
Beyond Statistical Estimation:
Differentially Private Individual Computation via Shuffling

Shaowei Wang1∗, Changyu Dong1, Xiangfu Song2, Jin Li1,3, Zhili Zhou1∗, Di Wang4, Han Wu5

1Guangzhou University 2National University of Singapore
3Guangdong Key Laboratory of Blockchain Security (Guangzhou University)

4King Abdullah University of Science and Technology (KAUST) 5University of Southampton
∗Corresponding authors: wangsw@gzhu.edu.cn, zhou_zhili@163.com

Abstract
In data-driven applications, preserving user privacy while en-
abling valuable computations remains a critical challenge.
Technologies like differential privacy have been pivotal in
addressing these concerns. The shuffle model of DP requires
no trusted curators and can achieve high utility by leverag-
ing the privacy amplification effect yielded from shuffling.
These benefits have led to significant interest in the shuffle
model. However, the computation tasks in the shuffle model
are limited to statistical estimation, making it inapplicable to
real-world scenarios in which each user requires a personal-
ized output. This paper introduces a novel paradigm termed
Private Individual Computation (PIC), expanding the shuffle
model to support a broader range of permutation-equivariant
computations. PIC enables personalized outputs while pre-
serving privacy, and enjoys privacy amplification through
shuffling. We propose a concrete protocol that realizes PIC.
By using one-time public keys, our protocol enables users to
receive their outputs without compromising anonymity, which
is essential for privacy amplification. Additionally, we present
an optimal randomizer, the Minkowski Response, designed
for the PIC model to enhance utility. We formally prove the se-
curity and privacy properties of the PIC protocol. Theoretical
analysis and empirical evaluations demonstrate PIC’s capa-
bility in handling non-statistical computation tasks, and the
efficacy of PIC and the Minkowski randomizer in achieving
superior utility compared to existing solutions.

1 Introduction

Personal information fuels a wide array of data-driven ap-
plications, e.g. statistical analytics, machine learning, recom-
mendation systems, spatial crowdsourcing, e-health, social
networks, and smart cities. These applications deliver sub-
stantial value but rely on data collected from users, which is
a prime target for attacks and carries a high risk of leakage or
abuse. Data privacy concerns are escalating, especially after
several high-profile data breach incidents. Despite the intro-
duction of stricter privacy laws such as the EU’s General Data

Protection Regulation and the California Consumer Privacy
Act, many users still distrust service providers and are hesitant
to consent to the use of their data. To bridge this trust gap
and encourage user participation, significant efforts have been
made recently to develop privacy-enhancing technologies that
enable private data processing.

Two prominent technologies addressing this problem are
secure multiparty computation (MPC) [96] and differential
privacy (DP) [31]. MPC employs interactive cryptographic
protocols that enable mutually untrusted parties to jointly
compute a function on their private data, ensuring each party
receives an output while learning nothing else. Despite its
strong privacy guarantees, the cryptographic nature of MPC
results in substantial overhead, posing scalability challenges
for practical applications. In contrast, DP enhances privacy
by adding random noise to the data, allowing computation
to be performed on sanitized data without the need for heavy
cryptographic machinery. Traditional central DP relies on a
trusted curator [31], but the local model (LDP [57]) enables
users to sanitize their data locally before sharing it. LDP’s
practicality and minimal trust requirements have led to its
adoption by companies such as Apple [81], Microsoft [27],
and Google [33] in their real-world systems. However, LDP’s
primary drawback is that each user must independently add
sufficient random noise to ensure privacy, which can signifi-
cantly impact the utility of the data.

Recently, within the realm of DP research, the shuffle
model [13, 32] has emerged. This model introduces a shuf-
fler that randomly permutes messages from users and then
sends these anonymized messages to a computing server or
analyzer. The server can then compute on these messages
to derive the result. Trust in the shuffler is minimized be-
cause each user encrypts their locally sanitized data using the
server’s public key. This way, the shuffler remains oblivious
to the messages received from the users. A key advantage
of the shuffle model over LDP is utility. It has been proven
that anonymizing/shuffling messages amplifies the privacy
guarantee provided by the local randomizer used by the users.
For instance, shuffled messages from n users each adopting

local ε-DP actually preserve differential privacy at the level
εc = Õ(

√
eε/n) [34, 35]. Consequently, to achieve a prede-

fined global privacy goal, less noise must be added when
users sanitize their data locally. This significantly improves
the accuracy of the final result. Owing to these utility ad-
vantages, extensive studies have been conducted within the
shuffle model, e.g., [8, 41–43].

That said, the shuffle model has a noticeable limitation.
The privacy amplification effect relies heavily on anonymiz-
ing/shuffling messages, which significantly restricts the types
of computation that can be performed. So far, the sole form
of computation achievable within the shuffle model is statis-
tical estimation, i.e., the server takes the shuffled messages,
aggregates them, and computes a single output from them,
e.g., a count, sum, or histogram. However, many real-world
applications are non-statistical in nature. When multiple users
pool their data together for joint computation, they expect an
individualized output that may differ for each user. We coined
the term “individual computation” for such tasks. Examples
of individual computation tasks include:

• Combinatorial optimization: Spatial crowdsourcing
[87], advertisement allocation [66], and general combi-
natorial optimization [59], where two or more parties are
often matched together based on their private informa-
tion. Each party should get their own list of “best matches”
whatever that means.

• Information retrieval: Mobile search [56], location-
based systems [2,21], where the query results (e.g., nearby
restaurants or neighboring users) depend on the private
information of the inquirer.

• Incentive mechanisms: In federated learning [97] or
crowd sensing [78], incentives play a vital role to encour-
age well-behaved participation. The amount of rewarding
incentive must be computed for individuals based on their
contribution (e.g., via Shapley values [75]).

At first glance, private individual computation appears
unattainable within the shuffle model because the need for
personalized output conflicts with the anonymization required
for privacy amplification. However, this is not necessarily
the case. Our observation is that many individual computing
tasks are equivariant to shuffling, meaning that the permu-
tation applied to the inputs does not affect the computation.
Therefore, shuffling does not prevent the server from produc-
ing personalized answers for each client – the server does not
need to know which answer belongs to whom. Nevertheless,
there is a challenge: how to return the output to the correct
user without compromising anonymity. One straightforward
approach is to have the shuffler maintain a long-term duplex
connection channel between each client and the server (e.g.,
as in an Onion routing network [45]). However, this method is
costly due to the need to store communication states and may
be vulnerable to de-anonymization attacks on anonymous
channels [68, 70]. Additionally, current shuffler implementa-

tions, e.g. the one described in the seminal work [13], do not
support such duplex connections. Moreover, after receiving
the computation results, many individual computation tasks
require establishing party-to-party communication (e.g., a
user communicates with the matched driver in taxi-hailing
services, a user communicates with matched near users in
social systems), which can be hard to implement in the duplex
shuffle channel. Addressing this issue is the first technical
challenge we need to overcome.

The second challenge we face is designing optimal ran-
domizers for individual computation within the shuffle model.
Often, the randomizer in a shuffle model protocol should
be tailored to specific tasks. For statistical tasks within the
shuffle model, several studies have developed near-optimal
randomizers, as demonstrated in histogram estimation [34,40]
and one-dimensional summation estimation [7]. However, the
new setting of individual computation is different: the focus
is on the accuracy of the output for each user rather than the
statistical accuracy of the population. This difference renders
existing randomization strategies (e.g., randomizers utilizing
dimension sampling, or budget splitting, as reviewed in [93]),
as well as prevalent randomizers (such as adding Laplace
noise [31]), less effective for the new setting. Therefore, we
need to reconsider the fundamental privacy-utility trade-offs
and redesign the underlying randomizers to better suit indi-
vidual computation requirements.
Our contributions In this work, we introduce a new paradigm
extending the shuffle model that allows a wider range of
permutation-equivariant tasks to be computed with DP guaran-
tee and can enjoy privacy amplification provided by shuffling.
We term the new paradigm Private Individual Computation
(PIC in short). We define PIC formally as an ideal functional-
ity, which captures its functional and security properties. We
also provide a concrete protocol, with formal proof, that can
realize the ideal functionality.

Similar to the shuffle-DP protocols, each user adds noise
locally to their data and encapsulates it (and possibly other
auxiliary data) into an encrypted message under the public
key of the computation server. The shuffler then shuffles the
encrypted messages, before sending them to the computa-
tion server. The server can decrypt these messages and per-
form the permutation-equivariant computation. What differs
is that each user also includes a one-time public key within
the encrypted message. This one-time public key serves two
purposes: (1) it allows the server to encrypt the computation
result such that it can only be decrypted by the owner of the
corresponding private key, and (2) it acts as a pseudonym for
the key owner. This approach addresses our first challenge
with minimal overhead: the server can publish a list where
each entry consists of a public key along with the computation
result encrypted under this key. Users can download the entire
list and decrypt the entry associated with their own public key,
maintaining their anonymity. Additionally, users can establish
secure communication channels with other matched parties

using their public keys to eventually complete PIC tasks.
Another main contribution is the development of an asymp-

totically optimal randomizer specifically designed for the PIC
model. This randomizer is based on an LDP mechanism we
call Minkowski Response. The primary goal of this design is
to enhance utility, measured by the single-report error, which
is the expected squared error between a user’s true data value
and its sanitized version. To achieve this, a Minkowski dis-
tance r is determined based on the privacy budget. The ran-
domizer’s output domain is defined as a ball extending the
input domain’s radius by r. The key to achieving high utility
lies in the randomizer’s output: it selects a value close to the
true value (within r) with a relatively high probability and a
value from elsewhere with a relatively low probability.

We formally prove the security and privacy properties of
the PIC protocol. Additionally, we provide a theoretical anal-
ysis of the utility bounds achievable by protocols in the PIC
model and the Minkowski Response mechanism. Our analysis
demonstrates that asymptotically, the error upper bound of the
Minkowski Response matches the error lower bound for all
possible randomizers in the PIC model, thereby achieving op-
timality. Alongside theoretical analysis, we conducted exten-
sive experiments using real-world applications and datasets.
The evaluation confirms that computations conducted in the
PIC model exhibit significantly better utility than those in the
LDP model. Furthermore, the performance of the Minkowski
randomizer, measured by single-report error and task-specific
utility metrics, surpasses that of existing LDP randomizers
commonly used in the shuffle model.
Organization. The remainder of this paper is organized as
follows. Section 2 reviews related works. Section 3 provides
preliminary knowledge about privacy definitions and security
primitives. Section 4 formalizes the problem setting. Sec-
tion 5 presents the PIC protocol. Section 6 provides optimal
randomizers. Section 7 evaluates the performances of our pro-
posals. Section 8 discusses more merits and future directions
of the PIC. Finally, Section 9 concludes the paper.

2 Related Works

This section reviews various approaches to private computa-
tion, primarily concentrating on non-statistical tasks.

2.1 Secure Multiparty Computation
Secure Multiparty Computation (MPC) is a fundamental cryp-
tographic primitive that enables multiple parties to jointly
compute a function over their inputs while no party learns any-
thing beyond their own input and the final output of the com-
putation. MPC was first conceptualized by Andrew Yao in the
1980s, and it has been proven that any computable function
can be realized by MPC [95]. MPC relies on cryptographic
protocols that exchange encrypted messages among parties.
To allow computing on encrypted data, primitives such as

homomorphic encryption [19, 71], secret sharing [14, 26], or
garbled circuits [96] can be employed. The primary challenge
in MPC lies in balancing privacy and efficiency. While MPC
offers strong privacy guarantees, it often suffers from signif-
icant computational and communication overheads, which
makes scaling to large datasets or numerous parties difficult.
Recent research in MPC has been focusing on optimizing pro-
tocols and practical implementations [15,16,23–25,58,74,79].
Despite a significant improvement, MPC still faces efficiency
issues that hinder its widespread real-world deployment.

