code.

• Binary Undetected Fake Length (BUFL) measures the
length of time at which fake speech continuously escapes
detection in the context of binary classification:

BUFL = len(g◦ t(s) /∈W), (10)

where W is the set of registered watermarks. In prac-
tice, one may only be interested in knowing whether
a suspect speech is genuine or fake, and not bothering
about the specifics of the embedded watermark. Hence,
we also measure BUFL to complement UFL. Theoret-
ically, elements in BUFL should not be larger than the
corresponding elements in UFL.

UFL and BUFL can be interpreted as potential delays in
detection since these metrics calculate the length of time
that fake speech continuously bypasses detection. For
example, a BUFL of 10, means a 10-second segment of
fake speech will bypass detection.

• False Positive Rate (FPR) measures the probability
that original speech, without watermarks, is incorrectly
detected as fake speech:

FPR =
len(g◦ x ∈W)

len(x)
(11)

• True Positive Rate (TPR) is the probability of success-
ful watermark extraction from watermarked speech in a
multi-class classification context. TPR is calculated in
terms of 1-second sections since watermarks are embed-
ded in each 1-second section of original speech.

• Binary True Positive Rate (BTPR) is similar to TPR.
The difference is that BTPR is calculated in the context
of binary classification.

• Equal Error Rate (EER) is a widely used sentence-
level metric for evaluating fake speech detection perfor-
mance [34]. We calculate EER at the sentence-level in
the multi-class classification context. For each sentence,
we use the probability of watermarks being extracted
from 1-second sections as the metric to calculate EER.

• Binary Equal Error Rate (BEER) is similar to EER.
The difference is that BEER is calculated in the context
of binary classification.



We use Perceptual Evaluation of Speech Quality (PESQ)
and Signal-to-noise Ratio (SNR) to evaluate the quality of
watermarked speech. These are standard metrics for evaluat-
ing distortion introduced into audio. Details of these metrics
can be found in Section 10.1 in the Appendix.

7 Experimental Results

All experiments were conducted on a Ubuntu server with 64G
RAM and an Nvidia A100 GPU. We report mean values and
standard deviation in the form of a±b where appropriate. α,
β and γ in Equation 8 were all set to 1.0. Other hyperparam-
eters not specified in this section can be found in our open
source code. Wav2vec 2.0 was initialized using the pre-trained
weights provided by Pytorch.

7.1 TTS Models
To demonstrate that our watermarks can generalize to different
TTS architectures and different training data, we evaluated
our method against two open source TTS models, namely,
SV2TTS [11] and YourTTS [5] and two commercial TTS
models, namely, PlayHT4 and Speechify5. The two open
source TTS models have fundamentally different architec-
tures and were trained on different data. The architectures of
the two commercial TTS models are proprietary and therefore
unknown to the public. It is unlikely that they have the same
architecture and use the same set training data. Our fine-tuned
models are private and do not affect other users. Details of
these models are presented in Section 10.2 in the Appendix.

7.2 Speech to Protect
The testing set of YourTTS contains 11 speakers (7 females
and 4 males) in the VCTK dataset. We selected all these 11
speakers as victims and applied our watermarks to protect
their speech. Each speaker was assigned a unique watermark.

7.3 Watermarks
In the experiments, we used 16-bit watermarks, which can
represent 65,536 different users. This capacity is sufficient
for large scale speech datasets. For example, the widely used
large scale speaker recognition dataset Voxceleb2 [8] only
contains 6,112 speakers. Our watermarks were applied to
frequency components between 100 Hz to 1,000 Hz where
the power of the human voice is concentrated.

7.4 Watermarked Speech
We applied our method to all speech recordings of victim
speakers. PESQ and SNR values of watermarked speech were

4https://play.ht/
5https://speechify.com/voice-cloning/

Table 1: Effectiveness of our watermarks.

UFL BUFL TPR (%) BTPR (%)
1.0±0.0 1.0±0.0 99.9±0.2 99.9±0.2

EER (%) BEER (%) FPR (%)
0.0±0.0 0.0±0.0 0.01±0.02

(a) SV2TTS UFL & TPR (b) YourTTS UFL & TPR

(c) SV2TTS EER (d) YourTTS EER

Figure 4: UFL, TPR and EER comparisons when fine-tuning
SV2TTS and YourTTS on our watermarked data. The figure
shows mean and standard deviation values.

3.52±0.43 and 33.68±5.54, respectively. Table 1 shows the
effectiveness of our method. The PESQ and SNR values are
within an acceptable range. This indicates that the intelligibil-
ity of our watermarked speech was preserved. Moreover, both
UFL and BUFL of our method were small. This indicates that
our method was effective in detecting watermarked speech.
It is expected that only 1 second of watermarked speech can
be played before it is detected. Section 10.3 in the Appendix
visualizes our watermarked speech. It also visualizes fake
speech generated by TTS models that are fine-tuned on our
watermarked speech.

Although the FPR of our method was not 0, the value was
small enough for practical usage. Only 1 second of speech,
over a 2.5 hour average, was falsely detected as watermarked
speech. A defender can prevent false alarms by setting an ap-
propriate threshold for the percentage of watermarked speech
detected. A 0% EER further shows that an appropriate thresh-
old can result in excellent watermark detection.

https://play.ht/
https://speechify.com/voice-cloning/


7.5 Detecting Fake Speech from SV2TTS and
YourTTS

Before generating fake speech, we applied speaker adaptation
to the pre-trained SV2TTS and YourTTS models. Specifically,
we fine-tuned them on our watermarked speech for at most
100 iterations. We calculated UFL and BUFL every 10 iter-
ations. After speaker adaptation, we selected 100 sentences
from the “test-clean” subset of LibriSpeech [22] and used the
fine-tuned models to generate fake speech for each sentence.
In the experiments, we considered fake speech directly gen-
erated by the pre-trained models without speaker adaptation
as benign speech. This is because the pre-trained SV2TTS
and YourTTS were independent of our watermarks. Experi-
mental results show that the FPR for SV2TTS and YourTTS
were 0.05±0.10% and 0%, respectively. This indicates a rare
occurrence of false alarms.

Fig 4 compares the UFL, TPR and EER when fine-tuning
SV2TTS and YourTTS. The experimental results of BUFL,
BTPR and BEER show similar characteristics and are pro-
vided in Fig 10 in the Appendix. As previously discussed,
UFL is theoretically the upper bound of BUFL, and TPR is
the lower bound of BTPR. This means BUFL and BTPR are
the better metrics for measuring detection performance.