2.2 Curator and Local DP Methods
Many works study matching, allocation, or general combi-
natorial optimization problems within the curator DP model
[31] in the presence of a trusted party collecting raw data
from clients (e.g., in [22, 65, 82, 83]). Since the assumption
of a trustworthy party is often unrealistic in decentralized
settings, many studies adopt the local model of DP (e.g.,
in [72,84,88,89]), where each client sanitizes data locally and
sends the noisy data to the server for executing corresponding
matching/allocation algorithms. As each client must injects
sufficient noises into data to satisfy local DP, the execution
results often maintain low utility.

2.3 Shuffle Model of DP
The recently proposed shuffle model [13, 32] combines the
advantages of the curator model (e.g., high utility) and the
local model (e.g., minimal trust). Depending on the number of
messages each client can send to the intermediate shuffler, the
shuffle model can be categorized as single-message [7,32,35]
and multi-message [8, 40]. The single-message shuffle model
leverages privacy amplification via shuffling to enhance data
utility compared to the local model. A substantial body of
work [32, 34, 35] demonstrates that n shuffled messages from
clients, each adopting a same ε-LDP randomizer, can actu-
ally preserve Õ(

√
eε/n)-DP. By removing the constraint of

sending one message, the multi-message shuffle model can
achieve better utility than the single-message model and might
be comparable to the curator model (e.g., in [8,40]). However,
each multi-message protocol is tailored to a specific statisti-
cal query (e.g., summation), rendering them unsuitable for
permutation-equivariant tasks with non-linear computations.
There is a line of works on the shuffle model for private in-
formation retrieval (e.g., in [38, 50, 51] with cryptography
security and in [1, 85] with statistical DP), where the query is
represented as multiple secret shares before sent to the shuf-
fler, and the server holding the database entries returns linear-
transformed entries for each query, using the duplex shuffled
communication channel. This kind of duplex-communication
shuffle model can be vulnerable to anonymity attacks [68,70],
and is pertained to the linear computation in private informa-
tion retrieval. It can not be applied to other PIC tasks (such as

Table 1: List of notations.
Notation Description

[i] {1,2, ..., i}
[i : j] {i, i+1, ..., j}

S the shuffling procedure
R the randomization algorithm
Gi the i-th group of users (i ∈ [m])
ni the number of users in group Gi

ui, j the j-th user in group Gi where j ∈ [ni]
ε the local privacy budget
εc the amplified privacy level

sk, pk the secret key and public key, respectively
λ the security parameter of cryptography

combinatorial optimization and federated learning with incen-
tive) that involve with non-linear computations, and can not
provide secure user-to-user communication needed in tasks
like spatial crowdsourcing and social systems.

Overall, existing works in the shuffle model primarily focus
on statistical queries. This work, for the first time, explore the
shuffle model for non-statistical applications (i.e., combinato-
rial optimization, social systems, and incentive mechanisms).

2.4 Combining Cryptography and DP
While cryptographic tools can protect data secrecy during
multiparty computation, they do not necessarily preserve out-
put’s privacy. DP can be employed to enhance the privacy of
the outputting result of secure multiparty computation through
decentralized noisy addition [46]. To account for privacy loss
due to intermediate encrypted views in MPC, researchers have
proposed the relaxed notion of computational DP [67] against
polynomial-time adversaries. Computational DP protocols of-
ten inherited the computation/communication complexity of
MPC (refer to approaches in Table 9 of the full version [91]).

3 Preliminaries

In this section, we provide a concise introduction to the pre-
liminaries. A list of notations can be found in Table 1.

3.1 Privacy Definitions
Definition 3.1 (Hockey-stick divergence [76]). For two prob-
ability distributions P and Q, the Hockey-stick divergence
between them with parameter eε is as follows:

Dε(P||Q) =
∫

z∈Z
max{0,P(z)− eεQ(z)}dz.

Differential privacy imposes divergence constraints on out-
put probability distributions with respect to changes in the
input. In the curator model of differential privacy, a trusted

party collects raw data xi ∈ X from all users to form a dataset
T = {x1, . . . ,xn} and applies a randomization algorithm R to
release query results R (T). For two datasets T and T ′ of the
same size and differing in only one element, they are referred
to as neighboring datasets. Differential privacy ensures that
the Hockey-stick divergence between R (T) and R (T ′) is
bounded by a sufficiently small value (i.e., δ = O(1/n)).

Definition 3.2 ((ε,δ)-DP [31]). A randomization mechanism
R satisfies (ε,δ)-differential privacy iff R (T) and R (T ′) are
(ε,δ)-indistinguishable for any neighboring datasets T,T ′ ∈
Xn. That is, max(Dε(R (T)∥R (T ′)),Dε(R (T ′)∥R (T)))≤ δ.

In the local DP model, each user applies a randomization
mechanism R to their own data xi, with the objective of en-
suring that the Hockey-stick divergence between R (x) and
R (x′) is 0 for any x,x′ ∈ X (see Definition 3.3).

Definition 3.3 (local ε-DP [57]). A mechanism R satisfies
local ε-DP iff Dε(R (x)||R (x′)) = 0 for any x,x′ ∈ X.

3.2 The Classical Shuffle Model
Following the conventions of the randomize-then-shuffle
model [7, 20], we define a single-message shuffle protocol
P as a list of algorithms P = (R ,A), where R : X→ Y is
local randomizer on client side, and A : Yn → Z is the an-
alyzer on the server side. We refer to Y as the protocol’s
message space and Z as the output space. The overall proto-
col implements a mechanism P : Xn→ Z as follows. User i
holds a data record xi and a local randomizer R , then com-
putes a message yi = R (xi). The messages y1, . . . ,yn are shuf-
fled and submitted to the analyzer. We denote the random
shuffling step as S(y1, . . . ,yn), where S : Yn→ Yn is a shuf-
fler that applies a uniform-random permutation to its inputs.
In summary, the output of P (x1, . . . ,xn) is represented by
A ◦S ◦R (X) = A(S(R (x1), . . . ,R (xn))).

In particular, when all users adopt an identical ε-LDP mech-
anism R , recent works [34,35] have derived that n shuffled ε-
LDP messages satisfy (O((1− e−ε)

√
eε log(1/δ)/n),δ)-DP.

We denote the amplified privacy level as:

εc = Amplify(ε,δ,n),

the tight value of which can also be numerically computed
[60, 92]. Our experiments will use numerical bounds in [60].

3.3 Public Key Encryption
We use an IND-CPA secure public key encryption scheme in
our PIC protocol. Formally, a public key encryption scheme
Π is a tuple of three algorithms (Gen,Enc,Dec):

• Gen: takes as input the security parameter λ and outputs a
pair of keys (pk,sk), where pk denotes the public key and
sk the private key.

� shuffled
messages

. . .

� publish matching result to users

� publish matching result to workers

� running matching
algorithm on noisy

locations

� secure communication
with public key among

matched clients

� randomize
information and
send extended

message

noisy location
public key

noisy location
public key

noisy location
public key

servershuffle

noisy location
public key

Figure 1: An illustration of taxi-hailing in the PIC model. Besides (sanitized) location information, each user also encapsulates a
one-time random public key into the message to the shuffler.

• Enc: takes as input a public key pk and a message m from
the plaintext space. It outputs a ciphertext c→ Encpk(m).

• Dec: takes as input a private key sk and a ciphertext c, and
outputs a message m or a special symbol⊥ denoting failure.

It is required that for every (pk,sk) and plaintext message
m, it holds that Decsk(Encpk(m)) = m. The IND-CPA secu-
rity ensures the scheme leaks no useful information under a
chosen plaintext attack.

4 Problem Settings

We now introduce Private Individual Computation, a new
paradigm for privacy-preserving computation that offers sev-
eral benefits: (1) It provides a formal privacy guarantee (in the
DP sense) for a wide range of computation tasks. (2) Since the
computation is performed on user-sanitized data, it avoids the
need for heavy cryptographic protocols, allowing for scalabil-
ity to handle large user bases. (3) The privacy amplification
effect results in significantly better utility compared to local
DP. In this section, we will first present a few motivating
applications and then formally define Private Individual Com-
putation as an ideal functionality.

4.1 Motivating Applications

We describe three prevalent exemplar computation tasks: spa-
tial crowdsourcing, location-based social systems, and feder-
ated learning with incentives:
Spatial crowdsourcing. A spatial crowdsourcing system typ-
ically consists of three roles: users, workers, and the orches-
trating server. It proceeds through the following major steps:

I. Task submission: each user i∈Ga submits a task (e.g., taxi
calling requests, sensing requests) xi = (i, li,vi) containing
the location li and possibly other information vi;

II.Worker reporting: every enrolled worker j ∈Gb reports x j
containing the location l j and other information v j;

III. Task assignment: the server receives {xi}i∈Ga and
{x j}k∈Gb , and outputs a matching M : Ga×Gb 7→ {0,1}
between Ga and Gb based on some criterion (e.g., mini-
mizing total traveling costs, or maximizing matches).

IV. Task performing: users and workers retrieve matching
results and collaboratively complete the task.

One example of taxi-haling is illustrated in Figure 1.
Location-based social systems. In a location-based social
system, a set of users and a server interact as the following:

I. Querying: each user i∈Ga submits a request xi = (i, li,vi),
which might include location li and preferences vi.

II. Generating recommendation: the server receives {xi}i∈Ga

and generates a list of recommendations for each user
based on specific criteria (e.g., proximity and preferences).

III. Retrieving: each user retrieves the recommendations.

Federated learning with incentives. Federated learning in-
volves a set of users and a server:

I. Submitting gradient: Each user i ∈ Ga in each epoch com-
putes an intermediate gradient information xi ∈ [−1,1]d

with its local model and data, then submits to the server;
II. Computing incentive: The server computes the average

gradient x = 1
n ∑i∈[n] xi. To incentive participation, the

server may reward users with monetary tokens (e.g., via
cryptocurrency) according to a profit allocation algorithm
V : [−1,1]d×n× [−1,1]d 7→ [0,1].

II. Receiving incentive: Each user retrieves the token and
claims its monetary incentive.

A fundamental distinction between the above applications
and those currently studied in the shuffle model is that each
participant now expects an output that differs individually,
rather than a single collectively aggregated output. Another
distinction is that a participant might need to securely commu-
nicate with other participants after receiving the individual-
ized computation results, such as the matched user and worker
in spatial crowdsourcing will communicate with each other to
accomplish the task, and the matched users in location-based

social systems would like to securely contact each other af-
terward. Informally, in such applications, it is necessary to
safeguard data privacy so that, aside from the party who gen-
erates the data, no one can be certain about that party’s data
(up to the leakage allowed by differential privacy). To amplify
privacy, we also need to maintain anonymity so that for any
given message, an adversary (such as the server, an observer,
or an unmatched user) should only know that this message
comes from a user within a particular group, but nothing more.
Following the convention in the shuffle model, the shuffler
is trusted to provide anonymity. The shuffler knows the ran-
dom permutation used in the shuffling process and will not
leak it to other parties, although the shuffler is prevented from
observing plaintext messages through encryption.

4.2 The Ideal Functionality

Following the ideal-real world paradigm, we capture private
individual computation formally as an ideal functionality FPIC,
which is shown in Figure 2.

Essentially, the ideal functionality represents a fully trusted
party that interacts with m groups of users (G1, · · · ,Gm) and
one server S. The adversary controls a collection of cor-
rupted parties C ⊂ G1 ∪G2 · · ·Gn ∪{S}. The adversary has
full knowledge of the internal states and incoming messages
of these corrupted parties. The ideal functionality sanitizes the
input from each user, shuffles the inputs randomly, and then
applies a function to compute the output for each user. In the
end, each user receives their individual function output, while
the server receives a list of the shuffled sanitized user data
and a list of the function outputs. It captures the functional
requirements of individual computation in the real world: a
server performs a computing task using the joint inputs from
a set of users (which are sanitized and shuffled), and each user
receives an individualized output. It also captures the security
requirements: each party receives precisely the specified out-
put, and nothing more. Note that for efficiency, we opt for a
centralized version of PIC where a server performs the actual
computation over shuffled data. However, a decentralized PIC
can also be realized by a group of servers jointly computing
the task f through MPC.