Overall, it is obvious that SV2TTS and YourTTS both man-
aged to learn our watermarks because the UFL and EER
decreased while the TPR increased significantly as more it-
erations were run. YourTTS learned our watermarks more
efficiently than SV2TTS, which can be seen from its faster
decrease in UFL and EER and faster increase in TPR.

Before SV2TTS and YourTTS were fine-tuned, UFL values
for SV2TTS and YourTTS were 391.1± 35.9 and 564.9±
171.1, respectively. It should be noted that the calculation of
UFL depends on audio length. The duration of fake speech
generated by SV2TTS and YourTTS were different. When an
adversary fine-tuned SV2TTS and YourTTS for 20 iterations
on our watermarked speech, UFL decreased to 5.2± 20.1
and 3.3±5.8, respectively. When 100 iterations were run, the
UFL further decreased to 2.5±2.4 and 1.6±0.9, respectively.
This means it is highly likely that fake speech generated by
SV2TTS and YourTTS will be detected within 3 and 2 sec-
onds, respectively.

The EER values for detecting fake speech generated by
SV2TTS and YourTTS were 10.73 ± 13.78% and 0.00 ±
0.00%, respectively, after fine-tuning for 100 iterations. This
indicates the success of our watermarks in terms of sentence-
level detection. In particular, the EER values for YourTTS
fake speech watermarks stabilized at 0%, which means abso-
lute detection after 40 iterations. Although the performance
of SV2TTS fake speech was worse compared to YourTTS, de-
fenders can potentially improve the detection performance by
concatenating multiple sentences into a long sentence. This is
because the FPR of our method is low, i.e. only 0.05±0.10%
and 0% for SV2TTS and YourTTS, respectively. Without the

(a) SV2TTS (b) YourTTS

Figure 5: UFL change comparison during fine-tuning
SV2TTS and YourTTS for each speaker. The difficulty of
learning watermarks varies for different speakers.

Table 2: Multi-class classification results using PlayHT and
Speechify.

UFL TPR (%) EER (%)*
PlayHT 23.3±19.3 2.4±2.6 45.5

Speechify 44.6±24.3 0.8±1.9 81.8

*: results are calculated based on the speaker level.

TPR changing, it is more likely for watermarks to be detected
in longer fake sentences, potentially resulting in lower EER
values.

An interesting observation is the fluctuation in UFL values
for YourTTS after 40 iterations. This was because watermarks
for speaker “p248” were incorrectly recognized as watermarks
for another speaker. However, this fluctuation did not occur
when BUFL was used, since BUFL is for binary classification
without differentiating between different speakers.

To investigate the speed at which our watermarks for each
speaker were learned, Fig. 5 compares detailed changes in
UFL for different speakers. It is interesting to see that the
difficulty of learning watermarks for different speakers var-
ied. For example, watermarks for speaker “p335” were the
most difficult to learn by SV2TTS. After 40 iterations, the
corresponding UFL was still 92.8, and it took 80 iterations to
decrease the UFL to 11.8. In contrast, watermarks for speaker
“p248” were the most difficult to learn by YourTTS. How-

Table 3: Binary classification results using PlayHT and
Speechify.

BUFL BTPR (%) BEER (%)*
PlayHT 17.7±16.5 3.7±3.4 18.2

Speechify 33.2±25.2 1.5±2.8 54.6

*: results are calculated based on the speaker level.



Table 4: UFL for time domain attacks.

WN RS MF SS AS QT EA
Watermarked 1.4±0.9 1.0±0.0 1.0±0.0 1.0±0.1 1.0±0.0 3.6 ± 5.6 1.1±0.3

SV2TTS 3.6 ± 5.0 2.5±2.4 2.7±3.0 2.8±3.7 2.6±2.6 3.5±5.4 2.6±2.7
YourTTS 1.7±1.2 1.6±0.9 1.5±0.9 1.7±1.0 1.7±1.0 3.9 ± 11.0 1.5±1.1
PlayHT 30.2±21.7 24.2±19.2 25.2±20.6 25.2±21.7 27.5±20.4 49.4 ± 17.3 18.8±17.8

Speechify 39.2±25.3 44.6±24.3 33.2±28.3 44.6±24.3 47.9 ± 22.3 47.9 ± 21.2 17.4±19.1

Table 5: BUFL for time domain attacks.

WN RS MF SS AS QT EA
Watermarked 1.4±0.8 1.0±0.0 1.0±0.0 1.0±0.1 1.0±0.0 3.6 ± 5.6 1.1±0.3

SV2TTS 2.9 ± 4.5 2.3±2.2 2.4±2.8 2.5±3.1 2.5±2.6 2.8±4.6 2.4±2.6
YourTTS 1.6±1.2 1.6±0.9 1.5±0.9 1.7±1.0 1.7±1.0 3.9 ± 11.0 1.6±1.1
PlayHT 23.3±22.3 18.3±16.5 20.1±18.7 19.5±20.1 20.8±19.4 42.7 ± 21.2 12.6±13.3

Speechify 28.7±24.2 33.2±25.2 25.3±25.5 35.0±26.0 39.2 ± 26.2 35.0±23.9 12.9±16.5

ever, it took only 20 iterations to decrease the corresponding
UFL to 15.7. TPR and EER values for individual speakers
can be found in Fig. 11 in the Appendix, which also shows
the varying difficulty in learning watermarks for different
speakers.

7.6 Detecting Fake Speech from PlayHT and
Speechify

We created accounts on the PlayHT and Speechify websites
under their free voice cloning plan. Both services require
users to first upload the recorded voice of a target before
voice cloning. They then used the uploaded voice to fine-
tune their underlying TTS models. It takes less than a minute
for both services to be ready. Users can then input their in-
tended text and the services will generate corresponding fake
speech using the target voice. PlayHT allows users to adjust 3
advanced voice controls: “Stability”, “Similarity”, and “Inten-
sity”, using slider bars. We set the slider bars to the middle
position to generate fake speech with an average setting.

The sampling rates of PlayHT and Speechify were 44.1
kHz and 48 kHz, respectively. As these differ from the 16
kHz sampling rate of our model, we up-sampled audio files
from 16 kHz to 44.1 kHz before uploading them to PlayHT
and Speechify. After the resulting fake speech files were down-
loaded, they were down-sampled back to 16 kHz before in-
putting them into our model. PlayHT only allows a single file
of less than 50 MB to be uploaded. For a specific speaker, we
combined multiple speech files into a single file such that the
file size was slightly less than 50 MB. The duration of each
combined file was about 4 minutes and 30 seconds. Speechify
requires the number of characters for a single piece of fake
speech to be less than 1,000. Hence, we only selected 14

sentences from the “test-clean” subset of LibriSpeech to gen-
erate, instead of the 100 sentences that we did for SV2TTS
and YourTTS. The overall duration of each fake speech was
about 57 seconds.

The experimental results are shown in Tables 2 and 3. We
consider fake speech generated by fine-tuning PlayHT and
Speechify on original speech, i.e. without our watermarks,
as benign speech. The resulting generated speech were con-
catenated into a long speech for each speaker. This was done
separately for benign speech and fake speech. The EER and
BEER were then calculated over the long speech of all speak-
ers. In this manner, EER and BEER show the performance
based on the speaker level. One can see that BEER performs
significantly better than EER for both PlayHT and Speechify.
Although these values are worse compared to SV2TTS and
YourTTS, the results show that our watermarks managed to
transfer to both PlayHT and Speechify. This demonstrates the
effectiveness of our method for black-box commercial TTS
models.

Using BUFL, our method detects fake speech from PlayHT
after 17 seconds, whereas fake speech from Speechify was
detected after 33 seconds. Furthermore, the FPR for PlayHT
and Speechify were both 0, indicating that a defender would
reliably detect fake speech using our method. If BTPR > 0 is
used as the detection criteria of fake speech, our watermarks
for 9 speakers transferred to PlayHT, and our watermarks for
5 speakers transferred to Speechify.

The experimental results also show that PlayHT learned
our watermarks more efficiently than Speechify. We cannot
determine the exact cause of this difference because the inter-
nal workings of these commercial models are proprietary. It
may be due to PlayHT running more iterations than Speechify,
or PlayHT using a more advanced TTS model than Speechify.



Table 6: UFL for frequency domain attacks.

MP3 Opus LP HP NR
Watermarked 1.0±0.0 1.0±0.0 1.0±0.0 4.2 ± 23.5 1.4±0.7

SV2TTS 2.5±2.4 2.7±2.9 2.5±2.4 6.2 ± 33.7 3.9±16.4
YourTTS 1.6±0.9 1.7±1.0 1.6±0.9 4.9 ± 22.7 1.8±1.3
PlayHT 23.3±19.3 27.5±21.4 23.3±19.3 45.8 ± 18.7 45.8 ± 19.4

Speechify 41.8±24.0 41.8±24.1 44.6±24.3 51.7±19.1 61.3 ± 4.0

Table 7: BUFL for frequency domain attacks.

MP3 Opus LP HP NR
Watermarked 1.0±0.0 1.0±0.0 1.0±0.0 1.7 ± 1.3 1.4±0.7

SV2TTS 2.3±2.3 2.4±2.7 2.3±2.2 2.4±2.6 3.8 ± 16.5
YourTTS 1.6±0.9 1.7±1.0 1.6±0.9 1.8 ± 1.3 1.8 ± 1.3
PlayHT 17.2±16.5 22.4±20.7 17.7±16.5 21.6±18.1 35.4 ± 22.5

Speechify 31.6±24.1 35.0±25.0 33.2±25.2 44.7±23.9 47.9 ± 21.6

7.7 Robustness to Non-adaptive Attacks
In addition to being effective, a practical watermarking
scheme should be robust to attacks. This section evaluates
our watermarks against attacks commonly used in the litera-
ture to evaluate the robustness of watermarks. These attacks
are grouped into time domain attacks and frequency domain
attacks. Time domain attacks include White Noise (WN),
Resampling (RS), Median Filter (MF), Sample Suppression
(SS), Amplitude Scaling (AS), Quantization (QT), and Echo
Addition (EA). Frequency domain attacks include MP3, Opus,
Low-pass Filtering (LP), High-pass Filtering (HP), and Noise
Reduction (NR). The details of these attacks can be found in
Section 10.4 in the Appendix.

Experimental results on the robustness of our watermarked
speech in terms of UFL and BUFL are shown in Tables 4, 5, 6
and 7. The results on fake speech generated by fine-tuning the
open source and commercial TTSs using our watermarked
speech are also presented. It should be noted that SV2TTS
and YourTTS were fine-tuned for 100 iterations. We marked
the worst results for our watermarked speech for each TTS in
bold. The experimental results and discussion for EER and
BEER can be found in Section 10.5 in the Appendix. The
EER and BEER results are consistent with UFL and BUFL
results. We focus on discussing UFL and BUFL results in this
section.

Overall, our method was robust to the time domain attacks
shown in Tables 4 and 5. Although the quantization attack
was the most effective in decreasing the performance of our
method, our method was still effective since the watermarks
are likely to be detected within 5 seconds for our watermarked
speech and fake speech generated by SV2TTS and YourTTS.
An exception was the quantization attack against fake speech
from PlayHT, of which the effectiveness of our watermark

decreased. Nevertheless, our watermarks can still be detected
in fake speech from PlayHT. Overall, the detection of fake
speech from PlayHT and Speechify was robust to the other
time domain attacks. This is because the UFL and BUFL
values were similar to their corresponding values when no
attack was applied, shown in Tables 2 and 3.

Tables 6 and 7 show experimental results for frequency
domain attacks. Although the high-pass filter and noise reduc-
tion attacks were the most effective in removing our water-
marks, our watermarked speech and fake speech generated by
SV2TTS and YourTTS can still be detected within an average
of 7 seconds. In terms of UFL, our watermarks in fake speech
from Speechify were destroyed by the noise reduction attack.
Nonetheless, a defender can still rely on BUFL to detect wa-
termarks in fake speech processed by noise reduction from
Speechify. For other frequency domain attacks, the detection
of fake speech from PlayHT and Speechify was robust as their
UFL and BUFL values were similar to their corresponding
values, shown in Tables 2 and 3.