Remark 1 A careful reader may notice that the ideal func-
tionality does not explicitly capture differential privacy. This
omission is intentional for the sake of security analysis. In
the security analysis, we decouple the privacy requirements
into two sets of proofs: the first set demonstrates that our con-
crete protocol, when executed by real-world parties, realizes
the ideal functionality. This means no additional information
about parties’ inputs is revealed, except for the output given
to each party. The second set of proofs establishes that the
output given to each party conforms with differential privacy.

Functionality FPIC

Parameters: m ∈ N; m groups of parties G1,G2, · · · ,Gm,
where ni = |Gi| denotes the number of parties in group
Gi; the data randomization mechanisms Ri for group Gi; a
server S.
Functionality: Upon receiving n = ∑i∈[m] ni inputs
{xi, j}i∈[m], j∈[|Gi|] from all users, and the description of a
function f to be computed over parties’ inputs from the
server, do the following:

• Compute x′i, j← Ri(xi, j) for all i ∈ [m] and j ∈ [|Gi|].
• Sample m random permutations π1,π2, · · · ,πm, where

πi : [ni]→ [ni], perform shuffle over inputs and obtain

L =
(
{x′1,π1(j)} j∈[n1], · · · ,{x

′
m,πm(j)} j∈[nm]

)
, and com-

pute
(
{y1,π1(j)} j∈[n1], · · · ,{ym,πm(j)} j∈[nm]

)
← f (L).

• Send yi,πi(j) to party ui, j for all i ∈ [m] and j ∈ ni.
Additionally, send (L, f (L)) to S.

Figure 2: The functionality FPIC

5 A Concrete Protocol

5.1 The Protocol
We now present a concrete protocol for PIC in the FShuffle-
hybrid model. The F -hybrid model in MPC is a conceptual
framework that simplifies the design and analysis of secure
protocols. In many MPC protocols, parties rely on existing
sub-protocols that have already been proven secure for spe-
cific tasks. To help protocol designers focus on other aspects
of the protocol, these sub-protocols can be abstracted as ideal
functionalities, denoted by F , which are assumed to be com-
puted securely by a trusted third party. This results in a hy-
brid protocol, combining concrete cryptographic operations
from the real world with calls to ideal functionalities, thus
avoiding the complexity of specifying and analyzing the sub-
protocols in detail. In our case, we define the PIC protocol
in the FShuffle-hybrid model, where FShuffle replaces the secure
shuffle sub-protocol. The ideal functionality FShuffle (Figure 3)
is parameterized with a list of parties that are corrupted by
the adversary and collude with the server. For those parties,
the adversary should know the correspondence between their
messages before and after shuffling, hence FShuffle leaks this
part of the permutation to the adversary.

The PIC protocol is outlined below:

1. The server publishes the global parameters, including
(1) the specification of a public key encryption scheme
Π = (Gen,Enc, Dec), (2) a security parameter λ, (3) its
own public key pkc, generated by invoking Gen(λ), (4)
for each user groups Gi (i ∈ [m]), a data randomization
mechanisms Ri.

2. We denote the j-th user in group Gi as ui, j. Each user
generates a key pair (pki, j,ski, j)← Gen(λ). Each user

Functionality FShuffle

Parameters: n ∈ N; n parties P1,P2, · · · ,Pn; a server S; the
corrupted party set C ; the leakage L(π) = {(i,π(i))}i∈[C]

for the permutation π being used.
Functionality: Upon receiving n inputs {xi}i∈[n] from
P1,P2, · · · ,Pn, respectively.

• Sample a random permutation π ∈ Sn.

• Define {yi}i∈[n] such that yi = xπ(i).

• Send {yi}i∈[n] to the server S. Additionally if S ∈ C ,
send L(π) to the adversary S.

Figure 3: The functionality FShuffle

then randomizes their private data xi, j with mechanism
Ri and obtains x′i, j← Ri(xi, j). Then the sanitized input
is concatenated with their own public key, and encrypted
with the server’s public key x′′i, j← Encpkc(pki, j||x′i, j).

3. Each user in group Gi invokes FShuffle with x′′i, j, and
FShuffle outputs the shuffled messages {x′′i,πi(j)} j∈[ni] ←
S({x′′i, j} j∈[ni]) to the server, where π

−1
i is the (secret)

random permutation used during FShuffle for group Gi.

4. The server decrypts each set of shuffled messages and
obtains a list L for all m groups as:

L =
(
{pk1,π1(j)||x′1,π1(j)} j∈[n1], · · ·

{pkm,πm(j)||x′m,πm(j)} j∈[nm]

)
It then computes the function f over L to produce output
for each anonymous user:(

{y1,π1(j)} j∈[n1], · · · ,{ym,πm(j)} j∈[nm]

)
← f (L).

5. The server publishes the computation results
to a public bulletin board as a list of pairs:
{(pki,πi(j),Encpki,πi(j)(yi,πi(j))} j∈[ni], for each group
i ∈ [m].

6. Every user downloads the list, finds in the list the entry
with their own public key, and decrypts the payload to
get the computation result.

Remark 2 In the final step, we adopt the simplest strategy
for users to retrieve their results without the server knowing
which entry belongs to whom. If bandwidth is a concern, it
can be replaced by a more sophisticated (and computationally
more expensive) Private Information Retrieval protocol (e.g.
[47]).
Remark 3 To eventually accomplish the spatial crowdsourc-
ing (e.g., taxi-hailing services) or location-based social system
tasks, the computation result yi,πi(j) will contain the matched

users of the user πi(j) ∈ Gi. That is, yi,πi(j) will encapsulate
a list of public keys and noisy location information about
the matched users of the user πi(j) ∈ Gi. After receiving
the individualized computation results in the final step, each
user πi(j) can then securely contact the matched users using
the public keys in yi,πi(j) (possibly with the help of a public
communication channel, such as a public bulletin). Consider
a scenario where user A wants to send a message p (e.g.,
the precise location for coordinating taxi-hailing services)
to a matched user B via a public bulletin board. The pro-
cess follows this simple protocol: (1) User A posts the tuple
(pkB,c = EncpkB(p),SignskA

(c)) on the bulletin board. Here,
SignskA

(·) represents a digital signature function using A’s
private key. (2) User B retrieves the message by using pkB
as an address from the bulletin board, verifies the signature
SignskA

(c) using A’s public key pkA to confirm authenticity,
and then decrypts c using B’s private key to recover the p.

5.2 Security Analysis
This section presents the formal security analysis of the proto-
col in the previous section. In the following, we will consider
a semi-honest adversary who can statically corrupt parties in
the protocol. That is, the adversary will faithfully follow the
protocol specifications but try to learn more information than
allowed through protocol interaction. Also, before running
the protocol, the adversary specifies the corrupted parties. The
adversary controls the corrupted parties and knows their in-
ternal states. We use C to denote the collection of corrupted
parties and C ⊂ G1∪G2 · · ·Gn∪{S}.

We first show that our protocol securely realizes the ideal
functionality FPIC in the FShuffle-hybrid model. This means the
protocol leaks no more information than what is allowed by
FShuffle and FPIC. More precisely, each user gets their output
from FPIC, the server gets (L, f (L)), and in the case of col-
luding with some users in Gi, the partial permutation L(πi).
Formally we have the following theorem:

Theorem 5.1 (Security). The Private Individual Computation
(PIC) protocol in §5 securely computes FPIC in the FShuffle-
hybrid model in the presence of any PPT adversary with
static corruption.

The proof is simulation-based. It shows that for any PPT
adversary A in the real world, there exists a PPT simulator S
in the ideal world that can generate a simulated view given
the corrupted parties’ inputs and outputs. Security means that
the simulated view is indistinguishable from the view of real-
world execution. The detailed proof can be found in Appendix
G of the full version [91].

The above theorem states that the adversary learns strictly
no more than the allowed output and leakage by engaging
in the protocol execution. Next, we will show how much
differential privacy we can get in the presence of such an
adversary with such knowledge. We consider an honest user

ui∗ , j∗ , where i∗ ∈ [m], j∗ ∈ [ni∗]. At the same time, the set of
corrupted users in Gi∗ is denoted as Ci∗ ⊂ Gi∗ . Differential
privacy in our case means that on two neighboring inputs
X =

(
X1, · · · ,Xi∗ · · · ,Xm

)
and X ′ =

(
X1, · · · ,X ′i∗ · · · ,Xm

)
, the

output and leakage obtained by the adversary, denoted as
A(X) and A(X ′), are close in distribution. Formally, we have
the following theorem:

Theorem 5.2 (Differential Privacy). The Private Individual
Computation protocol satisfies (εc,δ)-DP, i.e.

max(Dεc(A(X)||A(X ′)),Dεc(A(X ′)||A(X)))≤ δ.

In particular, when all users in Gi∗ use an identical ε-LDP
mechanism as the data randomizer Ri∗ , and for n′i∗ = |Gi∗ −
Ci∗ | ≥ 8(eε +1) log(2/δ) we have:

εc = log

(
1+

eε−1
eε +1

(√32(eε +1) log4/δ

n′i∗
+

4(eε +1)
n′i∗

))
.

(1)

The analysis can be divided into two cases: in the first
case, S ∈ C , i.e. S is corrupted. In this case, since the honest
user locally randomizes their input, the input enjoys at least
ε-DP. Then the shuffling will amplify the privacy guarantee.
Since the corrupted server receives the partial permutation
as the leakage, the amplification depends on the number of
uncorrupted users in the same group (n′i∗) as the honest user.
The amplified εc can then be derived following [34, 35]. In
the second case where S ̸∈ C , the knowledge of the adversary
is yi, j for each corrupted user ui, j ∈ C . The tricky part is that
how much information yi, j leaks depends on the function f
being evaluated by the server. Hence we consider the worst
case where f output yi, j = L. Continuing along the same line
of thought, we conclude that the level of differential privacy
assurance is no less than in the first case. Additionally, since
the one-time random secret/public keys are independently
and identically distributed, they do not compromise the local
privacy guarantees of the sanitized data x′i, j or the privacy
amplification effect provided by benign users. As a result,
the privacy amplification guarantee in the PIC model can be
reduced to that of the classical (single-message) shuffle model.
In this context, [35] provides a similar formula to Equation 1
for shuffling ε-LDP messages. The full proof can be found in
Appendix H of the full version [91].
Remark 4 After decryption, the server obtains pki, j||x′i, j,
where pki, j is a public key not sanitized by the local ran-
domizer. Despite the presence of the public key, pki, j||x′i, j and
x′i, j are equivalent in terms of privacy amplification. This is
because (1) the public key is random and generated indepen-
dently of xi, j, so prepending it to x′i, j does not affect the local
DP guarantee—it is the same as x′i, j itself; and (2) all public
keys follow an identical probability distribution across all
users in the group Gi, ensuring that the privacy amplification
effect via shuffling is not degraded (see formal statement in
Lemma H.4 of the full version [91]).

5.3 Discussion on Post-computation Commu-
nication

In certain scenarios, such as spatial crowdsourcing and
location-based social systems, there may be additional user-to-
user communications following the execution of the PIC pro-
tocol. For instance, consider a taxi-hailing application where
passengers are in a group G1 and taxi drivers in a group G2.
After receiving the matching result at the end of the proto-
col, the passengers must send their locations to the matched
drivers, who need to know where to pick them up. On the
other hand, the drivers also need to share their identities and
locations with the matched passengers. Inevitably, a party has
to sacrifice their privacy to the matched parties.

The post-computation communication may also have pri-
vacy implications for other users not in the matched pair.
Privacy amplification via shuffling against an adversary re-
lies on the number of parties that remain anonymous. Re-
call that in Equation 1, the amplified εc relies on the number
n′i∗ = |Gi∗−Ci∗ | of uncorrupted users in a particular group Gi∗ .
From the perspective of the adversary, if the post-computation
communication compromises the anonymity of an additional
set U of the users in Gi∗ , then n′i∗ becomes |Gi∗ −Ci∗ −U |.
Accordingly, the privacy amplification effect for users in Gi∗

that are still anonymous is weakened. In the specific case of
one-to-one matching, we have |U | ≤ |Ci∗ | (since some cor-
rupted user may fail to find a match). Therefore, it follows
that n′i∗ ≥ |Gi∗ |−2|Ci∗ |.

We emphasize that preventing the loss or weakening of
privacy via technical means is not feasible, because the infor-
mation is necessary for the proper functioning of the applica-
tion. However, managerial countermeasures, such as ensuring
sufficiently large user groups and limiting post-computation
exposure according to the need-to-know principle, can mit-
igate potential privacy risks arising from post-computation
communication.

6 Optimal Randomizers

6.1 Inadequacy of Existing Randomizers

In PIC, each user first sanitizes their data using an ε-LDP ran-
domizer. The design of the randomizer significantly impacts
the utility of the tasks. While the PIC model can be seen as an
extension of the shuffle model, it has unique characteristics
that render the existing LDP randomizers commonly used in
the shuffle model inadequate.

The main discrepancy between the shuffle model and the
PIC model is that the former emphasizes statistical utility,
whereas the latter focuses on the utility of each report. The
shuffle model aims to estimate certain statistics from the
noisy data collected from users, so it cares about how close
the estimation is to the true value of the desired statistic. In
the literature, utility is often measured by the expected square

error (i.e., the variance) bound of the estimation:

max
T∈Xn

E[∥ f̃ (T)− f (T)∥2
2] = max

T∈Xn
Var[f̃ (T)]

where f is a statistical function, and f̃ is its estimation output
by the shuffle protocol. On the other hand, in the PIC model,
the tasks are often non-statistical. For example, in location-
based matching, the required computation is to take two users’
locations and compute the distance between them. Hence, the
above utility measure is no longer suitable. It is more natural
to measure utility by the single report error:

max
x j∈X

E[∥R (x j)− x j∥2
2],

where R is the LDP-randomizer employed by the users.
Specifically, the error of addition/minus among k reports (e.g.,
distance between two reports) can also be upper bounded by
k times of the single report error. Additionally, in the PIC
model, user data is typically multi-dimensional (e.g., loca-
tion, gradient), making sanitization significantly more diffi-
cult compared to scalar data. Another notable characteristic
of the PIC model is that the local differential privacy budget
ε is relatively large, often scaling linearly with log(n′i∗), as
implied by Theorem 5.2. These factors together create issues
when existing LDP randomizers are applied directly in the
PIC model.

To understand the problem, we first examine a class of
LDP randomizers [53, 63, 69, 90] that operate by sampling a
few dimensions from [d]. Each user submits an incomplete
report that contains only the sampled dimensions (with added
noise) from their local data. On the positive side, this strategy
reduces the amount of noise added to the sampled dimensions.
On the negative side, the unsampled dimensions are missing.
In statistical estimation tasks, the estimation is made using
all reports, each covering some dimensions. Therefore, the
incompleteness of a single report is less important, and better
utility can be achieved. However, in the PIC model, where
the focus shifts to the error of individual reports, this strategy
may lead to worse results.

There have been LDP randomizers that submit complete
reports. One obvious strategy is to explicitly split the lo-
cal budget into d parts and then apply a one-dimensional
LDP mechanism independently to each dimension, or implic-
itly distribute the budget among dimensions, as seen in the
Laplace [30], PlanarLaplace [2], PrivUnit [12], and PrivUnitG
mechanisms [6]. However, these approaches are sub-optimal
in the high budget regime. Specifically, even if we use the opti-
mal one-dimension randomizer [7], splitting the budget across
each dimension and then applying any randomizer for each di-
mension will result in a mean squared error (MSE) of at least

d
(eε/d−1)2/3 . The Laplace/PlanarLaplace mechanisms introduce

an MSE rate of d
ε2 , while the PrivUnit/PrivUnitG mechanisms

incur an MSE rate of d
min{ε,ε2} . In contrast, later we will show

input domain

output domainr

r

r

x1

x2

r
x3

cap area with
high probability

Figure 4: The probability design of Minkowski response
mechanism with a radius r. Illustrated are three inputs x1,x2
and x3, along with their respective cap areas.

that the MSE rate can be improved to (eε− 1)−2/(d+2) (see
Section 6.3 and Appendix A).

Another strategy for submitting complete reports involves
using additional randomization techniques such as random
projection, data sketches, public randomness, or quantization.
Randomizers employing this strategy [4, 17, 36, 52, 77, 80]
avoid the issue of incomplete reports but introduce additional
noise because of the extra randomization. While the additional
noise is not significant in the low budget regime (i.e., ε =
O(1)) that is typical in the LDP model, it becomes dominant
in the PIC model where the local budget can be as large as
Õ(logn′i∗). The resulting additional error will never diminish
even when ε→+∞.

6.2 Randomizer Design
We now introduce an asymptotically optimal randomizer, tai-
lored for the PIC model. The randomizer uses an LDP mech-
anism, which we termed as Minkowski Response. For ease
of presentation, here we will focus primarily on the ℓ2 case
(and the ℓ+∞ case in Appendix A), but the mechanism can be
generalized to other Minkowski distances.

Without loss of generality, we assume the user data domain
to be an ℓ2-bounded hyperball X= {x | x∈Rd and ∥x∥2 ≤ 1}.
Most, if not all, real-world data domains can be normalized to
X (e.g. gradient vector, set-valued data, and location data). We
also denote an ℓ2-bounded hyperball with radius r centered at
any x ∈ Rd as follows:

Br(x) = {x′ | x′ ∈ Rd and ∥x′− x∥2 ≤ r},

and it is shorted as Br when x = 0⃗.
Minkowski Response works by first defining a distance r

based on the local privacy budget as the following:

r =
(
(eε−1)1/(d+2)−1

)−1
.

Then given the input domain X, the output domain Yr is
defined by expanding X by r:

Yr = {y | y ∈ Rd and ∃x ∈ X that y ∈ Br(x)}.

For any input x ∈ X, Minkowski Response outputs an out-
put y ∈ Yr with relatively high probability in the cap area

Br(x) and relatively low probability in remaining domain
Yr\Br(x) (insipired by extremal probability design [55] and
geometric-based noise schemes [37, 61], see Figure 4). For-
mally:

y =

{
uniform(Br(x)), with prob. V(Br)·(eε−1)

V(Yr)+V(Br)·(eε−1) ;

uniform(Yr), with prob. V(Yr)
V(Yr)+V(Br)·(eε−1) ,

(2)

where V (∗) denote the volume of the corresponding domain.
Lastly, y is debiased to x̃ so that E[x̃] = x as follows:

x̃ = y · V(Yr)+V(Br) · (eε−1)
V (Br) · (eε−1)

. (3)

It is obvious that the output of Minkowski Response is
informative in every dimension. Therefore it avoids problems
brought up by incomplete reports. Also, intuitively it has a
better utility because the mechanism is more likely to output a
value near the true value (i.e., in Br(x)), than from other parts
of the output domain (i.e. Yr\Br(x)). When the budget ε gets
large, the error rate of Minkowski Response decays faster than
in previous LDP mechanisms. More specifically, the decay
rate of Minkowski Response is (eε−1)−2/(d+2) (Equation 4
in Appendix A), while that of the previous mechanisms is
d/(eε/d − 1)2/3 or d/ε2. Therefore, the utility advantage of
Minkowski Response becomes more significant when ε gets
larger. When n′i∗ →+∞ (and thus ε→+∞), r becomes 0, and
the error goes to zero (i.e. no additional error).

6.3 Analysis of Minkowski Response
The local privacy guarantee of the randomizer is presented in
Theorem 6.1.

Theorem 6.1 (Local Privacy Guarantee). Given input do-
main X= B1, the Minkowski response mechanism defined in
Equation 2 satisfies ε-LDP.

Proof. It is observed that the output probability distribution
in Equation 2 is valid for any input x ∈ X, the probability
density in the cap area Br(x) is eε

V(Yr)+V(Br)·(eε−1) , and the

density in the non-cap area Yr\Br(x) is 1
V(Yr)+V(Br)·(eε−1) .

Therefore, for any x,x′ ∈ X, we have P[R (x)=y]
P[R (x′)=y] ≤ eε for all

possible y ∈ Yr, establishing the local ε-DP guarantee of the
Minkowski response mechanism R .

Next, we analyze the utility of the Minkowski Response in
the PIC model. As previously mentioned, in the PIC model,
the single report error is a more appropriate measure of utility
compared to the statistical errors used in the conventional
shuffle model. In Theorem 6.2, we examine the single re-
port error in the PIC model and establish its lower bound.
Essentially, shuffling and its privacy amplification effects
complicate error lower bounding in PIC model given pri-
vacy constraints, when compared to local DP settings (e.g.,

in [12, 28, 29]). Fortunately, the global differential privacy
restricts the probability ratio of any event observed in the shuf-
fled messages when given two neighboring input datasets [20].
Therefore, inspired by the tight lower bounding procedure for
one-dimensional data in [7], we firstly discrete the mutli-
dimensional input/output domain and decompose the single
report error into two parts: the one due to the probability of
reporting other values than a certain input (i.e., one minus
the true positive rate), and the other due to probabilities of
reporting a certain value when given other input values (i.e.,
the false positive rate). We then establish a connection be-
tween the global DP parameters, and errors due to one minus
the true positive rate & the false positive rate. Finally, we
show that at least one of these two errors must be as large as
1/n

2
d+2 . The detailed proof is provided in Appendix I.

Theorem 6.2 (Error Lower Bounds). Given fixed d ∈ N+,
εc > 0, δ ∈ (0,0.5], X = B1({0}d), then for any random-
izer R : X 7→ Rd′ such that S ◦R (X) and S ◦R (X ′) are
(εc,δ)-indistinguishable for all possible neighboring datasets
X ,X ′ ∈ Xn, and for any estimator f : Rd′ 7→ Rd , we have:

max
x∈X

E
[
∥ f ◦R (x)− x∥2

2
]
≥ Ω̃

(
1/n

2
d+2
)
.

The above theorem suggests that in the PIC model with
fixed privacy requirements of (ε,δ) independent of group
size n, for any randomizer, the single report error is at least
Ω̃
(
1/n

2
d+2
)
. Clearly, a randomizer offers better utility if

its error is closer to this bound. For the randomizer using
Minkowski Response, as presented in section 6.2, we can
demonstrate that its single report error has an upper bound.
This is summarized in Theorem 6.3, with the proof provided
in Appendix A.

Theorem 6.3 (Error Upper Bounds). For any d ∈ N,
εc > 0, δ ∈ (0,0.5], X = B1({0}d), if εc ≤ O(1) and n >

max{16log(1/δ), 2d+7 log(1/δ)
(eεc−1)2 }, then there exist a random-

izer R : X 7→ Rd such that S ◦ R (X) and S ◦ R (X ′) are
(εc,δ)-indistinguishable for all possible neighboring datasets
X ,X ′ ∈ Xn, and:

max
x∈X

E
[
∥R (x)− x∥2

2
]
≤ O

((log(1/δ)

nε2
c

) 2
d+2

)
.