7.8 Robustness to Adaptive Attacks

In addition to non-adaptive attacks, a practical watermarking
scheme must be robust to adaptive attacks, of which an ad-
versary is aware of the underlying watermark mechanisms.
In this work, we considered 3 adaptive attacks. Details and
experimental results of these adaptive attacks are presented in
the following subsections. We focus on discussing UFL and
BUFL results. The experimental results for EER and BEER
are overall consistent with UFL and BUFL results and they
can be found in Section 10.6 in the Appendix.



Table 8: UFL for the band-stop filter attack.

100 Hz 200 Hz 400 Hz
Watermarked 1.8±1.9 14.9±122.6 17.1 ± 138.1

SV2TTS 2.6±2.7 4.2±16.4 20.5 ± 71.1
YourTTS 3.2±31.1 4.9±41.0 5.5 ± 45.1
PlayHT 25.2±22.0 25.2±23.4 45.8 ± 21.3

Speechify 41.8 ± 25.1 30.1±28.6 27.0±28.9

Table 9: BUFL for the band-stop filter attack.

100 Hz 200 Hz 400 Hz
Watermarked 1.9±2.2 6.6±87.1 10.9 ± 109.6

SV2TTS 2.2±2.4 3.7±15.0 4.8 ± 25.4
YourTTS 3.4±33.6 3.9±31.6 4.3 ± 38.7
PlayHT 22.4 ± 19.4 21.6±20.2 11.3±17.0

Speechify 36.9 ± 23.7 23.4±25.8 17.4±25.6

7.8.1 Band-stop Filters

As our watermarks were applied within the 100 Hz to 1,000
Hz frequency components, this adaptive attack randomly se-
lects a bandwidth at 100 Hz, 200 Hz or 400 Hz and filters out
all signals in the selected frequency band. This is analogous
to a cropping attack in the image domain that crops out up to
44% of watermarks.

The experimental results are presented in Tables 8 and 9.
The worst results for our watermarked speech for each TTS
are shown in bold. Overall, our watermarks were effective
against this adaptive attack. In general, the effectiveness of our
watermarks decreased as larger portions of our watermarks
were cropped out.

However, fake speech generated by PlayHT and Speechify
were exceptions since the effectiveness of our watermarks
improved, especially in terms of BUFL, when larger portions
of watermarks were cropped out. A potential reason for this
may be because fake speech from PlayHT and Speechify in-
troduced large distortions to our watermarks. Hence, cropping
out part of the signal in the frequency domain may partially
remove these distortions, which facilitated the detection of
watermarks.

7.8.2 Denoising Autoencoder

Given a set of original speech, an adversary can use our
method to generate watermarked speech. The purpose is
to construct a dataset consisting of clean and watermarked
speech pairs. The adversary then trains a denoising autoen-
coder on these data pairs. After the denoising autoencoder is
well trained, it is used to remove watermarks from protected
speech. The purified protected speech is finally passed to a
TTS for voice cloning. The details of training the denoising

Table 10: Results for the denoising autoencoder attack.

Before Denoising After Denoising
SNR Training 33.86±2.70 47.37±3.14
SNR Victim 33.68±5.54 41.34±3.97
PESQ Training 3.67±0.31 4.31±0.16
PESQ Victim 3.52±0.43 3.88±0.28
UFL Training 1.0±0.1 27.5±101.0
UFL Victim 1.0±0.0 2.1±1.9
UFL YourTTS 1.6±0.9 2.6±2.8
BUFL Training 1.0±0.0 10.6±16.5
BUFL Victim 1.0±0.0 1.6±1.2
BUFL YourTTS 1.6±0.9 2.0±1.4
EER (%) Training 0.0±0.0 95.0±9.0
EER (%) Victim 0.0±0.0 9.3±13.2
EER (%) YourTTS 0.0±0.0 8.6±14.0
BEER (%) Training 0.0±0.0 74.6±24.0
BEER (%) Victim 0.0±0.0 2.0±2.8
BEER (%) YourTTS 0.0±0.0 3.0±8.3

autoencoder can be found in Section 10.7 in the Appendix.
In the experiments, we used a different set of 11 speakers

from the training set of YourTTS to train our watermarking
network from scratch. These 11 speakers were different from
the 11 victims because if an adversary has access to the vic-
tims’ original speech, this adaptive attack becomes pointless.
We ran speaker adaptation using YourTTS for 100 iterations.

The experimental results in Table 10 show that the de-
noising autoencoder effectively inversed our watermarks in
the training set. This is because SNR and PESQ values of
watermarked training speech improved significantly. This
reduced the effectiveness of our watermarks for the water-
marked training speech, because UFL, BUFL, EER and BEER
increased significantly. However, the watermarks for victim
speech were not affected. Although SNR and PESQ values
for watermarked victim speech increased, there was only a
small increase in the corresponding UFL, BUFL, EER and
BEER values.

For fake speech generated by YourTTS, UFL, BUFL, EER
and BEER values only increased slightly. This means this
adaptive attack failed to prevent our watermarks from trans-
ferring to YourTTS. On average, fake speech from YourTTS
was detected in under 3 seconds.

7.8.3 Adaptive Iteration Attack

In this adaptive attack, the goal of an adversary is to prevent
a TTS model from learning our watermarks by limiting the
number of training iterations. Specifically, the adversary im-
mediately stops fine-tuning when the generated fake speech
manages to fool a speaker verification system.

In the experiments, we evaluate this attack using YourTTS
because we cannot control training iterations for commercial



(a) Speaker Verification (b) UFL and TPR

Figure 6: Speaker verification, UFL, and TPR comparisons
for fake speech generated by YourTTS. The experiments were
repeated 5 times and the figures plot mean and standard devi-
ations.

TTSs. We included 5 minutes of speech from the former US
president Obama6 to train our watermarking network and fo-
cused on protecting Obama’s speech. This is because Obama’s
voice is quite different from the YourTTS’s training set. Other-
wise, YourTTS may fool speaker verification without speaker
adaptation, which breaks the key assumption of our method.
We trained our watermarking model on this training set from
scratch and applied watermarks to Obama’s speech. We used
the same 14 sentences to generate fake speech as we did for
evaluating PlayHT and Speechify.

For speaker verification, we used the recently proposed
RawNet3 model [13], which achieved state-of-the-art results
on the VoxCeleb dataset with an EER of 0.89%. The Vox-
Celeb dataset [20] is a large-scale speaker verification dataset
containing real-world utterances from over 1,000 celebrities.
In the experiments, we used a threshold of −1.11 that corre-
sponds to a 0.1% false positive rate and a 4.9% false negative
rate. This setting is practical for a real-world scenario in which
false positives will cause serious repercussions while a few
false negatives are tolerable. We used the first 11 seconds of
Obama’s speech as enrolment for speaker verification.

We repeated the experiments 5 times. Fig. 6 shows that
fine-tuning YourTTS for 16 or more iterations on Obama’s
speech can reliably fool RawNet3 as the verification scores
were above the threshold. However, the UFL values decreased
below 5 when 16 or more iterations were run. This means
our method was able to detect fake speech even when an
adversary immediately stopped speaker verification after 16
iterations.

From the results, we can see that if the target’s speech is
different from the TTS’s training set, our method is robust to
an adaptive iteration attack. However, if the target’s speech
is similar to the training set, our method will fail because a
TTS model can fool speaker verification in a zero-shot setting

6https://www.americanrhetoric.com/speeches/barackobama/
barackobamaweeklytransition7.htm

(a) Speaker Verification (b) UFL

Figure 7: Speaker verification and UFL comparisons for fake
speech generated by YourTTS. The number of audio files
range between 1 to 21.

Table 11: YouTTS speaker adaptation for 100 iterations using
a mixture of original and watermarked speech.

Ratio* BUFL BTPR (%) BEER (%) Succ+

80% 1.7±1.2 82.8±18.9 0.00±0.00 11/11
60% 7.3±42.8 17.8±14.1 38.6±38.9 9/11
40% 23.8±88.8 5.4±10.9 81.3±32.7 6/11
20% 29.0±115.1 2.4±7.5 99.8±0.4 2/11

*: percentage of watermarked speech.
+: number of speakers for which our watermarks transferred to
YourTTS in terms of BUFL.

or within a few iterations. Improving the learnability of our
watermarks is an interesting topic for future work.

In the preceeding experiments, we used speech with a 5
minutes and 7 seconds duration that we split into 85 files.
We then investigated whether adversaries can use a smaller
number of files to fine-tune YourTTS to avoid learning our
watermarks. These experimental results are shown in Fig.
7. Specifically, adversaries used 1 to 21 audio files to fine-
tune YourTTS. The total audio duration ranges between 4.9
seconds to 73.5 seconds.

Overall, with a larger number of files, adversaries needed
fewer iterations to fool speaker verification. In particular, fine-
tuning with only 58.5 seconds of audio (17 audio samples)
was sufficient for achieving comparable fooling performance
with fine-tuning with 5 minutes of audio. An interesting obser-
vation is that adversaries can potentially fool state-of-the-art
speaker verification even when fine-tuning with only 4.9 sec-
onds of audio. Regardless, all fake speech could successfully
be detected since all UFL values consistently decreased to
less than 5 seconds when speaker verification was fooled by
the fake speech.

https://www.americanrhetoric.com/speeches/barackobama/barackobamaweeklytransition7.htm
https://www.americanrhetoric.com/speeches/barackobama/barackobamaweeklytransition7.htm


(a) UFL and TPR (b) EER

Figure 8: Evaluation of our method when an adversary mixes
in an arbitrary watermark.

7.9 Watermark Mixture

This section evaluates our method against an adversary that
mixes in an arbitrary watermark. Specifically, given the
already watermarked speeches of 11 VTCK speakers, we
trained our model on them from scratch with a different set
of watermarks. Then, we embedded the learned watermarks
into the already watermarked speeches. These “double” wa-
termarked speeches were then used to fine-tune YourTTS.

Experimental results in Fig. 8 show that the original wa-
termarks can still effectively be detected, despite a slight
decrease in performance. When YourTTS was fine-tuned for
100 iterations, the detection of original watermarks achieved
a UFL of 1.8±1.3 and an EER of 1.00%±2.09%.

7.10 Different Watermarking Rates

Our watermarks need to be applied before the speech is re-
leased to the public. However, original speech from a speaker,
e.g., a celebrity, may already be in the public domain. In this
section, we evaluate the effectiveness of our method in the
case that an adversary has access to original speech samples.
We assume that an adversary collects a mixture of original
speech and watermarked speech. The experimental results for
BUFL, BTPR and BEER in Table 11 show that the greater
the number of watermarked speech samples, the easier it is
for a TTS model to learn our watermarks. Results for UFL,
TPR and EER show similar characteristics and are provided
in Table 18 in the Appendix. When 40% of the samples were
watermarked speech, our watermarks managed to transfer to
YourTTS for more than half of the speakers. Even if only 20%
of speech is watermarked, our watermarks still succeeded for
2 of the speakers. This experiment demonstrates that our wa-
termarks can be effective when an adversary has access to a
mixture of original speech and watermarked speech. It also
shows the percentage of watermarked samples required to
effectively fine-tune a TTS model to learn our watermarks.

(a) Timbre watermarking (b) Our watermarking

Figure 9: Comparison with Timbre watermarking using a sim-
ple ensemble attack on fake speech from YourTTS. Timbre
watermarking used watermark decode accuracy in their paper.

7.11 Comparison with Timbre Watermarking
As discussed in Section 2, the watermark patterns of Timbre
Watermarking [17] are complex. This complexity potentially
makes it less noticeable but vulnerable to noise. We compare
Timbre Watermarking and our method using a simple ensem-
ble attack, which first adds white noise, then down-samples
audio to an 8,000 sampling rate, before up-sampling it back
to the original sampling rate.

We applied Timbre Watermarking to embed watermarks in
all audio of the 11 VCTK speakers and achieved 100% de-
coding accuracy. The SNR and PESQ values of watermarked
audio were 26.95±1.82 and 3.49±0.30, respectively, which
are comparable to our watermarks. We fine-tuned YourTTS
on watermarked audio and applied the ensemble attack to the
generated fake speech. The fake speech quality decreased in
terms of SNR to 21.67±2.95.

Fig. 9 shows the results. Our method is robust to this en-
semble attack as the EER decreased to 0.64%±1.43% when
YourTTS was fine-tuned for 40 iterations. Although Timbre
Watermarking successfully transferred to YourTTS, which
can be seen from the high decoding accuracy when no attack
was applied, the watermarks in fake speech were easily de-
stroyed by this ensemble attack. Even when YourTTS was
fine-tuned for 1,000 iterations, Timbre Watermarking was still
ineffective with a decoding accuracy of below 60%.