We observe that in most applications, (εc,δ) are given as
fixed system parameters. If we consider (εc,δ) as constants,
then the error upper bound of the Minkowski Response ran-
domizer in Theorem 6.3 is Õ

(
1

n2/(d+2)

)
, which matches the

error lower bound of the PIC model in Theorem 6.2. This
implies that the utility of the Minkowski Response is asymp-
totically optimal. In contrast, using existing LDP randomizers
in the PIC model results in a larger single report error of
Õ
(

d
n2/(3d)

)
or Õ

(
d

log2 n

)
(note that d > 1 and n is often not

small). Although asymptotic notations describe behavior as
n→ ∞, in practice, the utility advantage of the Minkowski
Response becomes noticeable without n being very large: in
our experiments, the Minkowski Response randomizer out-
performs existing LDP randomizers in the PIC model once n
reaches the order of 102. If we compare Minkowski Response
in the PIC model to using LDP directly (without shuffling),
the utility advantage is even greater: any randomizers in the
LDP model must endure a single report error of Ω

(
d
ε2

c

)
when

εc ≤ O(1) [12, 28].

7 Experimental Evaluation

We evaluate the efficacy of our PIC protocol and Minkowski
randomizer. We compare the utility of our proposal against
state-of-the-art works in the context of three representative
individual computation tasks: spatial crowdsourcing, location-
based social systems, and federated learning with incentives.

7.1 Spatial Crowdsourcing

Datasets We use two real-world datasets: GMission dataset
[18] for scientific simulation, and EverySender dataset [86]
for campus-based micro-task completion. Details about the
two datasets are summarized in Table 2, including the number
of users/workers, location domain range, and serving radius
of workers about these two datasets (more information can be
found in Appendix C of the full version [91]). We normalize
location data to the domain [−1,1]× [−1,1] and scale the
serving radius to 1.0 · 1−(−1)

5−0 = 0.4 correspondingly.

Table 2: Summary statistics of spatial crowdsourcing datasets.
Dataset users workers location domain serving radius

GMission 713 532 [0,5.0]× [0,5.0] 1.0
EverySender 4036 817 [0,5.0]× [0,5.0] 1.0

LDP randomizers We use the Minkowski response for loca-
tion randomization. As a comparison, in the local model of DP
(e.g., in [84, 88, 89]), we compare with existing mechanisms
including Laplace [31], Staircase [39], PlanarLaplace with
geo-indistinguishability [2], SquareWave [62], PrivUnit [12]
and its Gaussian variant PrivUnitG in [6] (see Appendix B
for implementation details).
Server-side algorithms Two commonly used server-side al-
gorithms are evaluated as concrete tasks: minimum weighted
full matching [54] and maximum matching [48]. The two al-
gorithms have different optimization objectives, thus later we
will show the results for task-specific utility for each of them
in addition to single report errors. The minimum weighted
full matching aims to minimize the overall traveling costs
between users and workers. The maximum matching aims to
maximize the number of successfully matched user/worker

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

lo
g(
`

2
di

st
an

ce
)

(a) GMission, local model

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

(b) EverySender, local model

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

−0.5

0.0

0.5

1.0

1.5

lo
g(
`

2
di

st
an

ce
)

(c) GMission, PIC model

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

−1.0

−0.5

0.0

0.5

1.0
(d) EverySender, PIC model

PlanarLaplace Staircase Squarewave PrivHS PrivUnit Minkowski

Figure 5: Expected ℓ2 distances of reported locations to true
locations on GMission and EverySender dataset.

pairs, where users outside the workers’ serving radius (0.4)
are deemed unreachable.
Experimental results We first present the single report er-
rors, quantified by the expected ℓ2 distance between the re-
ported location and the true location. In Fig. 5 (a) and (b),
we compare the single report errors within the LDP model.
The Minkowski randomizer’s error is on par with other state-
of-the-art mechanisms when ε≤ 1.0 and significantly lower
when ε ≥ 2.0. Fig. 5 (c) and (d) illustrate the single report
errors in the PIC model. For both datasets, the Minkowski
randomizer performs better, with its utility advantage increas-
ing as the global privacy budget εc grows. Additionally, it is
evident that the error is generally higher for all randomizers in
the LDP model compared to the PIC model. This discrepancy
is due to the lack of privacy amplification in the LDP model,
highlighting the benefits of employing the PIC model.

Next, we compare the utility when using the minimum
weight matching algorithm, as shown in Fig. 6. Task-specific
utility is evaluated by the total travel costs, which is the
sum of the actual Euclidean distances between all matched
users/workers:

∑(i, j)∈Ga×Gb
JM(i, j)> 0K · ∥li− l j∥2,

where J∗K denotes the Iverson bracket. It is observed that al-
though some randomizers, like PrivUnit, exhibit good single-
report errors, their task-specific utility is not as favorable.
Conversely, the Minkowski randomizer shows consistent per-
formance, outperforming the others in this comparison.

Finally, we present the utility comparison using the max-
imum matching algorithm, as shown in Fig. 7. In this case,
utility is assessed by the successful matching ratio:

∑(i, j)∈Ga×Gb
JM(i, j)> 0K · J∥li− l j∥2 ≤ τK
min{|Ga|, |Gb|}

.

For both datasets, the matching ratio over clear data is 100%.
The figure demonstrates that the PIC model enhances the
matching ratio for all randomizers due to privacy amplifica-
tion effects. The Minkowski randomizer in the PIC model
significantly outperforms the others and the matching ratio
approaches an acceptable level for practical use with a rea-
sonable degree of privacy protection.

0.5 1.0 1.5 2.0 2.5 3.0−1.5

−1.0

−0.5

0.0

lo
g(

tra
ve

lc
os

ts
)

(a) GMission, local model

0.5 1.0 1.5 2.0 2.5 3.0−1.5

−1.0

−0.5

0.0
(b) EverySender, local model

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

−1.5

−1.0

−0.5

0.0

lo
g(

tra
ve

lc
os

ts
)

(c) GMission, PIC model

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

−1.5

−1.0

−0.5

0.0
(d) EverySender, PIC model

PlanarLaplace Staircase Squarewave PrivHS PrivUnit Minkowski

Figure 6: Travel costs of minimum weighted matching on
GMission and EverySender dataset.

0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
tio

(a) GMission, local model

0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0
(b) EverySender, local model

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
tio

(c) GMission, PIC model

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

0.0

0.2

0.4

0.6

0.8

1.0
(d) EverySender, PIC model

PlanarLaplace Staircase Squarewave PrivHS PrivUnit Minkowski

Figure 7: Success ratios of maximum matching in spatial
crowdsourcing on GMission and EverySender dataset.

7.2 Location-based Social Systems

Table 3: Details of location social network datasets.
Dataset check-ins location domain

Gowalla (San Francisco) 138368 [37.54,37.79]×[−122.51,−122.38]
Foursquare (New York) 227428 [40.55,40.99]×[−74.27,−73.68]

Datasets We use two real-world datasets: Gowalla dataset
[21] and Foursquare dataset [94]. Gowalla and Foursquare
are location-based social network websites where users share
their locations by checking-in. Details about the two datasets
are summarized in Table 3. As before, the location data is
normalized to [−1,1]× [−1,1].
LDP randomizers The LDP randomizers used are the same
as those in Section 7.1.
Server-side algorithm The server performs the radius-based
nearest neighbor (NN) search for the users, which is a com-
mon task in location-based social networks [21]. We set the
search radius τ to 0.2, so that each user has several hundreds
or thousands of neighbors, varying due to check-in densities.
Note that in this application scenario, the returned neighbors
may be deanonymized in the post-computation phase. Hence,
the actual privacy guarantee in the PIC model depends on the
number of users who remain anonymous (see discussion in
Section 5.3). Considering this, and each user normally has
about n · π·τ2

22 ≈ n ·3.2% neighbors, we use privacy amplifica-
tion population ⌊n · 90%⌋ instead of the group size n when

calculating the local budget given the global εc.

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget ε

−0.5

0.0

0.5

1.0

lo
g(
`

2
di

st
an

ce
)

(a) Foursquare

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget ε

−0.5

0.0

0.5

1.0
(b) Gowalla

PlanarLaplace Staircase Squarewave Laplace PrivUnit Minkowski

Figure 8: Expected ℓ2 distances of reported locations in
location-based social systems with the local model of DP.

0.5 1.0 1.5 2.0 2.5 3.0−3

−2

−1

0

1

lo
g(
`

2
di

st
an

ce
)

(a) Foursquare, n=10000

0.5 1.0 1.5 2.0 2.5 3.0−3

−2

−1

0

1
(b) Foursquare, n=227428

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

−3

−2

−1

0

1

lo
g(
`

2
di

st
an

ce
)

(c) Gowalla, n=10000

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

−3

−2

−1

0

1
(d) Gowalla, n=138368

PlanarLaplace Staircase Squarewave Laplace PrivUnit Minkowski

Figure 9: Expected ℓ2 distances of reported locations in
location-based social systems with PIC model.

Experimental results We first present the single report errors
in the LDP model (Fig. 8) and the PIC model (Fig. 9). In
our experiments, each check-in report is treated as if it were
submitted by a separate user, with all users in the same group.
We tested two scenarios: one with a random subset of 10,000
check-ins and the other using all check-ins. On both datasets,
PIC demonstrates better utility than LDP, and the Minkowski
randomizer consistently performs the best across all settings.
Additionally, it is evident that the number of anonymous users
is a crucial parameter, significantly impacting utility.

0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

(a) Foursquare, n=10000

0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0
(b) Foursquare, n=227428

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

(c) Gowalla, n=10000

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

0.0

0.2

0.4

0.6

0.8

1.0
(d) Gowalla, n=138368

PlanarLaplace Staircase Squarewave Laplace PrivUnit Minkowski

Figure 10: F1 scores of nearest neighbor queries (LDP model).

The task-specific utility metric we use for nearest neigh-
bor queries is the F1 score. Let Ni denote the set of true
neighbors of user i within an ℓ2-distance τ, and let N̂i de-
note the retrieved neighbor set computed using the sani-
tized reports. The precision of nearest neighbor queries is

0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

(a) Foursquare, n=10000

0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0
(b) Foursquare, n=227428

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

(c) Gowalla, n=10000

0.5 1.0 1.5 2.0 2.5 3.0
privacy budget εc

0.0

0.2

0.4

0.6

0.8

1.0
(d) Gowalla, n=138368

PlanarLaplace Staircase Squarewave Laplace PrivUnit Minkowski

Figure 11: F1 scores of nearest neighbor queries (PIC model).

defined as ∑i∈[n] |Ni∩ N̂i|/∑i∈[n] |N̂i|, and the recall is defined
as ∑i∈[n] |Ni∩ N̂i|/∑i∈[n] |Ni|. The F1 score is as:

F1 score = 2 · precision · recall
precision+ recall

.

In the LDP model (Fig. 10), the F1 score is low, even with a
large ε. While the group size affects the number of neighbors
each user has, it does not impact the F1 score. Conversely, in
the PIC model (Fig. 11), the F1 score is significantly higher.
With a large group, the Minkowski randomizer can achieve
an F1 score of 0.9 with a stringent global budget εc = 1 and
nearly 1 if the budget is loosened to εc = 3.