7.12 Comparison with AASIST
In this section, we compare our method with AASIST [12],
which represents the state-of-the-art in reactive fake speech
detection and is a widely used benchmark in the literature.
We evaluated pre-trained AASIST on a testing set consisting
of the original speech of 11 VTCK speakers and fake speech
generated by YourTTS without speaker adaptation. The EER
of ASSIST was above 30% because YourTTS fake speech
was not included in the training set of AASIST. Under the
same settings, our method surpassed AASIST when YourTTS



was fine-tuned for 30 iterations because our BEER was less
than 1% after 30 iterations.

It should be noted that it may not be fair to compare wa-
termarking techniques with reactive detection because water-
marking techniques require TTS to be fine-tuned on water-
marked data while this is not necessary for reactive detection.
The main purpose of this section is to show that watermarking
techniques can generalize to unseen TTS models, while it is a
challenge to generalize reactive detection techniques.

7.13 Watermark Stealthiness
Despite achieving high PESQ and SNR values, our water-
marks may be noticable in silent sections of audio. This is
because we watermark each 1-second section, including silent
sections. If original audio contains background noise, our wa-
termarks are less perceptible when interwined with the back-
ground noise, e.g., the Obama’s speech sample used in our
experiments. Results in Table 10 suggest that the stealthiness
of our watermarks can potentially be improved.

To evaluate whether our watermarks affect normal us-
age, we used RawNet3 to determine if watermarked speech
was recognized as being associated with their corresponding
speaker. We conducted experiments for all 11 VCTK speak-
ers. For each speaker, 4 sentences were used as reference for
speech verification. We maintained the use of a −1.11 thresh-
old, which corresponds to a 0.1% false positive rate and a
4.9% false negative rate.

The experimental results show that RawNet3 successfully
associated 99.57% of audio samples from the 11 VCTK speak-
ers with their respective speakers. The lowest recognition rate
was 98.73% for speaker “p261”. These results suggest that
our watermarks do not affect normal speech usage.

7.14 Computational Overhead
Our architecture includes wav2vec 2.0, which is a large model.
Nevertheless, wav2vec 2.0 is only involved in the training
stage, whereas the decoding process uses a simple convolu-
tional neural network. The number of floating-point opera-
tions per second (FLOPS) of our decoder is 1.2375 GFLOPS.
This is slightly lower than Alexnet, which is 1.4297 GFLOPS
when its input dimensions are 3*224*224. Training our model
for 200 epochs for the 11 VCTK speakers took 138 minutes.
In contrast, watermark decoding is efficient because the ex-
traction process can be parallelized. In 1 second, the decoder
can extract watermarks from 2 hours of audio.

8 Discussion

8.1 Watermark Adaptability
The reason TTS models can preserve our watermarks can the-
oretically be explained by the TTS training objective. Specifi-

cally, most, if not all, TTS model training minimizes the fre-
quency domain difference between real and generated speech.
For example, YourTTS and SV2TTS both minimize the ℓ1
norm between real and generated mel spectrograms. This
enables TTS models to learn frequency domain watermarks
after fine-tuning and perserve the watermarks in synthesized
speech. The ability of TTS models to learn frequency domain
watermarks also explains the adaptability of our watermarks
to different TTS models even though our training pipeline
does not involve any TTS models.

8.2 Limitations and Future Work

In this work, we focused on protecting speakers from voice
cloning in a closed set. While this strategy can protect voice
sources, e.g., public voice datasets, which contain a fixed
number of speakers, our current method cannot protect un-
seen speakers. This presents limitations in a scenario with new
speakers that requires real-time watermarking. For example,
a phone company may need to watermark phone conversa-
tions in real time to prevent adversaries from using recorded
conversations to generate fake speech.

To improve the generalizability of our method, a potential
approach is to incorporate speaker embeddings in the water-
mark generation pipeline. Speaker embeddings generalize to
speakers not included in the training data and they can be
obtained from well-trained speaker verification models, e.g.,
RawNet3. Hence, speaker embeddings can be exploited for
generating watermarks for unseen speakers.

We have not investigated the scenario where watermarked
speech is played through a physical speaker and received by a
microphone. Existing work [40] has demonstrated that using
Room Impulse Response (RIR) to augment the training data
improves robustness in a physical environment. We leave
these as topics for future work.

9 Conclusion

In this work, we propose a novel watermarking technique to
detect fake speech generated by TTS models. Experimental
results show that our watermarks transfer to TTS models if
an adversary applies speaker adaption using our watermarked
speech. This is because fine-tuning a TTS model using our
watermarked speech results in the TTS model learning our
watermark patterns. This results in the generated fake speech
containing our watermarks, which enables fake speech detec-
tion in a reliable and explainable manner. In addition to open
source TTS models, our watermarks are also transferrable to
commercial TTS models that provide voice cloning services.
This demonstrates the generalizability and practicality of our
method in the real world. We intend to improve the learn-
ability of our watermarks and the generalization to unseen
speakers in future work.



Ethics Considerations

To conduct experiments with the live systems, namely, PlayHT
and Speechify, we created valid accounts under their free
voice cloning plan and all experiments were conducted using
the allowed quota. Although our watermarks transferred to
the vendors’ models, this does not affect other users because
our fine-tuned models are private and not shared with other
users. Hence, this research did not affect other users. More-
over, while the results of our study could impact the service
providers’ business, if there are significant use cases that vio-
late free speech, we believe in the importance of free speech.
Furthermore, our research did not reveal any technical flaws
with the live systems, nor did we intend to do so.

On the other hand, the community can benefit from uti-
lizing our method to deter adversaries from generating fake
speech on live systems for malicious intent. This is especially
helpful for people who contribute to public voice datasets.
Service providers may also incorporate our techniques in
their products to ensure the responsible disclosure of their
generative models.

Based on the discussion above, we believe that all experi-
ments in this work were conducted ethically and the potential
benefits of this research outweigh the potential harms.

Open Science

This research complies with the open science policy. We have
made the following artifacts available online to replicate our
work7. More details about the repository can be found in
“readme.txt”.

• Code and scripts: Python code to create and train our
model from scratch; Python code to preprocess the
VCTK dataset; Python code to generate all the results
reported in this paper.

• Data sets: Preprocessed Obama’s speech; examples of
fake speech generated by YourTTS and SV2TTS; all the
fake speech generated by Speechify and PlayHT.

• Binaries: Pre-trained parameters of our model.

• Secondary artefacts: Pre-trained YourTTS and SV2TTS
parameters; Python code to fine-tune YourTTS and
SV2TTS given a list of speech; pre-trained parameters
of 10-bit Timbre Watermarking; code to evaluate Tim-
bre Watermarking on VCTK testing data; pre-trained
RawNet3 parameters; Python code to apply RawNet3
for speaker verification; Pre-trained AASIST parameters;
Python code to apply AASIST for fake speech detection.

We will not release the original VCTK dataset because
it is publicly available, but we will release Python code to
preprocess it.

7https://zenodo.org/records/14722182.

We will not release the complete set of fake speech gen-
erated by YourTTS and SV2TTS because the complete set,
including fake speech corresponding to various fine-tuning
iterations, is too large to be uploaded online. Instead, we will
release the Python code for generating fake speech using
YourTTS and SV2TTS.

The following is a checklist to replicate all reported results
in this work.

• Tables 1, 2 and 3: all watermarked VCTK data and fake
speech generated by PlayHT and Speechify will be re-
leased. Python code and pre-trained parameters to repli-
cate the results will be released.

• Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18:
Python code, data and pre-trained parameters to replicate
all the results will be released.

• Figures 4, 5, 8, 9, 10 and 11: the pre-trained model pa-
rameters will be released. Python code to replicate the
results will be released.

• Figures 6 and 7: Python code, preprocessed Obama’s
speech and pre-trained model parameters to replicate the
results will be released.

• Figure 12: the corresponding audio files will be released.

• Python code and pre-trained model parameters to repli-
cate results that are not reported in figures or tables will
be released, i.e., results reported in Section 7.12, Section
7.13 and Section 7.14.
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10 Appendix

10.1 Speech Quality
Perceptual Evaluation of Speech Quality (PESQ) was ini-
tially developed as an evaluation metric for automatically mea-
suring degradation in speech in the context of telephony [24].
The values of PESQ range between 1.0 to 4.5. Higher PESQ
values represent better quality.

Signal-to-noise Ratio (SNR) is another metric widely used
by researchers for evaluating distortions introduced by noise
[6]. Thus, we used SNR to complement PESQ.



(a) SV2TTS BUFL & BTPR (b) YourTTS BUFL & BTPR

(c) SV2TTS BEER (d) YourTTS BEER

Figure 10: BUFL, BTPR, and BEER comparisons when fine-
tuning SV2TTS and YourTTS on our watermarked data. This
figure shows mean and standard deviation values.

10.2 TTS Models

SV2TTS uses a pipelined TTS architecture to generate fake
speech. It consists of 3 sub models: a LSTM-based encoder,
Tacotron 2 [27] as the synthesizer, and WaveNet vocoder [21]
for converting mel spectrograms to waveforms. Our experi-
ments relied on the widely used open source implementation
and pretrained models8.

YourTTS was recently proposed by Casanova et al. [5].
Unlike the pipelined architecture of SV2TTS, YourTTS is
an end-to-end TTS that does not split speech generation into
different stages. YourTTS is a complex TTS system consist-
ing of multiple sub models, such as a transformer-based text
encoder [14], a HiFi-GAN vocoder [16], and a variational
autoencoder (VAE) [15]. We used the YourTTS model pre-
trained on the VCTK dataset [31] provided by Casanova et
al. [5] for replicating their “System 1”9.

PlayHT and Speechify are commercial TTS services with
state-of-the-art performance. They both allow users to clone a
target voice for free, albeit with a character limit. The internal
workings of these 2 models are not released to the public, but
it is highly unlikely that they have the same architecture and
the same training data set.

8https://github.com/CorentinJ/Real-Time-Voice-Cloning
9https://github.com/Edresson/YourTTS/

(a) SV2TTS TPR (b) YourTTS TPR

(c) SV2TTS EER (d) YourTTS EER

Figure 11: TPR and EER change comparisons when fine-
tuning SV2TTS and YourTTS for each speaker. The difficulty
of learning watermarks varies for different speakers.

10.3 Visualization

Fig. 12 visualizes how our watermark patterns are preserved
in fake speech. SV2TTS and YourTTS were fine-tuned on
our watermarked speech for 100 iterations, while the set-
tings at which PlayHT and Speechify adapted to our wa-
termarked speech are not disclosed to the public. Looking
closely, changes in our watermark patterns along the time axis
are small. The simple and consistent patterns are favorable
for a TTS model to learn our watermarks.

10.4 Non-adaptive Attacks

The details of time domain attacks are as follows:
White Noise (WN) attack: adds Gaussian noise, with a

mean of 0 and standard deviation of 0.005, to speech.
Resampling (RS) attack: first down-samples audio to an

8,000 sampling rate, before up-sampling it back to a 16,000
sampling rate.

Median Filter (MF) attack: applies a filter, with a kernel
size of 5, to smoothen audio.

Sample Suppression (SS) attack: randomly set 3% of
samples to 0.

Amplitude Scaling (AS) attack: scales audio amplitudes
to 70% of their original values.

Quantization (QT) attack: quantizes samples to the 28

level.
Echo Addition (EA) attack: scales the original samples

to 30%, delays the scaled samples by 0.1 seconds, and adds

https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/Edresson/YourTTS/


(a) Watermarks (b) Watermarked Speech (c) SV2TTS (d) YourTTS (e) PlayHT (f) Speechify

Figure 12: Watermarked and fake speech of speaker “p326”. Our watermark patterns are clearly present in the generated
speech from all TTS models (shown in the yellow rectangles). Fake speech generated by Speechify is an exception because our
watermark patterns are not clear.

Table 12: EER (%) for time domain attacks.

WN RS MF SS AS QT EA
Watermarked 2.74±5.16 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 28.06 ± 26.97 0.09±0.12

SV2TTS 21.73±26.56 10.73±13.78 14.91±17.63 13.64±17.44 11.91±15.63 28.09 ± 29.69 16.73±19.21
YourTTS 1.91±3.63 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 24.27 ± 30.36 0.00±0.00
PlayHT* 63.64 45.45 45.45 54.55 45.45 90.91 36.36

Speechify* 63.64 81.82 81.82 63.64 81.82 81.82 27.27

*: results are calculated based on the speaker level.