7.3 Federated Learning with Incentives
In this application, the users collaboratively train a model
by Federated learning, and the server decides each user’s
incentive by how much their local gradient contributes to
the global model. To deliver monetary incentive rewards, we
assume the use of an untraceable cryptocurrency (e.g., ZCash
[49]). Each user can generate an additional public/privacy
key pair according to the specification of the cryptocurrency,
derive a wallet address from the public key, and append the
wallet address to the end of their report. Based on the Shapley
values, the server determines the monetary incentives and
distributes them to the users using appended wallet addresses.
Datasets We utilize the MNIST handwritten digit dataset to
train a simple neural network using federated learning. The
MNIST dataset comprises 60,000 images, with 50,000 desig-
nated as training samples. Each user receives one training sam-
ple and trains a neural network model, as detailed in Table 4,
which contains d = 4292 trainable parameters. In each round,
s = 10,000 users are randomly selected. These selected users
locally compute the gradient vector using Stochastic Gradient
Descent (SGD), then subsample 0.15% of the gradient vec-
tor dimensions (with unsampled dimensions set to zero), and
clip the gradient values at a threshold of c = 0.00015. Each
user submits a sanitized version of the subsampled, clipped
gradient vector as their report.
LDP randomizers We use all LDP randomizers as be-
fore except for PlanarLaplace, which is unsuitable for multi-

Table 4: Model architecture of the neural network.
Layer Parameters

Convolution 8 filters of 4×4, stride 2
Max-pooling 2×2
Convolution 6 filters of 5×5, stride 2
Max-pooling 2×2

Softmax 10 units

dimensional gradient vectors. The randomizers sanitize the
non-zero values in the subsampled gradient vectors while
leaving the zero values unaffected.
Server-side algorithm The server performs the following
steps: first, it takes a sanitized gradient vector and uses
randomizer-specific algorithms to estimate the true values of
the sampled dimensions. These vectors with estimated values
are denoted as ĝi. The server then aggregates the ĝi vectors
into a global gradient vector using a simple sum-and-average
method. This global gradient vector is published so that users
can update their local models. Additionally, the server com-
putes the Shapley value for each user, which measures the
marginal contribution of each ĝi (see Appendix E for details
in the full version [91]).
Experimental results We train each model for 80 rounds
using Federated Learning. The utility comparison results are
summarized in Tables 5 and 6, each reflecting a different
global privacy budget. In these tables, we present the single
report utility (Gradient ℓ2 error) and the task-specific utility
(Shapley ℓ2 error). The Gradient ℓ2 error is calculated using
the estimated gradients ĝi and the true gradients gi (clipped
and with all unsampled dimensions set to 0): ∑i∈S ∥ĝi−gi∥2

|S| ,
where S is the set of randomly selected users. The Shapley ℓ2

error is computed as follows: ∑i∈S ∥ ̂Shapleyi−Shapleyi∥2
|S| , where

̂Shapleyi is derived from ĝi and Shapleyi is obtained from
the unsanitized gi. For reference, we also include the final
models’ accuracy in the tables.

Table 5: Utility comparison of federated learning with incen-
tives: global privacy budget (1,0.01/50000).

Setting Randomization
Mechanism

Test
Accuracy

Gradient
ℓ2 Error

Shapley
ℓ2 Error

local
model

Staircase [39] 18.29% 15.30 0.0586
Squarewave [62] 13.91% 13.23 0.0590

PrivHS [29] 28.17% 2.44 0.0587
Laplace [31] 21.22% 2.53 0.0575
PrinUnit [12] 23.28% 2.37 0.0592
Minkowski 18.10% 14.45 0.0571

PIC
model

Staircase [39] 32.51% 0.781 0.0563
Squarewave [62] 33.75% 0.604 0.0585

PrivHS [29] 65.47% 0.267 0.0428
Laplace [31] 72.6% 0.154 0.0508
PrinUnit [12] 74.02% 0.157 0.0438
Minkowski 78.68% 0.093 0.0363

We observe in the tables that the utility in the LDP model is
significantly worse than in the PIC model, as expected. This
is consistent across all metrics and the final model accuracy.

Table 6: Utility comparison of federated learning with incen-
tives: global privacy budget (3,0.01/50000).

Setting Randomization
Mechanism

Test
Accuracy

Gradient
ℓ2 Error

Shapley
ℓ2 Error

local
model

Staircase [39] 19.68% 5.09 0.0519
Squarewave [62] 18.24% 4.34 0.0574

PrivHS [29] 41.52% 0.850 0.0561
Laplace [31] 28.64% 0.845 0.0575
PrinUnit [12] 39.02% 0.803 0.0537
Minkowski 20.73% 3.731 0.0545

PIC
model

Staircase [39] 44.58% 0.545 0.0563
Squarewave [62] 53.02% 0.407 0.0552

PrivHS [29] 74.49% 0.190 0.0383
Laplace [31] 74.86% 0.104 0.0335
PrinUnit [12] 77.42% 0.098 0.0253
Minkowski 83.43% 0.055 0.0219

In the local model, the performance of Staircase, Squarewave,
and Minkowski mechanisms is poorer compared to the oth-
ers, but for different reasons. Staircase and Squarewave are
designed for single-dimensional data, requiring the privacy
budget to be split across dimensions when sanitizing vectors,
which leads to reduced utility. For Minkowski, the issue lies
in the 80-round federated learning process, where the privacy
budget for each round is relatively small (e.g., between 0.2 and
0.75). As previously mentioned, the Minkowski is intended
to achieve better utility with a large local privacy budget. In
small budget scenarios, it offers no advantage and may even
perform worse. In the PIC model, the performance of Stair-
case and Squarewave remains poor. However, Minkowski now
performs the best among all randomizers. This improvement
is due to the privacy amplification in PIC, which increases the
local budget for each round to between 4.0 and 6.0.

8 Discussions

Decentralized download-then-compute settings. While our
protocol initially allows a server to perform the computation
f , it is also possible for users to first download L and then com-
pute f locally. This download-then-compute paradigm can be
seen as a special decentralized case of our PIC model (i.e. the
server simply computes f (x) = x). It would also rely on the
one-time random key to perform post-computation communi-
cation. The PIC protocol offers several advantages over the
download-then-compute paradigm: (1) PIC accommodates
more tasks, e.g. those dependent on private server information
(validation dataset in federated learning with incentives). (2)
Download-then-compute requires public f , while PIC allows
proprietary server-side algorithms. (3) Better privacy. E.g.
in taxi-hailing, download-then-compute allows each user to
compute all matching pairs and location distribution, while
PIC publishes encrypted matching results (without leaking
unnecessary information).

Necessity of grouping users. While many applications
involve a single type of participant (e.g., social systems and
federated learning), other tasks require interaction between

multiple participant types, where the server must use the type
information of participants to execute the algorithm f (e.g.,
in taxi-hailing services with types of drivers and users). From
a privacy-preservation standpoint, it is also possible to apply
varying levels of privacy protection across different groups.

Worst-case leakage and privacy under active attacks.
We assume that an attacker can corrupt and control a subset of
parties, but the data of the uncorrupted users remains (εc,δ)-
private against the attacker. The specific value of εc depends
on the number of uncorrupted users within the same group
(see Theorem 5.2, Eq. 1). In the worst-case scenario, where all
but one user are corrupted, the privacy guarantee is reduced
to ε-LDP, as provided by the local randomizer, i.e., there is
no privacy amplification through shuffling.

Multiple executions and reuse keys. When multi-
ple/sequential PIC executions are needed (e.g., in federated
learning), a fresh one-time user key for each execution is
required, ensuring the adversary cannot correlate user ac-
tivities. According to Eq. 1 and sequential composition of
DP [31], the overall privacy consumption for k executions is
Õ(
√

k · eε/n∗i). Otherwise, reusing keys in k executions will
consume more privacy (to a level of shuffling n∗i messages
each is k · ε-LDP, i.e., Õ(

√
ek·ε/n∗i)).

Multi-message settings. The PIC model allows each client
to send one single message, to align with most non-private
applications. However, restricting each client to sending one
message in the shuffle model has intrinsic privacy amplifi-
cation and utility limitations (as seen in statistical analyses
within the shuffle model [40]). Extending PIC model to multi-
message settings is an interesting future direction, though it is
quite challenging (e.g., in taxi-hailing services, the messages
from a driver must appear independent, then each message
may match a different customer, leading to an oversale).

9 Conclusion

Privacy-preserving computation with differential privacy
holds great potential for leveraging personal information.
While the shuffle model offers a rigorous DP guarantee with
enhanced utility, its application is confined to statistical tasks.
In this paper, we introduce a novel paradigm called Private In-
dividual Computation (PIC), which extends the shuffle model
to scenarios where each user requires personalized outputs
from the computation. We demonstrate that PIC can be real-
ized using an efficient protocol that relies on minimal cryp-
tographic operations while maintaining the advantages of
privacy amplification through shuffling. To further enhance
utility, we developed a local randomizer specifically designed
for PIC. We provide formal proofs of the protocol’s security
and privacy, as well as the asymptotic optimality of the ran-
domizer. Extensive experiments validate the superiority of
the PIC protocol and the randomizer, showcasing their perfor-
mance across three major application scenarios and various
real-world datasets.

Acknowledgments

We thank the anonymous reviewers for their insightful sug-
gestions and comments. This work is supported by National
Key Research and Development (R&D) Program (Young
Scientist Scheme No.2022YFB3102400), National Natural
Science Foundation of China (No.62372120, No.62302118,
No.62372125, No.62261160651, No.62102108), the Guang-
dong Natural Science Funds for Distinguished Young Scholar
under Grant 2023B1515020041, Natural Science Foundation
of Guangdong Province of China (No.2022A1515010061),
and Guangzhou Basic and Applied Basic Research Foun-
dation (No.2025A03J3182). Di Wang is supported in
part by the funding BAS/1/1689-01-01, URF/1/4663-01-01,
REI/1/5232-01-01, REI/1/5332-01-01, and URF/1/5508-01-
01 from KAUST, and funding from KAUST - Center of Ex-
cellence for Generative AI, under award number 5940.

Ethics considerations

This work does not present any ethical issues. In fact, it di-
rectly mitigate privacy concerns associated with computa-
tional tasks involving sensitive user data, such as location data,
preference data, and gradient information. All experiments
are conducted using public datasets, ensuring no exposure of
personal information. Moreover, we strictly adhere to ethical
guidelines throughout the research process, ensuring that no
other ethical concerns arise.

Open science

In alignment with the principles of open science, our code
and experimental data (for the three exemplar applications
of the PIC model in Section 7) are publicly accessible at
https://zenodo.org/records/14710367 (please refer to
README.md for more details).

References

[1] Kinan Dak Albab, Rawane Issa, Mayank Varia, and
Kalman Graffi. Batched differentially private informa-
tion retrieval. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3327–3344, 2022.

[2] Miguel E Andrés, Nicolás E Bordenabe, Konstanti-
nos Chatzikokolakis, and Catuscia Palamidessi. Geo-
indistinguishability: Differential privacy for location-
based systems. In CCS. ACM, 2013.

[3] Benny Applebaum, Zvika Brakerski, and Rotem
Tsabary. Perfect secure computation in two rounds.
SIAM journal on computing, 50(1):68–97, 2021.

[4] Hilal Asi, Vitaly Feldman, Jelani Nelson, Huy Nguyen,
and Kunal Talwar. Fast optimal locally private mean
estimation via random projections. Advances in Neural
Information Processing Systems, 36, 2024.

[5] Hilal Asi, Vitaly Feldman, Jelani Nelson, Huy Nguyen,
Kunal Talwar, and Samson Zhou. Private vector mean
estimation in the shuffle model: Optimal rates require
many messages. In Forty-first International Conference
on Machine Learning, 2024.

[6] Hilal Asi, Vitaly Feldman, and Kunal Talwar. Optimal
algorithms for mean estimation under local differential
privacy. In ICML. PMLR, 2022.

[7] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nis-
sim. The privacy blanket of the shuffle model. In
CRYPTO. Springer, 2019.

[8] Borja Balle, James Bell, Adria Gascón, and Kobbi Nis-
sim. Private summation in the multi-message shuffle
model. In CCS. ACM, 2020.

[9] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
round complexity of secure protocols. In STOC. ACM,
1990.

[10] Amos Beimel, Iftach Haitner, Kobbi Nissim, and Uri
Stemmer. On the round complexity of the shuffle model.
In Theory of Cryptography Conference, pages 683–712.
Springer, 2020.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigder-
son. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Providing
sound foundations for cryptography: on the work of
Shafi Goldwasser and Silvio Micali, pages 351–371.
2019.

[12] Abhishek Bhowmick, John Duchi, Julien Freudiger,
Gaurav Kapoor, and Ryan Rogers. Protection against
reconstruction and its applications in private federated
learning. arXiv preprint arXiv:1812.00984, 2018.

[13] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis,
Ilya Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnes, and Bern-
hard Seefeld. Prochlo: Strong privacy for analytics in
the crowd. In SOSP, 2017.

[14] Dan Bogdanov, Sven Laur, and Jan Willemson. Share-
mind: A framework for fast privacy-preserving compu-
tations. In ESORICS, pages 192–206, 2008.

[15] Elette Boyle, Geoffroy Couteau, and Pierre Meyer.
Sublinear-communication secure multiparty computa-
tion does not require FHE. In EUROCRYPT, pages
159–189, 2023.

https://zenodo.org/records/14710367

[16] Sai Sheshank Burra, Enrique Larraia, Jesper Buus
Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, Em-
manuela Orsini, Peter Scholl, and Nigel P. Smart. High-
performance multi-party computation for binary circuits
based on oblivious transfer. J. Cryptol., 34(3):34, 2021.

[17] Wei-Ning Chen, Peter Kairouz, and Ayfer Özgür. Break-
ing the communication-privacy-accuracy trilemma.
IEEE Transactions on Information Theory, 69(2):1261–
1281, 2022.

[18] Zhao Chen, Rui Fu, Ziyuan Zhao, Zheng Liu, Leihao
Xia, Lei Chen, Peng Cheng, Caleb Chen Cao, Yongxin
Tong, and Chen Jason Zhang. gmission: A general
spatial crowdsourcing platform. VLDB, 2014.

[19] Jung Hee Cheon, Andrey Kim, Miran Kim, and
Yong Soo Song. Homomorphic encryption for arith-
metic of approximate numbers. In ASIACRYPT, pages
409–437, 2017.

[20] Albert Cheu, Adam Smith, Jonathan Ullman, David Ze-
ber, and Maxim Zhilyaev. Distributed differential pri-
vacy via shuffling. In Eurocrypt. Springer, 2019.

[21] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friend-
ship and mobility: user movement in location-based
social networks. In SIGKDD. ACM, 2011.

[22] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava,
Entong Shen, and Ting Yu. Differentially private spatial
decompositions. In ICDE. IEEE, 2012.

[23] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter
Scholl, and Chaoping Xing. Spd𭟋

2k: Efficient MPC

mod 2k for dishonest majority. In CRYPTO, pages 769–
798, 2018.

[24] Anders P. K. Dalskov, Daniel Escudero, and Marcel
Keller. Fantastic four: Honest-majority four-party se-
cure computation with malicious security. In USENIX
Security, pages 2183–2200, 2021.

[25] Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof.
Fast fully secure multi-party computation over any ring
with two-thirds honest majority. In CCS, pages 653–666,
2022.

[26] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In CRYPTO, pages 643–662,
2012.

[27] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.
Collecting telemetry data privately. NeurIPS, 2017.

[28] John Duchi and Ryan Rogers. Lower bounds for locally
private estimation via communication complexity. In
COLT. PMLR, 2019.

[29] John C Duchi, Michael I Jordan, and Martin J Wain-
wright. Minimax optimal procedures for locally private
estimation. Journal of the American Statistical Associa-
tion, 113(521):182–201, 2018.

[30] Cynthia Dwork. Differential privacy. In ICALP.
Springer. 2006.

[31] Cynthia Dwork. Differential privacy: A survey of results.
International Conference on Theory and Applications
of Models of Computation, pages 1–19, 2008.

[32] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth
Raghunathan, Kunal Talwar, and Abhradeep Thakurta.
Amplification by shuffling: From local to central differ-
ential privacy via anonymity. In SODA. SIAM, 2019.

[33] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
Rappor: Randomized aggregatable privacy-preserving
ordinal response. In CCS. ACM, 2014.

[34] Vitaly Feldman, Audra McMillan, and Kunal Talwar.
Hiding among the clones: A simple and nearly optimal
analysis of privacy amplification by shuffling. In FOCS.
IEEE, 2021.

[35] Vitaly Feldman, Audra McMillan, and Kunal Talwar.
Stronger privacy amplification by shuffling for rényi
and approximate differential privacy. In SODA. SIAM,
2023.

[36] Vitaly Feldman and Kunal Talwar. Lossless compression
of efficient private local randomizers. In ICML. PMLR,
2021.

[37] Jack Fitzsimons, James Honaker, Michael Shoemate,
and Vikrant Singhal. Private means and the curious inci-
dent of the free lunch. arXiv preprint arXiv:2408.10438,
2024.

[38] Adria Gascón, Yuval Ishai, Mahimna Kelkar, Baiyu Li,
Yiping Ma, and Mariana Raykova. Computationally
secure aggregation and private information retrieval in
the shuffle model. Cryptology ePrint Archive, 2024.

[39] Quan Geng, Peter Kairouz, Sewoong Oh, and Pramod
Viswanath. The staircase mechanism in differential
privacy. IEEE Journal of Selected Topics in Signal
Processing, 9(7):1176–1184, 2015.

[40] Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus
Pagh, and Ameya Velingker. On the power of multi-
ple anonymous messages: Frequency estimation and
selection in the shuffle model of differential privacy. In
Eurocrypto. Springer, 2021.

[41] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Ras-
mus Pagh. Private counting from anonymous messages:

Near-optimal accuracy with vanishing communication
overhead. In ICML. PMLR, 2020.

[42] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Rasmus
Pagh, and Amer Sinha. Differentially private aggrega-
tion in the shuffle model: Almost central accuracy in
almost a single message. In ICML. PMLR, 2021.

[43] Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter
Kairouz, and Ananda Theertha Suresh. Shuffled model
of differential privacy in federated learning. In AISTATS.
PMLR, 2021.

[44] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game, or a completeness theorem for
protocols with honest majority. In Providing Sound
Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 307–328. 2019.

[45] David Goldschlag, Michael Reed, and Paul Syverson.
Onion routing. Communications of the ACM, 42(2):39–
41, 1999.

[46] Slawomir Goryczka and Li Xiong. A comprehensive
comparison of multiparty secure additions with differ-
ential privacy. IEEE transactions on dependable and
secure computing, 14(5):463–477, 2015.

[47] Alexandra Henzinger, Matthew M. Hong, Henry
Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikun-
tanathan. One server for the price of two: Simple and fast
single-server private information retrieval. In USENIX
Security, pages 3889–3905, 2023.

[48] John E Hopcroft and Richard M Karp. An n5/2 algo-
rithm for maximum matchings in bipartite graphs. SIAM
Journal on computing, 2(4):225–231, 1973.

[49] Daira Hopwood, Sean Bowe, Taylor Hornby, Nathan
Wilcox, et al. Zcash protocol specification. GitHub: San
Francisco, CA, USA, 4(220):32, 2016.

[50] Yuval Ishai, Mahimna Kelkar, Daniel Lee, and Yiping
Ma. Information-theoretic single-server pir in the shuffle
model. Cryptology ePrint Archive, 2024.

[51] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Cryptography from anonymity. In FOCS.
IEEE, 2006.

[52] Berivan Isik, Wei-Ning Chen, Ayfer Ozgur, Tsachy
Weissman, and Albert No. Exact optimality of
communication-privacy-utility tradeoffs in distributed
mean estimation. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

[53] Xue Jiang, Xuebing Zhou, and Jens Grossklags. Signds-
fl: Local differentially private federated learning with

sign-based dimension selection. ACM Transactions on
Intelligent Systems and Technology (TIST), 13(5):1–22,
2022.

[54] Roy Jonker and Ton Volgenant. A shortest augmenting
path algorithm for dense and sparse linear assignment
problems. In DGOR/NSOR: Papers of the 16th Annual
Meeting of DGOR in Cooperation with NSOR/Vorträge
der 16. Jahrestagung der DGOR zusammen mit der
NSOR, pages 622–622. Springer, 1988.

[55] Peter Kairouz, Sewoong Oh, and Pramod Viswanath.
Extremal mechanisms for local differential privacy. The
Journal of Machine Learning Research, 2016.

[56] Maryam Kamvar and Shumeet Baluja. A large scale
study of wireless search behavior: Google mobile search.
In CHI, 2006.

[57] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi
Nissim, Sofya Raskhodnikova, and Adam Smith. What
can we learn privately? SIAM Journal on Computing,
2011.

[58] Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In CCS, pages 1575–1590,
2020.

[59] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen.
Combinatorial optimization, volume 1. Springer, 2011.

[60] Antti Koskela, Mikko A Heikkilä, and Antti Honkela.
Numerical accounting in the shuffle model of differential
privacy. Transactions on Machine Learning Research,
2022.

[61] Christian Janos Lebeda. Better gaussian mechanism us-
ing correlated noise. arXiv preprint arXiv:2408.06853,
2024.

[62] Zitao Li, Tianhao Wang, Milan Lopuhaä-Zwakenberg,
Ninghui Li, and Boris Škoric. Estimating numerical dis-
tributions under local differential privacy. In SIGMOD.
ACM, 2020.

[63] Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and
Hong Chen. Fedsel: Federated sgd under local differen-
tial privacy with top-k dimension selection. In Database
Systems for Advanced Applications: 25th International
Conference, DASFAA 2020, Jeju, South Korea, Septem-
ber 24–27, 2020, Proceedings, Part I 25, pages 485–501.
Springer, 2020.

[64] Xinjian Luo, Yangfan Jiang, and Xiaokui Xiao. Feature
inference attack on shapley values. In CCS. ACM, 2022.

[65] Frank McSherry and Ilya Mironov. Differentially private
recommender systems: Building privacy into the netflix
prize contenders. In SIGKDD. ACM, 2009.

[66] Aranyak Mehta et al. Online matching and ad alloca-
tion. Foundations and Trends® in Theoretical Computer
Science, 8(4):265–368, 2013.

[67] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil
Vadhan. Computational differential privacy. In CRYPTO.
Springer, 2009.

[68] Steven J Murdoch and George Danezis. Low-cost traffic
analysis of tor. In S&P. IEEE, 2005.

[69] Thông T Nguyên, Xiaokui Xiao, Yin Yang, Siu Che-
ung Hui, Hyejin Shin, and Junbum Shin. Collecting
and analyzing data from smart device users with local
differential privacy. arXiv preprint arXiv:1606.05053,
2016.

[70] Lasse Overlier and Paul Syverson. Locating hidden
servers. In S&P. IEEE, 2006.

[71] Pascal Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[72] Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang,
Xinyu Yang, Julie A McCann, and S Yu Philip. Lopub:
high-dimensional crowdsourced data publication with
local differential privacy. IEEE Transactions on Infor-
mation Forensics and Security, 13(9):2151–2166, 2018.

[73] Eric Rescorla. The transport layer security (tls) protocol
version 1.3. Technical report, 2018.

[74] Mike Rosulek and Lawrence Roy. Three halves make a
whole? beating the half-gates lower bound for garbled
circuits. In CRYPTO, pages 94–124, 2021.

[75] Alvin E Roth. The Shapley value: essays in honor of
Lloyd S. Shapley. Cambridge University Press, 1988.

[76] Igal Sason and Sergio Verdú. f-divergence inequalities.
IEEE Transactions on Information Theory, 62(11):5973–
6006, 2016.

[77] Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter
Kairouz, and Lucas Theis. Optimal compression of
locally differentially private mechanisms. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 7680–7723. PMLR, 2022.

[78] Nihar Bhadresh Shah and Dengyong Zhou. Double or
nothing: Multiplicative incentive mechanisms for crowd-
sourcing. NeurIPS, 2015.

[79] Nigel P. Smart. Practical and efficient fhe-based MPC.
In IMACC, pages 263–283, 2023.