Table 13: BEER (%) for time domain attacks.

WN RS MF SS AS QT EA
Watermarked 2.12±3.81 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 27.22 ± 26.88 0.05±0.10

SV2TTS 19.00±26.02 9.82±12.78 13.73±17.21 12.00±16.36 11.73±15.54 23.18 ± 27.83 15.73±18.66
YourTTS 1.73±3.67 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 23.82 ± 30.38 0.00±0.00
PlayHT* 54.55 18.18 27.27 36.36 36.36 81.82 9.09

Speechify* 45.45 54.55 54.55 45.45 72.73 54.55 27.27

*: results are calculated based on the speaker level.

Table 14: EER (%) for frequency domain attacks.

MP3 Opus LP HP NR
Watermarked 0.00±0.00 0.00±0.00 0.00±0.00 15.34 ± 30.60 0.02±0.07

SV2TTS 10.73±13.68 14.73±17.75 10.82±13.90 48.55 ± 41.14 37.00±35.86
YourTTS 0.00±0.00 0.00±0.00 0.00±0.00 15.82 ± 31.88 0.00±0.00
PlayHT* 45.45 54.55 45.45 81.82 72.73

Speechify* 72.73 72.73 81.82 81.82 100.00

*: results are calculated based on the speaker level.

Table 15: BEER (%) for frequency domain attacks.

MP3 Opus LP HP NR
Watermarked 0.00±0.00 0.00±0.00 0.00±0.00 2.66 ± 6.56 0.02±0.07

SV2TTS 10.00±13.16 13.18±16.56 9.91±12.91 16.36±16.41 36.18 ± 36.29
YourTTS 0.00±0.00 0.00±0.00 0.00±0.00 1.55 ± 4.58 0.00±0.00
PlayHT* 18.18 54.55 18.18 27.27 54.55

Speechify* 45.45 63.64 54.55 72.73 81.82

*: results are calculated based on the speaker level.



Table 16: EER (%) for the band-stop filter attack.

100 Hz 200 Hz 400 Hz
Watermarked 11.58±4.06 36.30±11.41 64.09 ± 22.86

SV2TTS 31.09±16.88 57.45±14.66 81.82 ± 15.94
YourTTS 9.36±3.70 36.36±9.22 65.45 ± 22.51
PlayHT 45.45 90.91 81.82

Speechify 81.82 63.64 81.82

Table 17: BEER (%) for the band-stop filter attack.

100 Hz 200 Hz 400 Hz
Watermarked 5.85±3.75 19.68±8.49 36.86 ± 11.30

SV2TTS 21.82±16.25 38.18±13.12 57.55 ± 11.70
YourTTS 4.82±3.93 18.00±8.75 31.82 ± 10.79
PlayHT 27.27 63.64 54.55

Speechify 54.55 45.45 45.45

them back to the original samples.
The details of frequency domain attacks are as follows:
Lossy Compression (LC) attack: compresses audio with

MP3 [28] or Opus [30] compression. These two compression
schemes are widely used in industry. In the experiments, we
used low-quality compression, i.e., 96 kbits/s for MP3 and 24
kbits/s for Opus.

Low-pass Filtering (LP) attack: uses a low-pass filter to
filter out signals above 3.7 kHz.

High-pass Filtering (HP) attack: uses a high-pass filter
to filter out signals below 200 Hz. It should be noted that
the power of the human voice is concentrated at low frequen-
cies. Hence, a high-pass filter with a cutoff frequency larger
than 200 Hz can make voices noticeably different, especially
deeper voices, e.g., male voices.

Noise Reduction (NR) attack: reduces background noise in
input audio by computing its spectrograms and a noise thresh-
old for each frequency band. Our experiments relied on an
open source implementation of noise reduction algorithms10.

10.5 Additional Results for Non-adaptive At-
tacks

The EER and BEER results shown in Tables 12, 13, 14 and
15 are consistent with their corresponding UFL and BUFL
results. Overall, using BEER resulted in better robustness to
all the attacks. QT was the most detrimental time domain at-
tack against our watermarks. Of the frequency domain attacks,
HP and NR attacks were the most effective at destroying our
watermarks. Eventhough NR destroyed our watermarks in

10https://pypi.org/project/noisereduce/

Table 18: YouTTS speaker adaptation for 100 iterations using
a mixture of original and watermarked speech.

Ratio* UFL TPR (%) EER (%) Succ+

80% 1.8±1.2 82.57±19.01 0.00±0.00 11/11
60% 7.4±43.1 17.45±13.98 39.55±38.37 9/11
40% 24.6±95.2 5.05±10.49 82.73±33.00 6/11
20% 29.3±116.7 2.37±7.49 99.91±0.29 2/11

*: percentage of watermarked speech.
+: number of speakers for which our watermarks managed to transfer
to YourTTS in terms of BUFL.

relation to EER, defenders can still use BEER to potentially
detect watermarks in processed speech, since it managed to
detect fake speech for 2 out of the 11 speakers.

10.6 Additional Results for Adaptive Attacks
Additional results for adaptive attacks are shown in Tables 16,
17 and 18.

10.7 Training Denoising Autoencoder
We let the denoising autoencoder learn an inverse function of
our watermarking scheme:

g(x′+ p(x′)) = g(x) (12)

where p represents the denoising autoencoder. x and x′ are
original and watermarked speech, respectively. g represents
the decoder in our watermarking scheme. The denoising au-
toencoder only focuses on frequency components between
100 Hz and 1,000 Hz because we only apply watermarks
within this range. Equation 12 shows that adding output from
the denoising autoencoder to the watermarked speech can
remove our watermarks.

The loss function to train the denoising autoencoder is:

ℓae = ∥F (x′+ p(x′))−F (x)∥2 (13)

where F is the function to transform waveform into features
accepted by decoder g. Equation 13 shows that optimizing
ℓae makes the denoising autoencoder able to inverse our wa-
termarks in terms of ℓ2 norm.

The denoising autoencoder was trained on the paired data
for 200 epochs. The model with the lowest loss was saved
for evaluation. The adversary then uses this denoising autoen-
coder to remove watermarks from the victims’ watermarked
speech.

https://pypi.org/project/noisereduce/
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