[80] Adam Smith, Abhradeep Thakurta, and Jalaj Upadhyay.
Is interaction necessary for distributed private learning?
In 2017 IEEE Symposium on Security and Privacy (SP),
pages 58–77. IEEE, 2017.

[81] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xue-
qiang Wang, and Xiaofeng Wang. Privacy loss in apple’s
implementation of differential privacy on macos 10.12.
arXiv preprint arXiv:1709.02753, 2017.

[82] Hien To, Gabriel Ghinita, Liyue Fan, and Cyrus Shahabi.
Differentially private location protection for worker
datasets in spatial crowdsourcing. IEEE Transactions
on Mobile Computing, 16(4):934–949, 2016.

[83] Hien To, Gabriel Ghinita, and Cyrus Shahabi. A frame-
work for protecting worker location privacy in spatial
crowdsourcing. VLDB, 2014.

[84] Hien To, Cyrus Shahabi, and Li Xiong. Privacy-
preserving online task assignment in spatial crowdsourc-
ing with untrusted server. In ICDE. IEEE, 2018.

[85] Raphael R Toledo, George Danezis, and Ian Goldberg.
Lower-cost ε-private information retrieval. Proceedings
on Privacy Enhancing Technologies, 4:184–201, 2016.

[86] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang,
and Lei Chen. Online mobile micro-task allocation in
spatial crowdsourcing. In ICDE. IEEE, 2016.

[87] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen,
and Cyrus Shahabi. Spatial crowdsourcing: a survey.
The VLDB Journal, 29(1):217–250, 2020.

[88] Hengzhi Wang, En Wang, Yongjian Yang, Jie Wu, and
Falko Dressler. Privacy-preserving online task assign-
ment in spatial crowdsourcing: A graph-based approach.
In INFOCOM. IEEE, 2022.

[89] Leye Wang, Dingqi Yang, Xiao Han, Tianben Wang,
Daqing Zhang, and Xiaojuan Ma. Location privacy-
preserving task allocation for mobile crowdsensing with
differential geo-obfuscation. In The Web Conference,
2017.

[90] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Che-
ung Hui, Hyejin Shin, Junbum Shin, and Ge Yu. Col-
lecting and analyzing multidimensional data with local
differential privacy. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 638–
649. IEEE, 2019.

[91] Shaowei Wang, Changyu Dong, Xiangfu Song, Jin Li,
Zhili Zhou, Di Wang, and Han Wu. Beyond statisti-
cal estimation: Differentially private individual com-
putation via shuffling. In USENIX Security, 2025.
https://arxiv.org/abs/2406.18145.

https://arxiv.org/abs/2406.18145

[92] Shaowei Wang, Yun Peng, Jin Li, Zikai Wen, Zhipeng
Li, Shiyu Yu, Di Wang, and Wei Yang. Privacy am-
plification via shuffling: Unified, simplified, and tight-
ened. Proceedings of the VLDB Endowment, 17(8):1870–
1883, 2024.

[93] Xingxing Xiong, Shubo Liu, Dan Li, Zhaohui Cai, and
Xiaoguang Niu. A comprehensive survey on local differ-
ential privacy. Security and Communication Networks,
2020:1–29, 2020.

[94] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and
Zhiyong Yu. Modeling user activity preference by
leveraging user spatial temporal characteristics in lbsns.
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 45(1):129–142, 2014.

[95] Andrew Chi-Chih Yao. Protocols for secure computa-
tions (extended abstract). In 23rd Annual Symposium
on Foundations of Computer Science, pages 160–164,
1982.

[96] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In 27th Annual Symposium on Foundations of
Computer Science (sfcs 1986), pages 162–167. IEEE,
1986.

[97] Yufeng Zhan, Jie Zhang, Zicong Hong, Leijie Wu, Peng
Li, and Song Guo. A survey of incentive mechanism
design for federated learning. IEEE Transactions on
Emerging Topics in Computing, 10(2):1035–1044, 2021.

A Error Upper Bounds of Minkowski Re-
sponse Mechanism

We now study the error bound of the Minkowski response in
the PIC model. We start with analyze the mean squared error
formula of the mechanism given fixed local budget ε and cap
area radius parameter r. Then, we apply the global privacy
budget (εc,δ) and the privacy amplification bound in Theo-
rem 5.2, to deduce a feasible local budget ε and optimized
radius parameter afterward. To deal with both ℓ2-norm and
ℓ+∞-norm bounded domain, we introduce a more general no-
tation Bp,r(x) to represent the ℓ2-norm hyperball with radius
r centered at any x ∈ Rd :

Bp,r(x) = {x′ | x′ ∈ Rd and ∥x′− x∥p ≤ r},

and a general notation Yp,q,r to present the following ℓq ex-
panded domain:

Yp,q,r = {x | x ∈ Rd and ∃x′ ∈ Bp,1 that x ∈ Bq,r(x′)}.

For hyper-ball domain B2,1. When the domain is ℓ2-norm
bounded hyperball B2,1, we use q = 2 for the cap area as well.
In this context, we let β = rd(eε−1)

(1+r)d+rd(eε−1) and obtain the MSE

bound given fixed local budget ε and radius r as follows:

max
x∈Bp,1

E[∥x̃− x∥2
2] = max

x∈Bp,1

1
β2 ·Var[y|x]

= max
x∈Bp,1

1
β2 (β ·E[∥Bq,r(x)∥2

2]+ (1−β) ·E[∥Yp,q,r(x)∥2
2]−β

2∥x∥2
2)

= max
x∈Bp,1

1
β2 (β(∥x∥

2
2 + r2)+(1−β)(1+ r)2−β

2∥x∥2
2)

≤ 1
β2 (β(1+ r2)+(1−β)(1+ r)2−β

2)

≤ 1
β2 (βr2 +(1−β)(1+(1+ r)2))

where E[∥B∥2
2] denote the expected squared distance between

a (uniform-distributed) space B ⊆ Rd and the origin point
{0}d . If the local privacy budget ε is relatively large (e.g.,
ε≥ log((c+1)

d+2
2) for some constant c≥ 1), and we specify

r = (eε−1)2/(d+2)−1)−1, we then have r≤ 1/c, β∈ [1/2,1]
and:

max
x∈Bp,1

E[∥x̃− x∥2
2]

≤4(r2 +5
(1+1/r)d

(eε−1)+(1+1/r)d)

≤4(r2 +5
(1+1/r)d

eε−1
)

≤4(eε−1)−2/(d+2)+5
(eε−1)−2/(d+2)

eε−1
)

≤24(eε−1)−2/(d+2). (4)

Consider the case n ≥
max

{
16log(1/δ), 32(1+c)d+2 log(1/δ)

(eεc−1)2

}
holds for some

constant c ≥ 1, we specify local budget ε such that
eε = n(eεc−1)2

32log(1/δ) holds according to Theorem 5.2, and specify
the radius r to:((n(eεc −1)2

32log(1/δ)

)1/(d+2)−1
)−1

.

Observe that in this setting, we have β ∈ [1/2,1] and r ≤ 1/c.
Then, the MSE is upper bounded as:

max
x∈Bp,1

E[∥x̃− x∥2
2]

≤ 1
β2 (βr2 +(1−β)(1+(1+ r)2))

≤4(r2 +5
(1+1/r)d

(eε−1)+(1+1/r)d)

≤4(r2 +5
(1+1/r)d

eε
)

≤4
((32log(1/δ)

n(eεc −1)2

) 2
d+2 · (c+1)2

c2 +
5((eεc −1)2n/(32log(1/δ)))

d
d+2

(eεc −1)2n/(32log(1/δ))

)
≤36

(32log(1/δ)

n(eεc −1)2

) 2
d+2

.

Therefore, we establish Theorem 6.3. With sufficiently large
size n of the amplification population, the derived error bound
matches the lower bound in Theorem 6.2.

For hyper-cube domain B∞,1. Another data domain that
is commonly encountered in practical settings is the ℓ+∞-
norm bounded hypercube. We use q =+∞ as well for the cap
area, then we have volumes V (B2,r) = (2r)d , V (Y∞,∞,r) =

(2+2r)d , and let β = rd(eε−1)
(1+r)d+rd(eε−1) . For fixed local budget

ε and radius r, the mean squared error bound is:

max
x∈Bp,1

E[∥x̃− x∥2
2] =

1
β2 ·Var[y]

≤ d
β2 (β(1+ r2/3)+(1−β)(1+ r)2/3)−d

≤ d
3β2 (βr2 +(1−β)((1+ r)2 +3(1−β)))

Consider the case n≥max{16log(1/δ), 32(1+c)d+2 log(1/δ)
(eεc−1)2 }

holds for some constant c≥ 1, we specify local budget ε such
that eε = n(eεc−1)2

32log(1/δ) holds according to Equation 1, and specify
the radius r as:((n(eεc −1)2

32log(1/δ)

)1/(d+2)−1
)−1

.

In this setting, we have β ∈ [1/2,1] and r ≤ 1/c, we thus
obtain:

max
x∈Bp,1

E[∥x̃− x∥2
2]

≤ d
3β2 (r

2 +7(1−β))

≤ d
3β2 (r

2 +7
(1+1/r)d

(eε−1)+(1+1/r)d)

≤ d
3β2 (r

2 +7
(1+1/r)d

eε
)

≤4d
3

((32log(1/δ)

n(eεc −1)2

) 2
d+2 · (c+1)2

c2 +7
(32log(1/δ)

n(eεc −1)2

) 2
d+2
)

≤15d ·
(32log(1/δ)

n(eεc −1)2

) 2
d+2

.

Alternatively, one may firstly transform the ℓ+∞-norm vec-
tor into a ℓ2-norm bounded one, and utilizing the mechanism
for hyper-ball. Similar utility can be guaranteed for both ways.

B Details on Experimental Implementation

In the experiments related to both spatial crowdsourcing and
location-based social systems, user location data is confined

within a two-dimensional cube domain [−1,1]× [−1,1]. As
a result:

• For the Laplace mechanism, the privacy sensitivity pa-
rameter related to replacement is defined as ∆ = 4.

• In the PlanarLaplace mechanism, given that the
maximum ℓ2-distance is 2

√
2, we set the geo-

indistinguishability parameter to ε/(2
√

2) to ensure a
fair comparison.

• In mechanisms like Staircase and Squarewave, which
originally operate in one-dimensional domain, the lo-
cal budget is evenly distributed across two dimensions.
This is crucial for generating meaningful location reports
pertinent to these tasks.

• For the PrivUnit mechanism, which uses an ℓ2-bounded
unit vector as input, we convert the two-dimensional
cube domain into a three-dimensional hyper-ball do-
main. After randomization, it’s reverted back to its orig-
inal two-dimensional form. To enhance performance,
we further engage in a numerical search for the optimal
hyper-parameter, following the approach in [36].

• In the Minkowski response mechanism, we set q =+∞

for the cap area to align with the input domain, and
engage in a numerical search for the best-suited cap area
radius r.

• We additionally introduce a classical mechanism by
Duchi et al. [29], denoted as PrivHS, for comparison.

In the experiments of federated learning with incentives,
the (randomly) subsampled gradient vector has 6 dimensions,
thus the two-dimensional PlanarLaplace mechanism is unap-
plicable. For mechanisms like Staircase and Squarewave, the
local budget is evenly distributed across 6 dimensions.

When privacy amplification via shuffling is applied in the
PIC model, the parameter δ is fixed to 0.01/ni, where ni is the
number of users in the same group i. In the spatial crowdsourc-
ing applications, since one user is associated with at most one
worker, the effective number n′i of amplification population is
set to ni−1; in the location-based social system applications,
the effective number n′ of amplification population is set to
0.90 ·n when neighboring radius τ = 0.2 and is set to 0.98 ·n
when neighboring radius τ = 0.1.

We evaluate both the client-side and server-side running
time of our protocol on a laptop computer embedded with
Intel i5-8250U CPU @1.6GHz and 8GB memory.

